
Sample Question: Assuming FOSC = 30 MHz, what Timer2 configuration will generate

a periodic interrupt every 5 ms?

Answer: Using Equation 10.2 and letting POST = 16, we find:
PR2 = [5 ms / [(1/30 MHz)*4*PRE*16]] = [0.005/[3.33e-8 * 4 * PRE*16]

This results in PR2 = 2343 for PRE = 1, PR2 = 585 for PRE = 4, and PR2
= 145 for PRE = 16. Thus, the only valid choice for POST = 16 is PRE =
16, PR2 = 145, as this is the only configuration that gives a PR2 < 255.

10.9 SWITCH DEBOUNCING USING A TIMER

The LED/switch examples of Section 10.7 use a 30 ms software delay in the ISR for
switch debouncing. This is not the best method to use, as the ISR is stealing time
from the foreground code via wasted cycles in the software delay loop. A better
method is to use a timer for switch debouncing as shown in Figure 10.23. The goal
is to create a semaphore that signals a press and release of the momentary switch in
the presence of switch bounce. Timer2 is configured to generate periodic interrupts
and the INTx input is configured as a falling edge interrupt.

The first falling edge from a switch activation triggers the ISR, which sets a sem-
aphore and then disables the interrupt so that successive falling edges due to switch
bounce do not generate interrupts. On each Timer2 interrupt thereafter, a counter
is kept that tracks the number of successive Timer2 interrupts that the INT2 input
remains high. If the INT2 input remains high long enough, it is considered idle and
the INT2 interrupt is re-enabled.

Interrupts and a First Look at Timers 307

 TOUTPS3

TMR2ON: Timer2 On Bit (1 is on, 0 is off)

T2CKPS1: T2CKPS0: Timer2 Clock Prescale

 00 = Prescaler is 1

 01 = Prescaler is 4

 1x = Prescaler is 16

7 6 5 4 3 2 1 0

 T2CON: Timer2 Control Register

 -- u -- : unimplemented

TOUTPS3:TOUTPS2 Postscale Select

 0000 = 1:1 Postscale

 0001 = 1:2 Postscale

 0010 = 1:3 Postscale

 1110 = 1:15 Postscale

 1111 = 1:16 Postscale

-- u -- TOUTPS2 TOUTPS3 TOUTPS3 TMR2ON T2CKPS1 T2CKPS0

FIGURE 10.22 Timer2 configuration register (T2CON).

Figure 10.24 shows the C code implementation of this debounce scheme. The
button variable is the semaphore that is set by the ISR when a falling edge occurs on
the INT2 input indicating that switch activation has occurred. Observe that once
the INT2 interrupt is recognized, it is disabled via INT2IE = 0 and the button_de-
bounce count value is cleared. The INT2IF flag is not cleared at this time because
any switch bounce that is present sets the flag; the INT2IF flag cannot be reliably
cleared until the switch bounce has settled. For each Timer2 interrupt, if the INT2
interrupt is disabled, this means that the last switch activation is being debounced.
If the RB2 input is high, the debounce counter, button_debounce, is incremented. If
the RB2 input is low, button_debounce is cleared. Once RB2 has tested high for DE-
BOUNCE consecutive Timer2 interrupts it is considered idle. If RB2 is idle and the
previous semaphore has been acknowledged (i.e., button has been cleared by the
foreground code), the INT2 interrupt is re-enabled via INT2IE = 1 for triggering by
a switch activation.

The main() code of Figure 10.24 initializes the INT2 input for falling edge trig-
gering and Timer2 for periodic interrupt generation. The values POST = 11, PRE
= 16, and PR2 = 250 for a FOSC = 29.4952 MHz (PIC reference board) give a
Timer2 interrupt period of approximately 6 ms. With DEBOUNCE = 5, this means
that the RB2 input remaining high for approximately 24 to 30 ms is considered
idle. The variation in the debounce time is because the Timer2 value is unknown
when the switch activation occurs. Thus, the first Timer2 interrupt may occur any-
where in the 5 ms interrupt interval. The while(1){} loop is free-running with re-
spect to the button semaphore; when the button semaphore is set, a message is
printed and the semaphore is acknowledged by clearing it.

