
Figure 1 shows the flowchart of the program
in the microcontroller. At start-up a brief ini-
tialisation sequence runs, which resets the
set values to zero and configures some of the
microcontroller’s pins. The next step, the
measurement of the actual voltage and cur-
rent values, already forms part of the main
program loop. All the remaining parts of the
program follow sequentially in this loop. One
branch that can occur is when the push-but-
tons are being read. The procedure for read-
ing the buttons is indeed as cumbersome as it
(unavoidably) appears from the flowchart.
The idea is to read each button in turn and,
when one is found that is pressed, the micro-
controller stores the corresponding key code.
Finally, under `button pressed?’ the micro-
controller checks whether any button was in
fact pressed. If so, a branch is taken to code
which increases or decreases the appropriate
set value, as long as the value remains within
the permitted range. The new set point is
then displayed. A half-second delay follows,
before the push-buttons are scanned again.
This provides an auto-repeat function. If no
button is being pressed, the program
branches back to the top of the main loop to
measure the voltage and current again.

BASIC Program
The source code listing for the microcontroller
appears in Figure 2. The microcontroller pro-
gram, written in PIC BASIC 1.3, can be down-
loaded from www.pic-basic.de.

PIC BASIC allows microcontroller pro-
grams to be written quickly and easily. It also

POWERSUPPLY

32 Elektor 1/2002

Digital Benchtop
Power Supply (3)
part 3: the software

Design by R. Pagel

start

initialisation

500 ms
pause

measure voltage
and current

output measured
values via RS232

output target
values via DAC

if possible read
target values

via RS232

format
measured

values

scan
buttons

button 1

set target
value again

display
measured

values

display
target value

button 2

button 3

button 4

button 5

button 6

button 7

button 8

button
pressed

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

yes

ja

no

mark
button

000166- 3 - 11

no

no

mark
button

Figure 1. Flowchart for the microcontroller software.

The digital benchtop power supply is controlled by a microcontroller
programmed in PIC BASIC, while a Visual BASIC program is responsible
for producing the control panel display on a PC.

POWERSUPPLY

331/2002 Elektor

‘D-PSU 25V, 2.5A or 20V, 1A

‘attention: modifications to the program require that register
numbers

‘in the assembler subroutines are checked for changes!!!

‘———————————————————————————-
‘declaring the variables
VarB Lh1, Lh2, Lh3, Lh5, Lh6, Lh7, Uvalue, Ivalue, y
VarB Buttonnumber, Accu, Callcounter, Bitpattern
VarW Meas_Voltage, Meas_Current

‘———————————————————————————-
‘Main program
Init:
CV Uvalue, Ivalue ‘set to 0 on each start’
Low A3 ‘ADC output at 0
High B2 ‘CTS: not ready to receive

Start:
‘Measure voltage and current
‘Using value 5??? allows ADC scale factor to be adjusted
‘ + - 20 equals approx. 1 digit
Low A4 ‘Mux to U
ADW A2, 5380, 0, Meas_Voltage ‘Voltage measurement
Meas_Voltage = Meas_Voltage Shr 1 ‘equals / 2
High A4 ‘Mux to I
ADW A2, 5380, 0, Meas_Current ‘Current measurement
Meas_Current = Meas_Current Shr 1 ‘ equals / 2 ‘line for

2.5A
‘Meas_Current = Meas_Current Shr 2 ‘ equals / 4 ‘line for

1A

‘Format measured values
Call Format

‘Display measured values on LCD
LCD B5, “ “, Lh1, Lh2, “,”, Lh3, “V “, Lh5, “,”, Lh6, Lh7,

“A “

‘Send measured values over RS232
SerOut B3, 9600, “D”, #Meas_Voltage, #Meas_Current, 13

‘Allows a new target value to be received over RS232
Call RS232E

‘Send target values over DAC
PWM A1, Uvalue, 64 ‘Set voltage (200 = 20V)
PWM A0, Ivalue, 64 ‘Set current (200 = 2A or 200 = 1A)

‘Scan buttons

Entry:

Accu = %00010000 ‘Bit 4 High (reset by pressed button)
CV Callcounter, Buttonnumber
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Branch Buttonnumber, Start, Button1, Button2, Button3, Button4,

Button5, Button6, Button7, Button8

Button1:
If Uvalue > 240 Then Skip ‘Line for 2.5A
‘If Uvalue > 190 Then Skip ‘Line for 1A
Uvalue = Uvalue + 10
Goto Display_Uvalue

Button2:
If Ivalue > 240 Then Skip ‘Line for 2,5A
‘If Ivalue > 190 Then Skip ‘Line for 1A
Ivalue = Ivalue + 10
Goto Display_Ivalue

Button3:
If Uvalue < 10 Then Skip
Uvalue = Uvalue - 10
Goto Display_Uvalue

Button4:
If Ivalue < 10 Then Skip
Ivalue = Ivalue - 10
Goto Display_Ivalue

Button5:
If Uvalue > 249 Then Skip ‘Line for 2,5A
‘If Uvalue > 199 Then Skip ‘Line for 1A
Inc Uvalue
Goto Display_Uvalue

Button6:
If Ivalue > 249 Then Skip ‘Line for 2.5A
‘If Ivalue > 198 Then Skip 2 ‘Line for 1A
Inc Ivalue
‘Inc Ivalue ‘Line for 1A (omit for 2.5A version)
Goto Display_Ivalue

Button7:
If Uvalue < 1 Then Skip
Dec Uvalue
Goto Display_Uvalue

Button8:
If Ivalue < 1 Then Skip ‘Line for 2.5A
‘If Ivalue < 2 Then Skip 2 ‘Line for 1A
Dec Ivalue
‘Dec Ivalue ‘Line for 1A (omit for 2.5A version)

Display_Ivalue:
‘y = Ivalue Shr 1 ‘equals / 2 ‘Line for 1A (omit for 2.5A ver-

sion)
LCD B5, “ “, #Ivalue, “0mA” ‘Line for 2.5A
‘LCD B5, “ “, #y, “0mA” ‘Line for 1A
Pause 500
Goto Entry

Display_Uvalue:
LCD B5, “ “, #Uvalue, “00mV”
Pause 500
Goto Entry

‘———————————————————————————-

‘Subroutines

‘Depending on value in Callcounter, ButtonScan shifts one of
‘eight bitpatterns to the pins of the HC164.
‘Only the button at the pin with the 0 on it
‘can pull PB4 Low. PB4 then indicates if a button was pressed

or not,
‘while Callcounter reveals the button identity

Sub ButtonScan
LookUp Callcounter, %11101111, %11011111, %10111111,

%01111111, %11111011, %11110111, %11111110, %11111101,
Bitpattern

EXPo B5, Bitpattern, 0 ‘only Button 0 of bit pattern can
pull B4 Low

Inc Callcounter
PBI %00010000 = Accu ‘read only bit 4 of Port B
If Accu <> 0 then Skip ‘skip when no button pressed
Buttonnumber = Callcounter ‘mark Button number

EndSub

‘The Basic subroutine Read is called from
‘assembler subroutine RS232E

Sub Read
SerIn B0, 9600, #Uvalue, #Ivalue
Uvalue = Uvalue Min 250 ‘limit to 25 Volt ‘Line

Figure 2. Listing in PIC BASIC.

makes compiling the program and program-
ming it into a chip easy. Further information
on PIC BASIC, as well as the most up-to-date
version of the program, can be found on the
Internet at www.pic-basic.de. At the time
of writing this article, the information on PIC
Basic is only available in German. We hope
that Mr. Pagel will eventually produce Eng-
lish translations.

Figure 3 shows in-system programming of
the 1 A power supply using the PIC BASIC
programmer.

