

M10 Quectel Cellular Engine

Hardware Design

M10_HD_V2.0

Document Title	M10 Hardware Design	
Revision	2.0	
Date	2010-07-30	
Status	Release	
Document Control ID	M10_HD_V2.0	

General Notes

Quectel offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Quectel. The information provided is based upon requirements specifically provided for Quectel by the customers. Quectel has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Quectel within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of Quectel Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Quectel Wireless Solutions Co., Ltd. 2010

Contents

Contents	2
Table Index	4
Figure Index	6
0 Revision history	8
1 Introduction	9
1.1 Related documents	9
1.2 Terms and abbreviations	10
1.3 Safety caution	12
2 Product concept	14
2.1 Key features	14
2.2 Functional diagram	16
2.3 Evaluation board	17
3 Application interface	18
3.1 Pin description	
3.2 Operating modes	
3.3 Power supply	
3.3.1 Power supply pins	27
3.3.2 Minimizing supply voltage drop	27
3.3.3 Monitoring power supply	27
3.4 Power up and power down scenarios	
3.4.1 Power on	
3.4.2 Power down	
3.4.3 Restart module using the PWRKEY pin	
3.5 Charging interface	
3.5.1 Battery pack characteristics	35
3.5.2 Recommended battery pack	
3.5.3 Implemented charging technique	
3.5.4 Operating modes during charging	
3.5.5 Charger requirements	
3.6 Power saving	40
3.6.1 Minimum functionality mode	40
3.6.2 SLEEP mode (slow clock mode)	40
3.6.3 Wake up module from SLEEP mode	41
3.7 Summary of state transitions (except SLEEP mode)	41
3.8 RTC backup	41
3.9 Serial interfaces	43
3.9.1 Feature of serial interfaces	45
3.9.2 Software upgrade and software debug	46
3.10 Audio interfaces	49
3.10.1 Microphone interfaces configuration	49

3.10.2 Speaker interface configuration	51
3.10.3 Earphone interface configuration	53
3.11 Buzzer	54
3.12 SIM card interface	55
3.12.1 SIM card application	55
3.12.2 Design considerations for SIM card holder	57
3.13 LCD interface	
3.14 Keypad interface	59
3.15 ADC	60
3.16 Behaviors of the RI	61
3.17 Network status indication	63
3.18 Operating status indication	64
3.19 General purpose input & output (GPIO)	64
3.20 Open drain output (LIGHT_MOS)	65
4 Antenna interface	66
4.1 Antenna installation	
4.2 RF output power	66
4.3 RF receiving sensitivity	67
4.4 Operating frequencies	67
4.5 Recommendation of RF pad welding	67
5 Electrical, reliability and radio characteristics	68
5.1 PIN assignment of the module	68
5.2 Absolute maximum ratings	70
5.3 Operating temperature	70
5.4 Power supply ratings	70
5.5 Current consumption	72
5.6 Electro-static discharge	74
6 Mechanical dimension	75
6.1 Mechanical dimensions of module	75
6.2 Footprint of recommendation	77
6.3 Top view of the module	79
6.4 Bottom view of the module	79
Appendix A: GPRS coding schemes	80
Appendix B: GPRS multi-slot classes	81

Table Index

TABLE 1: RELATED DOCUMENTS	9
TABLE 2: TERMS AND ABBREVIATIONS	10
TABLE 3: MODULE KEY FEATURES	14
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	E16
TABLE 5: PIN DESCRIPTION	18
TABLE 6: OVERVIEW OF OPERATING MODES	23
TABLE 7: RECOMMENDED BYPASS CAPACITORS FOR LIMITED CURRENT SUPPLY	25
TABLE 8: AT COMMANDS USED IN ALARM MODE	30
TABLE 9: RECOMMENDED BATTERY PROTECT CIRCUIT PARAMETER	36
TABLE 10: SPECIFICATION OF THE RECOMMENDED BATTERY PACK	
TABLE 11: OPERATING MODES	39
TABLE 12: AT COMMANDS AVAILABLE IN THE GHOST MODE	
TABLE 13: SUMMARY OF STATE TRANSITION	41
TABLE 14: LOGIC LEVELS OF THE SERIAL INTERFACE	44
TABLE 15: PIN DEFINITION OF THE SERIAL INTERFACES	
TABLE 16: PIN DEFINITION OF AUDIO INTERFACE	49
TABLE 17: TYPICAL ELECTRET MICROPHONE CHARACTERISTIC	
TABLE 18: TYPICAL SPEAKER CHARACTERISTIC	53
TABLE 19: PIN DEFINITION OF THE BUZZER	54
TABLE 20: BUZZER OUTPUT CHARACTERISTIC	
TABLE 21: PIN DEFINITION OF THE SIM INTERFACE	55
TABLE 22: PIN DESCRIPTION OF AMPHENOL SIM CARD HOLDER	57
TABLE 23: PIN DESCRIPTION OF MOLEX SIM CARD HOLDER	58
TABLE 24: PIN DEFINITION OF THE LCD INTERFACE	59
TABLE 25: PIN DEFINITION OF THE KEYPAD INTERFACE	59
TABLE 26: PIN DEFINITION OF THE ADC	61
TABLE 27: CHARACTERISTIC OF THE ADC	61
TABLE 28: BEHAVIORS OF THE RI	61
TABLE 29: WORKING STATE OF THE NETLIGHT	63
TABLE 30: PIN DEFINITION OF THE STATUS	64
TABLE 31: PIN DEFINITION OF THE GPIO INTERFACE	64
TABLE 32: PIN DEFINITION OF THE LIGHT_MOS	65
TABLE 33: PIN DEFINITION OF THE RF_ANT	66
TABLE 34: THE MODULE CONDUCTED RF OUTPUT POWER	66
TABLE 35: THE MODULE CONDUCTED RF RECEIVING SENSITIVITY	67
TABLE 36: THE MODULE OPERATING FREQUENCIES	67
TABLE 37: M10 PIN ASSIGNMENT	68
TABLE 38: ABSOLUTE MAXIMUM RATINGS	70
TABLE 39: OPERATING TEMPERATURE	70
TABLE 40: THE MODULE POWER SUPPLY RATINGS	70
TABLE 41: THE MODULE CURRENT CONSUMPTION	72
M10_HD_V2.0	- 4 -

TABLE 42: THE ESD ENDURANCE (TEMPERATURE:25°C,HUMIDITY:45 %)	74
TABLE 43: DESCRIPTION OF DIFFERENT CODING SCHEMES	80
TABLE 44: GPRS MULTI-SLOT CLASSES	81

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	17
FIGURE 2: REFERENCE CIRCUIT OF THE VBAT INPUT	24
FIGURE 3: REFERENCE CIRCUIT OF THE SOURCE POWER SUPPLY INPUT	25
FIGURE 4: REFERENCE EXTERNAL BATTERY CHARGING CIRCUIT	
FIGURE 5: RIPPLE IN SUPPLY VOLTAGE DURING TRANSMITTING BURST	27
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	29
FIGURE 8: TIMING OF TURN ON SYSTEM	29
FIGURE 9: TIMING OF TURN OFF THE MODULE	31
FIGURE 10: REFERENCE CIRCUIT FOR EMERG_OFF BY USING DRIVING CIRCUIT	
FIGURE 11: REFERENCE CIRCUIT FOR EMERG_OFF BY USING BUTTON	
FIGURE 12: TIMING OF RESTART SYSTEM	34
FIGURE 13: TIMING OF RESTART SYSTEM AFTER EMERGENCY SHUTDOWN	
FIGURE 14: CHARGING CIRCUIT CONNECTION	35
FIGURE 15: NORMAL CHARGING PROCESS DIAGRAM	
FIGURE 16: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	42
FIGURE 17: RTC SUPPLY FROM RECHARGEABLE BATTERY	42
FIGURE 18: RTC SUPPLY FROM CAPACITOR	42
FIGURE 19: SEIKO XH414H-IV01E CHARGE CHARACTERISTIC	43
FIGURE 20: CONNECTION OF SERIAL INTERFACES	45
FIGURE 21: CONNECTION OF SOFTWARE UPGRADE	47
FIGURE 22: CONNECTION OF SOFTWARE DEBUG	47
FIGURE 23: RS232 LEVEL CONVERTER CIRCUIT	48
FIGURE 24: MICROPHONE INTERFACE CONFIGURATION OF AIN1&AIN2	50
FIGURE 25: SPEAKER INTERFACE CONFIGURATION OF AOUT1	51
FIGURE 26: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION OF AOUT1	
FIGURE 27: SPEAKER INTERFACE CONFIGURATION OF AOUT2	
FIGURE 28: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION OF AOUT2	
FIGURE 29: EARPHONE INTERFACE CONFIGURATION	
FIGURE 30: REFERENCE CIRCUIT FOR BUZZER	54
FIGURE 31: REFERENCE CIRCUIT OF THE 8 PINS SIM CARD	
FIGURE 32: REFERENCE CIRCUIT OF THE 6 PINS SIM CARD	56
FIGURE 33: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER	57
FIGURE 34: MOLEX 91228 SIM CARD HOLDER	
FIGURE 35: REFERENCE CIRCUIT OF THE KEYPAD INTERFACE	60
FIGURE 36: INTERNAL CIRCUIT OF THE ADC	61
FIGURE 37: RI BEHAVIOR OF VOICE CALLING AS A RECEIVER	62
FIGURE 38: RI BEHAVIOUR OF DATA CALLING AS A RECEIVER	62
FIGURE 39: RI BEHAVIOR AS A CALLER	62
FIGURE 40: RI BEHAVIOR OF URC OR SMS RECEIVED	63
FIGURE 41: REFERENCE CIRCUIT OF THE NETLIGHT	63
M10_HD_V2.0	- 6 -

FIGURE 42: REFERENCE CIRCUIT OF THE STATUS	64
FIGURE 43: REFERENCE CIRCUIT OF THE LIGHT_MOS	65
FIGURE 44: RECOMMENDATION OF RF PAD WELDING	67
FIGURE 45: M10 TOP AND SIDE DIMENSIONS (UNIT: MM)	75
FIGURE 46: M10 BOTTOM DIMENSIONS (UNIT: MM)	76
FIGURE 47: PAD BOTTOM DIMENSIONS (UNIT: MM)	76
FIGURE 48: FOOTPRINT OF RECOMMENDATION (UNIT: MM)	
FIGURE 49: TOP VIEW OF THE MODULE	79
FIGURE 50: BOTTOM VIEW OF THE MODULE	79
FIGURE 51: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	80
FIGURE 52: RADIO BLOCK STRUCTURE OF CS-4	

0 Revision history

Revision	Date	Author	Description of change
1.00	2009-06-27	Tracy ZHANG	Initial
1.01	2009-09-18	Yong AN	 Modify VRTC voltage inputting range Modify figure 1 Add Table 7 and Figure 4 with remark Modify ordering information content in Chapter 6 Add VCHG pin description Modify current consumption data in Table 36 7. Add appendix A and B
1.02	2009-11-12	Yong AN	 Privad appendix P and B Baud rate of the main UART port is set to autobauding mode from former fixed baud rate of 115200 in default configuration. Modify contents about autobauding in Chapter 3.8 Modify the SIM card detection function through "AT+QSIMDET".
1.03	2010-06-9	Yong AN	 Add charging interface description. Add Serial Port 3 interface description. Add STATUS pin and its function description. Add GPIO control by AT+QGPIO command. Modify timing of power on, power down, restart module. Add ESD level of SIM card interface. Modify function description of audio AOUT2 channel. Disable VDD_EXT pin as the indication of power-on and power-down. Both STATUS and AT+QGPIO functions are supported at R05A05 release and later, while Serial Port 3 function will be supported at R06AXX and later.
2.0	2010-07-30	David Wei	1. Add Recommendation of RF pad welding.

