
AN857
Brushless DC Motor Control Made Easy
INTRODUCTION

This application note discusses the steps of developing
several controllers for brushless motors. We cover sen-
sored, sensorless, open loop, and closed loop design.
There is even a controller with independent voltage and
speed controls so you can discover your motor’s char-
acteristics empirically.

The code in this application note was developed with
the Microchip PIC16F877 PICmicro® Microcontroller, in
conjuction with the In-Circuit Debugger (ICD). This
combination was chosen because the ICD is inexpen-
sive, and code can be debugged in the prototype hard-
ware without need for an extra programmer or
emulator. As the design develops, we program the tar-

get device and exercise the code directly from the
MPLAB® environment. The final code can then be
ported to one of the smaller, less expensive,
PICmicro microcontrollers. The porting takes minimal
effort because the instruction set is identical for all
PICmicro 14-bit core devices.

It should also be noted that the code was bench tested
and optimized for a Pittman N2311A011 brushless DC
motor. Other motors were also tested to assure that the
code was generally useful.

Anatomy of a BLDC

Figure 1 is a simplified illustration of BLDC motor con-
struction. A brushless motor is constructed with a per-
manent magnet rotor and wire wound stator poles.
Electrical energy is converted to mechanical energy by
the magnetic attractive forces between the permanent
magnet rotor and a rotating magnetic field induced in
the wound stator poles.

FIGURE 1: SIMPLIFIED BLDC MOTOR DIAGRAMS

Author: Ward Brown
Microchip Technology Inc.

N

S

A

C

a

a

b

b

c

c

B

com

com

com

N

N

S

S 110

010

011

101

100

001

N

S

S

N

6
3 4

1

2

5

A

C
B

c b

a

com
 2002 Microchip Technology Inc. DS00857A-page 1

AN857
In this example there are three electromagnetic circuits
connected at a common point. Each electromagnetic
circuit is split in the center, thereby permitting the per-
manent magnet rotor to move in the middle of the
induced magnetic field. Most BLDC motors have a
three-phase winding topology with star connection. A
motor with this topology is driven by energizing 2
phases at a time. The static alignment shown in
Figure 2, is that which would be realized by creating an
electric current flow from terminal A to B, noted as path
1 on the schematic in Figure 1. The rotor can be made
to rotate clockwise 60 degrees from the A to B align-
ment by changing the current path to flow from terminal
C to B, noted as path 2 on the schematic. The sug-
gested magnetic alignment is used only for illustration
purposes because it is easy to visualize. In practice,
maximum torque is obtained when the permanent mag-
net rotor is 90 degrees away from alignment with the
stator magnetic field.

The key to BLDC commutation is to sense the rotor
position, then energize the phases that will produce the
most amount of torque. The rotor travels 60 electrical
degrees per commutation step. The appropriate stator
current path is activated when the rotor is 120 degrees
from alignment with the corresponding stator magnetic
field, and then deactivated when the rotor is 60 degrees
from alignment, at which time the next circuit is acti-
vated and the process repeats. Commutation for the
rotor position, shown in Figure 1, would be at the com-
pletion of current path 2 and the beginning of current
path 3 for clockwise rotation. Commutating the electri-

cal connections through the six possible combinations,
numbered 1 through 6, at precisely the right moments
will pull the rotor through one electrical revolution.

In the simplified motor of Figure 1, one electrical revo-
lution is the same as one mechanical revolution. In
actual practice, BLDC motors have more than one of
the electrical circuits shown, wired in parallel to each
other, and a corresponding multi-pole permanent mag-
netic rotor. For two circuits there are two electrical rev-
olutions per mechanical revolution, so for a two circuit
motor, each electrical commutation phase would cover
30 degrees of mechanical rotation.

Sensored Commutation

The easiest way to know the correct moment to com-
mutate the winding currents is by means of a position
sensor. Many BLDC motor manufacturers supply
motors with a three-element Hall effect position sensor.
Each sensor element outputs a digital high level for 180
electrical degrees of electrical rotation, and a low level
for the other 180 electrical degrees. The three sensors
are offset from each other by 60 electrical degrees so
that each sensor output is in alignment with one of the
electromagnetic circuits. A timing diagram showing the
relationship between the sensor outputs and the
required motor drive voltages is shown in Figure 2.

FIGURE 2: SENSOR VERSUS DRIVE TIMING

A

+V

-V

Float

B

+V

-V

Float

C

+V

-V

Float

H

L
H

L
H

L

Sensor A

Sensor B

Sensor C

6 5 4 3 2 1 6......1

Code 101 001 011 010 110 100 101 001
DS00857A-page 2  2002 Microchip Technology Inc.

AN857
The numbers at the top of Figure 2 correspond to the
current phases shown in Figure 1. It is apparent from
Figure 2 that the three sensor outputs overlap in such
a way as to create six unique three-bit codes corre-
sponding to each of the drive phases. The numbers
shown around the peripheral of the motor diagram in
Figure 1 represent the sensor position code. The north
pole of the rotor points to the code that is output at that
rotor position. The numbers are the sensor logic levels
where the Most Significant bit is sensor C and the Least
Significant bit is sensor A.

Each drive phase consists of one motor terminal driven
high, one motor terminal driven low, and one motor ter-
minal left floating. A simplified drive circuit is shown in
Figure 3. Individual drive controls for the high and low
drivers permit high drive, low drive, and floating drive at
each motor terminal. One precaution that must be
taken with this type of driver circuit is that both high side
and low side drivers must never be activated at the
same time. Pull-up and pull-down resistors must be
placed at the driver inputs to ensure that the drivers are
off immediately after a microcontoller RESET, when the
microcontroller outputs are configured as high imped-
ance inputs.

Another precaution against both drivers being active at
the same time is called dead time control. When an out-
put transitions from the high drive state to the low drive
state, the proper amount of time for the high side driver
to turn off must be allowed to elapse before the low side
driver is activated. Drivers take more time to turn off
than to turn on, so extra time must be allowed to elapse
so that both drivers are not conducting at the same
time. Notice in Figure 3 that the high drive period and
low drive period of each output, is separated by a float-
ing drive phase period. This dead time is inherent to the
three phase BLDC drive scenario, so special timing for
dead time control is not necessary. The BLDC commu-
tation sequence will never switch the high-side device
and the low-side device in a phase, at the same time.

At this point we are ready to start building the motor
commutation control code. Commutation consists of
linking the input sensor state with the corresponding
drive state. This is best accomplished with a state table
and a table offset pointer. The sensor inputs will form
the table offset pointer, and the list of possible output
drive codes will form the state table. Code development
will be performed with a PIC16F877 in an ICD. I have
arbitrarily assigned PORTC as the motor drive port and
PORTE as the sensor input port. PORTC was chosen
as the driver port because the ICD demo board also
has LED indicators on that port so we can watch the
slow speed commutation drive signals without any
external test equipment.

Each driver requires two pins, one for high drive and
one for low drive, so six pins of PORTC will be used to
control the six motor drive MOSFETS. Each sensor
requires one pin, so three pins of PORTE will be used
to read the current state of the motor’s three-output
sensor. The sensor state will be linked to the drive state
by using the sensor input code as a binary offset to the
drive table index. The sensor states and motor drive
states from Figure 2 are tabulated in Table 1.

FIGURE 3: THREE PHASE BRIDGE

To A

-VM

+VM

A High
control

A Low
control

To B

-VM

+VM

B High
control

B Low
control

To C

-VM

+VM

C High
control

C Low
control
 2002 Microchip Technology Inc. DS00857A-page 3

AN857
TABLE 1: CW SENSOR AND DRIVE BITS BY PHASE ORDER

Sorting Table 1 by sensor code binary weight results in Table 2. Activating the motor drivers, according to a state table
built from Table 2, will cause the motor of Figure 1 to rotate clockwise.

TABLE 2: CW SENSOR AND DRIVE BITS BY SENSOR ORDER

Counter clockwise rotation is accomplished by driving current through the motor coils in the direction opposite of that
for clockwise rotation. Table 3 was constructed by swapping all the high and low drives of Table 2. Activating the motor
coils, according to a state table built from Table 3, will cause the motor to rotate counter clockwise. Phase numbers in
Table 3 are preceded by a slash denoting that the EMF is opposite that of the phases in Table 2.

TABLE 3: CCW SENSOR AND DRIVE BITS

The code segment for determining the appropriate drive word from the sensor inputs is shown in Figure 4.

Pin RE2 RE1 RE0 RC5 RC4 RC3 RC2 RC1 RC0

Phase
Sensor

C
Sensor

B
Sensor

A
C High
Drive

C Low
Drive

B High
Drive

B Low
Drive

A High
Drive

A Low
Drive

1 1 0 1 0 0 0 1 1 0

2 1 0 0 1 0 0 1 0 0

3 1 1 0 1 0 0 0 0 1

4 0 1 0 0 0 1 0 0 1

5 0 1 1 0 1 1 0 0 0

6 0 0 1 0 1 0 0 1 0

Pin RE2 RE1 RE0 RC5 RC4 RC3 RC2 RC1 RC0

Phase
Sensor

C
Sensor

B
Sensor

A
C High
Drive

C Low
Drive

B High
Drive

B Low
Drive

A High
Drive

A Low
Drive

6 0 0 1 0 1 0 0 1 0

4 0 1 0 0 0 1 0 0 1

5 0 1 1 0 1 1 0 0 0

2 1 0 0 1 0 0 1 0 0

1 1 0 1 0 0 0 1 1 0

3 1 1 0 1 0 0 0 0 1

Pin RE2 RE1 RE0 RC5 RC4 RC3 RC2 RC1 RC0

Phase
Sensor

C
Sensor

B
Sensor

A
C High
Drive

C Low
Drive

B High
Drive

B Low
Drive

A High
Drive

A Low
Drive

/6 0 0 1 1 0 0 0 0 1

/4 0 1 0 0 0 0 1 1 0

/5 0 1 1 1 0 0 1 0 0

/2 1 0 0 0 1 1 0 0 0

/1 1 0 1 0 0 1 0 0 1

/3 1 1 0 0 1 0 0 1 0
DS00857A-page 4  2002 Microchip Technology Inc.

