
Constructional Feature

HOW TO USE
INTELLIGENT
L.C.D.s
JULYAN ILETT

IN THE FIRST part of this article, the
capabilities of character-based liquid
crystal display (l.c.d.) modules were

examined, using a few simple, practical
experiments. A series of switches was all
that was needed to evaluate the command
set in its most fundamental form, in binary
(or hexadecimal).

However, in almost all instances where
an l.c.d. is to be used in a design,
a microprocessor, or more probably a
microcontroller, will be needed to drive it.
This is the subject we examine now.

GOOD TIMES
The timing requirements of the

HD44780 chip, the controlling device used
in most character-based l.c.d. modules, are
illustrated in Fig. 6. The diagram provides
the information for both read and write
cycles, although some data sheets may
show the two separately. Table 4 details
the timing parameters referred to in Fig. 6.

In the experiments last month, com-
mands were sent to the display by pressing
switches on an experimental test rig. Noth-
ing much went wrong there, so why is it
necessary to have such a complex timing
diagram?

Well, we human beings leave plenty of
time between pressing one switch and the
next, so the l.c.d. controller can easily
keep up with us. Microcontrollers are
faster than we are, though; they can toggle
a control line several million times a
second, and at such speeds the l.c.d.
controller might not keep pace with the
commands.

The timing diagram and its tabulated
figures simply tell us how quickly the l.c.d.
chip can respond so that we can program
the microcontroller accordingly.

Let’s take a typical microcontroller, one
of the PIC devices which have become so
popular, and see how we program it to

control an l.c.d. from the quoted timing
details.

First, though, it must be pointed out that
the discussions from now assume that you
have a rudimentary understanding of pro-
gramming PIC microcontrollers, and that
you have suitable software and equipment
for doing so. It is not the intention of this
article to teach PIC programming.

(We have published several PIC-based
projects in recent month’s which are well
worth studying, along with their software
listings. See theBack IssuesandEPE PCB
Servicepages. Ed.)

The PIC microcontroller would be pro-
grammed to start by first setting the l.c.d.’s
RS line to its correct logic level. This is
the line that determines whether the l.c.d.
should regard data as control instructions
or character information. In cases where
data needs to be read back from the l.c.d.,

the microcontroller must also have control
over the R/W line (read/write), otherwise it
should be connected to ground, as on the
test rig.

The microcontroller can set up these
two signals at the same time, or it may do
one before the other, it doesn’t really mat-
ter. What is important, is that they are
both ‘‘valid’’ or ‘‘stable’’ for a minimum
period of time before the level on the ‘‘E’’
(Enable) line is raised to a logic 1. On the
diagram in Fig. 6, this period is shown as
‘‘tAS’’ (time – address setup), and in the
table this is specified as 140ns minimum.
It can be more than 140ns, but it must not
be any less.

Once line E is high, it must not be
brought low again until at least 450ns has
elapsed, as is indicated by the ‘‘tEH’’
(time – enable high). Also, all eight data
lines must be set to their appropriate logic
levels and allowed to stabilise for at
least the ‘‘tDS’’ (time – data setup)
period of 200ns before bringing line E
low again.

Note that the l.c.d. allows the data lines
to be set up after line E is taken high. In
the experiments last month, data was es-
tablished well before the E switch was
pressed, but either condition is allowed.

An utterly ‘‘practical’’ guide to
interfacing and programming
intelligent liquid crystal display
modules.

192 Everyday Practical Electronics, March 1997

Part Two

Fig. 6. HD44780 timing diagram.

When line E is returned to a low level,
there are also two hold times that must be
taken into account. The ‘‘tAH’’ (time –
address hold) parameter indicates that the
RS and R/W lines must not be altered for
at least 10ns, and ‘‘tDH’’ (time – data
hold) shows that none of the data lines
must change for at least 20ns.

