

HDMI/DVI to LVDS Bridge

Ross Eisenbeis

High Performance Analog

ABSTRACT

This document provides an overview of HDMI/DVI to LVDS bridge solutions. The two-chip solutions receive 3 TMDS pairs and a clock, and output 4 or 8 LVDS data pairs and clocks.

Figure 2. Circuit using 2-Channel LVDS

The DVI RX output is configurable with pin "PIXS". When PIXS is Low, RGB data is output on 24 bits (QE[23:0]). When PIXS is High, RGB data is split odd/even on 48-bits. The 4 additional bits are VSYNC, HSYNC, DE, and ODCK.

1-Channel vs. 2-Channel

The choice between using a 1-channel or 2-channel LVDS transmitter depends on what the connecting panel uses. Most panels that receive LVDS that have a resolution of <1400x1050 use 1-channel, which consists of 3 or 4 LVDS data pairs (depending on 18-bit or 24-bit color). Most panels that have a resolution between 1400x1050 – 1920x1200 use a 2-channel receiver interface, with 6 or 8 LVDS data pairs.

The DVI RX

There are 3 recommended DVI receivers to choose from:

- <u>TFP401A</u>
- <u>TFP401A-EP</u> (extended temperature range)
- TFP501 (HDCP support)

The LVDS TX

For 1-channel LVDS, there are 3 recommended devices:

- <u>SN75LVDS83B</u> (supports 10-135MHz)
- <u>SN75LVDS83C</u> (supports 10-85MHz, and 13-23% lower power than 83B)
- <u>SN65LVDS93A</u> (supports 10-135MHz, and extended temperature range)

For 2-channel LVDS, the <u>DS90C387A</u> is recommended.

Notes on Common Resolutions

- <u>1280x800</u> and <u>720p</u> usually use 1-channel LVDS with a 70-75MHz pixel clock; the SN75LVDS83C is suitable for this.
- <u>1080p</u> usually uses 2-channel LVDS with a 74.25MHz clock; the DS90C387A is suitable for this.
- <u>1080p 120Hz</u> often uses high frequency HDMI and 4-channel LVDS; this is not supported.

Design Guidelines

- 1. If using the 83B, 83C, or 93A, set power supply "IOVCC" to 3.3V. The DVI RX output is always 3.3V.
- 2. Set the same clock edge for the DVI output and LVDS input. If DVI pin "OCK_INV" is High, set LVDS pin "CLKSEL" (83B/83C/93A) or "R_FB" (387A) also High.
- 3. Place the two devices reasonably close together to minimize parallel trace length and EMR.
- 4. Match the trace lengths of the 28-bit/52-bit parallel lines within 1 inch.

Pin Mapping Examples

The pin connections control the sequence of bits in the LVDS lanes. They must match the bit sequence that the panel expects. The two examples below are the most common schemes.

DVI	Description	83B/83C/93A
Output		Input
QE[0]	B0 (LSB)	D15
QE[1]	B1	D18
QE[2]	B2	D19
QE[3]	B3	D20
QE[4]	B4	D21
QE[5]	B5	D22
QE[6]	B6	D16
QE[7]	B7 (MSB)	D17
QE[8]	G0 (LSB)	D7
QE[9]	G1	D8
QE[10]	G2	D9
QE[11]	G3	D12
QE[12]	G4	D13
QE[13]	G5	D14
QE[14]	G6	D10
QE[15]	G7 (MSB)	D11
QE[16]	R0 (LSB)	D0
QE[17]	R1	D1
QE[18]	R2	D2
QE[19]	R3	D3
QE[20]	R4	D4
QE[21]	R5	D6
QE[22]	R6	D27
QE[23]	R7 (MSB)	D5
HSYNC	HSYNC	D24
VSYNC	VSYNC	D25
DE	ENABLE	D26
	RSVD	D23
ODCK	CLK	CLKIN

83B/83C/93A input-output				
Y0 ((D7)(D6)(<u>(D4)(D3)(D2)(D1)(D0</u>)		

- Y1 ((D18)((D15)((D14)((D13)((D12)((D9))((D8))
- Y2 ((D26) (D25) (D24) (D22) (D21) (D20) (D19)
- Y3 ((D23)((D17)((D16)((D11)((D10)((D5)((D27)

Format1

- Y0 (G0)(R5)(R4)(R3)(R2)(R1)(R0)
- Y1 (B1)(B0)(G5)(G4)(G3)(G2)(G1)
- Y2 ((EN)((VS)((HS)((B5)((B4)((B3)((B2))
- Y3 ((RSV)(B7)(B6)(G7)(G6)(R7)(R6)

Figure 3. 1-Channel LVDS Connection Example

DVI Output	Description	387A Input
QO[0]	Odd B0 (LSB)	B10
QO[1]	Odd B1	B11
QO[2]	Odd B2	B12
QO[3]	Odd B3	B13
QO[4]	Odd B4	B14
QO[5]	Odd B5	B15
QO[6]	Odd B6	B16
QO[7]	Odd B7 (MSB)	B17
QO[8]	Odd G0 (LSB)	G10
QO[9]	Odd G1	G11
QO[10]	Odd G2	G12
QO[11]	Odd G3	G13
QO[12]	Odd G4	G14
QO[13]	Odd G5	G15
QO[14]	Odd G6	G16
QO[15]	Odd G7 (MSB)	G17
QO[16]	Odd R0 (LSB)	R10
QO[17]	Odd R1	R11
QO[18]	Odd R2	R12
QO[19]	Odd R3	R13
QO[20]	Odd R4	R14
QO[21]	Odd R5	R15
QO[22]	Odd R6	R16
QO[23]	Odd R7 (MSB)	R17
HSYNC	HSYNC	HSYNC
VSYNC	VSYNC	VSYNC

DVI Output	Description	387A Input
QE[0]	Even B0 (LSB)	B20
QE[1]	Even B1	B21
QE[2]	Even B2	B22
QE[3]	Even B3	B23
QE[4]	Even B4	B24
QE[5]	Even B5	B25
QE[6]	Even B6	B26
QE[7]	Even B7 (MSB)	B27
QE[8]	Even G0 (LSB)	G20
QE[9]	Even G1	G21
QE[10]	Even G2	G22
QE[11]	Even G3	G23
QE[12]	Even G4	G24
QE[13]	Even G5	G25
QE[14]	Even G6	G26
QE[15]	Even G7 (MSB)	G27
QE[16]	Even R0 (LSB)	R20
QE[17]	Even R1	R21
QE[18]	Even R2	R22
QE[19]	Even R3	R23
QE[20]	Even R4	R24
QE[21]	Even R5	R25
QE[22]	Even R6	R26
QE[23]	Even R7 (MSB)	R27
DE	ENABLE	DE
ODCK	CLK	CLKIN

Figure 4. 2-Channel LVDS Connection Example

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated