

Data Sheet

UNIGEN CORP. WIRELESS MODULE PRODUCTS

PART NUMBER FAMILY: UGWR2US SERIES

JUNO-LPA WIRELESSUSB[™] RADIO MODULE

Issue Date: 29 June 2004

Revision: 1.0

Revision History

Rev. No.	History	Issue Date	Remarks	
1.0	Released	29 June 2004	First Production Release	

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Unigen Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

*Third-party brands, names, and trademarks are the property of their respective owners.

Copyright [©] Unigen Corporation, 2004

Data Sheet

TABLE OF CONTENTS:

REFERENCE DOCUMENTATION:	3
INTRODUCTION:	3
FEATURES:	4
DESCRIPTION:	4
FUNCTIONAL BLOCK DIAGRAM:	5
Figure 1 – Functional Block Diagram	5
ABSOLUTE MAXIMUM RATINGS:	6
Table 1 – Maximum Values	6
RECOMMENDED OPERATING CONDITIONS:	ő
Table 2 – Operating Values	6
DC ELECTRICAL CHARACTERISTICS:	7
Table 3 – Electrical Characteristics	7
ANTENNA:	7
Table 4 – Antenna Characteristics	7
Antenna Switch Control Logic Table:	8
Table 5 – Antenna Switch Control Logic	8
Switch Control Characteristics	8
Table 6 – Antenna Switch Control Characteristics	8
RADIO PARAMETERS:	9
Table 7 – Radio Characteristics	9
PIN ASSIGNMENTS:	10
Table 8 – JUNO-LPA Pin Assignments	10
PIN FUNCTIONS:	10
AGENCY CERTIFICATIONS:	12
Regulatory Agencies:	12
Table 9 – Regulatory Agency Certifications	12
Regulatory Compliance Statement:	13
MECHANICAL CHARACTERISTICS:	13
Table 10 – Mechanical Description	13
MECHANICAL DRAWINGS:	14
Figure 2 – Juno-LPA Land Pattern	14
Figure 3 – Juno-LPA Mirrored Land Pattern PHYSICAL DIMENSIONS:	15 17
Figure 4 – Juno-LPA Dimensions	17
Figure 5 – Juno-LPA Mirrored Dimensions	17
ORDERING INFORMATION:*	10 19
JUNO-LPA WirelessUSB™ Module	19
Antennae	19
Table 11 – Part Number Listings	19
CONTACT INFORMATION	20
CORPORATE HEADQUARTERS	20

Solutions for a Real Time World

Data Sheet

REFERENCE DOCUMENTATION:

The Unigen JUNO-LPA WirelessUSB[™] UGWRL2US module adaptation of the Cypress Semiconductor CYWUSB6935 LR 2.4GHz DSSS Radio SOC with the addition of a power amplifier is represented in this document. The detail provided is information for using JUNO-LPA in a digital electronic device and is only a "companion" document to Cypress Semiconductors' documentation for the above noted part.

The CYWUSB6935 LR 2.4GHz DSSS Radio SOC information and technical details (ex. register settings, timing, application interfaces, clocking and power management, etc.) may be obtained from the Cypress Semiconductor web site or contacting Cypress's authorized sales representatives.

The following is a list of required documents and locations known at the time of publication that accompany this datasheet.

- The CYWUSB6935 LR 2.4GHz DSSS Radio SOC Datasheet CUWUSB6935.pdf http://www.cypress.com/cfuploads/img/products/cywusb6935.pdf
- The JUNO-LPA WirelessUSB[™] Radio Module User Manual USBWR2US User Manual_v10.pdf <u>http://www.unigen.com/download/USBWR2US%20User%20Manual_v0911.pdf</u>

Additional documentation for the Cypress Semiconductor CYWUSB6935 LR 2.4GHz DSSS Radio SOC device and the Unigen JUNO-LPA WirelessUSB[™] UGWRL2US module may be obtained by contacting agents or representatives of the respective companies.

INTRODUCTION:

Unigen JUNO-LPA WirelessUSB[™] UGWRL2US modules represent the convergence of emerging wireless connectivity solutions and the USB "Plug-N-Play" ease of operation. WirelessUSB, as created by Cypress Semiconductor, is a low-cost, 2.4GHz communication protocol designed for use in commercial, industrial, consumer, and computer product applications needing highly reliable data connectivity.

JUNO-LPA modules combine Cypress Semiconductor's wireless and USB expertise with Unigen's module design, manufacturing, and testing proficiency to create production ready, pre-certified modules that are easily integrated into existing, and new product designs.

JUNO-LPA modules offer immediate, drop-in design solutions and use the native Operating System HID drivers to seamlessly enumerate and operate mouse, keyboard, and gaming devices, or other devices using the HID specification for communication with the host systems.

Solutions for a Real Time World

FEATURES:

- CYWUSB6935 LR 2.4GHz DSSS Radio SOC
- Operates in the 2.4 to 2.483GHz, unlicensed frequency range (ISM – Industrial, Scientific and Medical)
- -95dBm receive sensitivity
- Up to +23dBm Output Power
- Range of up to 1000+ meters with appropriate antenna
- Data Rate of 62.5kbits/sec
- SPI interface (up to 2MHz data rate)
- Operating Voltage Requirement 2.7 3.6Vdc
- Dual DSSS reconfigurable Baseband Correlators
- Small PCBA Design: UGWR1US 1.29" (32.76mm) by 1.30" (33.02mm)
- Complete Radio Module Just add a tested antenna. PN. – UGADL1B1M1 or UGADA0B1M1
- Agency Pre-Certification FCC/EU/ETSI/Industry Canada Module certified to FCC/EU compliance specifications limiting your agency compliance time and cost.
- FCC Radio Certification Grandfathered to end-device manufactures

DESCRIPTION:

JUNO-LPA WirelessUSB[™]UGWR2US Module is a tightly integrated, low-cost, highreliability 2.4GHz TX/RX radio module for use in commercial, industrial, consumer, and computer product applications.

Data Sheet

JUNO-LPA uses the Cypress Semiconductor CYWUSB6935 LR 2.4GHz DSSS Radio SOC device coupled with precise RF power amplifier to achieve highly reliable data communication at 1000 meter distances.

JUNO-LPA is a complete solution requiring only integration into an existing, or new device. A WirelessUSB device may require no additional software drivers, as it can use the OS native USB device drivers to enable supported device classes.

JUNO-LPA is less than 1.5"sq and is available for horizontal or vertical mounting directly to the device PCB. JUNO-LPA is also available in bare-board configuration for alternate application.

Regulatory Compliance:

JUNO-LPA modules are 100% tested for functional operation and pre-certified for regulatory compliance. The JUNO-LPA is FCC certified for "Modular Approval". Details for product application and use of this certification are noted in the JUNO-LPA User Manual. Digital electronic device makers need only submit to the appropriate agencies for their customary certification.

JUNO-LPA is certified for operation with an antenna of up to 2db gain, and the certification is available from the Federal Communications Commission web site for documentation purposes. Approved antennae, noted in the Ordering Section are available from Unigen.

Data Sheet

FUNCTIONAL BLOCK DIAGRAM:

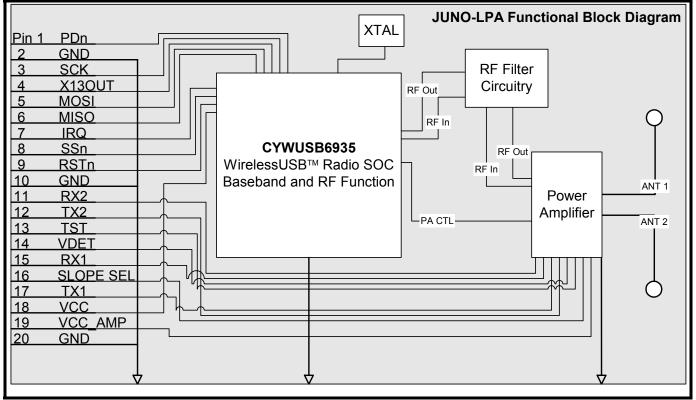


Figure 1 – Functional Block Diagram

Solutions for a Real Time World

Data Sheet

ABSOLUTE MAXIMUM RATINGS:

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage – Radio SOC	-0.3	3.9	VDC
Vcc_AMP	Supply Voltage – Power Amplifier	-0.3	3.9	VDC
SLOPE_SEL	Slope Select Pin	-0.3	3.9	VDC
Тос	Commercial Operating Temperature Range	-20	70	°C
Τοι	Industrial Operating Temperature Range	-40	85	°C
Ts	Storage Temperature Range	-40	125	°C
VLI	VDC to Logic Inputs	-0.3	Vcc + 0.3	VDC
V O/Hi-Z	VDC to Outputs in Hi-Z state	-0.3	Vcc + 0.3	VDC
SDVD	Static Discharge Voltage Digital		>4000	VDC
SDVR	Static Discharge Voltage RF		>4000	VDC

Table 1 – Maximum Values

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of this module. Avoid using the module outside the recommended operating conditions defined below. This module is ESD sensitive and should be handled and/or used in accordance with proper ESD mitigation.

RECOMMENDED OPERATING CONDITIONS:

Symbol	Description	Value					
Symbol	Description	Min.	Typ.*	Max.	Unit		
Vcc	Supply Voltage	2.7	3.0	3.6	VDC		
Тос	Commercial Operating Temperature Range	-20	25	70	°C		
Тог	Industrial Operating Temperature Range	-40	25	85	°C		
GND	Ground Voltage		0		VDC		

Table 2 – Operating Values

Solutions for a Real Time World

Data Sheet

DC ELECTRICAL CHARACTERISTICS:

Symbol	Description	Condition(a)	Value					
Symbol	Description	Condition(s)	Min.	Typ.*	Max.	Unit		
Vcc	Supply Voltages		2.7	3.0	3.6	VDC		
Voh1	Voltage Output High 1	At Іон = –100.0µА	Vcc-0.1	Vcc		VDC		
Vон2	Voltage Output High 2	At Iон = -2.0 mA	2.4	3.0		VDC		
Vol	Voltage Output Low	At IOL = 2.0 mA		0.0	0.4	VDC		
VIH	Voltage Input High		2.0		Vcc	VDC		
VIL	Voltage Input Low		-0.3		0.8	VDC		
IIL	Input Leakage Current	0 < VIN < VCC	-1	0.30	+1	μA		
ISLEEP	Power-down current consumption	PD = Low		3.26	10	μA		
TX AVG Icc1	Mean transmitter current consumption ¹	no handshake		6.0		mA		
TX AVG Icc2	Mean transmitter current consumption ²	w/handshake		10.0		mA		
RX Icc (Peak)	Current consumption during receive			60.0		mA		
TX Icc (Peak)	Current consumption during transmit			140	170	mA		
MTBF		Calculated			>87,600	Hours		

Table 3 – Electrical Characteristics

*= Measured with 3.0Vcc at 25°C

¹= Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LS 1-way protocol.

 2 = Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LS 2-way protocol.

ANTENNA:

JUNO-LPA requires the addition of an antenna for radio operation. JUNO-LPA achieved FCC "Modular Approval" for use in Digital Electronic Devices in combination with the noted antennae. Use of antennae other than these listed can required recertification of the module in the end-product. (See "Agency Certification" in this document for brief information). The **JUNO-LPA WirelessUSB**TM **Radio Module User Manual** contains complete regulatory compliance information.

Customers may obtain antennae (part numbers UGADL1B1M1 or UGADA0B1M1) with the following properties:

Item	Property				
Coaxial Cable Type	4.13mm high freq.				
Cable Length	11.81" (300mm) – other lengths available				
Connector	Mini Coaxial				
Frequency Range	2.4000~2.4835GHz				
Impedance	50Ω (Typ.)				
VSWR	2.0 max. over full range of operation				
Return Loss	-10dB max.				
Gain	2.0dBi - calculated				
Maximum Power	1W				
Electrical Wave	$\frac{1}{2}\lambda$ Dipole				
Fable 4 - Antonna Characteristics					

 Table 4 – Antenna Characteristics

Data Sheet

Solutions for a Real Time World Antenna Switch Control Logic Table:

JUNO-LPA requires at least one (1) and a maximum of two (2) external antennae for radio transmission and reception.