One further restriction exists. The E
line must not be taken high again (for the
next command, that is) for another 500ns
(tEL: time – enable low). This means that
the total cycle time of the E line is 450ns
plus 500ns. Allowing for the rise and fall
times, indicated by ‘‘tRF’’, which should
be no longer than 25ns each, an approxi-
mate value of 1µs can be calculated. This
means that no more than one million
commands (or one million characters) per
second should be sent to the display, not
a restriction that would normally present
many problems!

BUSY
The timing diagram doesn’t tell the

whole story, however. Much longer
delays are required to enable the l.c.d. to
process commands and data. Most
commands tie-up the l.c.d. for 40µs,

during which time
it is said to be
‘‘busy’’. The Clear
Display and Cursor
Home commands,
though, can take a
lot longer.

Execution times
for all the instruc-
tions are shown in Table 5. This includes
all the commands, writing data to the
display, and reading both data and status.
The two Read instructions have not yet
been experimented with, but reading the
status of the l.c.d. is the method used to
determine whether or not it is busy.

The practical implication of these
instruction times is just a case of having
to insert a delay between one instruction
and the next. The first two commands,
Clear Display and Cursor Home, have
variable execution times that depend
upon several factors. Not much is said
about this variation in the data sheets, but
it does involve returning the cursor to
address 10000000 ($80), unshifting the
display and, in the case of Clear Display,
putting a space character into each
display address.

There is one other important situation
when the l.c.d. will be busy. This is im-
mediately after it has been powered up.
It takes some 10 to 15 milliseconds for
the full initialisation sequence to be com-
pleted, during which time no instructions
can be executed.

This has important implications for a
circuit using a microcontroller. A suitable
delay must be added to the beginning of
the program, otherwise the l.c.d. won’t be
ready when the first few instructions are
sent to it and could become locked up in
a non-correctable condition, requiring the
power to be switched off again for a while.

NEW CIRCUIT
Time now to re-wire last month’s

experimental test rig to incorporate the
PIC microcontroller. The circuit diagram
of the modified arrangement is shown in
Fig. 7. There’s no longer any need for
the debounce circuit, the microcontroller
provides very clean output signals. It is not
essential to use the PIC16C84 type speci-
fied in the diagram, the 54, 56, 61 and 71
types can all be used, but some minor
changes may need to be made to one or
two of the pin connections.

However, it is best to experiment
with the PIC16C84 since it is the
EEPROM (Electrically Erasable Pro-
grammable Read Only Memory) version of
the microcontroller.

The use of this version is desirable
because several different versions of
software will need to be programmed and
erased during the course of experimenta-
tion. Other versions of the microcontroller
cannot be erased so easily, indeed some
cannot be erased at all (those referred to as
OTP, One-Time Programmable devices,
for example).

The microcontroller’s Clock Option can
be set for RC (resistor/capacitor) or any
one of the XT (crystal) options, but the RC
option is cheaper, and precise timing ac-
curacy is not important in this instance.
The values of the resistor R1 and capacitor
C1 connected to the OSC1 input in Fig.
7, will give a clock frequency of very
approximately 2MHz. For the time-being,
lower values of resistance or capacitance

Everyday Practical Electronics, March 1997 193

Fig. 7. Circuit diagram for interfacing a PIC16C84 microcontroller to an l.c.d. module.

Table 4. HD44780 Timing Parameters. Table 5. HD44780 Command Execution Times.

Parameter Description Time

tAS Address set up time 140ns min

tAH Address hold time 10ns min

tDS Data set up time 200ns min

tDH Data hold time 20ns min

tDA Data access time 320ns max

tEH Enable high time 450ns min

tEL Enable low time 500ns min

tRF Rise/Fall time 25ns max

Instruction Time (Max)

Clear Display 82µs to 1·64ms

Display & Cursor Home 40µs to 1·64ms

Character Entry Mode 40µs

Display On/Off & Cursor 40µs

Display/Cursor Shift 40µs

Function Set 40µs

Set CGRAM Address 40µs

Set Display Address 40µs

Write Data 40µs

Read Data 40µs

Read Status 1µs

VR1
5k

X1
LCD MODULE

D7 D6 D5 D4 D3 D2 D1 D0 E R/W RS

14 13

13

5

12

12

16

11

11

15

10

10

4

9

9

3

8

8

2

7

7

1

6

18

14

17

6 5 4 3 2 1

RB7

vss
(GND)