308 Microprocessors

INT2

On first edge, set push button semaphore and disable interrupt to ignore other

falling edges caused by bounces.

renable interrupt after

semaphore reset and

push button is idletime

bounce

~~

PIC
 Vdd

Input

Switch

RB2/INT2

Use INTx falling edge interrupt

to detect push button activation.

PortB

pullup

FIGURE 10.23 Using a timer to debounce an interrupt-driven switch input.

This approach sets the button semaphore on each press and release of the push
button switch. If the interface requires that a press and hold be detected, a similar
approach that waits for the input to be idle low can be used. The next section dis-
cusses a second example in which a periodic interrupt is used to sample noisy in-
puts to reject momentary pulses or glitches that may be present.

10.10 A ROTARY ENCODER INTERFACE

A rotary encoder is used to encode the direction and distance of mechanical shaft
rotation. There are different ways to accomplish this; Figure 10.25 shows a 2-bit

Interrupts and a First Look at Timers 309

#define DEBOUNCE 5
volatile unsigned char button, button_debounce;

void interrupt pic_isr(void){
 if (INT2IF && INT2IE) {
 // pushbutton detected
 INT2IE = 0; button = 1; button_debounce = 0;
 }
 if (TMR2IF) { // debouncing timer
 TMR2IF = 0;
 if (!INT2IE) {
 if (RB2) {
 if (button_debounce != DEBOUNCE)
 button_debounce++;
 }
 else button_debounce=0;
 if (button_debounce == DEBOUNCE && !button){
 //button idle high ,re-enable interrupt
 INT2IF=0; INT2IE=1;
 }
 }
 }
}
main(void){
 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 // configure INT2 for falling edge interrupt input
 TRISB2 = 1; INT2IF = 0; INTEDG2 = 0; INT2IE = 1;
 RBPU = 0; // enable weak pullup on port B
 // configure timer 2
 // post scale of 11, prescale 16, PR=250, FOSC=29.4912 MHz
 // gives interrupt interval of ~ 6 ms
 TOUTPS3 = 1; TOUTPS2 = 0; TOUTPS1 = 1; TOUTPS0 = 0;
 T2CKPS1 = 1; PR2 = 250;
 // enable TMR2 interrupt
 IPEN = 0; TMR2IF = 0; TMR2IE = 1; PEIE = 1; GIE = 1;
 TMR2ON = 1 ;
 pcrlf(); printf("Pushbutton with Timer2 Debounce"); pcrlf();
 while(1) {
 if (button) {
 button=0; // acknowledge this semaphore
 printf("Push Button activated!"); pcrlf();
 }
 }// end while
}//end main

}

Falling edge interrupt,

set the semaphore and

disable interrupt

}
If the interrupt is disabled, then

debounce the switch by waiting

for it to become idle high.

After the switch is debounced and

the semaphore is acknowledged,

then reenable the interrupt.

}

}

Configure Timer2

for ~6 ms interrupt

period

}
Configure

INT2 for

falling edge

interrupt

If pushbutton is activated,

then print message and

reset the semaphore

5 * 6 ms = 24 to 30 ms debounce time

FIGURE 10.24 Switch debounce implementation.
ON THE CD

Gray code rotary encoder. Clockwise rotation of the shaft produces the sequence
00, 10, 11, 01, and counterclockwise rotation produces 00, 01, 11, and 10. In a Gray
code, adjacent encodings differ by only one bit position. Rotation direction is de-
termined by comparing the current 2-bit value with the last value. For example, if
the current value is 11 and the last value is 10, the shaft is rotating in a clockwise di-
rection. One common use for a rotary encoder is as an input device on a control
panel where clockwise rotation increments a selected parameter setting, while
counter-clockwise rotation decrements the parameter. The rotary encoder of Fig-
ure 10.25 is an incremental encoder as the absolute position of the shaft is indeter-
minate; only relative motion is encoded. Some rotary encoders include more bits
that provide absolute shaft position, in BCD or binary encoding. An n-position en-
coder outputs n-codes for each complete shaft rotation. Common values of n for 2-
bit incremental rotary encoders are 16 and 32.

Rotary encoders use mechanical, optical, or magnetic means of detecting shaft
rotation, with mechanical encoders being the least expensive and magnetic the
most expensive. A key specification for optical and mechanical encoders is rota-
tional life with optical ~ 1 million and mechanical ~ 100,000 rotations due to me-
chanical wear. Magnetic encoders are meant for high-speed rotational applications
with encoder lifetime measured in thousands of hours for a fixed rotational speed
in revolutions per minute (RPMs).

Figure 10.26 shows ISR code that uses INT0/INT1 edge triggered interrupts for
a rotary encoder interface. The ISR triggers on the occurrence of an active edge on
either INT0 or INT1. The ISR checks the flag bits INT0IF/INT1IF, determines
which interrupt occurred, and toggles the appropriate edge bit INTEDG0/INT-
EDG1. The update_state() function then reads the INT0/INT1 inputs and com-
pares them against the previous state to determine clockwise or counterclockwise

310 Microprocessors

time

0 0

Counter clockwise

0 1 1 1 1 0 0 0

time

0 0

Clockwise

1 0 1 1 0 1 0 0

FIGURE 10.25 Two-bit Gray code rotary encoder.

Interrupts and a First Look at Timers 311

rotation of the encoder. If a valid state transition is found, the count variable is ei-
ther incremented or decremented appropriately. Observe that an invalid state tran-
sition indicates that an illegal transition has occurred, perhaps caused by noise,
and the state variable is reset to the current value of the INT0/INT1 inputs.

#define S0 0
#define S1 1
#define S2 2
#define S3 3

volatile unsigned char state, last_state;
volatile unsigned char count, last_count;

update_state(){
 state = PORTB & 0x3;
 switch(state) {
 case S0:
 if (last_state == S1) count++;
 else if (last_state == S2) count--;
 break;
 case S1:
 if (last_state == S3) count++;
 else if (last_state == S0) count--;
 break;
 case S2:
 if (last_state == S0) count++;
 else if (last_state == S3) count--;
 break;
 case S3:
 if (last_state == S2) count++;
 else if (last_state == S1) count--;
 break;
 }
 if (last_count != count) {
 // valid pulse
 last_state = state;
 last_count = count;
 } else {
 // invalid transistion, reset last state
 last_state = state;
 }
}
void interrupt pic_isr(void){
 if (INT0IF || INT1IF) {
 if (INT0IF) {
 INT0IF = 0;
 // toggle active edge
 if (INTEDG0) INTEDG0 = 0; else INTEDG0 = 1;
 }
 if (INT1IF) {
 INT1IF = 0;
 // toggle active edge
 if (INTEDG1) INTEDG1 = 0; else INTEDG1 = 1;
 }
 update_state();
 }
}

Update the state and count

variables based upon the INT0/INT input

values.

} Check previous state and determine if

rotating clockwise or counter-clockwise

Should not get here unless illegal transition

occurred, attempt a recovery

} INT0 Active Edge occurred

} INT1 Active Edge occurred

INT0/RB0

INT1/RB1

PIC

Rotary

Encoder

Internal pullups enabled

FIGURE 10.26 Two-bit rotary encoder interface using INT0/INT1 interrupts.
ON THE CD

312 Microprocessors

The main() code shown in Figure 10.27 initializes the INT0/INT1 active inter-
rupt edges (INTEDG0/INTEDG1) by reading the current value of the INT0/INT1
inputs; if the input is high, the falling edge is chosen, else the rising edge is selected.
This is necessary because the initial values of the rotary encoder outputs depend
upon the current shaft position, which is unknown at main() startup. The state
variable used by the ISR of Figure 10.26 to track the position of the rotary encoder
is also initialized by main() based upon the INT0/INT1 inputs. The while(1){} loop
in the main() code waits for a change on the count variable and prints its value once
a change is detected.