The table below represents the switch control settings for TX/RX selection between the two antennae, when JUNO-LPA is so configured.

JP1 Wiring Logic Oper					Operatio	nal Mode	
TX1	TX2	RX1	RX2	TXRF – ANT1	TXRF – ANT2	RXRF – ANT1	RXRF – ANT2
HIGH	LOW	LOW	LOW	ON	OFF	OFF	OFF
LOW	HIGH	LOW	LOW	OFF	ON	OFF	OFF
LOW	LOW	HIGH	LOW	OFF	OFF	ON	OFF
LOW	LOW	LOW	HIGH	OFF	OFF	OFF	ON

Conditions - Pin HIGH = Vcc_AMP; Pin Low = GND

Table 5 – Antenna Switch Control Logic

Note:

TX1 = JP1-Pin 17 TX2 = JP1-Pin 12 RX1 = JP1-Pin 15 RX2 = JP1-Pin 11

Switch Control Characteristics

Conditions - $VCC_AMP = 3.3VDC$

Symbol	Parameter	Conditions	Min.	Max.	Unit
VCTL_ON	Control Voltage	ON State	2.5	3.6	Vdc
VCTL_OFF	Control Voltage	OFF State	0.0	0.5	VDC
SWON	Low Loss Switch Control Voltage	High State = VCTL_ON - VCTL_OFF	2.5	Vcc_AMP	VDC
SWOFF	High Loss Switch Control Voltage	Low State = VCTL_OFF - VCTL_ON	0.0	0.3	VDC
ICTL_ON	Switch Control Bias Current – RF Yes	RF Applied (Any TX/RX = HIGH)		100	μA
ICTL_ON	Switch Control Bias Current – RF No	No RF (Any TX/RX = HIGH)		30	μA
Ссті	Control Input Capacitance			100	pF

Table 6 – Antenna Switch Control Characteristics

Solutions for a Real Time World

Data Sheet

RADIO PARAMETERS:

Parameter Description	Condition	Min.	Typ.	Max	Unit
RF Frequency Range		2.400		2.483	GHz
Radio Receiver (T = 25°C, Vcc = 3.3V, fosc = 13.000MHz, X1	30UT off, 64 chips/bit, Threshold Low = 8	, Thresho	d High =	56, BER	≤10 ⁻³
Sensitivity			-95		dBm
Maximum Received Signal		-20	-10		dBm
RSSI Value for PWR _{in} >-40dBm			28-31		
RSSI Value for PWR _{in} <-95dBm			0-10		
Interference Performance	•				
Co-channel Interference rejection Carrier-to-Interference (C/I)	C = -60 dBm		11		dB
Adjacent (1 MHz) channel selectivity C/I 1 MHz	C = -60 dBm		3		dB
Adjacent (2 MHz) channel selectivity C/I 2 MHz	C = -60 dBm		-30		dB
Adjacent (> 3 MHz) channel selectivity C/I > 3 MHz	C = -67 dBm		-40		dB
Image[22] Frequency Interference, C/I Image	C = -67 dBm		-20		dB
Adjacent (1 MHz) interference to in-band image frequency, C/I	C = -67 dBm		-25		dB
image ±1 MHz			_		-
Out-of-band Blocking Interference Signal Frequency					
30MHz – 2399MHz except (FO/N & FO/N± 1MHz)	C = -67 dBm		-30		dBm
2498MHz – 12.75GHz, except (FO*N & FO*N±1MHz)	C = -67 dBm		-20		dBm
Intermodulation	$C = -67 \text{ dBm}, \Delta f = 5, 10 \text{MHz}$		-39		dBm
Spurious Emission					
30MHz – 1GHz				-57	dBm
1GHz – 12.75GHz (except 4.8GHz – 5.0GHz)				-47	dBm
4.8GHz – 5.0GHz				-37	dBm
Radio Transmitter (T = 25°C, Vcc = 3.3V, fosc = 13.000MHz)					
Maximum RF Transmit Power	PA = 7		0		dBm
RF Power Control Range			30		dB
RF Power Range Control Step Size	Seven steps, monotonic		4.3		dB
Frequency Deviation	PN Code Pattern 10101010		270		kHz
Frequency Deviation	PN Code Pattern 11110000		320		kHz
Zero Crossing Error			±125		ns
Occupied Bandwidth	100-kHz resolution bandwidth, -6dBc	500			kHz
Initial Frequency Offset			±75		kHz
In-Band Spurious					
Second Channel Power (±=2MHz)				-30	dBm
\geq Third Channel Power (\geq 3 MHz)				-40	dBm
Non-Harmonically Related Spurs	•	•	•		
30MHz – 12.75GHz				-57	dBm
Harmonic Spurs	•	•	•		
Second Harmonic				-20	dBm
Third Harmonic		1	1	-30	dBm
Fourth and Greater Harmonics				-47	dBm
Table 7 – Radio Characteristics	•	•			