1 Introduction

This document defines the M10 module series and describes the hardware interface of the Quectel's M10 module that connects to the customer application and the air interface.

This document can help customer quickly understand module interface specifications, electrical and mechanical details. With the help of this document, associated application notes and user guide, customer can use M10 module to design and set up mobile applications quickly.

1.1 Related documents

Table 1: Related documents

SN	Document name	Remark
[1]	M10_ATC	AT command set
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification
[10]	GSM_UART_AN	UART port application notes
[11]	M10_HD_AN01	M10 hardware design application notes
[12]	GSM_FW_Upgrade_AN01	GSM Firmware upgrade application note
[13]	M10_EVB_UGD	M10 EVB user guide application notes

1.2 Terms and abbreviations

Table 2: Terms and abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BOM	Bill Of Material
BTS	Base Transceiver Station
СНАР	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear To Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current
Inorm	Normal Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode

Abbreviation	Description
Li-Ion	Lithium-Ion
МО	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
РВССН	Packet Switched Broadcast Control Channel
РСВ	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
Phonebook abbr	eviations
FD	SIM Fix Dialing phonebook
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT Calls (missed calls)
ON	SIM (or ME) Own Numbers (MSISDNs) list
RC	Mobile Equipment list of Received Calls

SM

SIM phonebook

1.3 Safety caution

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M10 module. Manufactures of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel does not take on any liability for customer failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions about the use of mobile. Switch the cellular terminal or mobile off. Medical equipment may be sensitive to not operate normally for RF energy interference.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think much of these instructions may lead to the flight safety or offend against local legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gas or fume. Switch off the cellular terminal when you are near petrol station, fuel depot, chemical plant or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmosphere can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

Road safety comes first! Do not use a hand-held cellular terminal or mobile while driving a vehicle, unless it is securely mounted in a holder for hands-free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

GSM cellular terminals or mobiles operate over radio frequency signal and cellular network and cannot be guaranteed to connect in all conditions, for example no mobile fee or an invalid SIM card. While you are in this condition and need emergent help, Please Remember using emergency call. In order to make or receive call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in cellular terminal or mobile.

2 Product concept

The M10 is a Quad-band GSM/GPRS engine that works at frequencies GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz. The M10 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more detail about GPRS multi-slot classes and coding schemes, please refer to Appendix A and Appendix B.

With a tiny profile of 29mm x 29mm x 3.6 mm, the module can meet almost all the requirements for M2M applications, including Tracking and Tracing, Smart Metering, Wireless POS, Security, Telematics, Remote Controlling, etc.

The M10 is an SMD type module, which can be embedded in customer application through its 64-pin pads. It provides all hardware interfaces between the module and customer's host board.

The module is designed with power saving technique so that the current consumption is as low as 1.1 mA in SLEEP mode when DRX is 5.

The M10 is integrated with Internet service protocols, which are TCP/UDP, FTP and HTTP. Extended AT commands have been developed for customer to use these Internet service protocols easily.

The modules are fully RoHS compliant to EU regulation.

2.1 Key features

Feature	Implementation	
Power supply	Single supply voltage $3.4V - 4.5V$	
Power saving	Typical power consumption in SLEEP mode to 1.1 mA@ DRX=5	
	0.7 mA@ DRX=9	
Frequency bands	• Quad-band: GSM850, GSM900, DCS1800, PCS1900.	
	• The module can search these frequency bands automatically	
	• The frequency bands can be set by AT command.	
	• Compliant to GSM Phase 2/2+	
GSM class	Small MS	
Transmitting power	• Class 4 (2W) at GSM850 and GSM900	
	• Class 1 (1W) at DCS1800 and PCS1900	
GPRS connectivity	• GPRS multi-slot class 12 (default)	
	• GPRS multi-slot class 1~12 (configurable)	
	• GPRS mobile station class B	
Temperature range	• Normal operation: $-35^{\circ}C \sim +80^{\circ}C$	

Table 3: Module key features

	• Restricted operation: $-45^{\circ}C \sim -35^{\circ}C$ and $+80^{\circ}C \sim +85^{\circ}C^{-1}$	
	• Storage temperature: $-45^{\circ}C \sim +90^{\circ}C$	
DATA GPRS:	• GPRS data downlink transfer: max. 85.6 kbps	
	• GPRS data uplink transfer: max. 85.6 kbps	
	• Coding scheme: CS-1, CS-2, CS-3 and CS-4	
	• Support the protocols PAP (Password Authentication Protocol)	
	usually used for PPP connections	
	Internet service protocols TCP/UDP/FTP/HTTP/MMS	
	• Support Packet Switched Broadcast Control Channel (PBCCH)	
CSD:	• CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps non-transparent	
	Unstructured Supplementary Services Data (USSD) support	
SMS	• MT, MO, CB, Text and PDU mode	
	• SMS storage: SIM card	
FAX	Group 3 Class 1 and Class 2	
SIM interface	Support SIM card: 1.8V, 3V	
Antenna interface	Connected via 50 Ohm antenna pad	
Audio features	Speech codec modes:	
	• Half Rate (ETS 06.20)	
	• Full Rate (ETS 06.10)	
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)	
	• Adaptive Multi-Rate (AMR)	
	• Echo Cancellation	
	Echo Suppression	
	 Noise Reduction 	
Serial interface	• Serial Port: Seven lines on serial port interface	
	• Use for AT command, GPRS data and CSD data	
	 Multiplexing function 	
	 Support autobauding from 4800 bps to 115200 bps 	
	 Debug Port: Two lines on second serial port interface 	
	DBG TXD and DBG RXD	
	 Debug Port only used for software debugging 	
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC	
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99	
Real time clock	Implemented	
Alarm function	Programmable via AT command	
Physical characteristics	Size:	
	29±0.15 x 29±0.15 x 3.6±0.3mm	
	Weight: 6g	
Firmware upgrade	Firmware upgrade over Serial Port	
r <i>o</i>	······································	

1) When the module works in this temperature range, the deviations from the GSM specification might occur. For example, the frequency error or the phase error could increase.

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

Table 4: Coding schemes and maximum net data rates over air interface

2.2 Functional diagram

The following figure showes a block diagram of the M10 module and illustrates the major functional parts:

- The GSM baseband part
- Flash and SRAM
- The GSM radio frequency part
- The SMT pads interface
 - -LCD interface
 - -SIM card interface
 - -Audio interface
 - -Key-board interface
 - -UART interface
 - —Power supply
 - -RF interface

Figure 1: Module functional diagram

2.3 Evaluation board

In order to help customer on the application of M10, Quectel supplies an Evaluation Board (EVB) that hosts the module directly with appropriate power supply, SIM card holder, RS-232 serial interface, handset RJ11 port, earphone port, antenna and other peripherals to control or test the module. For details, please refer to the *document [13]*.

3 Application interface

The module is equipped with a 64-pin 1.3mm pitch SMT pad that connects to the cellular application platform. Sub-interfaces included in these pads are described in detail in following chapters:

- Power supply (<u>refer to Chapter 3.3</u>)
- Serial interfaces (*refer to Chapter 3.9*)
- Two analog audio interfaces (*refer to Chapter 3.10*)
- SIM interface (*refer to Chapter 3.1*2)

Electrical and mechanical characteristics of the SMT pad are specified in Chapter 5&Chapter6.

3.1 Pin description

Table 5: Pin description

Power supply				
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
VBAT	Ι	Module main power supply.	Vmax = 4.5V	
		The power supply of module	Vmin=3.4V	
		has to be a single voltage	Vnorm=4.0V	
		source of VBAT=3.4V~4.5V.		
		It must be able to provide		
		sufficient current in a		
		transmitting burst which		
		typically rises to 2A.		
VCHG	Ι	Voltage input for the	Vmax=6.5V	If unused, keep this
		charging circuit	Vmin=1.1 * VBAT	pin open.
			Vnorm=5.0V	Charging function is
				not supported in
				default.
VRTC	I/O	Power supply for RTC when	VImax=VBAT	Recommend to
		VBAT is not supplied for the	VImin=2.6V	connect to a backup
		system.	VInorm=2.75V	battery or a golden
		Charging for backup battery	VOmax=2.85V	capacitor.
		or golden capacitor when the	VOmin=2.6V	
		VBAT is supplied.	VOnorm=2.75V	
			Iout(max)= 730uA	
			Iin=2.6~5 uA	