RB6

OSC1

RB5

OSC2

RB4

MCLR

RB3

RTCC

RB2

RA3

RB1

RA2

RB0

RA1

Vdd
(V+)

RA0

IC1
PIC16C84

R1
4k7

C1
47p

CW

Vee Vdd Vss

+5V

0V

194 Everyday Practical Electronics, March 1997

LISTING 1

list p=16C84 ;tells assembler to generate code for this device
initialise clrf 0D ;clear register 0D, counter register

clrf 0E ;clear register 0E, short delay register
clrf 0F ;clear register 0F, long delay register
clrf 05 ;Port A (register 05) outputs all set to logic 0
clrf 06 ;Port B (register 06) outputs all set to logic 0

setports movlw 0F8 ;Port A bits 0, 1, 2 as outputs (E, RS, R/W)
tris 05
movlw 00 ;Port B all bits as outputs (D0 to D7)
tris 06

longdelay call shortdelay ;long delay while lcd initialises
decfsz 0F,f
goto longdelay

functionset bcf 05,02 ;RS line to 0 (Port A, bit 2)
bcf 05,01 ;R/W line to 0 (Port A, bit 1)
movlw 38 ;Function Set command
movwf 06 ;put it on the data lines (Port B)
call pulse_e ;pulse the E line high (Port A, bit 0)
call shortdelay

displayon bcf 05,02 ;RS line to 0 (Port A, bit 2)
bcf 05,01 ;R/W line to 0 (Port A, bit 1)
movlw 0F ;Display On/Off & Cursor command
movwf 06 ;put it on the data lines (Port B)
call pulse_e ;pulse the E line high (Port A, bit 0)
call shortdelay
clrf 0D ;set counter register to zero

message movf 0D,w ;put counter value in W
call text ;get a character from the text table
bsf 05,02 ;set RS line to 1 (Port A, bit 2)
bcf 05,01 ;set R/W line to 0 (Port A, bit 1)
movwf 06 ;put character on the data lines (Port B)
call pulse_e ;pulse the E line high (Port A, bit 0)
call shortdelay ;delay while l.c.d. is busy
incf 0D,w ;try incrementing the counter register
xorlw 05 ;would that make it increase to 5?
btfsc 03,02 ;set the zero flag in the status register
goto stop ;stop if all characters displayed
incf 0D,f ;increment the counter register
goto message ;go back and do the next character

stop goto stop ;stop the program running
;Subroutines and text table
shortdelay decfsz 0E,f ;delay while l.c.d. is busy

goto shortdelay
retlw 0

pulse_e bsf 05,00 ;take E line high
nop ;hold it high for one clock cycle
bcf 05,00 ;take E line low again
retlw 0

text addwf 02,f ;table of characters for message
retlw ’H’
retlw ’E’
retlw ’L’
retlw ’L’
retlw ’O’

end

(for faster speeds) should be avoided, to
ensure the software delays are sufficiently
long.

EXPERIMENT 8
PIC Program

Compile and program the contents of
Listing 1 into the PIC microcontroller. It
has been written for use with MPALC
assembler software, although it can be
readily translated to suit MPASM or
TASM assembly.

Once the PIC has been programmed,
re-power up the circuit. The word HELLO
will appear on the display. There may
seem to be a lot of source code required to
do such a simple job, but the program
performs all the setting up that the display
needs, and can form the basis of a more
complex system.

Precisely what all these instructions do
is important and will be described in some
detail.

The first routine, ‘‘initialise’’, comprises
five Clear File (clrf) instructions which set
the contents of five registers to zero. Two
of these registers, 05 and 06, relate to out-
put Ports A and B.