Table 7 – Radio Characteristics

Solutions for a Real Time World

Data Sheet

PIN ASSIGNMENTS:

Pin#	Function	I/O	Description	
1	PDn	Ι	Power Down	
2	GND	-	Module Ground	
3	SCK	Ι	SPI Input Clock	
4	X13OUT	O/Hi-Z	Output Clock	
5	MOSI	Ι	SPI Data Input from MCU	
6	MISO	O/Hi-Z	SPI Data Output to MCU	
7	IRQ	0	Interrupt Request	
8	SSn	Ι	SPI Slave Select Enable	
9	RSTn	Ι	Module Reset	
10	GND	-	Module Ground	
11	RX2	Ι	Antenna 2 RX Control	
12	TX2	Ι	Antenna 2 TX Control	
13	TST	0	Internal Test Pin for VREG monitor of PA	
14	VDET	0	Power Detect Output	
15	RX1	Ι	Antenna 1 RX Control	
16	SLOPE SEL	Ι	Positive/Negative Slope Detection	
17	TX1	Ι	Antenna 1 TX Control	
18	Vcc	-	Module Input Power	
19	Vcc_AMP	-	Power supply to Power Amp Circuitry	
20	GND	-	Module Ground	

Table 8 – JUNO-LPA Pin Assignments

PIN FUNCTIONS:

MOSI:	SPI Input from MCU Receives commands/data from the device microcontroller.
MISO:	SPI Output to MCU Transmits requests/data to the device microcontroller.
SSn:	SPI Slave Select Enable Input SPI enable
IRQ:	Interrupt Request The Interrupt Request Pin Select bits are used to determine the drive method of the IRQ pin
GND:	Module Ground Ground to equal 0Vdc

Solutions for a Real Time World

Data Sheet RSTn: Module Reset Active LOW reset switch SCK: SPI Input Clock X130UT: System Clock On-board XTL clock output of 13MHz **PACTL:** Power Amplifier Control Enables/disables external power amplification circuitry, where available PDn: Power Down Driving signal LOW will put the module in SUSPEND MODE (X13OUT = 0 when PDn is LOW) Module Input Power Vcc: Vcc range 2.7 to 3.6Vdc Vcc AMP: Power supply input for power amplifier **TX1:** Transmit Antenna #1 Input for control of TX Antenna #1 Transmit Antenna #2 **TX2:** Input for control of TX Antenna #2 **RX1:** Receive Antenna #1 Input for control of RX Antenna #1 **RX2:** Receive Antenna #2 Input for control of RX Antenna #2 Positive/Negative Slope Select **SLOPE SEL:** Input for determining positive or negative slope of VDET **VDET:** Power Detect Output Power output voltage detector TST: Internal Test Pin for VREG monitor of PA Output from power amplifier for monitoring the internal voltage regulator

Solutions for a Real Time World

Data Sheet

AGENCY CERTIFICATIONS:

The Unigen JUNO-LPA UGWR2US WirelessUSB Module is tested and pre-certified for compliance with applicable Federal and International Regulatory Agency requirements. JUNO-LPA has received a "Modular Approval" certification for the radio function. This certification may be used by the Digital Electronic Device manufacturer by grant for the end-device containing JUNO-LPA. The grant is only applicable to the module's radio function in the end-product and does not supplant the other regulatory agency requirements concerning digital emissions certifications, where required. Contact the appropriate regulatory agency for relevant product requirements as needed.