AN857
FIGURE 4: COMMUTATION CODE SEGMENT
#define DrivePort PORTC
#define SensorMask B’00000111’
#define SensorPort PORTE
#define DirectionBit PORTA, 1

Commutate
movlw SensorMask ;retain only the sensor bits
andwf SensorPort ;get sensor data
xorwf LastSensor, w ;test if motion sensed
btfsc STATUS, Z ;zero if no change
return ;no change - return

xorwf LastSensor, f ;replace last sensor data with current
btfss DirectionBit ;test direction bit
goto FwdCom ;bit is zero - do forward commutation

;reverse commutation
movlw HIGH RevTable ;get MS byte to table
movwf PCLATH ;prepare for computed GOTO
movlw LOW RevTable ;get LS byte of table
goto Com2

FwdCom ;forward commutation
movlw HIGH FwdTable ;get MS byte of table
movwf PCLATH ;prepare for computed GOTO
movlw LOW FwdTable ;get LS byte of table

Com2
addwf LastSensor, w ;add sensor offset
btfsc STATUS, C ;page change in table?
incf PCLATH, f ;yes - adjust MS byte

call GetDrive ;get drive word from table
movwf DriveWord ;save as current drive word
return

GetDrive
movwf PCL

FwdTable
retlw B’00000000’ ;invalid
retlw B’00010010’ ;phase 6
retlw B’00001001’ ;phase 4
retlw B’00011000’ ;phase 5
retlw B’00100100’ ;phase 2
retlw B’00000110’ ;phase 1
retlw B’00100001’ ;phase 3
retlw B’00000000’ ;invalid

RevTable
retlw B’00000000’ ;invalid
retlw B’00100001’ ;phase /6
retlw B’00000110’ ;phase /4
retlw B’00100100’ ;phase /5
retlw B’00011000’ ;phase /2
retlw B’00001001’ ;phase /1
retlw B’00010010’ ;phase /3
retlw B’00000000’ ;invalid
 2002 Microchip Technology Inc. DS00857A-page 5

AN857
Before we try the commutation code with our motor, lets
consider what happens when a voltage is applied to a
DC motor. A greatly simplified electrical model of a DC
motor is shown in Figure 5.

FIGURE 5: DC MOTOR EQUIVALENT
CIRCUIT

When the rotor is stationary, the only resistance to cur-
rent flow is the impedance of the electromagnetic coils.
The impedance is comprised of the parasitic resistance
of the copper in the windings, and the parasitic induc-
tance of the windings themselves. The resistance and
inductance are very small by design, so start-up cur-
rents would be very large, if not limited.

When the motor is spinning, the permanent magnet
rotor moving past the stator coils induces an electrical
potential in the coils called Back Electromotive Force,
or BEMF. BEMF is directly proportional to the motor
speed and is determined from the motor voltage con-
stant KV.

EQUATION 1:

In an ideal motor, R and L are zero, and the motor will
spin at a rate such that the BEMF exactly equals the
applied voltage.

The current that a motor draws is directly proportional
to the torque load on the motor shaft. Motor current is
determined from the motor torque constant KT.

EQUATION 2:

An interesting fact about KT and KV is that their product
is the same for all motors. Volts and Amps are
expressed in MKS units, so if we also express KT in
MKS units, that is N-M/Rad/Sec, then the product of KV
and KT is 1.

EQUATION 3:

This is not surprising when you consider that the units
of the product are [1/(V*A)]*[(N*M)/(Rad/Sec)], which is
the same as mechanical power divided by electrical
power.

If voltage were to be applied to an ideal motor from an
ideal voltage source, it would draw an infinite amount of
current and accelerate instantly to the speed dictated
by the applied voltage and KV. Of course no motor is
ideal, and the start-up current will be limited by the par-
asitic resistance and inductance of the motor windings,
as well as the current capacity of the power source.
Two detrimental effects of unlimited start-up current
and voltage are excessive torque and excessive cur-
rent. Excessive torque can cause gears to strip, shaft
couplings to slip, and other undesirable mechanical
problems. Excessive current can cause driver MOS-
FETS to blow out and circuitry to burn.

We can minimize the effects of excessive current and
torque by limiting the applied voltage at start-up with
pulse width modulation (PWM). Pulse width modulation
is effective and fairly simple to do. Two things to con-
sider with PWM are, the MOSFET losses due to switch-
ing, and the effect that the PWM rate has on the motor.
Higher PWM frequencies mean higher switching
losses, but too low of a PWM frequency will mean that
the current to the motor will be a series of high current
pulses instead of the desired average of the voltage
waveform. Averaging is easier to attain at lower fre-
quencies if the parasitic motor inductance is relatively
high, but high inductance is an undesirable motor char-
acteristic. The ideal frequency is dependent on the
characteristics of your motor and power switches. For
this application, the PWM frequency will be approxi-
mately 10 kHz.

BEMF

Motor

R L

RPM = KV x Volts

BEMF = RPM / KV

Torque = KT x Amps

KV * KT = 1
DS00857A-page 6  2002 Microchip Technology Inc.

AN857
We are using PWM to control start-up current, so why
not use it as a speed control also? We will use the ana-
log-to-digital converter (ADC), of the PIC16F877 to
read a potentiometer and use the voltage reading as
the relative speed control input. Only 8 bits of the ADC
are used, so our speed control will have 256 levels. We
want the relative speed to correspond to the relative
potentiometer position. Motor speed is directly propor-
tional to applied voltage, so varying the PWM duty
cycle linearly from 0% to 100% will result in a linear
speed control from 0% to 100% of maximum RPM.
Pulse width is determined by continuously adding the
ADC result to the free running Timer0 count to deter-
mine when the drivers should be on or off. If the addi-
tion results in an overflow, then the drivers are on,
otherwise they are off. An 8-bit timer is used so that the
ADC to timer additions need no scaling to cover the full
range. To obtain a PWM frequency of 10 kHz Timer0
must be running at 256 times that rate, or 2.56 MHz.
The minimum prescale value for Timer0 is 1:2, so we
need an input frequency of 5.12 MHz. The input to
Timer0 is FOSC/4. This requires an FOSC of 20.48 MHz.
That is an odd frequency, and 20 MHz is close enough,
so we will use 20 MHz resulting in a PWM frequency of
9.77 kHz.

There are several ways to modulate the motor drivers.
We could switch the high and low side drivers together,
or just the high or low driver while leaving the other
driver on. Some high side MOSFET drivers use a
capacitor charge pump to boost the gate drive above
the drain voltage. The charge pump charges when the
driver is off and discharges into the MOSFET gate
when the driver is on. It makes sense then to switch the
high side driver to keep the charge pump refreshed.
Even though this application does not use the charge
pump type drivers, we will modulate the high side driver
while leaving the low side driver on. There are three
high side drivers, any one of which could be active
depending on the position of the rotor. The motor drive
word is 6-bits wide, so if we logically AND the drive
word with zeros in the high driver bit positions, and 1’s
in the low driver bit positions, we will turn off the active
high driver regardless which one of the three it is.

We have now identified 4 tasks of the control loop:

• Read the sensor inputs

• Commutate the motor drive connections
• Read the speed control ADC
• PWM the motor drivers using the ADC and Timer0

addition results

At 20 MHz clock rate, control latency, caused by the
loop time, is not significant so we will construct a simple
polled task loop. The control loop flow chart is shown in
Figure 6 and code listings are in Appendix B.
 2002 Microchip Technology Inc. DS00857A-page 7

AN857
FIGURE 6: SENSORED DRIVE FLOWCHART

Initialize

ADC
Ready

?
Read new ADC

Set ADC GO

Add ADRESH to
TMR0

Carry?

Mask Drive
Word

Output Drive
Word

Sensor
Change

Save Sensor
Code

Commutate

Yes

No

No

Yes

No

Yes
DS00857A-page 8  2002 Microchip Technology Inc.

AN857
Sensorless Motor Control

It is possible to determine when to commutate the
motor drive voltages by sensing the back EMF voltage
on an undriven motor terminal during one of the drive
phases. The obvious cost advantage of sensorless
control is the elimination of the Hall position sensors.
There are several disadvantages to sensorless control:

• The motor must be moving at a minimum rate to
generate sufficient back EMF to be sensed

• Abrupt changes to the motor load can cause the
BEMF drive loop to go out of lock

• The BEMF voltage can be measured only when
the motor speed is within a limited range of the
ideal commutation rate for the applied voltage

• Commutation at rates faster than the ideal rate
will result in a discontinuous motor response

If low cost is a primary concern and low speed motor
operation is not a requirement and the motor load is not
expected to change rapidly then sensorless control
may be the better choice for your application.

Determining the BEMF

The BEMF, relative to the coil common connection
point, generated by each of the motor coils, can be
expressed as shown in Equation 4 through Equation 6.

EQUATION 4:

EQUATION 5:

EQUATION 6:

FIGURE 7: BEMF EQUIVALENT
CIRCUIT

Figure 7 shows the equivalent circuit of the motor with
coils B and C driven while coil A is undriven and avail-
able for BEMF measurement. At the commutation fre-
quency the L's are negligible. The R's are assumed to
be equal. The L and R components are not shown in
the A branch since no significant current flows in this
part of the circuit so those components can be ignored.

BBEMF = sin (α)




 2π
3





CBEMF = sin α - —





4π
3




ABEMF = sin α - —

BBEMF

CBEMF

ABEMF

V

R

L

R

L

COM A

B

C

 2002 Microchip Technology Inc. DS00857A-page 9

AN857
The BEMF generated by the B and C coils in tandem,
as shown in Figure 7, can be expressed as shown in
Equation 7.

EQUATION 7:

The sign reversal of CBEMF is due to moving the refer-
ence point from the common connection to ground.

Recall that there are six drive phases in one electrical
revolution. Each drive phase occurs +/- 30 degrees
around the peak back EMF of the two motor windings
being driven during that phase. At full speed the
applied DC voltage is equivalent to the RMS BEMF
voltage in that 60 degree range. In terms of the peak
BEMF generated by any one winding, the RMS BEMF
voltage across two of the windings can be expressed
as shown in Equation 8.

EQUATION 8:

We will use this result to normalize the BEMF diagrams
presented later, but first lets consider the expected
BEMF at the undriven motor terminal.

Since the applied voltage is pulse width modulated, the
drive alternates between on and off throughout the
phase time. The BEMF, relative to ground, seen at the
A terminal when the drive is on, can be expressed as
shown in Equation 9.

EQUATION 9:

Notice that the winding resistance cancels out, so
resistive voltage drop, due to motor torque load, is not
a factor when measuring BEMF.

The BEMF, relative to ground, seen at the A terminal
when the drive is off can be expressed as shown in
Equation 10.

EQUATION 10:

BEMFBC = BBEMF - CBEMF

BEMFRMS = — ∫ sin (α) - sin α - — dα
3
π

π
2

π
6




 






 



2

BEMFRMS = + 3
π 



 π
2

π3
4





BEMFRMS = 1.6554

2π
3

BEMFA =
[V - (BBEMF - CBEMF)]R

C + ABEMFBEMF

BEMFA =
V - BBEMF + CBEMF CBEMF + ABEMF

2R

2

-

-

BEMFA = ABEMF - CBEMF
DS00857A-page 10  2002 Microchip Technology Inc.

AN857
Figure 8 is a graphical representation of the BEMF for-
mulas computed over one electrical revolution. To
avoid clutter, only the terminal A waveform, as would
be observed on a oscilloscope is displayed and is
denoted as BEMF(drive on). The terminal A waveform
is flattened at the top and bottom because at those
points the terminal is connected to the drive voltage or
ground. The sinusoidal waveforms are the individual
coil BEMFs relative to the coil common connection
point. The 60 degree sinusoidal humps are the BEMFs
of the driven coil pairs relative to ground. The entire
graph has been normalized to the RMS value of the coil
pair BEMFs.

FIGURE 8: BEMF AT 100% DRIVE

Notice that the BEMF(drive on) waveform is fairly linear
and passes through a voltage that is exactly half of the
applied voltage at precisely 60 degrees which coin-
cides with the zero crossing of the coil A BEMF wave-
form. This implies that we can determine the rotor
electrical position by detecting when the open terminal
voltage equals half the applied voltage.

What happens when the PWM duty cycle is less than
100%? Figure 9 is a graphical representation of the
BEMF formulas computed over one electrical revolu-
tion when the effective applied voltage is 50% of that
shown in Figure 8. The entire graph has been normal-
ized to the peak applied voltage.

BLDC Motor Waveforms

-1

-0.5

0

0.5

1

1.5

-30 30 90 150 210 270 330

Electrical Degrees

V
o

llt
s

(N
o

rm
al

iz
ed

 t
o

 D
C

 D
ri

ve
)

B

C

A

ABS(B-C)

ABS(C-A)

ABS(A-B)

BEMF(drive on)

(PWM at 100% Duty Cycle)
 2002 Microchip Technology Inc. DS00857A-page 11

AN857
FIGURE 9: BEMF AT 50% DRIVE

As expected the BEMF waveforms are all reduced pro-
portionally but notice that the BEMF on the open termi-
nal still equals half the applied voltage midway through
the 60 degree drive phase. This occurs only when the
drive voltage is on. Figure 10 shows a detail of the open
terminal BEMF when the drive voltage is on and when
the drive voltage is off. At various duty cycles, notice
that the drive on curve always equals half the applied
voltage at 60 degrees.

BLDC Motor Waveforms

-1

-0.5

0

0.5

1

1.5

-30 30 90 150 210 270 330

Electrical Degrees

V
o

llt
s

(N
o

rm
al

iz
ed

 t
o

 D
C

 D
ri

ve
)

B

C

A

ABS(B-C)

ABS(C-A)

ABS(A-B)

BEMF(drive on)

(PWM at 50% Duty Cycle)
DS00857A-page 12  2002 Microchip Technology Inc.

AN857
FIGURE 10: DRIVE ON VS. DRIVE OFF BEMF

How well do the predictions match an actual motor?
Figure 11 is shows the waveforms present on terminal
A of a Pittman N2311A011 brushless motor at various
PWM duty cycle configurations. The large transients,
especially prevalent in the 100% duty cycle waveform,
are due to flyback currents caused by the motor wind-
ing inductance.

Floating Terminal Back EMF

0

0.5

1

30 90

Electrical Degrees

V
o

lt
ag

e
(N

o
rm

al
iz

ed
 t

o
 D

C
 D

ri
ve

)

BEMF(drive on)

BEMF(drive off)

(PWM at 100% Duty Cycle)

Floating Terminal Back EMF

0

0.5

1

30 90

Electrical Degrees

V
o

lt
ag

e
(N

o
rm

al
iz

ed
 t

o
 D

C
 D

ri
ve

)

BEMF(drive on)

BEMF(drive off)

(PWM at 60% Duty Cycle)

Floating Terminal Back EMF

0

0.5

1

30 90

Electrical Degrees

V
o

lt
ag

e
(N

o
rm

al
iz

ed
 t

o
 D

C
 D

ri
ve

)

BEMF(drive on)

BEMF(drive off)

(PWM at 75% Duty Cycle)

Floating Terminal Back EMF

0

0.5

1

30 90

Electrical Degrees

V
o

lt
ag

e
(N

o
rm

al
iz

ed
 t

o
 D

C
 D

ri
ve

)

BEMF(drive on)

BEMF(drive off)

(PWM at 10% Duty Cycle)
 2002 Microchip Technology Inc. DS00857A-page 13

AN857
FIGURE 11: PITTMAN BEMF WAVEFORMS

The rotor position can be determined by measuring the
voltage on the open terminal when the drive voltage is
applied and then comparing the result to one half of the
applied voltage.

Recall that motor speed is proportional to the applied
voltage. The formulas and graphs presented so far rep-
resent motor operation when commutation rate coin-
cides with the effective applied voltage. When the
commutation rate is too fast then commutation occurs
early and the zero crossing point occurs later in the
drive phase. When the commutation rate is too slow
then commutation occurs late and the zero crossing
point occurs earlier in the drive phase. We can sense
and use this shift in zero crossing to adjust the commu-
tation rate to keep the motor running at the ideal speed
for the applied voltage and load torque.

100% Duty Cycle 50% Duty Cycle

10% Duty Cycle75% Duty Cycle
DS00857A-page 14  2002 Microchip Technology Inc.

AN857
Open Loop Speed Control

An interesting property of brushless DC motors is that
they will operate synchronously to a certain extent. This
means that for a given load, applied voltage, and com-
mutation rate the motor will maintain open loop lock
with the commutation rate provided that these three
variables do not deviate from the ideal by a significant
amount. The ideal is determined by the motor voltage
and torque constants. How does this work? Consider
that when the commutation rate is too slow for an
applied voltage, the BEMF will be too low resulting in
more motor current. The motor will react by accelerat-
ing to the next phase position then slow down waiting
for the next commutation. In the extreme case the
motor will snap to each position like a stepper motor
until the next commutation occurs. Since the motor is
able to accelerate faster than the commutation rate,
rates much slower than the ideal can be tolerated with-
out losing lock but at the expense of excessive current.

Now consider what happens when commutation is too
fast. When commutation occurs early the BEMF has
not reached peak resulting in more motor current and a
greater rate of acceleration to the next phase but it will
arrive there too late. The motor tries to keep up with the
commutation but at the expense of excessive current.
If the commutation arrives so early that the motor can
not accelerate fast enough to catch the next commuta-
tion, lock is lost and the motor spins down. This hap-
pens abruptly not very far from the ideal rate. The
abrupt loss of lock looks like a discontinuity in the motor
response which makes closed loop control difficult. An
alternative to closed loop control is to adjust the com-
mutation rate until self locking open loop control is
achieved. This is the method we will use in our applica-
tion.

When the load on a motor is constant over it’s operating
range then the response curve of motor speed relative
to applied voltage is linear. If the supply voltage is well
regulated, in addition to a constant torque load, then
the motor can be operated open loop over it’s entire
speed range. Consider that with pulse width modula-
tion the effective voltage is linearly proportional to the
PWM duty cycle. An open loop controller can be made
by linking the PWM duty cycle to a table of motor speed
values stored as the time of commutation for each drive
phase. We need a table because revolutions per unit
time is linear, but we need time per revolution which is
not linear. Looking up the time values in a table is much
faster than computing them repeatedly.

The program that we use to run the motor open loop is
the same program we will use to automatically adjust
the commutation rate in response to variations in the
torque load. The program uses two potentiometers as
speed control inputs. One potentiometer, we’ll call it the
PWM potentiometer, is directly linked to both the PWM
duty cycle and the commutation time lookup table. The
second potentiometer, we’ll call this the Offset potenti-
ometer, is used to provide an offset to the PWM duty
cycle determined by the PWM potentiometer. An ana-
log-to-digital conversion of the PWM potentiometer
produces a number between 0 and 255. The PWM duty
cycle is generated by adding the PWM potentiometer
reading to a free running 8-bit timer. When the addition
results in a carry the drive state is on, otherwise it is off.
The PWM potentiometer reading is also used to access
the 256 location commutation time lookup table. The
Offset potentiometer also produces a number between
0 and 255. The Most Significant bit of this number is
inverted making it a signed number between -128 and
127. This offset result, when added to the PWM poten-
tiometer, becomes the PWM duty cycle threshold, and
controls the drive on and off states described previ-
ously.

