
GENERALINTEREST

54 Elektor Electronics 12/2003

This second part of the article includes full
details to build, test and use a low-cost 4-
channel stepper motor drive which can be tai-
lored to your applications. The project includes
the RS-232 interface for direct connection to

the PC, a custom high-level control
language for executing commands
sent to the controller and the drive
electronics to power the motors. In
addition, the PC communication soft-

ware will be explained in some detail
allowing full customisation to your
specific requirements. This software
is compatible with all Microsoft Win-
dows 32-bit platforms and was devel-
oped in Borland Delphi.

The RS232 serial interface
The RS232 serial interface standard,
defined over four decades ago, has
remained a favourite for low band-
width communications using the
personal computer. Since virtually all
PCs are shipped with at least one
RS232 port, and many of today’s
microcontrollers have, or are easily
extended with, RS232 interface cir-
cuitry, the RS232 port is an afford-
able as well as straight-forward
option for home-built projects.

Normally recognised as a 9-pin
sub-D plug labelled COM1 or COM2,
the RS232 serial port has nine con-
nections. Half duplex two-way com-
munication can be achieved by using
only three pins (2, 3 and 5). The com-
plete pin-out of the port is shown in
Figure 1. Unlike the standard TTL
levels, RS232 data is bipolar, using
+3 to +25 V to represent a logic ‘0’
and –3 to –25 V to represent a logic
‘1’. This scheme makes relatively

Stepper Motors
Uncovered (2)
Part 2 (final): a universal 4-channel unipolar stepper drive

Design by Timothy G. Constandinou

Having covered the fundamentals to stepping motors and drive systems,
this second and final part provides a comprehensive design to a four-
channel unipolar stepper drive with complete interface electronics for
direct operation from a standard PC.

unique address. For access it is opened, the
required data is transferred and then it is
closed. The only additional requirement is
that the port properties be set up (‘config-
ured’) before usage; for example, data bitrate,
parity bit and data timeout.

Hardware
Figure 2 shows the circuit diagram of the
stepper drive and interface. This is quite
straightforward. Starting from the RS232
input (K1) the transmit (Tx) and receive (Rx)
lines are connected to a level converter chip
(IC2). As previously mentioned, this has the
task of converting the RS232 bipolar voltage
levels — for example, a swing of –9V/+9V to
TTL swing (defined as +5V/0V). Note that

long-distance communication possi-
ble — however, additional interface
electronics are required to convert
RS232 voltage levels to/from TTL.

At the computer end, communi-
cating with just about any hardware
port is much the same as handling a
data file on disk. Each port has a

GENERALINTEREST

5512/2003 Elektor Electronics

020127 - 13

Figure 1 RS232 port pinning.