The **Unigen JUNO-LPA UGWR2US WirelessUSB Module User Manual** contains information concerning the digital and analog emissions testing and details application of the "Modular Approval" grant. The table below summarizes the regulatory agency tests performed for receipt of respective certifications.

Agency	Test Performed	Туре	Limit	Result	Margin
EU	Radiated Spurious	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.6dB @ 4804MHz
LU	Emissions	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.9 @ 177.01MHz
		30 25,000 Spurious Emissions	FCC Part 15.209/15.247 (c)	PASS	Results on File
		6dB Bandwidth	15.247(a)	PASS	960kHz
FCC		99% Bandwidth	IC RSS-210	PASS	1.175MHz
15.247	Radiated Emissions	Output Power	15.247(b)	PASS	7.2dBm
13.247		Power Spectral Density (PSD)	15.247(d)	PASS	3.06dBm
		Bandedge	FCC Part 15.209 /15.247(c)	PASS	Results on File
		Out of band	15.247(c)	PASS	Results on File
		Output Power, Power spectral density at normal conditions	EN 300 328-1	PASS	Results on File
	Radio Performance	Frequency Range at normal conditions	EN 300 328-1	PASS	Results on File
		Output Power over extreme conditions	EN 300 328-1	TBT	
EU	Test	Frequency Range over extreme conditions	EN 300 328-1	TBT	
LU		Conducted spurious emissions, 30MHz - 12750MHz, transmit mode	EN 300 328-1	PASS	Results on File
		Conducted spurious emissions, 30MHz - 12750MHz, receive/stand-by mode	EN 300 328-1	PASS	Results on File
	Radiated Spurious	30 - 12,750 MHz -Spurious Emissions Transmit Mode	EN 300 328 V1.2.1	PASS	Results on File
	Emissions	30 - 12,750 MHz -Spurious Emissions Receive Mode	EN 300 328 V1.2.1	PASS	Results on File

Regulatory Agencies:

Table 9 – Regulatory Agency Certifications

Solutions for a Real Time World

Data Sheet

Regulatory Compliance Statement:

The Unigen JUNO-LPA UGWR2US WirelessUSB module has been tested against the relevant requirements of standards: EN 300 328, EN 301 489-17, FCC part 15 and Industry Canada RSS-210. The module is certified by the regulatory authorities in the USA and Canada and complies with the applicable essential requirements of the Radio & Telecommunication Terminal Equipment (R&TTE) directive in the EU. The module can thus be incorporated into products sold worldwide with little or no additional testing of the module itself. *The end product must meet the appropriate technical requirements that apply to that product type but recertification of the radio module is not required in the USA and Canada.*

In the EU, the integrator is responsible for evaluating their product type per the essential performance requirements of the R&TTE directive (except those associated with the module), declaring compliance and then notifying the member states prior to marketing the product (because the module uses a frequency band that is not harmonized in the EU). It is the responsibility of the module integrator to obtain the necessary approvals to sell products incorporating this module in other countries outside of North America and the EU. The report of measurements performed on the module in compliance with the FCC rules and EN standards can be used in these submittals (as the requirements in many other markets around the world are based in part or in whole on the standards prevalent in North America and the EU).