Closed Loop Speed Control

Closed loop speed control is achieved by unlinking the
commutation time table index from the PWM duty cycle
number. The PWM potentiometer is added to a fixed
manual threshold number between 0 and 255. When
this addition results in a carry, the mode is switched to
automatic. On entering Automatic mode the commuta-
tion index is initially set to the PWM potentiometer
reading. Thereafter, as long as Automatic mode is still
in effect, the commutation table index is automatically
adjusted up or down according to voltages read at
motor terminal A at specific times. Three voltage read-
ings are taken.

FIGURE 12: BEMF SAMPLE TIMES
 2002 Microchip Technology Inc. DS00857A-page 15

AN857
The first reading is taken during drive phase 4 when ter-
minal A is actively driven high. This is the applied volt-
age. The next two readings are taken during drive
phase 5 when terminal A is floating. The first reading is
taken when ¼ of the commutation time has elapsed
and the second reading is taken when ¾ of the commu-
tation time has elapsed. We'll call these readings 1 and
2 respectively. The commutation table index is adjusted
according to the following relationship between the
applied voltage reading and readings 1 and 2:

• Index is unchanged if Reading 1 > Applied Volt-
age/2 and Reading 2 < Applied Voltage/2

• Index is increased if Reading 1 < Applied Voltage/
2

• Index is decreased if Reading 1 > Applied Volt-
age/2 and Reading 2 > Applied Voltage/2

The motor rotor and everything it is connected to has a
certain amount of inertia. The inertia delays the motor
response to changes in voltage load and commutation
time. Updates to the commutation time table index are
delayed to compensate for the mechanical delay and
allow the motor to catch up.

Acceleration and Deceleration Delay

The inertia of the motor and what it is driving, tends to
delay motor response to changes in the drive voltage.
We need to compensate for this delay by adding a
matching delay to the control loop. The control loop
delay requires two time constants, a relatively slow one
for acceleration, and a relatively fast one for decelera-
tion.

Consider what happens in the control loop when the
voltage to the motor suddenly rises, or the motor load
is suddenly reduced. The control senses that the motor
rotation is too slow and attempts to adjust by making
the commutation time shorter. Without delay in the con-
trol loop, the next speed measurement will be taken
before the motor has reacted to the adjustment, and

another speed adjustment will be made. Adjustments
continue to be made ahead of the motor response until
eventually, the commutation time is too short for the
applied voltage, and the motor goes out of lock. The
acceleration timer delay prevents this runaway condi-
tion. Since the motor can tolerate commutation times
that are too long, but not commutation times that are
too short, the acceleration time delay can be longer
than required without serious detrimental effect.

Consider what happens in the control loop when the
voltage to the motor suddenly falls, or the motor load is
suddenly increased. If the change is sufficiently large,
commutation time will immediately be running too short
for the motor conditions. The motor cannot tolerate this,
and loss of lock will occur. To prevent loss of lock, the
loop deceleration timer delay must be short enough for
the control loop to track, or precede the changing motor
condition. If the time delay is too short, then the control
loop will continue to lengthen the commutation time
ahead of the motor response resulting in over compen-
sation. The motor will eventually slow to a speed that
will indicate to the BEMF sensor that the speed is too
slow for the applied voltage. At that point, commutation
deceleration will cease, and the commutation change
will adjust in the opposite direction governed by the
acceleration time delay. Over compensation during
deceleration will not result in loss of lock, but will cause
increased levels of torque ripple and motor current until
the ideal commutation time is eventually reached.

Determining The Commutation Time
Table Values

The assembler supplied with MPLAB performs all cal-
culations as 32-bit integers. To avoid the rounding
errors that would be caused by integer math, we will
use a spreadsheet, such as Excel, to compute the table
entries then cut and paste the results to an include file.
The spreadsheet is setup as shown in Table 4.

TABLE 4: COMMUTATION TIME TABLE VALUES

Variable Name Number or Formula Description

Phases 12 Number of commutation phase changes in one
mechanical revolution.

FOSC 20 MHz Microcontroller clock frequency

FOSC_4 FOSC/4 Microcontroller timers source clock

Prescale 4 Timer 1 prescale

MaxRPM 8000 Maximum expected speed of the motor at full
applied voltage

MinRPM (60*FOSC_4)/Phases*Prescale*65535)+1 Limitation of 16-bit timer

Offset -345 This is the zero voltage intercept on the RPM axis.
A property normalized to the 8-bit A to D converter.

Slope (MaxRPM-Offset)/255 Slope of the RPM to voltage input response curve
normalized to the 8-bit A to D converter.
DS00857A-page 16  2002 Microchip Technology Inc.

AN857
The body of the spreadsheet starts arbitrarily at row 13.
Row 12 contains the column headings. The body of the
spreadsheet is constructed as follows:

• Column A is the commutation table index number
N. The numbers in column A are integers from 0
to 255.

• Column B is the RPM that will result by using the
counter values at index number N. The formula in
column B is: =IF(Offset+A13*Slope>MinRPM,Off-
set+A13*Slope,MinRPM).

• Column C is the duration of each commutation
phase expressed in seconds. The formula for col-
umn C is: =60/(Phases*B13).

• Column D is the duration of each commutation
phase expressed in timer counts. The formula for
column D is: =C13*FOSC_4/Prescale.

The range of commutation phase times at a reasonable
resolution requires a 16-bit timer. The timer counts from
0 to a compare value then automatically resets to 0.
The compare values are stored in the commutation
time table. Since the comparison is 16 bits and tables
can only handle 8 bits the commutation times will be
stored in two tables accessed by the same index.

• Column E is the most significant byte of the 16-bit
timer compare value. The formula for column E is:
=CONCATENATE("retlw high D'”,INT(D13),”'”).

• Column F is the least significant byte of the 16-bit
timer compare value. The formula for column F is:
=CONCATENATE(“retlw low D'”,INT(D13),”'”).

When all spreadsheet formulas have been entered in
row 13, the formulas can be dragged down to row 268
to expand the table to the required 256 entries. Col-
umns E and F will have the table entries in assembler
ready format. An example of the table spreadsheet is
shown in Figure 13.

FIGURE 13: PWM LOOKUP TABLE GENERATOR
 2002 Microchip Technology Inc. DS00857A-page 17

AN857
Using Open Loop Control to Determine
Motor Characteristics

You can measure the motor characteristics by operat-
ing the motor in Open Loop mode, and measuring the
motor current at several applied voltages. You can then
chart the response curve in a spreadsheet, such as
Excel, to determine the slope and offset numbers.
Finally, plug the maximum RPM and offset numbers
back into the table generator spreadsheet to regener-
ate the RPM tables.

To operate the motor in Open Loop mode:

• Set the manual threshold number (ManThresh)
to 0xFF. This will prevent the Auto mode from tak-
ing over.

• When operating the motor in Open Loop mode,
start by adjusting the offset control until the motor
starts to move. You may also need to adjust the
PWM control slightly above minimum.

• After the motor starts, you can increase the PWM
control to increase the motor speed. The RPM
and voltage will track, but you will need to adjust
the offset frequently to optimize the voltage for the
selected RPM.

• Optimize the voltage by adjusting the offset for
minimum current.

To obtain the response offset with Excel®, enter the
voltage (left column), and RPM (right column) pairs in
adjacent columns of the spreadsheet. Use the chart
wizard to make an X-Y scatter chart. When the chart is
finished, right click on the response curve and select
the pop-up menu “add trendline. . .” option. Choose the
linear regression type and, in the Options tab, check
the “display equation on chart” option. An example of
the spreadsheet is shown in Figure 14.

FIGURE 14: MOTOR RESPONSE SCOPE DETERMINATION
DS00857A-page 18  2002 Microchip Technology Inc.

AN857
Constructing The Sensorless Control
Code

At this point we have all the pieces required to control
a sensorless motor. We can measure BEMF and the
applied voltage then compare them to each other to
determine rotor position. We can vary the effective
applied voltage with PWM and control the speed of the
motor by timing the commutation phases. Some mea-
surement events must be precisely timed. Other mea-
surement events need not to interfere with each other.
The ADC must be switched from one source to another
and allow for sufficient acquisition time. Some events
must happen rapidly with minimum latency. These
include PWM and commutation.

We can accomplish everything with a short main loop
that calls a state table. The main loop will handle PWM
and commutation and the state table will schedule
reading the two potentiometers, the peak applied volt-
age and the BEMF voltages at two times when the
attached motor terminal is floating. Figure A-1 through
Figure A-10, in Appendix A, is the resulting flow chart
of sensorless motor control. Code listings are in
Appendix C and Appendix D.
 2002 Microchip Technology Inc. DS00857A-page 19

AN857
APPENDIX A: SENSORLESS CONTROL FLOWCHART

FIGURE A-1: MAIN LOOP

Sensorless Control

Initialize

Is Timer1
Compare Flag

Set?

Call Commutate

Is Full On
Flag Set?

Add PWM
Threshold to

Timer0

Carry
?

Set Drive-On
Flag

Yes

No

Yes

Yes No

Clear Drive-On
Flag

Call DriveMotor

Call LockTest

Call StateMachine

No
DS00857A-page 20  2002 Microchip Technology Inc.

AN857
FIGURE A-2: MOTOR COMMUTATION

Commutate

Is Timer1
Clear on Compare

Enabled?

Decrement
PhaseIndex

Is
PhaseIndex

=0?

PhaseIndex = 6

Drive Word =
Table Entry@PhaseIndex

DriveMotor

Commutate End

Yes

No

Yes

No
 2002 Microchip Technology Inc. DS00857A-page 21

AN857
FIGURE A-3: MOTOR DRIVER CONTROL

FIGURE A-4: PHASE DRIVE PERIOD

DriveMotor

Get Stored
DriveWord

Is
DriveOnFlag

Set?

AND DriveWord
with OffMask

OR DriveWord
with SpeedStatus

Output DriveWord
to motor drive port

DriveMotor End

No

Yes

SetTimer

High byte of Timer1 compare=
High byte Table@RPMIndex

Low byte of Timer1 compare=
Low byte Table@RPMIndex

SetTimer End
DS00857A-page 22  2002 Microchip Technology Inc.