K1

SUB D9

1

2

3

4

5

6

7

8

9

R3

100Ω

R4

100Ω

R1

330Ω

R2

330Ω

R5

1k

C1

100n

C2

100n

C3

100n

MAX232

T1OUT

T2OUT

R1OUT

R2OUT

R1IN

IC2

T1IN

T2IN

R2IN

C1–

C1+

C2+

C2–

11

12

10

13

14

15

16
V+

V-

7

8 9

3

1

4

5

2

6

+5V

C8

100n

X1

20MHz

C6

33p

C7

33p

+5V

R6

2
2

0
Ω

D1

R7
2

2
0

Ω

D2

R8

2
2

0
Ω

D3

R9

2
2

0
Ω

D4

R10

2
2

0
Ω

D5

100n

C5

100n

R11

10
k

T1

*

D6

*

+U

R12

10
k

T2

*

D7

*

+U

R13

10
k

T3

*

D8

*

+U

R14

10
k

T4

*

D9

*

+U

K3

R
15

4
Ω

7

+U

R17

10
k

T5

*

D10

*

+U

R18

10
k

T6

*

D11

*

+U

R19

10
k

T7

*

D12

*

+U

R20

10
k

T8

*

D13

*

+U

K4

R23

10
k

T9

*

D14

*

+U

R24

10
k

T10

*

D15

*

+U

R25

10
k

T11

*

D16

*

+U

R26

10
k

T12

*

D17

*

+U

K5

R29

10
k

T13

*

D18

*

+U

R30

10
k

T14

*

D19

*

+U

R31

10
k

T15

*

D20

*

+U

R32

10
k

T16

*

D21

*

+U

K6

R
16

4
Ω

7

R
21

4
Ω

7

+U

R
22

4
Ω

7

R
33

4
Ω

7

+U

R
34

4
Ω

7

R
27

4
Ω

7

+U

R
28

4
Ω

7

K23A F

F1

C11

1000µ
40V

C10

100n

IC3

7805

C9

100n

+5V

+U

zie tekst*
voir texte*
siehe Text*
see text*

B

020127 - 11

BB

BB

BB

BBBB

BB

BB

BB

BB B B

RC0/T1OSO/T1CKI

RC1/TIOSI/CCP2

RA3/AN3/VREF+

RA2/AN2/VREF–

OSC2/CLKOUT

RC3/SCK/SCL

RC4/SDI/SDA

RA5/AN4/SS

OSC1/CLKIN

PIC16F873

RA4/T0CKI

RC6/TX/CK

RC7/RX/DT

MCLR/VPP

RC2/CCP1

RB0/INT

RA1/AN1

RA0/AN0

RC5/SDO

RB3/PGM

RB6/PGC

RB7/PGD

IC1

RB1

RB2

RB4

RB5

20

10

28

27

26

25

24

23

22

2111

12

13

14

16

15

17

18

198

1

9

3

2

4

6

5

7

Figure 2. Circuit diagram of the driver board.

Pin Signal

1 Data Carrier Detect (DCD)

2 Received Data (RxD)

3 Transmitted Data (TxD)

4 Data Terminal Ready (DTR)

5 Signal Ground (SG)

6 Data Set Ready (DSR)

7 Request to Send (RTS)

8 Clear to Send (CTS)

9 Ring Indicator (RI)

this is internally done by using a switched
capacitor technique to create a higher dou-
ble-ended supply (±9V).

The TTL level-converted signals are then
connected to the UART (Universal Asynchro-

nous Receive and Transmit) pins of
the PIC microcontroller (IC1). The
RS232 I/O pins have been connected
through series resistors R1 and R2
and similarly, on the converted side,

R3 and R4, primarily for protection,
in case something goes wrong!

The linear regulator (IC3) is
required to provide the +5 V regu-
lated supply to the PIC MCU and

GENERALINTEREST

56 Elektor Electronics 12/2003

0
2
0
1
2
7
-1

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

F
1

H1

H
2H3

H
4

IC
1

IC2

IC
3

K
1

K2

K
3

K
4

K
5

K
6

R1
R2

R
3

R
4

R5
R

6

R
7

R8
R9

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
26

R
27

R
28

R
29

R
30

R
31

R
32

R
33

R
34

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

T
13

T
14

T
15

T
16

X
1

0
2

0
1

2
7

-1

3A
/F

+-

0
2

0
1

2
7

-1

Figure 3. PCB design for the stepper motor driver board.

are available to choose from, see the relevant
inset. The ballast resistors are used to limit
the current through the phase winding, but
inevitably will dissipate power. The resistor
values shown should be calculated for the
specific stepper motor used. It is essential to
have the manufacturer’s data on the specific
stepper motor including data on the winding
impedance, as well as nominal current and
voltage ratings. If you do not have this avail-
able it is not advisable to obtain just the
resistance using a multimeter as no data will
be available on the motors’ real power rat-
ings. Table 1 gives an example of selecting
ballast resistor value and rating for two dif-
ferent stepper motors for different supply
voltages.