The code of Figures 10.26 and 10.27 works well as long as the signal transitions
are noise free and clean of contact bounce, which is generally true of the signals
produced by optical and magnetic encoders. However, mechanical encoders have
contact bounce that will cause the count variable to change multiple times for a sin-
gle shaft movement, potentially creating errors in code that samples the count
value. Figure 10.28 illustrates this problem, as the ISR is triggered on each edge of
the contact bounce, causing count to be modified each time. There is a possibility

main(void){
 unsigned char count_old;
 // set RB0, RB1 for input
 TRISB0 = 1; TRISB1 = 1;
 RBPU = 0; // enable weak pullups

 if (RB0) INTEDG0 = 0; // falling edge
 else INTEDG0 = 1; // rising edge
 if (RB1) INTEDG1 = 0; // falling edge
 else INTEDG1 = 1; // rising edge

 last_state = PORTB & 0x03; // init last state

 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 pcrlf(); printf("Rotary Test Started"); pcrlf();
 // enable INT0,INT1 interrupts
 IPEN = 0; INT0IF = 0; INT0IE = 1;
 INT1IF = 0; INT1IE = 1;
 PEIE = 1; GIE = 1;

 printf("No Debounce"); pcrlf();
 printf("Rotary Switch Test Started");
 pcrlf();
 while(1) {
 //tip: don't put volatile variables in printfs, may change
 // by the time the printf gets around to printing it!
 if (count != count_old){
 count_old = count;
 printf("Count: %x",count_old);
 pcrlf();
 }
 }
}

Initialize active edges based on

INT0/INT1 input values. }

} Enable INT0/INT1 Interrupts

Print count variable when it

changes

FIGURE 10.27 main() for initializing INT0/INT1 interrupts, state

variable.

that count can be sampled by the normal program flow when it contains an incor-
rect value, causing unreliable behavior.

As was done for the LED/switch IO example of the previous section, Timer2 is
used as a periodic interrupt for debouncing the rotary encoder inputs. Figure 10.29
shows an ISR triggered by Timer2 that samples the INT0/RB0, INT1/RB1 inputs on
each interrupt. The int0_last, int1_last variables contain the last stable values of
the INT0, INT1 inputs. If an input is different from its last stable value and remains
that way for DEBOUNCE consecutive interrupt periods, the input has reached a new
stable value and the update_state() function is called to update the state, count
variables. The int0_cnt, int1_cnt variables are used for tracking the number of
consecutive interrupts that an input remains changed from its previous value. The
count variable for an input is reset to zero if the input returns to its previous value
before DEBOUNCE consecutive interrupt periods occurs. This approach uses Timer2
as the only interrupt source, the RB0/INT0 and RB1/INT1 interrupts are not en-
abled. The update_state() function is not shown in Figure 10.29, as it is the same
function from Figure 10.26.

Figure 10.30 shows the main() code for configuring Timer2 as a periodic inter-
rupt source. Timer2 is configured in the same manner as the switch debouncing ex-
ample in which values of FOSC = 29.4952 MHz, POST = 11, PRE = 16, and
PR2 = 250 give an interrupt period of approximately 6 ms. With DEBOUNCE = 5,
this means that any pulses of width less than 30 ms are rejected as switch bounce
or noise. The pulse width rejection should be chosen based on worst-case datasheet
values for contact bounce. The sampling period should be chosen to guarantee sev-
eral samples between valid input changes, with the time between input changes de-
pendent upon the maximum expected shaft rotation speed and the number of
positions for the encoder.

Interrupts and a First Look at Timers 313

count invalid

INT0 or INT1

Contact bounce edges, ISR triggered on each edge, modifies count each time

as each state transition is valid since it is returning to the previous state on the bounce.

input settled

time

FIGURE 10.28 Switch bounce in mechanical encoders.