AN857
FIGURE A-5: MOTOR SPEED LOCKED WITH COMMUTATION RATE

LockTest

Is PWM
cycle start
flag set?

Which half
of PWM cycle

is longest?

Is Drive
Active?

Clear PWM
cycle start flag

Decrement
RampTimer

Is
RampTimer

Zero?

Is
ADCRPM > Manual

Threshold?

Reset AutoRPM
Flag

Set AutoRPM
Flag

LT2LT3

No

On Cycle

No Yes Off Cycle

No

Yes

No Yes

Yes
 2002 Microchip Technology Inc. DS00857A-page 23

AN857
FIGURE A-6: MOTOR SPEED LOCKED WITH COMMUTATION RATE (CONT.)

Is
BEMF1 <
VSupply/2

?
Is

BEMF2 <
VSupply/2

?

SpeedStatus =
Speed Too Fast

RampTimer =
DecelerateDelay

LT2LT3

AutoRPM?

Decrement RPMIndex
Limit to minimum

SpeedStatus =
Speed Locked

RampTimer =
DecelerateDelay

SpeedStatus =
Speed Too Slow

RampTimer =
AccelerateDelay

AutoRPM?

RPMIndex = ADCRPM

LockTest End

NoYes

No

No No

Increment RPMIndex
Limit to maximum

Yes Yes

Yes
DS00857A-page 24  2002 Microchip Technology Inc.

AN857
FIGURE A-7: MOTOR CONTROL STATE MACHINE

StateMachine

State =
RPMSetup

?

State =
RPMSetup

?

Is
motor

in Phase 1
?

Start ADC

Change ADC
input to Offset Pot

State = RPMRead

State =
OffsetSetup

?

Is
motor

in Phase 2
?

Start ADC

Change ADC
input to Motor
Terminal A

State = OffsetRead

State =
OffsetRead

?

Yes

No

Yes

Yes

No

Yes

Yes

No

No

Is ADC
Done?

ADCRPM = ADC
Result

State = OffsetSetup

Is ADC
Done?

Yes

Yes

No
No

ADCOffset = ADC Result
Invert msb of ADC Offset

PWMThreshold =
ADCRPM + ADCOffset

Limit PWMThreshold
to Max or Min

SM4 SM1 SM2 SM3

No

No

Yes
 2002 Microchip Technology Inc. DS00857A-page 25

AN857
FIGURE A-8: MOTOR CONTROL STATE MACHINE (CONT.)

Call SetTimer

SM4 SM1 SM2 SM3

State =
VSetup

?

Is
motor

in Phase 4
?

State = Vldle

State =
Vldle

?

Is
PWMThreshold

= 0?

Yes

No
No

Yes

Yes

No

Yes NoIs
PWMThreshold

>0xFD?

Set
FullOnFlag

Clear
FullOnFlag

State = VSetup

Clear SpeedStatus

Set ADC input
to PWM Pot

State = RPMSetup

Is
motor drive

active
?

Wait for ADC
acquisition time

Start ADC

State = VRead

SM4 SM5 SM3

State =
VRead

?

Yes

No
No

Yes

No

Yes

No

Yes

Is ADC
Done?

VSupply = ADC Result

State = BEMFSetup
DS00857A-page 26  2002 Microchip Technology Inc.

AN857
FIGURE A-9: MOTOR CONTROL STATE MACHINE (CONT.)

SM4 SM5 SM3

State =
BEMFSetup

?

State =
BEMFSetup

?

Is
motor

in Phase 5
?

Is
this the start

of the longest PWM
half cycle

?

Disable Timer1
clear on compare

Save current
compare word

(commutation time)

Set compare word
to 1/4 current

commutation time

State = BEMFIdle

Yes

No

Yes

Yes

No

Yes

No
NoTimer1

compare?

Yes

Force motor
drive active

Wait for ADC
acquisition time

Start ADC

Set compare word
to 3/4 current

commutation time

State = BEMFRead

State =
BEMFRead

?

Yes

Is
ADC
Done?

Yes

No

DeltaV1 =
VSupply/2 - ADC result

State = BEMF2IdleSM4 SM6 SM3

No

No
 2002 Microchip Technology Inc. DS00857A-page 27

AN857
FIGURE A-10: MOTOR CONTROL STATE MACHINE (CONT.)

SM4 SM6 SM3

State =
BEMF2Idle

?

Timer1
Compare

?State =
BEMF2Read

?

Force motor
drive activeIs ADC

Done?

DeltaV2 =
VSupply/2 - ADC result

State = RPMSetup

Wait for ADC
acquisition time

Start ADC

Change ADC
input to PWM Pot

Set Timer1 compare
word to saved

commutation time

Change compare
mode to clear

Timer1 on compare

State = BEMF2Read

Invalid State:
Set ADC input to

PWM Pot
State = RPMSetup

StateMachine End

Yes

Yes

No

Yes

No

No

Yes

No
DS00857A-page 28  2002 Microchip Technology Inc.

AN857
APPENDIX B: SCHEMATICS

FIGURE B-1: SCHEMATIC A - MOTOR DRIVERS
 2002 Microchip Technology Inc. DS00857A-page 29

AN857
FIGURE B-2: SCHEMATIC B - CONTROLLER
DS00857A-page 30  2002 Microchip Technology Inc.

AN857

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX C: SENSORED CODE
;**
; *
; Filename: sensored.asm *
; Date: 11 Feb. 2002 *
; File Version: 1.0 *
; *
; Author: W.R. Brown *
; Company: Microchip Technology Incorporated *
; *
; *
;**
; *
; Files required: p16f877.inc *
; *
; *
; *
;**
; *
; Notes: Sensored brushless motor control Main loop uses 3-bit *
; sensor input as index for drive word output. PWM based on *
; Timer0 controls average motor voltage. PWM level is determined *
; PWM level is determined from ADC reading of potentiometer. *
; *
;**

list p=16f877 ; list directive to define processor
#include <p16f877.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_OFF & _LVP_ON &
_DEBUG_OFF & _CPD_OFF

;**
;*
;* Define variable storage
;*

CBLOCK 0x20

ADC ; PWM threshold is ADC result
LastSensor ; last read motor sensor data
DriveWord ; six bit motor drive data

ENDC
 2002 Microchip Technology Inc. DS00857A-page 31

AN857
;**
;*
;* Define I/O
;*

#define OffMask B’11010101’
#define DrivePort PORTC
#define DrivePortTris TRISC
#define SensorMask B’00000111’
#define SensorPort PORTE
#define DirectionBit PORTA,1

;**
org 0x000 ; startup vector
nop ; required for ICD operation
clrf PCLATH ; ensure page bits are cleared
goto Initialize ; go to beginning of program

ORG 0x004 ; interrupt vector location
retfie ; return from interrupt

;**
;*
;* Initialize I/O ports and peripherals
;*

Initialize
clrf DrivePort ; all drivers off

banksel TRISA
; setup I/O

clrf DrivePortTris ; set motor drivers as outputs
movlw B’00000011’ ; A/D on RA0, Direction on RA1, Motor sensors on RE<2:0>
movwf TRISA ;

; setup Timer0
movlw B’11010000’ ; Timer0: Fosc, 1:2
movwf OPTION_REG

; Setup ADC (bank1)
movlw B’00001110’ ; ADC left justified, AN0 only
movwf ADCON1

banksel ADCON0
; setup ADC (bank0)

movlw B’11000001’ ; ADC clock from int RC, AN0, ADC on
movwf ADCON0

bsf ADCON0,GO ; start ADC
clrf LastSensor ; initialize last sensor reading
call Commutate ; determine present motor position
clrf ADC ; start speed control threshold at zero until first ADC

reading

;**
;*
;* Main control loop
;*
Loop

call ReadADC ; get the speed control from the ADC
incfsz ADC,w ; if ADC is 0xFF we’re at full speed - skip timer add
goto PWM ; add Timer0 to ADC for PWM

movf DriveWord,w ; force on condition
goto Drive ; continue

PWM
DS00857A-page 32  2002 Microchip Technology Inc.

AN857
movf ADC,w ; restore ADC reading
addwf TMR0,w ; add it to current Timer0
movf DriveWord,w ; restore commutation drive data
btfss STATUS,C ; test if ADC + Timer0 resulted in carry
andlw OffMask ; no carry - suppress high drivers

Drive
movwf DrivePort ; enable motor drivers
call Commutate ; test for commutation change
goto Loop ; repeat loop

ReadADC
;**
;*
;* If the ADC is ready then read the speed control potentiometer
;* and start the next reading
;*

btfsc ADCON0,NOT_DONE ; is ADC ready?
return ; no - return

movf ADRESH,w ; get ADC result
bsf ADCON0,GO ; restart ADC
movwf ADC ; save result in speed control threshold
return ;

;**
;*
;* Read the sensor inputs and if a change is sensed then get the
;* corresponding drive word from the drive table
;*
Commutate

movlw SensorMask ; retain only the sensor bits
andwf SensorPort,w ; get sensor data
xorwf LastSensor,w ; test if motion sensed
btfsc STATUS,Z ; zero if no change
return ; no change - back to the PWM loop

xorwf LastSensor,f ; replace last sensor data with current
btfss DirectionBit ; test direction bit
goto FwdCom ; bit is zero - do forward commutation

; reverse commutation
movlw HIGH RevTable ; get MS byte of table
movwf PCLATH ; prepare for computed GOTO
movlw LOW RevTable ; get LS byte of table
goto Com2

FwdCom ; forward commutation
movlw HIGH FwdTable ; get MS byte of table
movwf PCLATH ; prepare for computed GOTO
movlw LOW FwdTable ; get LS byte of table