When the microcontroller is powered
up, all port pins are automatically set up as
inputs, so that no damage is done to exter-
nal circuitry. The ‘‘setports’’ routine uses
‘‘tris’’ instructions to redefine each bit of
Ports A and B as either an input or an
output.

(Be aware that Microchip, manufac-
turers of the PIC family, now discourage
the use of ‘‘TRIS’’, a command becoming
incompatable with their newer devices.
There are alternative ways of achieving
the same result, as discussed in the PIC
data books. Ed.)

The ‘‘longdelay’’ routine keeps the
microcontroller occupied while the l.c.d. is
initialising. This delay must be no less
than 15ms, but can be more, of course.
The routines ‘‘functionset’’ and ‘‘dis-
playon’’ are very similar and issue
hexadecimal commands $38 and $0F
(00111000 and 00001111) to the l.c.d.
These numbers should be familiar from the
experiments carried out in Part 1.

Both routines contain ‘‘call’’ instruc-
tions to two subroutines, ‘‘pulse_e’ and
‘‘shortdelay’’, which can be seen towards
the end of the listing. The ‘‘message’’
routine incorporates a program loop which
is executed five times to output the five
characters in the text table (‘‘text’’) to the
l.c.d. The PIC uses an unusual type of
subroutine, comprising a list of ‘‘retlw’’
(return with literal) instructions which can
be used to form tables of data.

Register $0D is used as a counter which
is initially set to zero by the ‘‘clrf’’ in-
struction in the ‘‘initialise’’ routine. This
value is then used as a pointer to the text
table which contains the ASCII characters
which spell HELLO.

The ‘‘stop’’ routine locks up the
microcontroller to stop it doing anything
else. Finally, the ‘‘end’’ directive is not a
program command, but an instruction to
tell the assembler to stop assembling.

A GOOD READ
The program in Listing 1 onlywrites to

the display. In many applications this is
quite satisfactory, and it has the advantage
of allowing the R/W line on the l.c.d. to

The prototype test rig showing the microcontroller in position (it’s actually a
PIC16C54, although a PIC16C84 is recommended.

be connected to ground, which in turn
saves an I/O (input/output) pin on the
microcontroller.

It is possible (and sometimes necessary)
to read data and status information from
the l.c.d., but of course the R/W line must
be actively connected in order to do this.
Reading the display differs from writing to
it in some fundamental ways, so a re-
examination of the timing diagram is now
required, as the sequence of events is
described.

Lines RS and R/W must be set up first,
with R/W being set to a logic 1 this time.
If RS is set high, data is returned indicat-
ing the character that is at the current
cursor address. If RS is set low, a status
byte is sent back, containing two separate
items, bits 0 to 6 holding the current cursor
address, and bit 7 containing the Busy flag.

The two Read instruction formats are
shown in Table 6. After the necessary
‘‘address setup time’’ (tAS), the E line can
be taken high. This is the point at which
the read cycle differs from the write cycle,
as the l.c.d.’s data lines will switch over to
being outputs.

Clearly, before the microcontroller starts
this read cycle, it must change its data
lines to inputs, otherwise outputs would be
connected to outputs and a fight (known as
bus contention) would ensue. In any case,
if the microcontroller’s data lines were not
inputs at this time, it would not be able to
read the data.

It takes a while for the l.c.d. to change
its data lines to outputs, and stabilise the
data on them, but it guarantees to do
this within 320ns, the ‘‘data access time’’
(tDA). The microcontroller can then read
this data in through its inputs, and as soon
as it’s happy that it’s got it, the E line can
go back down.

Most of the information that can be read
back from the display must have been
written there by the microcontroller in
the first place, which explains why many
designs can get away without having the
R/W line connected up.

The Busy flag, though, can be use-
ful to the microcontroller, to avoid using
all those delay routines. For applications
which need to put a lot of information on
the display in a very short time, checking
the Busy flag is the most efficient way of
knowing when the display is ready.