These values can be calculated as follows:

Rballast = Vsupply / (Imotor – Rmotor)

Pballast = 0.5 (I2
motor x Rballast)

Some points to note: because the motor is dri-
ven in full-step mode, the windings are only
powered half the time, therefore the power
rating for the relevant ballast resistor may be
only half the energy dissipation normally
expected. The voltage supply should be cho-
sen to lie between 10 V and 30 V — the
higher the supply, the more power delivered
to the motor. This should be higher than the
voltage rating of the motor — don’t forget
there is a voltage drop across the ballast
resistor. Also, please note that the maximum
current rating (per winding) that can be dri-
ven using this PCB should not exceed 1 A.

Construction
All components in this circuit are assembled
directly onto a PCB, whose copper track layout
and component mounting plan are given in
Figure 3. Sockets should be fitted for the two
ICs with a DIL (dual-in-line) footprint, while
IC3 should be soldered directly onto the PCB.
It is advisable to firstly assemble the lower
profile components such as links, resistors,

RS232 interface chips. IC1 employs
capacitors C6, C7 and quartz crystal
X1 in conjunction with an internal
bistable to form a precision 20 MHz
oscillator required by the UART. Pin 1
of the PIC is pulled high through R1,
as resetting the microcontroller is
not required. All remaining I/O ports
(20 pins) are configured as outputs
and connected to the stepper motor
phase drives and LED indicators.

The stepper motor drive scheme
used is a resistance-limited unipolar
drive, suitable for 5, 6 and 8-wire
low-power stepper motors. This pro-
vides a low-cost and simple means

to powering a unipolar winding.
However, it does suffer from ineffi-
ciency due to power dissipated in
the ballast resistors.

The phase drive circuit uses logic-
level MOSFET devices driven
directly from the microcontroller out-
put to power the stepper motor
windings. Various Logic Level FETs
may be applied here, see the inset.
Fast recovery diodes are required to
provide a return path for the energy
stored in the motor windings and to
prevent damage to the MOSFET
devices owing to back-EMF dis-
charges. Again, a number of devices

GENERALINTEREST

5712/2003 Elektor Electronics

Logic Level FETs and Fast Recovery Diodes

In this circuit, the choice of logic level FET (positions T1-T16) and fast recovery diodes
(positions D6-D21) will be governed by availability and the power rating of the step-
per motor(s) used.

FETs

Type Imax (A) Umax (V) Ri (mΩ) Note

RFD14N05L 14 50 100 Farnell # 515-399, Fairchild

BUK100-50GL 13.5 50 125

BUK101-50GS 30 50 50

IRLI2203N 61 30 7

Diodes

Type Imax (A) Umax (V)

MBR1045CT 10 45 Farnell # 878-364

MBR1545CT 15 45 Farnell # 878-194

etc.

Table 1. Ballast resistor values (examples)

Vsupply
(Volts)

Imotor
(Amps)

Rmotor
(Ohms)

Rballast
(Ohms)

Pballast
(Watt)

15

1.00 5

10 5.0
20 15 7.5
25 20 10.0
30 25 12.5
15

0.500 15

15 1.9
20 25 3.1
25 35 4.4
30 45 5.6

COMPONENTS LIST

Resistors:
R1,R2 = 330Ω
R3,R4 = 100Ω
R5 = 1kΩ
R6-R10 = 220Ω
R11-R14,R17-R20,R23-R26,R29-R32

= 10kΩ
R15,R16,R21,R22,R27,R28,R33,R34 =

18Ω 5 watt (see text)

Capacitors:
C1-C5,C8,C9,C10 = 100nF
C6,C7 = 33pF
C11 = 1000µF 40V radial

Semiconductors:
D1-D4 = LED, green, 3mm
D5 = LED, red, 3mm
D6-D21 = MBR2060CT (Farnell #

247-157) (see inset)

IC1 = PIC16F873-20/SP (not available
ready-programmed)

IC2 = MAX232CPE
IC3 = 7805CP
T1-T16 = Logic-level MOSFET, for

example, RFD14N05L (Farnell #
516-399) (see inset)

Miscellaneous:
F1 = fuse, 3AF (fast) with PCB mount

holder
K1 = 9-way sub-D socket (female),

PCB mount
K2 = 2-way PCB terminal block, 5mm

lead pitch
K3-K6 = 6-way SIL pinheader
X1 = 20MHz quartz crystal
PCB, order code 020127-1 from The