First all the variables used in the program
are declared. There are 13 byte-wide vari-
ables and two word-wide variables, occupying
a total of 17 bytes of the microcontroller’s
RAM (and a further twelve bytes are reserved
by PIC BASIC as a scratch area). Then follows
the first part of the program: this is the part
indicated in the flowchart by `initialisation’.
The label Start marks the entry point for the
main loop. The program is so thoroughly com-
mented that a detailed description is not nec-
essary here. A few remarks are, however, in
order:

POWERSUPPLY

34 Elektor Electronics 1/2002

for 2.5A
‘Uvalue = Uvalue Min 200 ‘limit to 20 Volt ‘Line

for 1A
Ivalue = Ivalue Min 250 ‘limit to 2.5 Ampere

‘Line for 2,5A
‘Ivalue = Ivalue Min 200 ‘limit to 1 Ampere ‘Line

for 1A
Y = 1 ‘Leave loop immediately

Endsub

‘Assembler sub-routine Format employs the already available
‘Resources for PB. It load the number registers Lh1-Lh8 with

the
‘ASCII values for Numbers 0-9 according to the values in the
‘variables Meas_Voltage and Meas_Current.

‘The auxiliary subroutine called Packer saves 8 bytes of pro-
gram memory

‘Packer calls machine code program SOSS°, which is contained in
the

‘PB compiler output, when the commands SerOut - #WordVar
‘or LCD - #WordVar” was employed.
‘It returns the decimal number equivalent of a wörd variable.
‘It divides te value contained in HWERT2/R21 by the value from

the
‘jump table SOTT° (also contained in compiler output).
‘The value(!) in the FSR has to be the ADD value
‘of the jump table (Pos. 5 = 0, 4 = 2, 3 = 4, 2 = 6, 1 = Rest

in R21).
‘LWERT1 contains the ASCII code (characters 0-9) as the result.

Ass Format
;format voltage

MOVF 24,W
MOVWF HWERT2
MOVF 23,W
MOVWF 21
MOVLW 2
Call Packer
MOVWF 27
MOVLW 4
Call Packer
MOVWF 28
MOVLW 6
Call Packer

MOVWF 29
;format current

MOVF 26,W
MOVWF HWERT2
MOVF 25,W
MOVWF 21
MOVLW 2
Call Packer
MOVWF 30
MOVLW 4
Call Packer
MOVWF 31
MOVLW 6
Call Packer
MOVWF 32
Return

Packer: ;no repeating of lines; saves 8 bytes of program
memory

MOVWF FSR
CALL SOSS°
MOVF LWERT1,W

EndAss

‘RS232E controls data reception at the interface. Each time it
it called, the CTS line is pulled High for 1.5ms.

‘If a character arrives via RxD within this period, the D-PSU
goes into Receive mode i.e.

‘subroutine Read is called. Next, 2 values with terminating CRs
‘have to arrive at the interface before the controller is

allowed
‘to leave the subroutine

Ass RS232E
CLRF 35 ;Clrf Y (= R35)

RS232:
BCF PB,2 ; CTS: ready to receive
BTFSS PB,0 ; RxT pin test
Call Read
DECFSZ 35,F ;
GOTO RS232 ; repaet loop 256 times
BSF PB,2 ; CTS: not ready to receive

EndAss

Figure 3. In-system programming of the power supply microcontroller.

plest place to put the CLRWDT instruction is

A/D converter
The command
ADW A2, 5380, 0, Meas_Voltage
carries out an analogue-to-digital
conversion and writes the measured
value into the variable Meas_Volt-
age (measured voltage). The scale
factor can be adjusted by changing
the value 5380 above. The circuit is,
however, designed so that this will
not normally be necessary.