Item	Description	Specification
1	PCB Material	FR-4
2	PCB Layers	4
3	Connector Type	Straight thru-hole or header, mirrored through hole or header, bare.
		Please see Table 4 for pin assignments
4	PCB Number	1
5	Flammability Rating	UL94 V-0
6	UGWR2US Dimensions	1.29" x 1.30" x 0.54" (32.76 mm x 33.02mm x 13.72mm)
7	Antenna Cable Connector	GSC Ultra-Miniature
8	Mating Connectors	2x10 Female Header
9	User Serviceable Parts	None

MECHANICAL CHARACTERISTICS:

Table 10 – Mechanical Description

Solutions for a Real Time World

Data Sheet

MECHANICAL DRAWINGS:

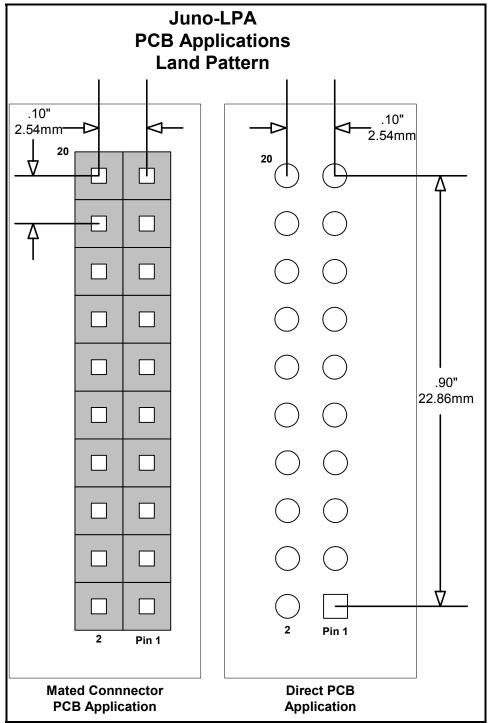


Figure 2 – Juno-LPA Land Pattern

Solutions for a Real Time World

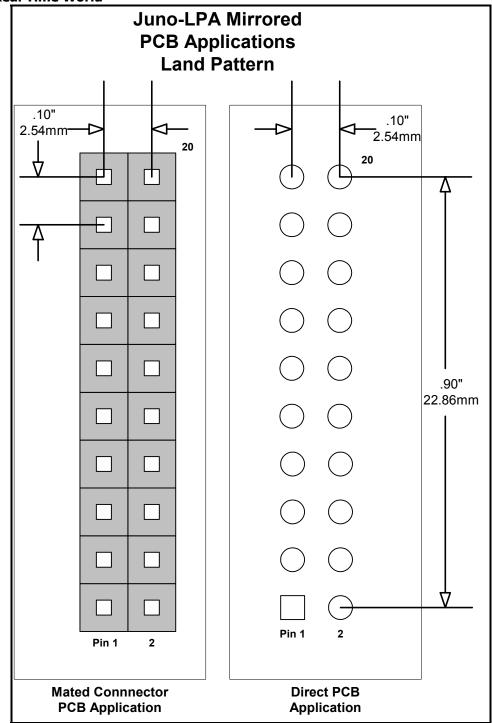
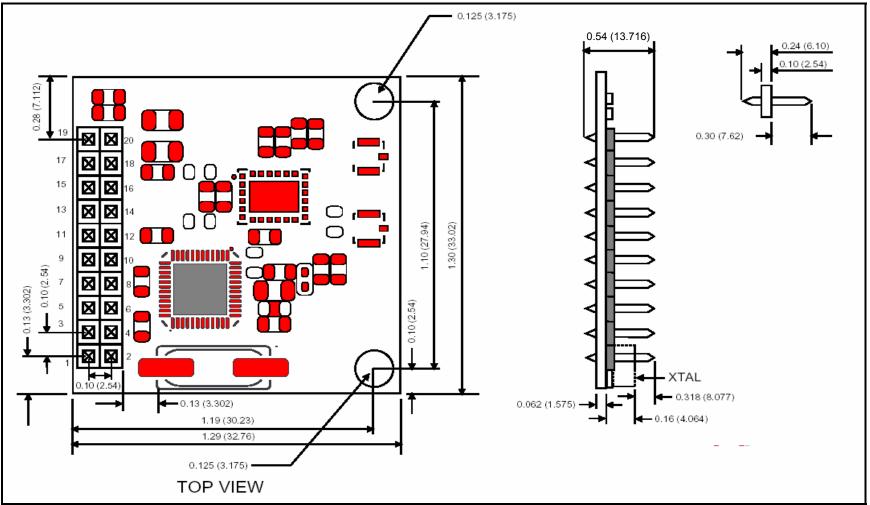