PCBShop
Disk, contains all source code files,

order code 020127-11 or Free
Download

GENERALINTEREST

58 Elektor Electronics 12/2003

Listing 1. Firmware source code.
// main.c – Main program code

#include <16f873.h>
#include <ports.h>
#include <protocol.h>
#use delay (clock=20000000)
#use rs232(baud=38400, xmit=tx, rcv=rc)

int astep=1, bstep=1, cstep=1, dstep=1;
long max=800, min=470;

// initialises the ports by defining whether the tri-state buffers should be input or output
void setup_ports(void) { set_tris_a(0x00);set_tris_b(0x00);set_tris_c(0xF0);set_uart_speed(38400); }

// resets one motor to initial state
void reset_motor(int motor) {

if (motor==1) {output_low(a_1);output_low(a_2);output_low(a_3);output_low(a_4);output_high(led_a);}
if (motor==2) {output_low(b_1);output_low(b_2);output_low(b_3);output_low(b_4);output_high(led_b);}
if (motor==3) {output_low(c_1);output_low(c_2);output_low(c_3);output_low(c_4);output_high(led_c);}
if (motor==4) {output_low(d_1);output_low(d_2);output_low(d_3);output_low(d_4);output_high(led_d);} }

// resets all ports to initial states
void reset_ports(void) { reset_motor(1);reset_motor(2);reset_motor(3);reset_motor(4);putc(ACKNOWLEDGE); }

// creates a delay which constitutes the step pulse duration
void delay_micro(long delay) { long n;for(n=1;n<=delay;n+=3)delay_us(6); }

// changes powered phases according to current step required
void power_motor(int axis, step) {

if (axis==1) {
if (step==1) {output_bit(a_1,1);output_bit(a_2,0);output_bit(a_3,0);output_bit(a_4,1);}
if (step==2) {output_bit(a_1,0);output_bit(a_2,1);output_bit(a_3,0);output_bit(a_4,1);}
if (step==3) {output_bit(a_1,0);output_bit(a_2,1);output_bit(a_3,1);output_bit(a_4,0);}
if (step==4) {output_bit(a_1,1);output_bit(a_2,0);output_bit(a_3,1);output_bit(a_4,0);}
output_low(led_a); }

if (axis==2) {
if (step==1) {output_bit(b_1,1);output_bit(b_2,0);output_bit(b_3,0);output_bit(b_4,1);}
if (step==2) {output_bit(b_1,0);output_bit(b_2,1);output_bit(b_3,0);output_bit(b_4,1);}
if (step==3) {output_bit(b_1,0);output_bit(b_2,1);output_bit(b_3,1);output_bit(b_4,0);}
if (step==4) {output_bit(b_1,1);output_bit(b_2,0);output_bit(b_3,1);output_bit(b_4,0);}
output_low(led_b); }

if (axis==3) {
if (step==1) {output_bit(c_1,1);output_bit(c_2,0);output_bit(c_3,0);output_bit(c_4,1);}
if (step==2) {output_bit(c_1,0);output_bit(c_2,1);output_bit(c_3,0);output_bit(c_4,1);}
if (step==3) {output_bit(c_1,0);output_bit(c_2,1);output_bit(c_3,1);output_bit(c_4,0);}
if (step==4) {output_bit(c_1,1);output_bit(c_2,0);output_bit(c_3,1);output_bit(c_4,0);}
output_low(led_c); }

if (axis==4) {
if (step==1) {output_bit(d_1,1);output_bit(d_2,0);output_bit(d_3,0);output_bit(d_4,1);}
if (step==2) {output_bit(d_1,0);output_bit(d_2,1);output_bit(d_3,0);output_bit(d_4,1);}
if (step==3) {output_bit(d_1,0);output_bit(d_2,1);output_bit(d_3,1);output_bit(d_4,0);}
if (step==4) {output_bit(d_1,1);output_bit(d_2,0);output_bit(d_3,1);output_bit(d_4,0);}
output_low(led_d); } }