VDD EXT	0	Supply 2.8V voltage for	Vmax=2.9V	1. If unused, keep this
		external circuit.	Vmax=2.9V Vmin=2.7V	pin open.
		external encult.	Vnnm=2.8V	2. Recommend to add
			Imax=20mA	a 2.2~4.7uF bypass
			IIIIdX=20IIIA	capacitor, when using
				this pin for power
CNID		D'. '(1, 1,, 1		supply.
GND		Digital ground		
Power on or p	1		DC	COMMENT
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
PWRKEY	Ι	Power on/off key. PWRKEY	VILmax=0.3*VBAT	Pull up to VBAT
		should be pulled down for a	VIHmin=0.7*VBAT	Internally.
		moment to turn on or turn off	VImax=VBAT	
		the system.		
Emergency sh	nutdow	'n		
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
EMERG_	Ι	Emergency off. Pulled down	VILmax=0.4V	Open drain/collector
OFF		for at least 20ms will turn off	VIHmin=2.2V	driver required in
		the module in case of	V _{open} max=2.8V	cellular device
		emergency. Use it only when		application.
		normal shutdown through		If unused, keep this
		PWRKEY or AT command		pin open.
		can't perform well.		
Module status	s indic	ation		-
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
STATUS	0	Used to indicate module	VOLmin=GND	If unused, keep this
		operating status. High level	VOLmax=0.34V	pin open.
		indicates module power-on	VOHmin=2.0V	
		and low level indicates	VOHmax= VDD_EXT	
		power-down.		
Audio interfa	ces			
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
MIC1P	Ι	Positive and negative	Audio DC	If unused, keep these
MIC1N	e		Characteristics refer to	pins open
		1	Chapter 3.10.	
MIC2P	Ι	Auxiliary positive and		1
MIC2N		negative voice-band input		
		Positive and negative		If unused, keep these
SPK1P	0	Positive and negative		II unused, keep mese

SPK2P	0	Auxiliary positive		If unused, keep this
	_	voice-band output		pin open.
AGND		AGND is separate ground		If unused, keep this
		connection for external audio		pin open.
		circuits.		
BUZZER	0	Buzzer output		If unused, keep this
				pin open
General purp	ose inj	out/output	1	
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
KBC0~	Ι	Keypad interface	VILmin=0V	If unused, keep these
KBC4			VILmax=0.67V	pins open
KBR0~	0		VIHmin=1.7V	Pull up to VDD_EXT,
KBR4			VIHmax=	if unused, keep these
			VDD_EXT+0.3	pins open
DISP_DATA	I/O	LCD display interface	VOLmin=GND	If unused, keep these
DISP_CLK	0		VOLmax=0.34V	pins open
DISP_CS	0		VOHmin=2.0V	
DISP_D/C	0		VOHmax= VDD_EXT	
DISP_RST	0			
NETLIGHT	0	Network status indication		If unused, keep these
GPIO0	I/O	Normal input/output port		pins open
GPIO1_	I/O	Normal input/output		
KBC5		port/Keypad interface		
LIGHT_	0	Open drain output port	Imax=100mA	If unused, keep this
MOS				pin open
Serial port				F
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
DTR	Ι	Data terminal ready	VILmin=0V	If only use TXD,
RXD	Ι	Receiving data	VILmax=0.67V	RXD and GND to
TXD	0	Transmitting data	VIHmin=1.7V	communicate,
RTS	Ι	Request to send	VIHmax=	recommend to keep
CTS	0	Clear to send	VDD_EXT+0.3	other pins open.
RI	0	Ring indicator	VOLmin=GND	
DCD	0	Data carrier detection	VOLmax=0.34V	
			VOHmin=2.0V	
			VOHmax= VDD_EXT	
Debug port				10 11 1
DBG_TXD	0	Serial interface for		If unused, keep these
DDC DVD	T	debugging only.		pins open
DBG_RXD	Ι			

Serial port 3				
TXD3	0	Transmitting data	VILmin=0V	If unused, keep these
RXD3	Ι	Receiving data	VILmax=0.67V	pins open.
		_	VIHmin=1.7V	
			VIHmax=	
			VDD EXT+0.3	
			VOLmin=GND	
			VOLmax=0.34V	
			VOHmin=2.0V	
			VOHmax= VDD_EXT	
SIM interface				
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
SIM_VDD	0	Voltage supply for SIM card	The voltage can be	All signals of SIM
_			selected by software	interface should be
			automatically. Either	protected against ESD
			1.8V or 3V.	with a TVS diode
SIM_DATA	I/O	SIM data, Pulled up to	VIHmin=0.7*SIM_VD	array.
—		SIM VDD through 10K	D	Maximum cable
		resistor internally	VOHmin=0.8*SIM VD	length 200mm from
SIM_CLK	0	SIM clock		the module pad to
SIM_RST	0	SIM reset	VOLmax=0.4V	SIM card holder.
	Ŭ		When SIM VDD=3V	
			VILmax=0.4V	
			When SIM VDD=1.8V	
			VILmax=0.2*	
			SIM VDD	
			VOHmin=0.9*SIM VD	
			When SIM VDD=3V	
			VOLmax=0.4V	
			When SIM_VDD=1.8V	
			VOLmax=0.2*	
			SIM_VDD	
SIM PRESE	Ι	SIM card detection	VILmax=0.67V	If unused, keep this
NCE			VIHmin=1.7V	pin open.
AUXADC	1		I	· ·
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
ADC0	Ι	General purpose analog to	voltage range: 0V to	If unused, keep this
		digital converter.	2.8V	pin open
		-		
	1			

TEMP_BAT	I	ADC input for battery temperature over NTC resistor.	voltage range: 0V to 2.8V	NTC should be installed inside or near battery pack to deliver temperature values. If unused keep this pin
				open.
RF interface				
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
RF_ANT	I/O	RF antenna pad	impedance of 50Ω	Refer to Chapter 4

3.2 Operating modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

Mode	Function		
Normal operation	GSM/GPRS	The module will automatically go into SLEEP mode if DTR	
	SLEEP	is set to high level and there is no interrupt (such as GPIO	
		interrupt or data on serial port).	
		In this case, the current consumption of module will reduce	
		to the minimal level.	
		During SLEEP mode, the module can still receive paging	
		message and SMS from the system normally.	
	GSM IDLE	Software is active. The module has registered to the GSM	
		network, and the module is ready to send and receive.	
	GSM TALK	GSM connection is going. In this mode, the power	
		consumption is decided by the configuration of Power	
		Control Level (PCL), dynamic DTX control and the working	
		RF band.	
	GPRS IDLE	The module is not registered to GPRS network. The module	
		is not reachable through GPRS channel.	
	GPRS	The module is registered to GPRS network, but no GPRS	
	STANDBY	PDP context is active. The SGSN knows the Routing Area	
		where the module is located at.	
	GPRS	The PDP context is active, but no data transfer is going on.	
	READY	The module is ready to receive or send GPRS data. The	
		SGSN knows the cell where the module is located at.	
	GPRS DATA	There is GPRS data in transfer. In this mode, power	
		consumption is decided by the PCL, working RF band and	
		GPRS multi-slot configuration.	
POWER DOWN		vn by sending the "AT+QPOWD=1" command, using the	
	PWRKEY or us	sing the EMERG_OFF ¹⁾ pin. The power management ASIC	
	disconnects the	power supply from the base band part of the module, and only	
	the power suppl	y for the RTC is remained. Software is not active. The serial	
	interfaces are not accessible. Operating voltage (connected to VBAT) remains		
	applied.		
Minimum		FUN" command can set the module to a minimum	
functionality	functionality m	ode without removing the power supply. In this case, the RF	
mode (without	-	ule will not work or the SIM card will not be accessible, or	
removing power	both RF part and SIM card will be closed all, but the serial port is still		
supply)	accessible. The power consumption in this case is very low.		

Alarm mode	RTC alert function launches this restricted operation while the module is in
	POWER DOWN mode. The module will not be registered to GSM network
	and only parts of AT commands can be available.

1) Use the EMERG_OFF pin only while failing to turn off the module by the command "AT+QPOWD=1" and the ON/OFF pin. Please refer to Chapter 3.4.2.4.

3.3 Power supply

The power supply of the module is from a single voltage source of VBAT= 3.4V...4.5V. The GSM transmitting burst can cause obvious voltage drop at the supply voltage thus the power supply must be carefully designed and is capable of providing sufficient current up to 2A. For the VBAT input, a bypass capacitor of about 100 μ F with low ESR is recommended. Multi-layer ceramic chip (MLCC) capacitor can provide the best combination of low ESR and small size but may not be economical. A lower cost choice could be a 100 μ F tantalum capacitor with low ESR. A small (0.1 μ F to 1 μ F) ceramic capacitor should be in parallel with the 100 μ F capacitor, which is illustrated in Figure 2. The capacitors should be placed close to the M10 VBAT pins.

C1=100uF, C2=0.1uF~1uF

Figure 2: Reference circuit of the VBAT input

The circuit design of the power supply for the module largely depends on the power source. Figure 3 shows a reference design of +5V input power source. The designed output for the power supply is 4.16V, thus a linear regulator can be used. If there's a big voltage difference between the input source and the desired output (VBAT), a switching converter power supply would be preferable for its better efficiency especially with the 2A peak current in burst mode of the module.

Figure 3: Reference circuit of the source power supply input

When the power supply for the module can't provide current of 2A, proper bigger capacitor is required so as to supply for the current demand during the burst transmission period. Reference capacitors for corresponding limited current supply are listed in Table 7.

Maximum	Capacitance	ESR@	Part number	Quantity of	Vendor
current		+ 25 °C		application	
output of		100KHz			
power		(Ω)			
supply					
1.5A	1500µF	<=0.045	592D158X06R3R2T20H	1	VISHAY
1A	2200µF	<=0.055	592D228X06R3X2T20H	2	VISHAY

Table 7: Recommended bypass capacitors for limited current supply

The single 3.6V Li-Ion cell battery type can be connected to the power supply of the module VBAT directly. The Ni_Cd or Ni_MH battery types must be used carefully, because their maximum voltage can rise over the absolute maximum voltage for the module and damage it. The M10 module does not support charging function in the default hardware configuration.

A suitable way to charge battery in M2M application is to use an external charging circuit which can charge the battery and put it into idle mode after fully charged. The VBAT is supplied by external power source instead of the battery, but when the external power source is cut off the battery will supply to the VBAT immediately. A reference block diagram for this design is shown in Figure 4.

Figure 4: Reference external battery charging circuit

Figure 4 shows the reference battery charging circuit for M2M application. U1 is an LDO which can supply current more than 2A and can output a voltage of 4.3~4.4V through adjusting the resistance of R1 and R2. R3 is the minimum load whose value can usually be found in the datasheet of U1. Both D1 and D2 are Schottky barrier diodes, which is capable of forward current more than 1.5A and has low forward voltage drop and fast switching feature. Q1 is a P-channel MOSFET which acts as a switch between battery supply and external power supply. When the external power supply is present, Q1 is cut off and the module is powered by external supply. Otherwise, Q1 is turned on and the module is supplied by the battery. The Q1 P-channel MOSFET must be able to supply continuous drain current bigger than 2A. Moreover, on-resistance of Drain-to-Source should be as small as possible which means lower thermal power dissipation and voltage drop. U2 is a charging IC, which should be chosen according to the requirements of the application. Since the module is powered by external supply during most of the time in common application, charging current of more than 100mA would be enough. Furthermore, the external 5V DC power supply should be capable of supplying current more than the total sum of maximum charging current and maximum module load current, which is happened in GPRS multi-slot transmission at highest power control level in GSM900MHz or GSM850MHz band.