Com2
addwf LastSensor,w ; add sensor offset
btfsc STATUS,C ; page change in table?
incf PCLATH,f ; yes - adjust MS byte

call GetDrive ; get drive word from table
movwf DriveWord ; save as current drive word
return

GetDrive
movwf PCL
 2002 Microchip Technology Inc. DS00857A-page 33

AN857
;**
;*
;* The drive tables are built based on the following assumptions:
;* 1) There are six drivers in three pairs of two
;* 2) Each driver pair consists of a high side (+V to motor) and low side (motor to ground) drive
;* 3) A 1 in the drive word will turn the corresponding driver on
;* 4) The three driver pairs correspond to the three motor windings: A, B and C
;* 5) Winding A is driven by bits <1> and <0> where <1> is A’s high side drive
;* 6) Winding B is driven by bits <3> and <2> where <3> is B’s high side drive
;* 7) Winding C is driven by bits <5> and <4> where <5> is C’s high side drive
;* 8) Three sensor bits constitute the address offset to the drive table
;* 9) A sensor bit transitions from a 0 to 1 at the moment that the corresponding
;* winding’s high side forward drive begins.
;* 10) Sensor bit <0> corresponds to winding A
;* 11) Sensor bit <1> corresponds to winding B
;* 12) Sensor bit <2> corresponds to winding C
;*
FwdTable

retlw B’00000000’ ; invalid
retlw B’00010010’ ; phase 6
retlw B’00001001’ ; phase 4
retlw B’00011000’ ; phase 5
retlw B’00100100’ ; phase 2
retlw B’00000110’ ; phase 1
retlw B’00100001’ ; phase 3
retlw B’00000000’ ; invalid

RevTable
retlw B’00000000’ ; invalid
retlw B’00100001’ ; phase /6
retlw B’00000110’ ; phase /4
retlw B’00100100’ ; phase /5
retlw B’00011000’ ; phase /2
retlw B’00001001’ ; phase /1
retlw B’00010010’ ; phase /3
retlw B’00000000’ ; invalid

END ; directive ’end of program’
DS00857A-page 34  2002 Microchip Technology Inc.

AN857
APPENDIX D: SENSORLESS CODE
;**
; *
; Filename: snsrless.asm *
; Date: 14 Jan. 2002 *
; File Version: 1.0 *
; *
; Author: W.R. Brown *
; Company: Microchip Technology Incorporated *
; *
; *
;**
; *
; Files required: p16f877.inc *
; *
; *
; *
;**
; *
; Notes: Sensorless brushless motor control *
; *
; Closed loop 3 phase brushless DC motor control. *
; Two potentiometers control operation. One potentiometer (A0) *
; controls PWM (voltage) and RPM (from table). The other *
; potentiometer (A1) provides a PWM offset to the PWM derived *
; from A0. Phase A motor terminal is connected via voltage *
; divider to A3. This is read while the drive is on during *
; phase 4. The result is the peak applied voltage (Vsupply). *
; A3 is also read while the drive is on at two times during *
; phase 5. The result is the BEMF voltage. The BEMF voltage is *
; read at the quarter (t1) and mid (t2) points of the phase 5 *
; period. BEMF is compared to VSupply/2. If BEMF is above *
; VSupply/2 at t1 and below VSupply/2w at t2 then no speed *
; adjustment is made. If BEMF is high at both t1 and t2 then *
; the speed is reduced. If BEMF is low at t1 and t2 then the *
; speed is increased. *
; *
;**
;

list P = PIC16F877
include "p16f877.inc"
__CONFIG _CP_OFF & _WRT_ENABLE_OFF & _HS_OSC & _WDT_OFF & _PWRTE_ON & _BODEN_ON

; Acceleration/Deceleration Time = RampRate * 256 * 256 * Timer0Timer0 prescale / Fosc

#define AccelDelay D’100’ ; determines full range acceleration time
#define DecelDelay D’10’ ; determines full range deceleration time

#define ManThresh 0x3f ; Manual threshold is the PWM potentiomenter
; reading above which RPM is adjusted automatically

#define AutoThresh 0x100-ManThresh

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 2002 Microchip Technology Inc. DS00857A-page 35

AN857
OffMask equ B’11010101’ ; PWM off kills the high drives
Invalid equ B’00000000’ ; invalid
Phase1 equ B’00100001’ ; phase 1 C high, A low
Phase2 equ B’00100100’ ; phase 2 C high, B low
Phase3 equ B’00000110’ ; phase 3 A high, B low
Phase4 equ B’00010010’ ; phase 4 A high, C low
Phase5 equ B’00011000’ ; phase 5 B high, C low
Phase6 equ B’00001001’ ; phase 6 B high, A low

#define CARRY STATUS,C
#define ZERO STATUS,Z
#define subwl sublw

;***
;*
;* Define I/O Ports
;*

#define ReadIndicator PORTB,0 ; diagnostic scope trigger for BEMF readings
#define DrivePort PORTC ; motor drive and lock status

;***
;*
;* Define RAM variables
;*

CBLOCK 0x20

STATE ; Machine state
PWMThresh ; PWM threshold
PhaseIndx ; Current motor phase index
Drive ; Motor drive word
RPMIndex ; RPM Index workspace
ADCRPM ; ADC RPM value
ADCOffset ; Delta offset to ADC PWM threshold
PresetHi ; speed control timer compare MS byte
PresetLo ; speed control timer compare LS byte
Flags ; general purpose flags
Vsupply ; Supply voltage ADC reading
DeltaV1 ; Difference between expected and actual BEMF at T/4
DeltaV2 ; Difference between expected and actual BEMF at T/2
CCPSaveH ; Storage for phase time when finding DeltaV
CCPSaveL ; Storage for phase time when finding DeltaV
CCPT2H ; Workspace for determining T/2 and T/4
CCPT2L ; Workspace for determining T/2 and T/4
RampTimer ; Timer0 post scaler for accel/decel ramp rate
xCount ; general purpose counter workspace
Status ; relative speed indicator status

ENDC
DS00857A-page 36  2002 Microchip Technology Inc.

AN857
;***
;*
;* Define Flags
;*

#define DriveOnFlag Flags,0 ; Flag for invoking drive disable mask when clear
#define AutoRPM Flags,1 ; RPM timer is adjusted automatically
; Flags,3 ; Undefined
#define FullOnFlag Flags,4 ; PWM threshold is set to maximum drive
#define Tmr0Ovf Flags,5 ; Timer0 overflow flag
#define Tmr0Sync Flags,6 ; Second Timer0 overflow flag
; Flags,7 ; undefined

#define BEMF1Low DeltaV1,7 ; BEMF1 is low if DeltaV1 is negative
#define BEMF2Low DeltaV2,7 ; BEMF2 is low if DeltaV2 is negative

;***
;*
;* Define State machine states and index numbers
;*

sRPMSetup equ D’0’ ; Wait for Phase1, Set ADC GO, RA1->ADC
sRPMRead equ sRPMSetup+1 ; Wait for ADC nDONE, Read ADC->RPM
sOffsetSetup equ sRPMRead+1 ; Wait for Phase2, Set ADC GO, RA3->ADC
sOffsetRead equ sOffsetSetup+1 ; Wait for ADC nDONE, Read ADC->ADCOffset
sVSetup equ sOffsetRead+1 ; Wait for Phase4, Drive On, wait 9 uSec, Set ADC GO
sVIdle equ sVSetup+1 ; Wait for Drive On, wait Tacq, set ADC GO
sVRead equ sVIdle+1 ; Wait for ADC nDONE, Read ADC->Vsupply
sBEMFSetup equ sVRead+1 ; Wait for Phase5, set Timer1 compare to half phase time
sBEMFIdle equ sBEMFSetup+1 ; Wait for Timer1 compare, Force Drive on and wait 9 uSec,

 ; Set ADC GO, RA0->ADC
sBEMFRead equ sBEMFIdle+1 ; Wait for ADC nDONE, Read ADC->Vbemf
sBEMF2Idle equ sBEMFRead+1 ; Wait for Timer1 compare, Force Drive on and wait 9 uSec,

; Set ADC GO, RA0->ADC
sBEMF2Read equ sBEMF2Idle+1 ; Wait for ADC nDONE, Read ADC->Vbemf

;***
;*
;* The ADC input is changed depending on the STATE
;* Each STATE assumes a previous input selection and changes the selection
;* by XORing the control register with the appropriate ADC input change mask
;* defined here:
;*

ADC0to1 equ B’00001000’ ; changes ADCON0<5:3> from 000 to 001
ADC1to3 equ B’00010000’ ; changes ADCON0<5:3> from 001 to 011
ADC3to0 equ B’00011000’ ; changes ADCON0<5:3> from 011 to 000

;***
;**************************** PROGRAM STARTS HERE ********************************
;***

org 0x000
nop
goto Initialize

org 0x004
bsf Tmr0Ovf ; Timer0 overflow flag used by accel/decel timer
bsf Tmr0Sync ; Timer0 overflow flag used to synchronize code execution
bcf INTCON,T0IF
retfie ;

Initialize
clrf PORTC ; all drivers off
clrf PORTB
 2002 Microchip Technology Inc. DS00857A-page 37

AN857
banksel TRISA
; setup I/O

clrf TRISC ; motor drivers on PORTC
movlw B’00001011’ ; A/D on RA0 (PWM), RA1 (Speed) and RA3 (BEMF)
movwf TRISA ;
movlw B’11111110’ ; RB0 is locked indicator
movwf TRISB

; setup Timer0
movlw B’11010000’ ; Timer0: Fosc, 1:2
movwf OPTION_REG
bsf INTCON,T0IE ; enable Timer0 interrupts

; Setup ADC
movlw B’00000100’ ; ADC left justified, AN0, AN1
movwf ADCON1

banksel PORTA
movlw B’10000001’ ; ADC clk = Fosc/32, AN0, ADC on
movwf ADCON0

; setup Timer 1
movlw B’00100001’ ; 1:4 prescale, internal clock, timer on
movwf T1CON

; setup Timer 1 compare
movlw 0xFF ; set compare to maximum count
movwf CCPR1L ; LS compare register
movwf CCPR1H ; MS compare register
movlw B’00001011’ ; Timer 1 compare mode, special event - clears timer1
movwf CCP1CON

; initialize RAM

clrf PWMThresh
movlw D’6’
movwf PhaseIndx
clrf Flags
clrf Status ;
clrf STATE ; LoopIdle->STATE
bcf INTCON,T0IF ; ensure Timer0 overflow flag is cleared
bsf INTCON,GIE ; enable interrupts

MainLoop
;***
;
; PWM, Commutation, State machine loop
;
;***

btfsc PIR1,CCP1IF ; time for phase change?
call Commutate ; yes - change motor drive

PWM
bsf DriveOnFlag ; pre-set flag
btfsc FullOnFlag ; is PWM level at maximum?
goto PWM02 ; yes - only commutation is necessary

movf PWMThresh,w ; get PWM threshold
addwf TMR0,w ; compare to Timer0
btfss CARRY ; drive is on if carry is set
bcf DriveOnFlag ; timer has not reached threshold, disable drive

call DriveMotor ; output drive word
PWM02

call LockTest
call StateMachine ; service state machine
goto MainLoop ; repeat loop
DS00857A-page 38  2002 Microchip Technology Inc.