// Moves a specified motor by a specified amount of steps in a specified direction.
int move(short direction, long steps, int axis, step) {

long n, delay, accsteps;
delay=max; accsteps=max-min;
for(n=1;n<=steps;n++) {

if(n<=accsteps)delay—;
if(steps-n<=accsteps)delay++;
if(direction==0)step—;else step++;
if(step==0)step=4;

GENERALINTEREST

5912/2003 Elektor Electronics

if(step==5)step=1;
power_motor(axis, step); delay_micro(delay); reset_motor(axis); } return(step); }

// Reads in 2 bytes from the UART and returns a 16-bit integer (range 0-65535)
long readlong(void) { return(256*getc() + getc()); }

// Main Program
void main(void) {

char incomm;
long steps;
setup_ports(); reset_ports();
while(0==0) {

output_low(led_a); output_low(led_b); output_low(led_c); output_low(led_d);
incomm=getc();
output_high(led_a); output_high(led_b); output_high(led_c); output_high(led_d);
switch(incomm) {

case RESET: reset_ports(); break;
case SETUP_ACC: min=readlong(); max=readlong(); break;
case MOVE_A_FW: steps=readlong(); astep=move(0, steps, 1, astep); break;
case MOVE_A_RV: steps=readlong(); astep=move(1, steps, 1, astep); break;
case MOVE_B_FW: steps=readlong(); bstep=move(0, steps, 2, bstep); break;
case MOVE_B_RV: steps=readlong(); bstep=move(1, steps, 2, bstep); break;
case MOVE_C_FW: steps=readlong(); cstep=move(0, steps, 3, cstep); break;
case MOVE_C_RV: steps=readlong(); cstep=move(1, steps, 3, cstep); break;
case MOVE_D_FW: steps=readlong(); dstep=move(0, steps, 4, dstep); break;
case MOVE_D_RV: steps=readlong(); dstep=move(1, steps, 4, dstep); break; } putc(ACKNOWLEDGE); } }

// ports.h – defines pin assignments

#define tx PIN_C6
#define rc PIN_C7
#define a_1 PIN_C3
#define a_2 PIN_C2
#define a_3 PIN_C1
#define a_4 PIN_C0
#define b_1 PIN_A0
#define b_2 PIN_A1
#define b_3 PIN_A2
#define b_4 PIN_A3
#define c_1 PIN_B3
#define c_2 PIN_B2
#define c_3 PIN_B1
#define c_4 PIN_B0
#define d_1 PIN_B7
#define d_2 PIN_B6
#define d_3 PIN_B5
#define d_4 PIN_B4
#define led_a PIN_A5
#define led_b PIN_A4
#define led_c PIN_C5
#define led_d PIN_C4

// protocol.h – defines communication protocol

#define RESET 1
#define ACKNOWLEDGE 2
#define SETUP_ACC 10
#define MOVE_A_FW 20
#define MOVE_A_RV 21
#define MOVE_B_FW 22
#define MOVE_B_RV 23
#define MOVE_C_FW 24
#define MOVE_C_RV 25
#define MOVE_D_FW 26
#define MOVE_D_RV 27

GENERALINTEREST

60 Elektor Electronics 12/2003

Listing 2. Test program to run on the PC.
unit main;

interface

uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, QCCom32, Buttons, ExtCtrls;

type
TForm1 = class(TForm)
QCPort: T_QCCom32;
Commport: TComboBox;
xclgroup: TRadioGroup;
setup_acc, move_a_rv, move_a_fw, move_b_rv, move_b_fw, move_c_rv, move_c_fw, move_d_rv, move_d_fw, reset: TRa-