The RF Power Amplifier current (2.0A peak in GSM/GPRS mode) flows with a ratio of 1/8 of time, around 577us every 4.615ms, in talking mode. The following figure is the VBAT voltage and current ripple at the maximum power transmitting phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A, C1=100 μ F tantalum capacitor (ESR=0.7 Ω) and C2=1 μ F.

Figure 5: Ripple in supply voltage during transmitting burst

3.3.1 Power supply pins

The VBAT pins are dedicated to connect the module supply voltage. VRTC pin can be used to connect a rechargeable coin battery or a golden capacitor which can help to maintain the system clock when VBAT supply is not applied.

3.3.2 Minimizing supply voltage drop

Please pay special attention to the power supply design for your applications. Please make sure that the input voltage will never drop below 3.4V even in a transmitting burst during which the current consumption may rise up to 1.8A. If the power voltage drops below 3.4V, the module could turn off automatically. The PCB traces from the VBAT pads to the power source must be wide enough to ensure that there isn't too much voltage drop occur in the transmitting burst mode. The width of trace should be no less than 2mm and the principle of the VBAT trace is the longer, the wider. The VBAT voltage can be measured by oscilloscope.

3.3.3 Monitoring power supply

To monitor the supply voltage, you can use the "AT+CBC" command which includes three parameters: charging status, remaining battery capacity and voltage value (in mV). It returns the 0-100 percent of battery capacity and actual value measured between VBAT and GND. The voltage is continuously measured at an interval depending on the operating mode. The displayed voltage (in mV) is averaged over the last measuring period before the "AT+CBC" command is executed.

For details please refer to *document* [1]

3.4 Power up and power down scenarios

3.4.1 Power on

The module can be turned on by various ways, which are described in following chapters:

- Via PWRKEY pin: start normal operating mode (*please refer to chapter 3.4.1.1*);
- Via RTC interrupt: start ALARM modes (*please refer to chapter 3.4.1.2*)

Note: The module is set to autobauding mode (AT+IPR=0) in default configuration. In the autobauding mode, the URC "RDY" after powering on is not sent to host controller. AT command can be sent to the module 2-3 seconds after the module is powered on. Host controller should firstly send an "AT" or "at" string in order that the module can detect baud rate of host controller, and it should send the second or the third "AT" or "at" string until receiving "OK" string from module. Then an "AT+IPR=x;&W" should be sent to set a fixed baud rate for module and save the configuration to flash memory of module. After these configurations, the URC "RDY" would be received from the Serial Port of module every time when the module is powered on. Refer to Chapter "AT+IPR" in document [1].

3.4.1.1 Power on module using the PWRKEY pin

Customer's application can turn on the module by driving the pin PWRKEY to a low level voltage and after STATUS pin outputs a high level, PWRKEY pin can be released. Customer may monitor the level of the STATUS pin to judge whether the module is power-on or not. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated in Figure 6.

Figure 6: Turn on the module using driving circuit

The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is showed in Figure 7.

Figure 7: Turn on the module using keystroke

The power on scenarios is illustrated as following figure.

Figure 8: Timing of turn on system

Note: Customer can monitor the voltage level of the STATUS pin to judge whether the module is power-on. After the STATUS pin goes to high level, PWRKEY may be released. If the STATUS pin is ignored, pull the PWRKEY pin to low level for more than 2 seconds to turn on the module.

3.4.1.2 Power on module using the RTC (Alarm mode)

Alarm mode is a power-on approach by using the RTC. The alert function of RTC can wake-up the module while it is in power-off state. In alarm mode, the module will not register to GSM network and the GSM protocol stack software is closed. Thus the part of AT commands related

M10_HD_V2.0

with SIM card and the protocol stack will not be accessible, and the others can be used.

Use the "AT+QALARM" command to set the alarm time. The RTC remains the alarm time if the module is powered off by "AT+QPOWD=1" or by PWRKEY pin. Once the alarm time is expired, the module will go into the alarm mode. In this case, the module will send out an Unsolicited Result Code (URC) when the baud rate of the Serial Port is set to fixed.

RDY

ALARM MODE

+*CFUN:0*

Note: This result code does not appear when autobauding is active because a valid baud rate is not available immediately after powering up the module. Therefore, the module is recommended to set to a fixed baud rate.

During alarm mode, use "AT+CFUN" command to query the status of software protocol stack; it will return 0 which indicates that the protocol stack is closed. After 90 seconds, the module will power down automatically. However, if the GSM protocol stack is started by "AT+CFUN=1" command during the alarm mode, the process of automatic power-off will not be executed. In alarm mode, driving the PWRKEY to a low level voltage for a period will cause the module to power down.

Table 8 briefly summarizes the AT commands that are frequently used during alarm mode, for details of these instructions please refer to *document* [1].

AT command	Function
AT+QALARM	Set alarm time
AT+CCLK	Set data and time of RTC
AT+QPOWD	Power down the module
AT+CFUN	Start or close the protocol stack

Table 8: AT commands used in alarm mode

3.4.2 Power down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module using command "AT+QPOWD"
- Over-voltage or under-voltage automatic shutdown: Take effect when over-voltage or under-voltage is detected
- Emergent power down procedure: Turn off module using the EMERG_OFF pin

3.4.2.1 Power down module using the PWRKEY pin

Customer's application can turn off the module by driving the PWRKEY to a low level voltage for certain time. The power-down scenario is illustrated as in Figure 9.

The power-down procedure causes the module to log off from the network and allows the software to save important data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure the module sends out the result code shown below:

NORMAL POWER DOWN

Note: This result code does not appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set a fixed baud rate.

After this moment, no further AT command can be executed. And then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by the STATUS pin, which is a low level voltage in this mode.

3.4.2.2 Power down module using AT command

Customer's application can use an AT command "AT+QPOWD=1" to turn off the module. This command will let the module to log off from the network and allow the software to save important data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure the module sends out the result code shown M10_HD_V2.0 - 31 -

below:

NORMAL POWER DOWN

After this moment, no further AT command can be executed. And then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by STATUS pin, which is a low level voltage in this mode.

Please refer to *document [1]* for detail about the AT command of "AT+QPOWD".

3.4.2.3 Over-voltage or under-voltage automatic shutdown

The module will constantly monitor the voltage applied on the VBAT, if the voltage ≤ 3.5 V, the following URC will be presented:

UNDER_VOLTAGE WARNNING

If the voltage \geq 4.5V, the following URC will be presented: **OVER_VOLTAGE WARNNING**

The uncritical voltage range is 3.4V to 4.6V. If the voltage > 4.6V or <3.4V, the module would automatically shutdown itself.

If the voltage <3.4V, the following URC will be presented: UNDER_VOLTAGE POWER DOWN

If the voltage >4.6V, the following URC will be presented: **OVER_VOLTAGE POWER DOWN**

Note: These result codes don't appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set to a fixed baud rate.

After this moment, no further AT command can be executed. The module logoff from network and enters POWER DOWN mode, and only RTC is still active. The POWER DOWN mode can also be indicated by the pin STATUS, which is a low level voltage in this mode.

3.4.2.4 Emergency shutdown

The module can be shut down by driving the pin EMERG_OFF to a low level voltage for over 20ms and then releasing it. The EMERG_OFF line can be driven by an Open Drain/Collector driver or a button. The circuit is illustrated as the following figures.

Figure 10: Reference circuit for EMERG_OFF by using driving circuit

Figure 11: Reference circuit for EMERG_OFF by using button

Be cautious to use the pin EMERG_OFF. It should only be used under emergent situation. For instance, if the module is unresponsive or abnormal, the pin EMERG_OFF could be used to shutdown the system. Although turning off the module by EMERG_OFF is fully tested and nothing wrong detected, this operation is still a big risk as it could cause destroying of the code or data area of the NOR flash memory in the module. Therefore, it is recommended that PWRKEY or AT command should always be the preferential way to turn off the system.

3.4.3 Restart module using the PWRKEY pin

Customer's application can restart the module by driving the PWRKEY to a low level voltage for certain time, which is similar to the way to turn on module. Before restarting the module, at least 500ms should be delayed after detecting the low level of STATUS. The restart scenario is illustrated as the following figure.

Figure 12: Timing of restart system

The module can also be restarted by the PWRKEY after emergency shutdown.

Figure 13: Timing of restart system after emergency shutdown

3.5 Charging interface

The module has OPTIONALLY integrated a charging circuit for rechargeable Li-Ion or Lithium Polymer battery, which makes it very convenient for application to manage its battery charging.

A common connection is shown in Figure 14.

Figure 14: Charging circuit connection

The charging function is not supported in standard M10 module. If customer needs this function, it would be necessary to contact Quectel. Furthermore, when battery charging is done by the charging function supported by the module, the VBAT would be mainly supplied by the battery and the external power source is used to charge the battery. In this case, when the battery is charged full, the charging circuit will stop working, but the charging function would be re-activated when the battery voltage drops to certain level. The battery is either in discharging mode or in charging mode, which could significantly shorten its life cycle. Therefore, it should always be cautious to use the internal charging function in M2M application.

3.5.1 Battery pack characteristics

The module has optimized the charging algorithm for the Li-Ion or Lithium Polymer battery that meets the characteristics listed below. To use the module's charging algorithm properly, it is recommended that the battery pack is compliant with these specifications, as it is important for the AT command "AT+CBC" to monitor the voltage of battery properly, or the "AT+CBC" may return incorrect battery capacity value.

- The maximum charging voltage of the Li-Ion battery pack is 4.2V and the capacity is greater than 500mAh.
- The battery pack should have a protection circuit to avoid overcharging, over-discharging and over-current.
- On the GSM part of the module, the build-in power management chipset monitors the supply voltage constantly. Once the Under-voltage is detected, the module will power down automatically. Under-voltage thresholds are specific to the battery pack.
- The internal resistance of the battery and the protection circuit should be as low as possible. It is recommended that the battery internal resistance should not exceed $70m\Omega$ and the internal resistance include battery and protection circuit of battery pack should not exceed $130m\Omega$.