314 Microprocessors

volatile unsigned char state,last_state;
volatile unsigned char count,last_count;
volatile unsigned char int0_cnt,int0_last;
volatile unsigned char int1_cnt,int1_last;
volatile unsigned char update_flag;

#define DEBOUNCE 5

void interrupt pic_isr(void){
 if (TMR2IF) {
 // debouncing rotary inputs
 TMR2IF = 0;
 if (RB0 != int0_last) {
 int0_cnt++;
 if (int0_cnt == DEBOUNCE) {
 update_flag = 1;
 int0_cnt = 0;int0_last = RB0;
 }
 }
 // reset cnt, if pulse width
 // not long enough
 else if (int0_cnt) int0_cnt = 0;

 if (RB1 != int1_last) {
 int1_cnt++;
 if (int1_cnt == DEBOUNCE) {
 update_flag = 1;
 int1_cnt = 0; int1_last = RB1;
 }
 }
 // reset cnt, if pulse width
 // not long enough
 else if (int1_cnt) int1_cnt = 0;

 if (update_flag) {
 // can read the rotary inputs
 update_state();
 update_flag = 0;
 }
 }
}

Rotary encoder input must be stable

for this many consecutive Timer2

interrupts to be classified as a valid input

} Variables for tracking stability

of rotary encoder inputs

Has RB0 input changed value?

Yes, track number of times it remains stable

} Stable for DEBOUNCE interrupt periods,

set update flag, record input value

Reset counter if not

stable for long enough

} Check stability of RB1 input

}
Update state and count variables;

update_state() function not shown as

it is unchanged from previous example.

FIGURE 10.29 Using Timer2 to sample the rotary encoder outputs.
ON THE CD

10.11 A NUMERIC KEYPAD INTERFACE

A numeric keypad is a common element in a microcontroller system, as it provides
an inexpensive method of input. A numeric keypad is simply a matrix of switches
arranged in rows and columns and has no active electronics; a keypress connects a
row and column pin together as shown in Figure 10.31.

The 4x3 numeric keypad of Figure 10.31 is shown connected to the PIC in Fig-
ure 10.32. The RB[3:1] port pins are configured as outputs driving low and con-
nected to the row pins, while RB[7:4] are configured as inputs with the weak pullup
enabled and connected to the column pins.

Interrupts and a First Look at Timers 315

main(void){
 unsigned char count_old;
 // set RB0, RB1 for input
TRISB0 = 1; TRISB1 = 1;

 RBPU = 0; // enable weak pullups
 int0_last = RB0;
 int1_last = RB1;
 last_state = PORTB & 0x03; // init last state
 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz

 // configure timer 2
 // post scale of 11
 TOUTPS3 = 1; TOUTPS2 = 0;
 TOUTPS1 = 1; TOUTPS0 = 0;
 // pre scale of 16 */
 T2CKPS1 = 1;
 TMR2ON = 1 ;
 PR2 = 250;

 // enable TMR2 interrupt
 IPEN = 0; TMR2IF = 0; TMR2IE = 1;
 PEIE = 1; GIE = 1;
 printf("With Timer2 Debounce"); pcrlf();
 printf("Rotary Switch Test Started");
 pcrlf();
 while(1) {
 //tip: don't put volatile variables in printfs, may change
 // by the time the printf gets around to printing it!
 if (count != count_old){
 count_old = count;
 printf("Count: %x",count_old);
 pcrlf();
 }
 }
}

Timer2 Interrupt period = POST*PRE*4*TOSC*PR2

= 11*16*4*(1/29491200)*250 = 6 ms (approx)

} Postscale bits = 1010 for postscaler of 1:11

Prescale = 16

Turn on Timer2

Set period register

} Enable Timer2 interrupt

FIGURE 10.30 Configuring Timer2 for sampling the rotary encoder

inputs (see CD-ROM file ./code/chap10/F_10_29_rotint_debounced.c). ON THE CD