dioButton;
parameter1, parameter2: TEdit;
commportlabel, parameterlabel: TLabel;
Executebutton: TBitBtn;
autoreset: TCheckBox;
procedure CommportChange(Sender: TObject);
procedure ExecutebuttonClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure setup_accClick(Sender: TObject);
procedure move_a_fwClick(Sender: TObject);
procedure move_a_rvClick(Sender: TObject);
procedure move_b_fwClick(Sender: TObject);
procedure move_b_rvClick(Sender: TObject);
procedure move_c_fwClick(Sender: TObject);
procedure move_c_rvClick(Sender: TObject);
procedure resetClick(Sender: TObject);
procedure move_d_fwClick(Sender: TObject);
procedure move_d_rvClick(Sender: TObject);

private { Private declarations }
public { Public declarations }
end;

var Form1: TForm1;

Implementation {$R *.DFM}

procedure TForm1.resetClick(Sender: TObject); begin parameter1.Enabled := FALSE; parameter2.Enabled := FALSE; end;

procedure TForm1.setup_accClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := TRUE; end;

procedure TForm1.move_a_fwClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_a_rvClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_b_fwClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_b_rvClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_c_fwClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_c_rvClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_d_fwClick(Sender: TObject); begin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.move_d_rvClick(Sender: TObject); egin parameter1.Enabled := TRUE; parameter2.Enabled := FALSE; end;

procedure TForm1.CommportChange(Sender: TObject);
begin QCPort.Port := Commport.ItemIndex + 1; end;

procedure TForm1.FormShow(Sender: TObject); begin QCPort.Port := 1; CommPort.ItemIndex := 0; end;

The controller software
The PIC microcontroller’s function is to
receive commands from the PC via the RS232
port and execute them. It is responsible for
generating the stepping sequence which will
control the power delivered to the motor. This
also produces the acceleration and decelera-
tion cycles for optimal stepping response of a
given motor. By having this low level inter-
face the pulse timings can be guaranteed to
be precise.

So why bother having a microcontroller at
all? Why not control the stepper motor drive
directly from the computer? Although such
real-time control was possible in the past
with DOS-based programs, unfortunately this
is no longer the case. This is because of the

DIL sockets, ceramic capacitors, etc.,
mainly for convenience. Take special
care to observe the correct polarity
of all semiconductors and electrolytic
capacitors before soldering. Also, the
ballast resistors should be mounted
slightly off the board surface as they
will become hot during operation. It
is advisable to use ceramic standoffs
to space these resistors above the
board.

If all four channels are not
required, you may populate, for
example, only two of the four chan-
nels of the stepper motor drivers.

When the soldering is finished,
the PIC microcontroller and MAX232

ICs may be installed in their DIL
sockets. You can program your own
PIC for the project using the source
code available under number
020127-11 on disk or from the Free
Downloads section of our website at
www.elektor-electronics.co.uk. For
the more ambitious readers wanting
to customize the PIC firmware or
add functionality, a full overview
including some guidelines is pro-
vided in the following section. It is
advisable to test the project with the
original firmware before attempting
to modify it.

GENERALINTEREST

6112/2003 Elektor Electronics

procedure TForm1.ExecutebuttonClick(Sender: TObject);
var
commandcode : char;
command : string;

begin
Executebutton.Enabled := FALSE;

if reset.Checked then commandcode := char(1);
if setup_acc.Checked then commandcode := char(10);

if move_a_fw.Checked then commandcode := char(20);
if move_a_rv.Checked then commandcode := char(21);
if move_b_fw.Checked then commandcode := char(22);
if move_b_rv.Checked then commandcode := char(23);
if move_c_fw.Checked then commandcode := char(24);
if move_c_rv.Checked then commandcode := char(25);
if move_d_fw.Checked then commandcode := char(26);
if move_d_rv.Checked then commandcode := char(27);