M10_HD_V2.0
- The battery pack must be protected from reverse pole connection.
- The Li-Ion/Polymer battery charging protection parameter is required as the following table

Table 9: Recommended battery protect circuit parameter

Item	Min.	Тур.	Max.
Over-charge protect threshold.(V)	4.25	4.3	4.35
Released Voltage from Over-charge(V)	4.1		4.2
Over-discharge protect threshold(V)	2.2		2.35
Released Voltage from Over-discharge(V)	2.35	2.4	2.45

3.5.2 Recommended battery pack

The following is the specification of the recommended battery pack:

Table 10: Specification of the recommended battery pack

Item	Remark
Product name & type	SCUD Li-Ion, 3.7V, 800mAh
To obtain more information,	SCUD (FU JIAN) Electronic CO., LTD.
Please contact :	
Normal voltage	3.7V
Capacity	Minimum 800mAh
Charging Voltage	4.200~4.23V
Max Charging Current	1.2C
Max Discharge Current	2C
Charging Method	CC / CV (Constant Current / Constant Voltage)
Internal resistance	≤130mΩ
Over-charge protect threshold.(V)	4.28 ± 0.025
Released Voltage from Over-charge(V)	4.08 ± 0.05
Over-discharge protect threshold(V)	2.3± 0.1
Released Voltage from Over-discharge(V)	2.4± 0.1

3.5.3 Implemented charging technique

There are two pins on the connector related with the internal battery charging function: VCHG and VBAT. The VCHG pin is driven by an external voltage, this pin can be used to detect an external charger supply and provide most charging current to external battery when it is in constant current

charging stage. The module VBAT pin is connected directly to external battery positive terminal.

It is very simple to implement battery charging. Just connect the charger to the VCHG pin and connect the battery to the VBAT pin. When the module detects the charger supply and the battery are both present, battery charging happens. If there is no charger supply or no battery present, the charging function would not be enabled.

Normally, there are three main states in whole charging procedure.

- DDLO charging and UVLO charging
- CC (constant current) charging or fast charging
- CV (constant voltage) charging

DDLO charging and UVLO charging:

DDLO (deep discharge lock out) is the state of battery when its voltage is under 2.4V. And UVLO (under voltage lock out) is the state of battery when the battery voltage is less than 3.2V and more than 2.4V. The battery is not suitable for CC or CV charging when its condition is DDLO or UVLO. The module provides a small constant current to the battery when the battery is in DDLO or UVLO. The module provides current of about 15mA to the battery in the DDLO charging stage, and about 55mA to the battery in the UVLO charging stage.

DDLO charging terminates when the battery voltage reaches 2.4V. UVLO charging terminates when the battery voltage is up to 3.2V. Both DDLO and UVLO charging are controlled by the module hardware only.

CC charging:

When an external charger supply and battery have been inserted and the battery voltage is higher than 3.2V, the module enters CC charging stage. CC charging controlled by the software. In this charging stage, the module provides a constant current (about 550mA) through VBAT pins to the battery until battery voltage reaches to $4.18\pm0.02V$.

CV charging:

After CC charging ending, the module automatically enters constant voltage charging. When charging current steadily decreases to 50mA, the module begins to carry out 30 minutes charging delay. The CV charging will terminate after this delay.

Charging hold:

The charging hold state is exclusively state. When the charger is applied, a voice call is connected and the battery voltage is above 4.05V, the module would enter Charge Hold state. The charging will pause until the battery voltage falls below 3.8V or the module goes into idle mode.

Note: The module has a maximum charging time threshold, 6 hours. If the battery is not fully charged after 6 hours' constant charging, the module would terminate the charging operation immediately.

The charging process is shown in Figure 15.

Figure 15: Normal charging process diagram

3.5.4 Operating modes during charging

The battery can be charged in various working modes such as SLEEP, TALK and GPRS DATA. It is named as Charging mode.

When a charger is connected to the module's VCHG pin, the battery is connected to the VBAT pin and the module is in POWER DOWN mode, the module enters the GHOST mode (Off and charging). The following table gives the differences between Charging mode and GHOST mode.

Table 11: Operating modes

	How to activate	Features
	Connect charger to the module's VCHG	The module can normally operate.
0	pin after connecting battery to VBAT pin	
Mode	of module and put the module in one of	
ing]	Normal operating modes, including:	
Charging Mode	SLEEP, IDLE, TALK, GPRS STANDBY,	
	GPRS READY and GPRS DATA mode,	
	etc.	
0	Connect charger to module's VCHG pin	Battery can be charged in GHOST mode.
GHOST Mode	while the module is in POWER DOWN	The module is not registered to GSM network.
[LS(mode. Or power down from Charging	Only a few AT commands are available as listed
GHC	mode.	in Table 12.

When the module is in the GHOST mode, AT commands listed in Table 12 can be used. For further instruction refer to *document* [1].

Table 12: AT Commands available in the GHOST mode

AT command	Function	
AT+QALARM	Set alarm time	
AT+CCLK	Set data and time of RTC	
AT+QPOWD	Power down the module	
AT+CBC	Indicated charging state and voltage	
AT+CFUN	Start or close the protocol	
	Setting AT command "AT+CFUN=1" to the	
	module will transfer it from GHOST mode to	
<u> </u>	Charging mode.	

3.5.5 Charger requirements

The requirements of a suitable charger to match with the module internal charging function are listed below:

- Output voltage: 4.6V~6.5V, nominal voltage level is 5.0V.
- Charging current limitation: 650mA

M10_HD_V2.0

- A 10V peak voltage is allowed for maximum 1ms when charging current is switched off.
- A 1.6A peak current is allowed for maximum 1ms when charging current is switched on.

3.6 Power saving

Upon system requirement, there are several actions to drive the module to enter low current consumption status. For example, "AT+CFUN" can be used to set module into minimum functionality mode and DTR hardware interface signal can be used to lead system to SLEEP mode.

3.6.1 Minimum functionality mode

Minimum functionality mode reduces the functionality of the module to minimum level, thus minimizes the current consumption when the slow clocking mode is activated at the same time. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4.

- 0: minimum functionality;
- 1: full functionality (default);
- 4: disable both transmitting and receiving of RF part;

If the module is set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function would be closed. In this case, the serial port is still accessible, but all AT commands correlative with RF function or SIM card function will not be accessible.

If the module has been set by "AT+CFUN=4", the RF function will be closed, the serial port is still active. In this case, all AT commands correlative with RF function will not be accessible.

After the module is set by "AT+CFUN=0" or "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For detailed information about "AT+CFUN", please refer to document [1].

3.6.2 SLEEP mode (slow clock mode)

The SLEEP mode is disabled in default software configuration. Customer's application can enable this mode by "AT+QSCLK=1". On the other hand, the default setting is "AT+QSCLK=0" and in this mode, the module can't enter SLEEP mode.

When "AT+QSCLK=1" is set to the module, customer's application can control the module to enter or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on serial port, the module will enter SLEEP mode automatically. In this mode, the module can still receive voice, SMS or GPRS M10_HD_V2.0 -40 -

paging from network but the serial port is not accessible.

3.6.3 Wake up module from SLEEP mode

When the module is in the SLEEP mode, the following methods can wake up the module.

- If the DTR Pin is pulled down to a low level, it would wake up the module from the SLEEP mode. The serial port will be active about 20ms after DTR changed to low level.
- Receiving a voice or data call from network to wake up module.
- Receiving an SMS from network to wake up module.
- RTC alarm expired to wake up module.

Note: DTR pin should be held low level during communicating between the module and DTE.

3.7 Summary of state transitions (except SLEEP mode)

Current mode	Next mode				
	POWER DOWN	Normal mode	Alarm mode		
POWER DOWN		Use PWRKEY	Turn on the module by RTC alarm		
Normal mode	AT+QPOWD, use PWRKEY pin, or use EMERG_OFF pin	00	Set alarm by "AT+QALARM", and then turn off the module. When the timer expires, the module turns on automatically and enters Alarm mode.		
Alarm mode	Use PWRKEY pin or wait module turning off automatically	Use AT+CFUN			

Table 13: Summary of state transition

3.8 RTC backup

The RTC (Real Time Clock) can be supplied by an external capacitor or battery (rechargeable or non-chargeable) through the pin VRTC. A 3.9 K resistor has been integrated in the module for current limiting. A coin-cell battery or a super-cap can be used to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

Figure 16: RTC supply from non-chargeable battery

Coin-type rechargeable capacitor such as XH414H-IV01E from Seiko can be used.

Figure 19: Seiko XH414H-IV01E Charge Characteristic

3.9 Serial interfaces

The module provides three unbalanced asynchronous serial ports including Serial Port, Debug Port and Serial Port 3. The module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The Serial Port

- TXD: Send data to RXD of DTE
- RXD: Receive data from TXD of DTE

When hardware flow control is required, RTS and CTS should be connected. The module supports hardware flow control in default. When the module is used as a modem, DCD and RI should be connected. Furthermore, RI could indicate the host controller when an event happens such as an incoming voice call, a URC data export.

The Debug Port

- DBG_TXD: Send data to the COM port of a debugging computer
- DBG_RXD: Receive data from the COM port of a debugging computer

The Serial Port 3

- TXD3: Send data to the RXD of DTE
- RXD3: Receive data from the \TXD of DTE

The logic levels are described in the following table.

Table 14:	Logic	levels	of the	serial	interface
-----------	-------	--------	--------	--------	-----------

Parameter	Min	Max	Unit
V _{IL}	0	0.67	V
V _{IH}	1.67	VDD_EXT +0.3	V
V _{OL}	GND	0.34	V
V _{OH}	2.0	VDD_EXT	V

Table 15: Pin definition of the serial interfaces

Interface	Name	Pin	Function
Debug Port	DBG_RXD	9	Receive data of the debug port
Debug Poli	DBG_TXD	10	Transmit data of the debug port
	RI	55	Ring indicator
	RTS	58	Request to send
	CTS	57	Clear to send
Serial Port	RXD	61	Receiving data of the serial port
	TXD	60	Transmitting data of the serial port
	DTR	59	Data terminal ready
	DCD	56	Data carrier detection
Social Dort 2	RXD3	63	Receive data of the Serial Port 3
Serial Port 3	TXD3	62	Transmit data of the Serial Port 3

Module (DCE)	Host Controller (DTE)
Serial Port	Serial port1
TXD RXD RTS CTS DTR DCD RI	TXD RXD RTS CTS DTR DCD RING
Debug Port DBG_TXD DBG_RXD	 Serial port2 /TXD /RXD
Serial Port 3 TXD3 ⁻ RXD3	 Serial port3 \TXD \RXD

Figure 20: Connection of serial interfaces

3.9.1 Feature of serial interfaces

Serial Port

- Seven lines on serial interface.
- Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, other control lines DTR, DCD and RI.
- Used for AT command, GPRS data, CSD FAX, etc. Multiplexing function is supported on the Serial Port. So far only the basic mode of multiplexing is available.
- Support the communication baud rates as the following: 75,150,300,600,1200,2400,4800,9600,14400,19200,28800,38400,57600,115200.
- The default setting is autobauding mode. Support the following baud rates for Autobauding function:

4800, 9600, 19200, 38400, 57600, 115200bps.