EXPERIMENT 9
Status Reading

In this experiment, the program in List-
ing 1 will be altered to incorporate check-
ing of the Busy flag. The plan here is
to replace the subroutine ‘‘shortdelay’’,

which has a fixed delay time, with another
routine which will constantly check the
Busy flag until it isn’t busy any more.

Listing 2 shows the new subroutine,
called ‘‘busywait’’. All occurrences of the
‘‘call shortdelay’’ instruction in Listing 1
should be replaced by ‘‘call busywait’’,
including the three line section headed
‘‘longdelay’’. The program will put the
message onto the display much more
quickly than before, as unnecessary delays
are eliminated.

The first two lines of ‘‘busywait’’
change the assignment of Port B, so that
all of its I/O lines become inputs. Follow-
ing this, the RS and R/W lines are set up
ready for the status read. For short delays,
the ‘‘nop’’ (no operation) instruction can
be used, it is ideal for the small delay
times required by the l.c.d. interface.

The E line is then sent high and, after a
short delay to allow for the data access
time (tDA), the state of the Busy flag is
read into the microcontroller. A ‘‘rotate
left’’ (rlf) instruction is used here, to trans-
fer the Busy flag on data line D7, into the
PIC’s Carry flag, where it can be stored
prior to testing.

Line E is then taken low, after which a
test is performed on the Carry flag using
the ‘‘btfss’’ instruction. If the Carry flag is
set, then the l.c.d. was busy at the moment
the reading was taken, and the program
branches back to perform another status
read.

If the l.c.d. is found to be no longer
busy, Port B is switched back for all bits
to be outputs and the subroutine returns
to the main program. The program uses
more code, but saves time by avoiding
unnecessary delays.

Everyday Practical Electronics, March 1997 195

LISTING 2

busywait movlw 0FF ;Port B all inputs (D0 to D7)
tris 06
bcf 05,02 ;RS line to 0 (Port A, bit 2)
bsf 05,01 ;R/W line to 1 (Port A, bit 1)
nop ;wait for tAS

busyread bsf 05,00 ;raise E line (Port A, bit 0)
nop ;wait for tDA
rlf 06,w ;rotate BF into Carry flag
bcf 05,00 ;lower E line (Port A, bit 0)
nop ;wait for tEL
nop ;wait for tEL
btfsc 03,00 ;test Carry flag
goto busyread ;if busy, go round again
movlw 00 ;Port B all outputs (D0 to D7)
tris 06
retlw 0 ;return to main program

LISTING 3

functionset bcf 05,02 ;RS line to 0 (Port A, bit 2)
bcf 05,01 ;R/W line to 0 (Port A, bit 1)
movlw 20 ;1st Function Set command
movwf 06 ;put it on the data lines (Port B)
call pulse_e ;pulse the E line high (Port A, bit 0)
call busywait

functionset2 bcf 05,02 ;RS line to 0 (Port A, bit 2)
bcf 05,01 ;R/W line to 0 (Port A, bit 1)
movlw 28 ;2nd Function Set command
movwf 0C ;store command temporarily in 0C
call portnibble
call pulse_e ;pulse E line high (Port A, bit 0)
swapf 0C,w ;swap nibbles of 0C, put result in W
call portnibble
call pulse_e ;pulse E line high (Port A, bit 0)
call busywait

;Additional subroutine for nibble mode
portnibble andlw 0F0 ;clear lower 4 bits of W

iorwf 06,f ;OR this with Port B
iorlw 0F ;set lower 4 bits of W
andwf 06,f ;AND this with Port B
retlw 0

Table 6. HD44780 Read Instructions

Binary
Instruction RS

Read data

Read Status

D: Character data at current cursor address

A: Current cursor address ($00 to $7f)

BF: Busy Flag (0=Ready, 1=Busy)

D0

D

A

D1

D

A

D2

D

A

D3

D

A

D4

D

A

D5

D

A

D6

D

A

D7

D

BF

High

Low

EXPERIMENT 10
Nibble Mode

The final experiment is to implement 4-
bit data transfer mode between the l.c.d. and
the microcontroller. This was examined in
Experiment 7 in Part 1, so the technique
should be reasonably well understood.