QCPort.Open; setlength(command, 1);
command[1] := commandcode; QCPort.Write(command);

if (parameter1.enabled) then
begin setlength(command, 2);
command[1] := char(strtoint(parameter1.text) div 256);
command[2] := char(strtoint(parameter1.text) mod 256);
QCPort.Write(command); end;

if (parameter2.enabled) then begin
setlength(command, 2);
command[1] := char(strtoint(parameter2.text) div 256);
command[2] := char(strtoint(parameter2.text) mod 256);
QCPort.Write(command); end;

while(QCPort.Read = ‘’) do;

if autoreset.Checked then begin
setlength(command, 1);
command[1] := char(1);
QCPort.Write(command);
while(QCPort.Read = ‘’) do; end;

QCPort.Close; Executebutton.Enabled := TRUE;
end;

end.

multi-tasking and multi-threaded nature of
recent 32-bit Windows operating systems,
time-slicing the processor usage thus pre-
cluding stable and accurate timings.

The firmware for the project was pro-
grammed using an affordable third-party C
compiler supplied by CCS, which is fully com-
patible with the Microchip MPLAB environ-
ment. For more details on this compiler, a full
language reference is available online on the
CCS website.

The code is divided into three files: main.c,
protocol.h and ports.h. The main program is
within main.c, with the pin assignments (to
variable names) defined in ports.h and the
custom communication protocol defined in
protocol.h. This firmware source code is given
in Listing 1.

The custom communication protocol used
in this project is very simple. For every com-
mand a one-byte value is transmitted and if
the command requires additional parameters
these are sent in succession. For example, to
tell the controller to move the specific motor
in one direction for 1000 steps, three bytes are
required, the first defining the command and
the other two bytes specifying the number of
steps (within the range: 0 to 65535). Depend-
ing on the initial command byte, the total
length of transmission for that command is
defined. After executing the command the
microcontroller will reply with an acknowl-
edge byte to notify the PC software that it is
free to receive more commands if required.

The main program module firstly initialises
and resets all the I/O ports including the
UART with the bitrate set to 38,400 bits/s.
The program then comprises an endless loop
awaiting a single byte to be received on the

UART. On receiving the command
byte, program control is given to the
appropriate command section,
which may receive further bytes on
the UART.

The available commands are
listed below:

RESET (byte 1): resets all I/O ports.

SETUP_ACC (byte 10): Followed by
an additional four bytes to set the
minimum and maximum step delays
for the stepper motor motion (both
are 16-bit integers). On executing a
MOVE command the step delays will
initially be at maximum, reducing
gradually in duration until the mini-
mum delay has been reached. Fur-
ther steps will have this minimum
delay. Towards the end of the com-
mand cycle the step delays will
increase until the maximum is again
reached. This action implements the
acceleration and deceleration in
every MOVE command.

MOVE_A_FW (byte 20): Followed by
an additional two bytes (one 16-bit
integer) to specify how many steps
motor A will move in the forward
direction.

MOVE_A_RV (byte 21): Followed by
an additional two bytes (one 16-bit
integer) to specify how many steps
motor A will move in the reverse
direction.

MOVE_B_FW (byte 22)
MOVE_B_RV (byte 23)
MOVE_C_FW (byte 24)
MOVE_C_RV (byte 25)
MOVE_D_FW (byte 26)
MOVE_D_RV (byte 27)
These are as for MOVE_A_FW and
MOVE_A_RV but for motors B, C and
D respectively.

When programming your own PIC
microcontroller, don’t forget to turn
off the DEBUG_MODE feature.
Ensure POWER_ON_RESET is
enabled and disable the WATCH-
DOG_TIMER and
BROWN_OUT_DETECT features.
Also ensure the clock speed is set to
20 MHz.

Recommended programmers and
development kits for the microcon-
troller used here include the Elektor
Electronics PICProg 2003 (Septem-

ber 2003) and the Microchip PIC-
START and ICD module (requiring an
additional 28-pin header). Alterna-
tively, Taylec Ltd. provide a very
affordable equivalent to the ICD
module (for under £50), fully com-
patible with the Microchip software,
available for free download.

The PC software
The PC software was programmed
in Borland Delphi 4. A freeware
(VCL) Visual Component Library
was used in order to access the ser-
ial port called QCCOM32.