After setting a fixed baud rate or Autobauding, please send "AT" string at that rate, the serial port is ready when it responds "OK".

Autobauding allows the module to automatically detect the baud rate of the string "AT" or "at" sent by the host controller, which gives the flexibility to put the module into operation without considering which baud rate is used by the host controller. Autobauding is enabled in default. To

M10_HD_V2.0

take advantage of the autobauding mode, special attention should be paid to the following requirements:

Synchronization between DTE and DCE:

When DCE (the module) powers on with the autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. After receiving the "OK" response, DTE and DCE are correctly synchronized.

If the host controller needs URC in the mode of autobauding, it must be synchronized firstly. Otherwise the URC will be discarded.

Restrictions on autobauding operation

- The serial port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The A/ and a/ commands can't be used.
- Only the strings "AT" or "at" can be detected (neither "At" nor "aT").
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" will not be indicated when the module is turned on with autobauding enabled and not be synchronized.
- Any other Unsolicited Result Codes will be sent at the previous baud rate before the module detects the new baud rate by receiving the first "AT" or "at" string. The DTE may receive unknown characters after switching to new baud rate.
- It is not recommended to switch to autobauding from a fixed baud rate.
- If autobauding is active it is not recommended to switch to multiplex mode

Note: To assure reliable communication and avoid any problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to configure a fixed baud rate and save instead of using autobauding after start-up. For more details, please refer to Chapter "AT+IPR" in document [1].

Debug Port

- Two lines: DBG_TXD and DBG_RXD
- Debug Port is only used for software debugging and its baud rate must be configured as 460800bps.

Serial Port 3

- Two data lines: TXD3 and RXD3
- Serial port 3 is used for AT command only and doesn't support GPRS data, CSD FAX, Multiplexing function, etc.
- Support the communication baud rates as the following: 75,150,300,600,1200,2400,4800,9600,14400,19200,28800,38400,57600,115200 bps.
- The default baud rate setting is 115200bps, and doesn't support autobauding. The baud rate can be modified by AT+QSEDCB command. For more details, please refer to *document [1]*.

3.9.2 Software upgrade and software debug

The TXD、RXD can be used to upgrade software. The PWRKEY pin must be pulled down during M10_HD_V2.0 - 46 -

the software upgrade process. Please refer to the following figures for software upgrade.

Figure 21: Connection of software upgrade

Note: To help upgrade firmware in the host board system, Quectel develops a special upgrade fixture and release an upgrade design application document. For more details, please refer to document [12].

Figure 22: Connection of software debug

The three serial ports and the debug port don't support the RS_232 level, but only support the CMOS level. A RS_232 level shifter IC or circuit must be inserted between module and PC. Figure 23 shows a reference level shifter circuit when the module is connected to a PC.

Figure 23: RS232 level converter circuit

Note 1: For details information about serial port application, please refer to document [10]

3.10 Audio interfaces

The module provides two analogy input channels and two analogy output channels.

- AIN1 and AIN2, which may be used for both microphone and line inputs. An electret microphone is usually used. AIN1 and AIN2 are both differential input channels.
- AOUT1 and AOUT2, which may be used for both receiver and speaker outputs. AOUT1 channel is typically used for a receiver built into a handset, while AOUT2 channel is typically used with headset or hands-free speaker. AOUT1 channel is a differential channel and AOUT2 is a single-ended channel. SPK2P and AGND can establish a pseudo differential mode. If customer needs to play Melody or Midi ringtone for incoming call, AOUT2 Channel should always be used.
- These two audio channels can be swapped by "AT+QAUDCH" command. For more details, please refer to *document* [1].
- For each channel, customer can use AT+QMIC to adjust the input gain level of microphone. Customer can also use "AT+CLVL" to adjust the output gain level of receiver and speaker. "AT+QECHO" is to set the parameters for echo cancellation control. "AT+QSIDET" is to set the side-tone gain level. For more details, please refer to *document [1]*.

Note:

• Use AT command "AT+QAUDCH" to select audio channel: 0--AIN1/AOUT1 (normal audio channel), the default value is 0. 1--AIN2/AOUT2 (aux audio channel).

Interface	Name	Pin	Function
	MIC1P	23	Microphone1 input +
(AIN1/AOUT1)	MIC1N	24	Microphone1 input -
(AINI/AOUTI)	SPK1P	22	Audio1 output+
	SPK1N	21	Audio1 output-
	MIC2P	25	Microphone2 input +
(AIN2/AOUT2)	MIC2N	26	Microphone2 input -
	SPK2P	20	Audio2 output+
	AGND	19	Suggest to be used in audio circuit. Don't
			connect to digital GND in host PCB as it could
			introduce TDD noise.

Table 16: Pin definition of Audio interface

3.10.1 Microphone interfaces configuration

AIN1/IN2 channels come with internal bias supply for external electret microphone. A reference circuit is shown in Figure 24.

Figure 24: Microphone interface configuration of AIN1&AIN2

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at GSM900MHz. Without placing this capacitor, TDD noise could be heard at the peer party of the voice communication. Moreover, the 10pF capacitor here is for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customer would have to discuss with its capacitor vendor to choose the most suitable capacitor for filtering GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, GSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, customer can decide which capacitor to use based on test result. Sometimes, even no RF filtering capacitor is required.

The differential audio traces have to be placed according to the differential signal layout rule.

3.10.2 Speaker interface configuration

Figure 25: Speaker interface configuration of AOUT1

Figure 26: Speaker interface with amplifier configuration of AOUT1

Texas Instruments's TPA6205A1is recommended for a suitable differential audio amplifier. There are plenty of excellent audio amplifiers in the market.

Figure 27: Speaker interface configuration of AOUT2

Note: The value of C1 and C2 depends on the input impedance of audio amplifier.

3.10.3 Earphone interface configuration

Figure 29: Earphone interface configuration

Table 17: Typical electret microphone characteristic

Parameter	Min	Тур	Max	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External		2.2		k Ohm
Microphone				
Load Resistance				

Table 18: Typical speaker characteristic

Parameter			Min	Тур	Max	Unit
Normal	Single	Load	28	32		Ohm
Output(SPK1)	Ended	resistance				
		Ref level	0		2.4	Vpp
	Differential	Load	28	32		Ohm
		resistance				
		Ref level	0		4.8	Vpp

M10 Hardware Design

Auxiliary	Single	Load	16	32		Ohm
Output(SPK2)	Ended	resistance				
		Ref level	0		2.4	Vpp
Maxim driving					50	mA
current limit of						
SPK1 and						
SPK2						

3.11 Buzzer

The pin BUZZER in the SMT pads can be used to drive a buzzer to indicate incoming call. The output volume of buzzer can be set by "AT+CRSL". The reference circuit for buzzer is shown in Figure 30.

Figure 30: Reference circuit for Buzzer

Table 19: Pin definition of the Buzzer

Name	Pin	Function
BUZZER	39	Output of buzzer tone

Table 20: Buzzer output characteristic

Parameter	Min	Тур	Max	Unit
Working Voltage	2.0	2.8	VDD_EXT	V
Working Current			4	mA

3.12 SIM card interface

3.12.1 SIM card application

Customer can get information in SIM card by AT Command. For more information, please refer to *document* [1].

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card, which is intended for use with a SIM application Tool-kit.

The SIM interface is powered from an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported.

Name	Pin	Function	
SIM_VDD	12	Supply power for SIM Card. Automatic detection of	
		SIM card voltage. $3.0V\pm10\%$ and $1.8V\pm10\%$.	
		Maximum supply current is around 10mA.	
SIM_DATA	13	SIM Card data I/O	
SIM_CLK	14	SIM Card Clock	
SIM_RST	15	SIM Card Reset	
SIM_PRESENCE	11	SIM Card Presence	

Table 21: Pin definition of the SIM interface

Figure 31 is the reference circuit for SIM interface, and here an 8-pin SIM card holder is used. In order to offer good ESD protection, it is recommended to add TVS such as ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C. The 22Ω resistors should be added in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. Note that the SIM peripheral circuit should be close to the SIM card socket.

To avoid possible cross-talk from the SIM_CLK signal to the SIM_DATA signal be careful that both lines are not placed closely next to each other. A useful approach is to use GND line to shield the SIM_DATA line from the SIM_CLK line.

In Figure 31, the pin SIM_PRESENCE is used to detect whether the tray of the Molex SIM socket, which is used for holding SIM card, is present in the card socket. When the tray is inserted in the socket, SIM_PRESENCE is at low level. Regardless of whether the SIM card is in the tray or not, the change of SIM_PRESENCE level from high to low level inspires the module to reinitialize SIM card. In default configuration, SIM card detection function is disabled. Customer's application can use "AT+QSIMDET=1,0" to switch on and "AT+QSIMDET=0,0" to switch off the SIM card detection function. For detail of this AT command, please refer to *document [1]*. M10_HD_V2.0 -55 -

When "AT+QSIMDET=1,0" is set and the tray with SIM card is removed from SIM socket, the following URC will be presented.

+CPIN: NOT READY

When the tray with SIM card is inserted into SIM socket again and the module finishes re-initialization SIM card, the following URC will be presented.

Call Ready

Figure 31: Reference circuit of the 8 pins SIM card

Note: Please do not use "AT+QSIMDET=1,1" to enable when Figure 31 circuit is adopted.

If customer doesn't need the SIM card detection function, keep SIM_PRESENCE open. The reference circuit using a 6-pin SIM card socket is illustrated as the following figure.

Figure 32: Reference circuit of the 6 pins SIM card

3.12.2 Design considerations for SIM card holder

For 6-pin SIM card holder, it is recommended to use Amphenol C707 10M006 512 2. Please visit <u>http://www.amphenol.com</u> for more information.