AN857
StateMachine
movlw SMTableEnd-SMTable-1 ; STATE table must have 2^n entries
andwf STATE,f ; limit STATE index to state table
movlw high SMTable ; get high byte of table address
movwf PCLATH ; prepare for computed goto
movlw low SMTable ; get low byte of table address
addwf STATE,w ; add STATE index to table root
btfsc CARRY ; test for page change in table
incf PCLATH,f ; page change adjust
movwf PCL ; jump into table

SMTable ; number of STATE table entries MUST be evenly divisible by 2
goto RPMSetup ; Wait for Phase1, Set ADC GO, RA1->ADC, clear Timer0 overflow
goto RPMRead ; Wait for ADC nDONE, Read ADC->RPM
goto OffsetSetup ; Wait for Phase2, Set ADC GO, RA3->ADC
goto OffsetRead ; Wait for ADC nDONE, Read ADC->ADCOffset
goto VSetup ; Wait for Phase4
goto VIdle ; Wait for Drive On, wait Tacq, set ADC GO
goto VRead ; Wait for ADC nDONE, Read ADC->Vsupply
goto BEMFSetup ; Wait for Phase5, set Timer1 compare to half phase time
goto BEMFIdle ; When Timer1 compares force Drive on, Set ADC GO after Tacq,

RA0->ADC
goto BEMFRead ; Wait for ADC nDONE, Read ADC->Vbemf
goto BEMF2Idle ; When Timer1 compares force Drive on, Set ADC GO after Tacq,

RA0->ADC
goto BEMF2Read ; Wait for ADC nDONE, Read ADC->Vbemf

; fill out table with InvalidStates to make number of table entries evenly divisible by 2

goto InvalidState ; invalid state - reset state machine
goto InvalidState ; invalid state - reset state machine
goto InvalidState ; invalid state - reset state machine
goto InvalidState ; invalid state - reset state machine

SMTableEnd

;~~
RPMSetup ; Wait for Phase1, Set ADC GO, RA1->ADC, clear Timer0 overflow

movlw Phase1 ; compare Phase1 word...
xorwf Drive,w ; ...with current drive word
btfss ZERO ; ZERO if equal
return ; not Phase1 - remain in current STATE

bsf ADCON0,GO ; start ADC
movlw ADC0to1 ; prepare to change ADC input
xorwf ADCON0,f ; change from AN0 to AN1
incf STATE,f ; next STATE
bcf Tmr0Sync ; clear Timer0 overflow
return ; back to Main Loop

;~~
RPMRead ; Wait for ADC nDONE, Read ADC->RPM

btfsc ADCON0,GO ; is ADC conversion finished?
return ; no - remain in current STATE

movf ADRESH,w ; get ADC result
movwf ADCRPM ; save in RPM

incf STATE,f ; next STATE
return ; back to Main Loop

;~~
 2002 Microchip Technology Inc. DS00857A-page 39

AN857
OffsetSetup ; Wait for Phase2, Set ADC GO, RA3->ADC

movlw Phase2 ; compare Phase2 word...
xorwf Drive,w ; ...with current drive word
btfss ZERO ; ZERO if equal
return ; not Phase2 - remain in current STATE

bsf ADCON0,GO ; start ADC
movlw ADC1to3 ; prepare to change ADC input
xorwf ADCON0,f ; change from AN1 to AN3
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
OffsetRead ; Wait for ADC nDONE, Read ADC->ADCOffset

btfsc ADCON0,GO ; is ADC conversion finished?
return ; no - remain in current STATE

movf ADRESH,w ; get ADC result
xorlw H’80’ ; complement MSB for +/- offset
movwf ADCOffset ; save in offset
addwf ADCRPM,w ; add offset to PWM result
btfss ADCOffset,7 ; is offset a negative number?
goto OverflowTest ; no - test for overflow

btfss CARRY ; underflow?
andlw H’00’ ; yes - force minimum
goto Threshold ;

OverflowTest
btfsc CARRY ; overflow?
movlw H’ff’ ; yes - force maximum

Threshold
movwf PWMThresh ; PWM threshold is RPM result plus offset
btfsc ZERO ; is drive off?
goto DriveOff ; yes - skip voltage measurements

bcf FullOnFlag ; pre-clear flag in preparation of compare
sublw 0xFD ; full on threshold
btfss CARRY ; CY = 0 if PWMThresh > FullOn
bsf FullOnFlag ; set full on flag
incf STATE,f ; next STATE
return ; back to Main Loop

DriveOff
clrf Status ; clear speed indicators
movlw B’11000111’ ; reset ADC input to AN0
andwf ADCON0,f ;
clrf STATE ; reset state machine
return

;~~
VSetup ; Wait for Phase4

movlw Phase4 ; compare Phase4 word...
xorwf Drive,w ; ...with current Phase drive word
btfss ZERO ; ZERO if equal
return ; not Phase4 - remain in current STATE

call SetTimer ; set timer value from RPM table
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
DS00857A-page 40  2002 Microchip Technology Inc.

AN857
VIdle ; Wait for Drive On, wait Tacq, set ADC GO

btfss DriveOnFlag ; is Drive active?
return ; no - remain in current STATE

call Tacq ; motor Drive is active - wait ADC Tacq time
bsf ADCON0,GO ; start ADC
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
VRead ; Wait for ADC nDONE, Read ADC->Vsupply

btfsc ADCON0,GO ; is ADC conversion finished?
return ; no - remain in current STATE

movf ADRESH,w ; get ADC result
movwf Vsupply ; save as supply voltage
incf STATE,f ; next STATE
bcf Tmr0Sync ; clear Timer0 overflow
return ; back to Main Loop

;~~
BEMFSetup ; Wait for Phase5, set Timer1 compare to half phase time

movlw Phase5 ; compare Phase5 word...
xorwf Drive,w ; ...with current drive word
btfss ZERO ; ZERO if equal

return ; not Phase5 - remain in current STATE

btfss Tmr0Sync ; synchronize with Timer0
return ;

btfss PWMThresh,7 ; if PWMThresh > 0x80 then ON is longer than OFF
goto BEMFS1 ; OFF is longer and motor is currently off - compute now

btfss DriveOnFlag ; ON is longer - wait for drive cycle to start
return ; not started - wait

BEMFS1
bcf CCP1CON,0 ; disable special event on compare
movf CCPR1H,w ; save current capture compare state
movwf CCPSaveH ;
movwf CCPT2H ; save copy in workspace
movf CCPR1L,w ; low byte
movwf CCPSaveL ; save
movwf CCPT2L ; and save copy
bcf CARRY ; pre-clear carry for rotate
rrf CCPT2H,f ; divide phase time by 2
rrf CCPT2L,f ;
bcf CARRY ; pre-clear carry
rrf CCPT2H,w ; divide phase time by another 2
movwf CCPR1H ; first BEMF reading at phase T/4
rrf CCPT2L,w ;
movwf CCPR1L ;

incf STATE,f ; next STATE
return ; back to Main Loop

;~~
 2002 Microchip Technology Inc. DS00857A-page 41

AN857
BEMFIdle ; When Timer1 compares force Drive on, Set ADC GO after Tacq, RA0-
>ADC

btfss PIR1,CCP1IF ; timer compare?
return ; no - remain in current STATE

bsf DriveOnFlag ; force drive on for BEMF reading
call DriveMotor ; activate motor drive
bsf ReadIndicator ; Diagnostic
call Tacq ; wait ADC acquisition time
bsf ADCON0,GO ; start ADC
bcf ReadIndicator ; Diagnostic

; setup to capture BEMF at phase 3/4 T

movf CCPT2H,w
addwf CCPR1H,f ; next compare at phase 3/4 T
movf CCPT2L,w ;
addwf CCPR1L,f ; set T/2 lsb
btfsc CARRY ; test for carry into MSb
incf CCPR1H,f ; perform carry
bcf PIR1,CCP1IF ; clear timer compare interrupt flag
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
BEMFRead ; Wait for ADC nDONE, Read ADC->Vbemf

btfsc ADCON0,GO ; is ADC conversion finished?
return ; no - remain in current STATE

rrf Vsupply,w ; divide supply voltage by 2
subwf ADRESH,w ; Vbemf - Vsupply/2

movwf DeltaV1 ; save error voltage
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
BEMF2Idle ; When Timer1 compares force Drive on, Set ADC GO after Tacq, RA0-
>ADC

btfss PIR1,CCP1IF ; timer compare?
return ; no - remain in current STATE

bsf DriveOnFlag ; force drive on for BEMF reading
call DriveMotor ; activate motor drive
bsf ReadIndicator ; Diagnostic
call Tacq ; wait ADC acquisition time
bsf ADCON0,GO ; start ADC
bcf ReadIndicator ; Diagnostic
movlw ADC3to0 ; prepare to change ADC input
xorwf ADCON0,f ; change from AN3 to AN0

; restore Timer1 phase time and special event compare mode

movf CCPSaveH,w
movwf CCPR1H ; next compare at phase T
movf CCPSaveL,w ;
movwf CCPR1L ; set T lsb
bcf PIR1,CCP1IF ; clear timer compare interrupt flag
bsf CCP1CON,0 ; enable special event on compare
incf STATE,f ; next STATE
return ; back to Main Loop

;~~
DS00857A-page 42  2002 Microchip Technology Inc.

