AN7124

Dual 3.1 W Audio Power Amplifier

Overview

The AN7124 is a monolithic integrated circuit designed for dual audio power amplifier of portable radio cassette.

Features

- Audio output : $3.1 \text{ W} \times 2$ channel
- Built-in standby and muting circuit
- Built-in thermal shut down protection circuit
- Low pop noise during standby and mute ON/OFF
- No negative feedback pin

Applications

• Radio-cassette

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Stand-by	7	ch.1 output
2	Muting	8	ch.1 bootstrap
3	ch.2 input	9	Output GND
4	ch.1 input	10	V _{CC}
5	Input GND	11	ch.2 bootstrap
6	Ripple filter	12	ch.2 output

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{CC}	24	V	
Supply current	I _{CC}	4.0	Α	
Power dissipation	P _D	37.5	W	
Operating ambient temperature	T _{opr}	-25 to +75	°C	
Storage temperature	T _{stg}	-55 to +150	°C	

Recommended Operating Range

Parameter	Symbol	Range	Unit	
Supply voltage	V _{CC}	6.0 to 18.0	V	

Electrical Characteristics at V_{CC} = 12 V, R_L = 3 Ω , f = 1 kHz, T_a = 25 °C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Quiescent current	I _{CQ}	$V_{IN} = 0 mV$	12	19	26	mA
Output noise voltage *1	V _{NO}	$V_{IN} = 0 \text{ mV}, P_G = 10 \text{ k}\Omega$		0.27	0.5	mVrms
Voltage gain	Gv	$V_{IN} = 3 mV$	43	45	47	dB
Total harmonic distortion *2	THD	$V_{IN} = 3 \text{ mV}$		0.05	0.5	%
Maximum output 1	P _{O1}	THD = 10 %	4.3	5.0		W
Channel balance	CB	$V_{IN} = 3 mV$	-1	0	1	dB
Ripple rejection *1	RR	$R_G = 0 \Omega, V_R = 280 \text{ mVrms}, f_R = 120 \text{ Hz}$	45	50		dB
Standby current	I _{STB}	$V_{IN} = 0 mV$		1	10	μA
Muting effects *1	Mut	$V_{IN} = 10 \text{ mV}$	60	80		dB
Maximum output 2 *3	P _{O2}	THD = 10 %, V_{CC} = 9 V	2.5	3.0	_	W
Crosstalk *1,*3	СТ	$R_G = 10 \text{ k}\Omega, V_{IN} = 10 \text{ mV}, f = 1 \text{ kHz}$	50	64	_	dB

Note) *1 : With a filter band from 20 Hz to 20 kHz (12 dB/OCT) used.

*2 : With a filter band from 400 Hz to 30 kHz used.

*3: Reference data for design.

Application Circuit Example

Characteristics Curve

Ambient temperature T_a (°C)

- 1. $T_C = T_a (\theta_{j-c} = 2 \ ^{\circ}C/W)$
- 2. 20.83 W ($\theta_{\rm f} = 4.0 \text{ °C/W}$)
- With a 100 cm² \times 3 mm Al heat sink (black colour coated) or a 200 cm² \times 2 mm Al heat sink (not lacquered)
- 3. 15.63 W ($\theta_f = 6.0 \text{ °C/W}$) With a 100 cm² × 2 mm Al heat sink(not lacquered)
- 4. 3.0 W at $T_a = 25 \text{ °C} (\theta_{j-a} = 42 \text{ °C/W})$ Without heat sink

Application Note

1.Voltage gain

The close loop gain of AN7124 is fixed at 45 dB(typ.)

2.Standby function

Standby is ON when Pin1 is set to "L". By applying a 5 V to the standby pin, transistor Q1 will be turned ON to provide a constant current (I) for driving other parts of the circuit. The RC is to create a TIME CONSTANT for the standby pulse during charging and discharging.

3.Muting

By controlling Pin2 from "H" to "L", the mute function is set from ON to OFF. When Pin2 is floating, DC ≈ 0.02 V. The threshold is set ≈ 2.8 V. The RC is to create a TIME CONSTANT for the mute pulse during charging and discharging.

Application Note (continued)

4.Oscillation

To prevent oscillation, it is advisable to use C (Zobel network capacitor). Using polyester film capacitor has small characteristic fluctuation with temperature and the frequency. The resistor R connected in series with C is effective for phase correction at high frequency, as a result, it improves the oscillation allowance.

5.Bootstrap

The capacitor C connected between the output and bootstrap pin helps to increase the output dynamic range and hence increases the output power of the IC.