Figure 33: Amphenol C707 10M006 512 2 SIM card holder

		•
Name	Pin	Function
SIM_VDD	C1	SIM Card Power supply
SIM_RST	C2	SIM Card Reset
SIM_CLK	C3	SIM Card Clock
GND	C5	Ground
VPP	C6	Not Connect

SIM Card data I/O

Table 22: Pin description of Amphenol SIM card holder

For 8-pin SIM card holder, it is recommended to use Molex 91228. Please visit <u>http://www.molex.com</u> for more information.

SIM DATA

C7

Figure 34: Molex 91228 SIM card holder

Name	Pin	Function		
SIM_VDD	C1	SIM Card Power supply		
SIM_RST	C2	SIM Card Reset		
SIM_CLK	C3	SIM Card Clock		
SIM_PRESENCE	C4	SIM Card Presence Detection		
GND	C5	Ground		
VPP	C6	Not Connect		
SIM_DATA	C7	SIM Card Data I/O		
SIM_DETECT	C8	Pulled down GND with external circuit.		
		When the tray is present, C4 is connected to C8.		

3.13 LCD interface

The module contains a versatile LCD controller which is optimized for multimedia application. This function is not supported in standard module firmware, but only available with Quectel Open CPU function. By using Open CPU function, customer's application firmware can be embedded in the flash memory of the module, and it can invoke LCD related API functions to drive a suitable LCD.

The LCD controller supports many types of LCD modules including monochrome LCD, colour LCD. It contains a rich feature set to enhance the functionality. These features are:

- Up to 176×220 pixels resolution
- Supports 8-bpp (RGB332), 12-bpp (RGB444), 16-bpp (RGB565) color depths

The serial LCD display interface supports serial communication with LCD device. When used as LCD interface, the following table is the pin definition. LCD interface timing should be coordinated with the LCD device.

Table 24: Pin definition of the LCD interface

Name	Pin	Function
DISP_RST	5	LCD reset
DISP_D/C	4	Display data or command select
DISP_CS	3	Display enable
DISP_CLK	2	Display clock for LCD
DISP_DATA	1	Display data output

Note: This function is not supported in the default firmware.

3.14 Keypad interface

The keypad interface consists of 5 keypad column outputs and 5 keypad row inputs. The basic configuration is 5 keypad columns and 5 keypad rows, giving 25 keys.

Table 25: Pin definition of the keypad interface

Name	Pin	Function
KBC0	33	
KBC1	34	
KBC2	35	Keypad matrix column
KBC3	36	
KBC4	37	
KBR0	28	
KBR1	29	
KBR2	30	Keypad matrix row
KBR3	31	
KBR4	32	

The keypad interface allows a direct external matrix connection. A typical recommended circuit about the keypad is shown in the following figure.

Figure 35: Reference circuit of the keypad interface

If a 5×5 matrix does not provide enough keys, GPIO1 could be multiplexed as KBC5 to configure a 5×6 keypad matrix. Then, the keypad interface consists of 5 keypad row outputs and 6 keypad column inputs. The basic configuration is 5 keypad rows and 6 keypad columns, giving 30 keys.

Note: This function is not supported in the default firmware.

3.15 ADC

The module provides two auxiliary ADC to measure the values of voltage. AT command "AT+QADC" to read the voltage value added on ADC0 pin. For detail of this AT command, please refer to *document* [1].

To get the battery temperature, M10 provides the TEMP_BAT pin, which is internally pulled-up to 2.8V through 10Kohm. The battery pack should include an NTC resistor. If the NTC is not inside the battery, it must be in thermal contact with the battery. The NTC resistor must be connected between TEMP_BAT and GND. The requirement is: $R_{NTC} \approx 10k\Omega$ @ 25°C. AT command "AT+QEADC" to read the voltage value added on TEMP_BAT pin. For details of this AT command, please refer to *document [1]*.

Table 26: Pin definition of the ADC

Name	Pin	Function
ADC0	41	Analog to digital converter.
TEMP_BAT	40	Analog to digital converter to detect battery temperature

Figure 36: Internal circuit of the ADC

Table 27: Characteristic of the ADC

Item	Min	Тур	Max	Units
Voltage range	0		2.8	V
ADC Resolution	10		10	bits
ADC accuracy		2.7		mV

3.16 Behaviors of the RI

Table 28: Behaviors of the RI

State	RI respond			
Standby	HIGH			
Voice calling	Change to LOW, then:			
	(1) Change to HIGH when call is established.			
	(2) Use ATH to hang up the call, change to HIGH.			
	(3) Calling part hangs up, change to HIGH first, and change to LOW for			
	120ms indicating "NO CARRIER" as an URC, then change to HIGH			
	again.			
	(4) Change to HIGH when SMS is received.			
Data calling	Change to LOW, then:			
	(1) Change to HIGH when data connection is established.			
	(2) Use ATH to hang up the data calling, change to HIGH.			

	(3) Calling part hangs up, change to HIGH first, and change to LOW for 120ms indicating "NO CARRIER" as an URC, then change to HIGH					
	again.					
	(4) Change to HIGH when SMS is received.					
SMS	When a new SMS comes, The RI changes to LOW and holds low level for					
	about 120 ms, then changes to HIGH.					
URC	Certain URCs can trigger 120ms low level on RI. For more details, please					
	refer to the <i>document [10]</i>					

If the module is used as a caller, the RI would maintain high except the URC or SMS is received. On the other hand, when it is used as a receiver, the timing of the RI is shown below.

Figure 40: RI behavior of URC or SMS received

3.17 Network status indication

The NETLIGHT signal can be used to drive a network status indication LED. The working state of this pin is listed in Table 29.

Table 29: Working state of the NETLIGHT

State	Module function
Off	The module is not running.
64ms On/ 800ms Off	The module is not synchronized with network.
64ms On/ 2000ms Off	The module is synchronized with network.
64ms On/ 600ms Off	GPRS data transfer is ongoing.

A reference circuit is shown in Figure 41.

Figure 41: Reference circuit of the NETLIGHT

3.18 Operating status indication

The STATUS pin is set as an output pin and can be used to judge whether module is power-on, please refer to <u>*Chapter 3.4*</u>. In customer design, this pin can be connected to a GPIO of DTE or be used to drive an LED in order to judge module operation status. A reference circuit is shown in Figure 42.

Table 30: Pin definition of the STATUS

Name	Pin	Function
STATUS	54	Indication of module operating status

Figure 42: Reference circuit of the STATUS

3.19 General purpose input & output (GPIO)

The module provides a limited number of General Purpose Input/Output signal pins. The driving capability of these pins is 4mA. Every GPIO can be configured as input or output, and set to high or low when working as an output pin by "AT+QGPIO" command. Before using these GPIO pins, customer should configure them with "AT+QGPIO=1,x,x,x,x" firstly. For details, please refer to *document [1]*.

Name	Pin	PU/PD	Function
GPIO0	64	Pulled up internally General Purpose Input/Output Port	
		to 75K resistor	
GPIO1_KBC5	38	Pulled up internally General Purpose Input/Output Port	
		to 75K resistor	Keypad interface KBR5

Table 31: Pin definition of the GPIO interface

3.20 Open drain output (LIGHT_MOS)

The module provides an open drain output pin to control LCD or keyboard backlight. The output LIGHT_MOS can sink 150mA. This open-drain output switch is high impedance when disabled.

Table 32: Pin definition of the LIGHT_MOS

Name	Pin	Function	
LIGHT_MOS	27	Open drain output port	

Note: This function is not supported in the default firmware. There must be special firmware if customer needs this function. Please contact Quectel for more details.

4 Antenna interface

The Pin 43 is the RF antenna pad. The RF interface has an impedance of 50Ω .

4.1 Antenna installation

M10 provides an RF antenna PAD for customer's antenna connection. The RF trace in host PCB connecting to the module RF antenna pad should be micro-strip line or other types of RF trace, whose characteristic resistance should be close to 50Ω . M10 comes with 2 grounding pads which are next to the antenna pad in order to give a better grounding.

Table 33: Pin	definition	of the RF_	ANT
---------------	------------	------------	-----

Name	Pin	Function	
RF_ANT	43	RF antenna pad	
GND	42	Ground	
GND	44	Ground	

To minimize the loss on the RF trace and RF cable, they should be designed carefully. It is recommended that the insertion loss should try to meet the following requirements:

- GSM850/EGSM900<1dB
- DCS1800/PCS1900<1.5dB

4.2 RF output power

Table 34: The module conducted RF output power

Frequency	Max	Min
GSM850	33 dBm ± 2 dB	5dBm±5dB
EGSM900	33dBm ±2dB	5dBm±5dB
DCS1800	30dBm ±2dB	0dBm±5dB
PCS1900	30dBm ±2dB	0dBm±5dB

Note: In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in chapter 13.16 of 3GPP TS 51.010-1.

4.3 RF receiving sensitivity

Frequency	Receive sensitivity
GSM850	<-107dBm
EGSM900	<-107dBm
DCS1800	<-107dBm
PCS1900	<-107dBm

Table 35: The module conducted RF receiving sensitivity

4.4 Operating frequencies

Table 36: The module	e operating frequencies
----------------------	-------------------------

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.5 Recommendation of RF pad welding

If external antenna is connected with RF cable welded on the RF pads, please refer to Figure 44. Any incorrect welding type may cause poor performance both in transmitting power and receiving sensitivity.