AN857
BEMF2Read ; Wait for ADC nDONE, Read ADC->Vbemf

btfsc ADCON0,GO ; is ADC conversion finished?
return ; no - remain in current STATE

rrf Vsupply,w ; divide supply voltage by 2
subwf ADRESH,w ; Vbemf - Vsupply/2

movwf DeltaV2 ; save error voltage

clrf STATE ; reset state machine to beginning
return ; back to Main Loop

;~~
InvalidState ; trap for invalid STATE index

movlw B’11000111’ ; reset ADC input to AN0
andwf ADCON0,f ;
clrf STATE
return

;__

Tacq
;***
;
; Software delay for ADC acquisition time
; Delay time = Tosc*(3+3*xCount)
;
;***

movlw D’14 ; 14 equates to approx 9 uSec delay
movwf xCount ;
decfsz xCount,f ;
goto $-1 ; loop here until time complete
return

LockTest
;***
;
; T is the commutation phase period. Back EMF is measured on the
; floating motor terminal at two times during T to determine
; the approximate zero crossing of the BEMF. BEMF low means that
; the measured BEMF is below (supply voltage)/2.
; If BEMF is low at 1/4 T then accelerate.
; If BEMF is high at 1/4 T and low at 3/4 T then speed is OK.
; If BEMF is high at 1/4 T and 3/4 T then decelerate.
;
; Lock test computation is synchronized to the PWM clock such
; that the computation is performed during the PWM ON or OFF
; time whichever is longer.
;
;***

; synchronize test with start of Timer0

btfss Tmr0Ovf ; has Timer0 wrapped around?
return ; no - skip lock test

btfss PWMThresh,7 ; if PWMThresh > 0x80 then ON is longer than OFF
goto LT05 ; OFF is longer and motor is currently off - compute now

btfss DriveOnFlag ; ON is longer - wait for drive cycle to start
return ; not started - wait
 2002 Microchip Technology Inc. DS00857A-page 43

AN857
LT05
bcf Tmr0Ovf ; clear synchronization flag
decfsz RampTimer,f ; RampTimer controls the acceleration/deceleration rate
return

; use lock results to control RPM only if not manual mode

bsf AutoRPM ; preset flag
movf ADCRPM,w ; compare RPM potentiometer...
addlw AutoThresh ; ...to the auto control threshold
btfss CARRY ; CARRY is set if RPM is > auto threshold
bcf AutoRPM ; not in auto range - reset flag

btfss BEMF1Low ; is first BEMF below Supply/2
goto LT20 ; no - test second BEMF

LT10
; accelerate if BEMF at 1/4 T is below Supply/2

movlw B’10000000’ ; indicate lock test results
movwf Status ; status is OR’d with drive word later
movlw AccelDelay ; set the timer for acceleration delay
movwf RampTimer ;

btfss AutoRPM ; is RPM in auto range?
goto ManControl ; no - skip RPM adjustment

incfsz RPMIndex,f ; increment the RPM table index
return ; return if Index didn’t wrap around

decf RPMIndex,f ; top limit is 0xFF
return

LT20
btfsc BEMF2Low ; BEMF1 was high...
goto ShowLocked ; ... and BEMF2 is low - show locked

; decelerate if BEMF at 3/4 T is above Supply/2

movlw B’01000000’ ; indicate lock test results
movwf Status ; status is OR’d with drive word later
movlw DecelDelay ; set the timer for deceleration delay
movwf RampTimer ;

btfss AutoRPM ; is RPM in auto range?
goto ManControl ; no - skip RPM adjustment

decfsz RPMIndex,f ; set next lower RPM table index
return ; return if index didn’t wrap around

incf RPMIndex,f ; bottom limit is 0x01
return

ShowLocked
movlw B’11000000’ ; indicate lock test results
movwf Status ; status is OR’d with drive word later
movlw DecelDelay ; set the timer for deceleration delay
movwf RampTimer ;

btfsc AutoRPM ; was RPM set automatically?
return ; yes - we’re done
DS00857A-page 44  2002 Microchip Technology Inc.

AN857
ManControl
movf ADCRPM,w ; get RPM potentiometer reading...
movwf RPMIndex ; ...and set table index directly
return

Commutate
;***
;
; Commutation is triggered by PIR1<CCP1IF> flag.
; This flag is set when timer1 equals the compare register.
; When BEMF measurement is active the compare time is not
; cleared automatically (special event trigger is off).
; Ignore the PIR1<CCP1IF> flag when special trigger is off
; because the flag is for BEMF measurement.
; If BEMF measurement is not active then decrement phase table
; index and get the drive word from the table. Save the
; drive word in a global variable and output to motor drivers.
;
;***

btfss CCP1CON,0 ; is special event on compare enabled?
return ; no - this is a BEMF measurement, let state machine handle this

bcf PIR1,CCP1IF ; clear interrupt flag

movlw high OnTable ; set upper program counter bits
movwf PCLATH
decfsz PhaseIndx,w ; decrement to next phase
goto $+2 ; skip reset if not zero
movlw D’6’ ; phase counts 6 to 1
movwf PhaseIndx ; save the phase index
addlw LOW OnTable
btfsc CARRY ; test for possible page boundary
incf PCLATH,f ; page boundary adjust
call GetDrive
movwf Drive ; save motor drive word

DriveMotor
movf Drive,w ; restore motor drive word
btfss DriveOnFlag ; test drive enable flag
andlw OffMask ; kill high drive if PWM is off
iorwf Status,w ; show speed indicators
movwf DrivePort ; output to motor drivers
return

GetDrive
movwf PCL ; computed goto

OnTable
retlw Invalid
retlw Phase6
retlw Phase5
retlw Phase4
retlw Phase3
retlw Phase2
retlw Phase1
retlw Invalid

SetTimer
 2002 Microchip Technology Inc. DS00857A-page 45

AN857
;***
;
; This sets the CCP module compare registers for timer 1.
; The motor phase period is the time it takes timer 1
; to count from 0 to the compare value. The CCP module
; is configured to clear timer 1 when the compare occurs.
; Get the timer1 compare variable from two lookup tables, one
; for the compare high byte and the other for the low byte.
;
;***

call SetTimerHigh
movwf CCPR1H ; Timer1 High byte preset
call SetTimerLow
movwf CCPR1L ; Timer1 Low byte preset
return

SetTimerHigh
movlw high T1HighTable ; lookup preset values
movwf PCLATH ; high bytes first
movlw low T1HighTable ;
addwf RPMIndex,w ; add table index
btfsc STATUS,C ; test for table page crossing
incf PCLATH,f ;
movwf PCL ; lookup - result returned in W

SetTimerLow
movlw high T1LowTable ; repeat for lower byte
movwf PCLATH ;
movlw low T1LowTable ;
addwf RPMIndex,w ; add table index
btfsc STATUS,C ; test for table page crossing
incf PCLATH,f ;
movwf PCL ; lookup - result returned in W

#include "BLDCspd4.inc"

end
DS00857A-page 46  2002 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00857A - page 47

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00857A-page 48  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Anatomy of a BLDC

	FIGURE 1: Simplified BLDC Motor Diagrams
	Sensored Commutation

	FIGURE 2: Sensor Versus Drive Timing
	FIGURE 3: three Phase Bridge
	TABLE 1: CW Sensor and Drive Bits by Phase Order
	TABLE 2: CW Sensor and Drive Bits By Sensor Order
	TABLE 3: CCW Sensor and Drive Bits
	FIGURE 4: Commutation code Segment
	FIGURE 5: DC Motor Equivalent Circuit
	FIGURE 6: Sensored Drive Flowchart
	Sensorless Motor Control
	Determining the BEMF

	FIGURE 7: BEMF Equivalent Circuit
	FIGURE 8: BEMF at 100% Drive
	FIGURE 9: BEMF at 50% Drive
	FIGURE 10: Drive On vs. Drive Off BEMF
	FIGURE 11: Pittman BEMF Waveforms
	Open Loop Speed Control
	Closed Loop Speed Control

	FIGURE 12: BEMF Sample Times
	Acceleration and Deceleration Delay
	Determining The Commutation Time Table Values

	TABLE 4: Commutation Time Table Values
	FIGURE 13: PWM Lookup Table GEnerator
	Using Open Loop Control to Determine Motor Characteristics

	FIGURE 14: Motor Response Scope Determination
	Constructing The Sensorless Control Code

	Appendix A: Sensorless Control Flowchart
	FIGURE A-1: Main Loop
	FIGURE A-2: MOtor Commutation
	FIGURE A-3: MOtor Driver Control
	FIGURE A-4: Phase Drive Period
	FIGURE A-5: Motor Speed Locked with Commutation Rate
	FIGURE A-6: Motor Speed Locked With Commutation Rate (Cont.)
	FIGURE A-7: MOtor Control STate Machine
	FIGURE A-8: Motor Control STate Machine (Cont.)
	FIGURE A-9: MOtor Control STate Machine (Cont.)
	FIGURE A-10: MOtor Control State mACHINE (cONT.)

	Appendix B: Schematics
	FIGURE B-1: Schematic A - mOTOR dRIVERS
	FIGURE B-2: Schematic B - cONTROLLER

	Appendix C: Sensored Code
	Appendix D: Sensorless Code
	Trademarks
	Worldwide Sales