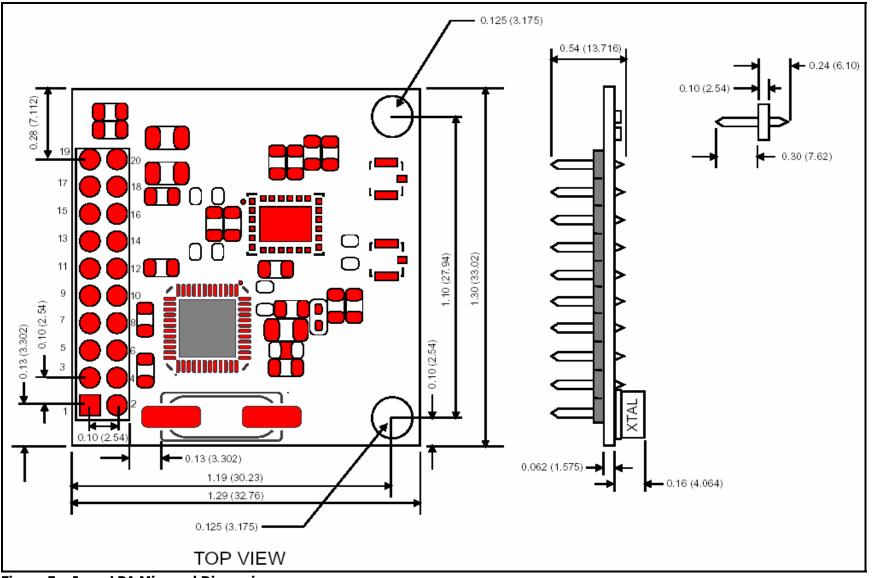
Figure 3 – Juno-LPA Mirrored Land Pattern

Solutions for a Real Time World

Data Sheet

PHYSICAL DIMENSIONS:




Figure 4 – Juno-LPA Dimensions

Copyright Unigen Corporation, 2004

Solutions for a Real Time World

Data Sheet

Figure 5 – Juno-LPA Mirrored Dimensions

Copyright Unigen Corporation, 2004

Solutions for a Real Time World

Data Sheet

JUNO-LPA WirelessUSB™ Module

ORDERING INFORMATION:*

Unigen Product Group – Wireless -	Form Factor	WirelessUSB Tech*	Connection	Connector Type	Voltage
UGW	R	2US	HC HP BB	2x10 Header Mirrored 2x10 Header Bare – No connector	33 =3.3Vdc

*Module based on the Cypress Semiconductor CYWUSB6935-48 WirelessUSB[™] LR 2.4GHz DSSS Radio SoC device.

Antennae

Unigen Product Group – Antennae –	Technology	Form Factor (Appearance)	Frequency / Gain	Coaxial Cable Type	Cable Length	Connector Type	Special Requirements
UGA	D = Dipole Antenna Module	L1= 3.5" desktop A0= 4" Swivel Whip C1= 7.75" Swivel Whip	B1= 2.4GHz, 2.0dBi B2= 2.4GHz, 5.0dBi	M1= 1.13mm HF	050= 50mm 100= 100mm 150= 150mm 200= 200mm 250= 250mm 300= 300mm	M= Mini Coax	None= Default F= EMI core and PVC

Table 11 – Part Number Listings

Contact your Unigen Sales Representative for additional information or visit the Nexus[™] Wireless Products section of our web site (<u>www.unigen.com</u>).

Data Sheet

CONTACT INFORMATION

CORPORATE HEADQUARTERS

Unigen Corporation 45388 Warm Springs Boulevard Fremont, CA 94539 USA

 Telephone:
 1.510.688.2088

 Fax:
 1.510.661.2788

 Email:
 SUPPORT@UNIGEN.COM

 Web:
 WWW.UNIGEN.COM

 Toll Free:
 1.800.826.0808