However, several changes need to be
made, both to the circuit and to the pro-
gram, details of which will be left to you
to fully implement, but the principles in-
volved are as follows:

Listing 3 shows some of the changes.
Data lines D0 to D3 on the l.c.d. should be
disconnected from the microcontroller (see
Part 1 for how to deal with these unused
l.c.d. lines). Data lines D0 to D3 on the
microcontroller are now free to be used for
other purposes, but for the time being can
be left open circuit.

As we saw in Part 1, two separate
Function Set commands are needed to set
up the l.c.d. First, binary code 00100000
(hexadecimal $20) is sent while the l.c.d.
is still in 8-bit mode, the mode which it
automatically adopts when first switched
on. This first code is followed by
00101000 ($28) sent as two separate
nibbles, i.e. 0010 and 1000, both sent on
lines D4 to D7. (Don’t forget that lines RS
and E must be dealt with appropriately
when sending data.)

In Listing 3, the ‘‘functionset’’ routine
of Listing 1 has been modified to send $20
instead of $38, and then a new routine,
‘‘functionset2’’, has been added, between
‘‘functionset’’ and ‘‘displayon’’, to send
$2, and then $8. In the new routine, split-
ting a command byte into two nibbles is
achieved by using the PIC’s ‘‘swapf’’ in-

struction, which exchanges the upper and
lower halves of any register.

The purpose of using 4-bit mode is that
the other four bits of Port B (bits 0 to 3)
can be used for something else, so writ-
ing data out on the upper half of Port B,
must be done in such a way that it does
not affect the lower half. In practice,any
of the microcontroller’s data lines can be
used to send control the l.c.d., program-
ming the software accordingly.

Individual ‘‘bit set’’ (bsf) or ‘‘bit clear’’
(bcf) instructions could be used to alter
each bit in turn, but there is a simpler,
more logical way, literally! A sequence of
AND and OR instructions can be used to
handle all eight bits of Port B, masking out
those which must not be changed.

Listing 3 shows a subroutine called
‘‘portnibble’’ which contains a sequence
of four instructions that do the job. The
upper four bits of the W register are
transferred to the upper four bits of Port B,
without affecting the lower four bits. A
separate ‘‘pulse_e’’ call must be made for
each of the two nibbles transferred, after

which a single ‘‘busywait’’ call is added.
The ‘‘portnibble’’ routine is added to

Listing 1 between the end of the ‘‘text’’
table and the ‘‘end’’ statement.

It is also necessary to alter the ‘‘dis-
playon’’ routine of Listing 1 to operate in
4-bit mode, in the same way as is done in
the ‘‘functionset2’’ routine. You can do
the conversion for yourself to prove that
you have understood so far!

More challenging, perhaps, are the
modifications that have to be made to the
‘‘message’’ routine of the program. The
procedure is the same, however, two 4-bit
transfers being required instead of one
8-bit transfer. The use of 4-bit data transfer
mode does add to the complexity of the
software, but is well worth the effort as
four extra I/O pins are released.

DIGITAL
ALTERNATIVES

So many electronic devices, these days,
have a small keyboard and a liquid crys-
tal display. For example, many of the bet-
ter portable radio systems have dispensed
with the potentiometer as a volume con-
trol, and the variable capacitor as a tuning
control, and opted for a digital data entry
and display alternative.

The advantages that such digital systems
offer are undeniable, and even for
the amateur constructor are readily
achievable using low-cost but powerful
microcontrollers, and inexpensive but
versatile displays and keyboards, as the
experiments in this two-part series have
hopefully suggested to you.

(We have more PIC-controlled l.c.d.
orientated projects in the pipeline. Ed.)

196 Everyday Practical Electronics, March 1997

The ‘‘intelligent’’ heart of the l.c.d.
modules discussed.