Figure 44: Recommendation of RF pad welding

5 Electrical, reliability and radio characteristics

5.1 PIN assignment of the module

Table 37: M10 pin assignment

PIN NO.	PIN NAME	I/O	PIN NO.	PIN NAME	I/O
1	DISP_DATA	I/O	2	DISP_CLK	0
3	DISP_CS	0	4	DISP_D/C	0
5	DISP_RST	0	6	NETLIGHT	0
7	VDD_EXT	0	8	GND1	
9	DBG_RXD	Ι	10	DBG_TXD	0
11	SIM_PRESENCE	Ι	12	SIM_VDD	0
13	SIM_DATA	I/O	14	SIM_CLK	0
15	SIM_RST	0	16	VRTC	I/O
17	EMERG_OFF	Ι	18	PWRKEY	Ι
19	AGND	0	20	SPK2P	0
21	SPK1N	0	22	SPK1P	0
23	MIC1P	Ι	24	MIC1N	Ι
25	MIC2P	Ι	26	MIC2N	Ι
27	LIGHT_MOS	0	28	KBR0	0
29	KBR1	0	30	KBR2	0
31	KBR3	0	32	KBR4	0
33	KBC0	Ι	34	KBC1	Ι
35	KBC2	Ι	36	KBC3	Ι
37	KBC4	Ι	38	GPIO1_KBC5	I/O
39	BUZZER	0	40	TEMP_BAT	Ι
41	ADC0	Ι	42	GND2	
43	RF_ANT	I/O	44	GND3	
45	GND4		46	GND5	
47	GND6		48	GND7	
49	GND8		50	VBAT1	Ι
51	VBAT2	Ι	52	VBAT3	Ι
53	VCHG ⁽¹⁾	Ι	54	STATUS	0
55	RI	0	56	DCD	0
57	CTS	0	58	RTS	Ι

59	DTR	Ι	(60	TXD	0
61	RXD	Ι	(62	TXD3	0
63	RXD3	Ι	(64	GPIO0	I/O

Note: Please keep all reserved pins open.

(1): This function is not supported in the default hardware configuration.

5.2 Absolute maximum ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table:

Table 38: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	0	4.7	V
Peak current of power supply	0	3	А
RMS current of power supply (during one TDMA- frame)	0	0.7	А
Voltage at digital pins	-0.3	3.3	V
Voltage at analog pins	-0.3	3.0	V
Voltage at digital/analog pins in POWER DOWN mode	-0.25	0.25	V

5.3 Operating temperature

The operating temperature is listed in the following table:

Table 39: Operating temperature

Parameter	Min	Тур	Max	Unit
Normal temperature	-35	25	80	°C
Restricted operation*	-45 to -35		80 to 85	°C
Storage temperature	-45		+90	°C

* When the module works in this temperature range, the deviations from the GSM specification may occur. For example, the frequency error or the phase error could increase.

5.4 Power supply ratings

Table 40: The module power supply ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
VBAT	Supply	Voltage must stay within the		4.0	4.5	V
	voltage	min/max values, including				
		voltage drop, ripple, and spikes.				
	Voltage drop	Maximum power control level			400	mV
	during	on GSM850 and GSM900.				
	transmitting					
	burst					

	Voltage ripple	Maximum power control level on GSM850 and GSM900			
	rr -	(<i>a</i>) f<200kHz		50	mV
		@ f>200kHz		2	mV
-					
I _{VBAT}	Average	POWER DOWN mode	65		uA
	supply	SLEEP mode @ DRX=5	1.1		mA
	current	Minimum functionality mode			
		AT+CFUN=0			
		IDLE mode	12		mA
		SLEEP mode	900		uA
		AT+CFUN=4			
		IDLE mode	12		mA
		SLEEP mode	1		mA
		IDLE mode			
		GSM850/EGSM 900	12		mA
		DCS1800/PCS1900	12		mA
		TALK mode			
		GSM850/EGSM 900 ¹⁾	290/270		mA
		DCS1800/PCS1900 ²⁾	240/250		mA
		DATA mode, GPRS (3 Rx,2Tx)			
		GSM850/EGSM 900 ¹⁾	530/485		mA
		DCS1800/PCS1900 ²⁾	370/390		mA
		DATA mode, GPRS(2 Rx,3Tx)			
		GSM850/EGSM 900 ¹⁾	605/560		mA
		DCS1800/PCS1900 ²⁾	460/460		mA
		DATA mode, GPRS (4 Rx,1Tx)	300/290		mA
		GSM850/EGSM 900 ¹⁾	250/240		mA
		DCS1800/PCS1900 ²⁾	200/210		1111 1
		DATA mode, GPRS			
		(1Rx,4Tx)			
		GSM850/EGSM 900 ¹⁾	560/570		mA
		DCS1800/PCS1900 ²⁾	465/485		mA
	Dools summi		1.8	2	
	Peak supply	Maximum power control level on GSM850 and GSM900.	1.0	2	Α
	current	on GSW1830 and GSW1900.			
	(during				
	transmission				
	slot)				

¹⁾ Power control level PCL 5

²⁾ Power control level PCL 0

5.5 Current consumption

The values for current consumption are shown in Table 41.

Table 41: The module current consumption

Condition	Current Consumption
Voice Call	
GSM850	@power level #5 <300mA,Typical 290mA
	@power level #12,Typical 150mA
	@power level #19,Typical 100mA
GSM900	@power level #5 <300mA,Typical 270mA
	@power level #12, Typical 140mA
	@power level #19,Typical 100mA
DCS1800	@power level #0 <250mA,Typical 240mA
	@power level #7,Typical 150mA
	@power level #15,Typical 100mA
PCS1900	@power level #0 <250mA,Typical 250mA
	@power level #7,Typical 150mA
	@power level #15,Typical 100mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx)	CLASS 12
GSM850	@power level #5 <350mA,Typical 280mA
	@power level #12, Typical 145mA
	@power level #19, Typical 90mA
EGSM 900	@power level #5 <350mA,Typical 260mA
	@power level #12,Typical 135mA
	@power level #19,Typical 90mA
DCS 1800	@power level #0 <300mA,Typical 200mA
	@power level #7,Typical 120mA
	@power level #15,Typical 90mA
PCS 1900	@power level #0 <300mA,Typical 230mA
	@power level #7,Typical 130mA
	@power level #15,Typical 90mA
DATA mode, GPRS (3 Rx, 2 Tx)	CLASS 12
GSM850	@power level #5 <550mA,Typical 430mA
	@power level #12,Typical 205mA
	@power level #19,Typical 150mA
EGSM 900	@power level #5 <550mA,Typical 410mA
	@power level #12,Typical 195mA
	@power level #19,Typical 150mA
DCS 1800	@power level #0 <450mA,Typical 350mA
	@power level #7,Typical 200mA

	@power level #15,Typical 155mA				
PCS 1900	@power level #0 <450mA,Typical 335mA				
	@power level #7,Typical 200mA				
	@power level #15,Typical 145mA				
DATA mode, GPRS (2 Rx, 3 Tx					
GSM850	@power level #5 <600mA,Typical 605mA				
	@power level #12,Typical 250mA				
	@power level #19, Typical 170mA				
EGSM 900	@power level #5 <600mA,Typical 560mA				
	@power level #12,Typical 240mA				
	@power level #19,Typical 165mA				
DCS 1800	@power level #0 <490mA,Typical 460mA				
	@power level #7, Typical 230mA				
	@power level #15,Typical 165mA				
PCS 1900	@power level #0 <480mA,Typical 460mA				
	@power level #7, Typical 235mA				
	@power level #15,Typical 165mA				
DATA mode, GPRS (4 Rx,1 Tx)					
GSM850	@power level #5 <350mA, Typical 300mA				
	@power level #12,Typical 160mA				
	@power level #19, Typical 130mA				
EGSM 900	@power level #5 <350mA,Typical 280mA				
	@power level #12, Typical 160mA				
	@power level #19, Typical 130mA				
DCS 1800	@power level #0 <300mA,Typical 245mA				
	@power level #7,Typical 155mA				
	@power level #15, Typical 130mA				
PCS 1900	@power level #0 <300mA,Typical 220mA				
	@power level #7,Typical 160mA				
	@power level #15, Typical 130mA				
DATA mode, GPRS (1 Rx, 4 Tx)	CLASS 12				
GSM850	@power level #5 <660mA,Typical 560mA				
	@power level #12, Typical 285mA				
	@power level #19, Typical 190mA				
EGSM 900	@power level #5 <660mA,Typical 570mA				
	@power level #12, Typical 280mA				
	@power level #19, Typical 185mA				
DCS 1800	@power level #0 <530mA,Typical 465mA				
	@power level #7,Typical 275mA				
	@power level #15,Typical 185mA				
PCS 1900	@power level #0 <530mA,Typical 485mA				
	@power level #7,Typical 275mA				
	@power level #15,Typical 185mA				

Note: GPRS Class 12 is the default setting. The module can be configured from GPRS Class 1 to Class 12 by "AT+QGPCLASS". Setting to lower GPRS class would make it easier to design the power supply for the module.

5.6 Electro-static discharge

Although the GSM engine is generally protected against Electrostatic Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of module are shown as the following table:

Tested point	Contact discharge	Air discharge		
VBAT,GND	±5KV	±10KV		
PWRKEY	±4KV	±8KV		
SIM Card Interface	±4KV	±8KV		
Antenna port	±5KV	±10KV		
SPK1P/1N, SPK2P/2N,	±4KV	$\pm 8 \mathrm{KV}$		
MIC1P/1N, MIC2P/2N	±4K V	±οκν		

6 Mechanical dimension

This chapter describes the mechanical dimensions of the module.

6.1 Mechanical dimensions of module

Figure 45: M10 top and side dimensions (Unit: mm)

Figure 46: M10 bottom dimensions (Unit: mm)

Figure 47: PAD bottom dimensions (Unit: mm)

6.2 Footprint of recommendation

single pad

Figure 48: Footprint of recommendation (Unit: mm)

Note1: Keep out the area below the test point in the host PCB. Place solder mask. Note2: In order to maintain the module, keep about 3mm between the module and other components in host PCB.

6.3 Top view of the module

Figure 49: Top view of the module

6.4 Bottom view of the module

Figure 50: Bottom view of the module

Appendix A: GPRS coding schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in Table 43.

Scheme	Code	USF	Pre-coded	Radio	BCS	Tail	Coded	Punctured	Data
	rate		USF	Block			bits	bits	rate
				excl.USF					Kb/s
				and BCS					
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	_	456	-	21.4

Table 43: Description of different coding schemes

Radio block structure of CS-1, CS-2 and CS-3 is shown as Figure 51:

Radio block structure of CS-4 is shown as Figure 52:

Appendix B: GPRS multi-slot classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in Table 44.

Multislot class	Downlink slots	Uplink slots	Active slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	- 4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA
15	5	5	NA
16	6	6	NA
17	7	7	NA
18	8	8	NA
19	6	2	NA
20	6	3	NA
21	6	4	NA
22	6	4	NA
23	6	6	NA
24	8	2	NA
25	8	3	NA
26	8	4	NA
27	8	4	NA
28	8	6	NA
29	8	8	NA

Table 44: GPRS multi-slot classes

Shanghai Quectel Wireless Solutions Co., Ltd. Room 501, Building 9, No.99, TianZhou Road, Shanghai, China 200233 Tel: +86 21 5108 2965

Mail: info@quectel.con