Assembly code subroutines
Under Format measured values
the assembly code subroutine For-
mat is called. This subroutine is
30 bytes long and uses some (PIC
BASIC) subroutines, provided for the
use of other BASIC commands, to
format the measured values for dis-
play. Using this trick a large amount
of precious program memory can be
saved.

The eight-byte subroutine RS232E
is also written in assembler. It sets
the CTS signal high and waits for a
period to check if data are being sent
from the PC. If so, the assembler
subroutine calls the BASIC subrou-
tine Read which is responsible for
actually reading the data in.

All the remaining parts of the pro-
gram are written entirely in BASIC.
The compiled code size for the com-
plete program is either 1009 bytes or
1021 bytes (for the 2.5 A and 1 A ver-
sions respectively), and so just fits
into the program memory of the
PIC16F84. The program lines that
need to be changed between the
two versions of the power supply are
marked in the BASIC program list-
ing.

If it is desired to enable the watch-
dog timer in the microcontroller, the
configuration word in the assembly
output must be changed as follows:

CONFIG B’11111111110101’

Also, a CLRWDT instruction must be
inserted at one point in the code, in
the main loop and in the push-button
scanning loop. The latter loop runs
in just over 500 ms and the main
loop runs in about 780 ms. With the
values set in the Option register on
power-up, a watchdog reset will
occur after 2.3 s. This is enough time
for both loops (indeed, even half the
time would be adequate). The sim-

POWERSUPPLY

351/2002 Elektor Electronics

power supply (Figure 4). Just as in reality, the
voltage and current set values can be
adjusted using the eight buttons. When the
mouse button is released the values are sent
to the power supply. The set and actual val-
ues are shown on a simulated LCD panel. If
you click in a region of the main program win-
dow other than on the buttons, a settings
window appears. Here the version of the
power supply (2.5 A or 1 A) and the COM
port (1 to 4) used for data communication can
be configured. If a mouse is connected to
COM1 it can happen that the program does
not work correctly with COM3, but this is a
common problem with PCs.

In the right-hand part of the settings win-
dow the names of a log file and of a control
file can be specified. A click of the mouse on
the adjacent `Start’ button and a file is either
read or written: the file contains the dis-
played readings along with a time stamp
indicating when they changed (in the case of
a log file), or when they are to be changed (in
the case of a ready-prepared control file). In
the simplest case the control file can be cre-
ated from a log file by modifying the time
stamps.

The following example one-line data
record shows the format used for the log and
control files:

#2000-08-20
14:35:53#,”04.9V”,”0.97A”

Between the two hash symbols (‘#’) we have
the date (in international format) and the time
when the indicated change occurred or is to
occur. Within the record the time stamp and
the two electrical values are separated from
one another by commas. This allows for the
processing and, for example, the graphical
presentation of the contents of the file using
a spreadsheet program.

(000166-3)

immediately after the label Entry.
The following code is then shifted
down by one location, which makes
no difference in this case.

The interface protocol
The data packet that the power sup-
ply sends out over its interface is
structured as follows:

Duuuuuiiiii↵

First a D is sent, followed by five-
digit values for voltage and current,
and finally a carriage return charac-
ter. The least-significant digit of the
voltage value represents 10 mV, and
that of the current value 1 mA. The
two values are thus given to a reso-
lution ten times higher than that
shown on the LCD panel. The lead-
ing digit of the voltage and current
values is always zero.

When set values are sent to the
power supply, both voltage and cur-
rent settings must be sent, one
immediately after the other. In both
cases up to 3 digits can be sent.

uuu↵ iii↵

After each value a non-digit charac-
ter (for example a carriage return
character) must be sent. For either
version of the power supply a volt-
age value of 20 V must be sent as
200. For a current of 1 A, a value of
100 should be sent in the case of the
larger model, 200 in the case of the
smaller model.

Visual BASIC program
The control program, written espe-
cially for this project, runs under
Windows 95 or 98. Its control inter-
face resembles the front panel of the

Figure 4. Power supply display on the PC’s monitor.