Included in Listing 2 is a test pro-
gram to illustrate how commands
are sent through the RS232 port to
the stepper motor controller. This is
again available in the Free Down-
loads section on our website at
www.elektor-electronics.co.uk.

It is important to ensure the
QCCOM32 properties are set to
exactly match the initialisation of the
UART in the firmware, especially
bitrate=38400. For each command to
be sent to the controller, the port is
opened, the required bytes are trans-
mitted, then the program waits until
it receives the acknowledge signal
and finally the port is closed.

Test and practical use
Before powering up, it is important
to check all components are correctly
placed and that the soldering is
clean. Unplug all the stepper motors
and power up. First, use an ammeter
to check the current drawn from the
power supply. Next, use a voltmeter
to see if the supply rails are correct. If
anything appears wrong at this
stage, immediately power off and
check the PCB and connections.

All five LEDs should light up
when the circuit powers up properly.
If this is the case, the microcontroller
is up and running. However, if only
one LED lights up, then there is
power to the circuit but the micro-
controller firmware is not being exe-
cuted correctly. Assuming the micro-
controller has been programmed
successfully you should then check
it receives supply voltage on the rel-
evant pins. If all is in order then you
should check the oscillator compo-
nents (X1, C6 and C7) to ensure
these are fitted correctly. If still no

GENERALINTEREST

62 Elektor Electronics 12/2003

Figure 4. The stepper motor ‘command’
program in action on the PC.

joy try reprogramming or replacing
the microcontroller IC.

Once the circuit starts up cor-
rectly, use a 1:1 (non-crossed) D-9
female to D-9 male cable to connect
the controller PCB to the computer
RS232 port. Run the test software on
the PC and select the correct COM
port setting. Then try testing any of
the commands. On sending a com-
mand, four LEDs should go out and
one LED should light indicating
which channel is in use. Once the
command has been executed the
four LEDs will light up. If this works
as expected, turn off the controller
PCB and connect a motor to one
channel. It is important to ensure the
phases and common taps are all cor-
rectly connected. Next, power up

again and retest. The motor should
spin smoothly, accelerating and
decelerating when starting and
stopping. If the motor seems to skip
or the movement is jerky, check that
the phases are connected in the cor-
rect order and that the acceleration
rate is not too fast for that stepper
motor. Remember, lower delay rates
mean faster rotation. If you set up
the speed with equal delays, for
example, 800-800, there will be no
acceleration or deceleration. Most
stepper motors should work with
500-1000 step delays.

Once all required channels have
been tested and are found to be
working, you can customize the
command (PC) software or control
(PIC) software to include your own
commands and improvements. One
powerful variation could be to multi-
plex the motors, enabling more than
one axis to spin at any time. Appli-
cations of the driver board described
here may be found in robotics, for
accurate positioning of mechanical
parts in telescopes, robots, cameras,
etc., or for precision movement and
placement as required in CNC
machine tools.

(020127-2)

GENERALINTEREST

6312/2003 Elektor Electronics

Figure 5. Our finished prototype of the stepper motor driver.

Useful links
Microchip PIC 16F87X microcontroller
datasheet:

www.microchip.com/download/lit/
pline/picmicro/families/16f87x/
30292c.pdf

Direct download link to the QCCOM32
VCL for RS232 I/O in Borland Delphi:

http://geocities.com/scottpinkham/
delphi/qccom32.zip

Low-cost PIC development tools compatible
with Microchip MPLAB environment:
www.taylec.co.uk

A PIC C compiler compatible with
Microchip MPLAB environment:

www.ccsinfo.com

VCLs for hardware port access and control:
www.programmersheaven.com,

www.torry.net, www.codeguru.com

Useful literature
‘Serial Port Complete’ by Jan Axelson, ISBN:

0965081923
‘PICProg 2003’,

Elektor Electronics September 2003.

Free Downloads
PIC and PC software (source code
files). File number: 020127-11.zip
PCB layout in PDF format. File
number: 020127-1.zip

www.elektor-
electronics.co.uk/dl/dl.htm, select
month of publication.

