
8-bit RISC
Microcontroller

Application
Note

Rev. 2585C–AVR–07/08
AVR151: Setup And Use of The SPI

Features
• SPI Pin Functionality
• Multi Slave Systems
• SPI Timing
• SPI Transmission Conflicts
• Emulating the SPI
• Code examples for Polled operation
• Code examples for Interrupt Controlled operation

1. Introduction
This application note describes how to setup and use the on-chip Serial Peripheral
Interface (SPI) of the AVR micro-controller. Most AVR devices come with an on board
SPI and can be configured according to this document. After a theoretical background
it will be shown how to configure the SPI to run in both master mode and slave mode

Figure 1. Master and Slave Interface.

Receive Buffer

MOSI MISO
Shift-

Register

DATABUS

Receive Buffer

MISO MOSI

DATABUS

Slave Mode

SPI
Clock Generator

Master Mode

MISO

MOSI

SCK

SS

VCC

SS

Shift-
Register

2. General description of the SPI
The SPI allows high-speed synchronous data transfer between the AVR and peripheral devices
or between several AVR devices. On most parts the SPI has a second purpose where it is used
for In System Programming (ISP). See application note AVR910 for details.

The interconnection between two SPI devices always happens between a master device and a
slave device. Compared to some peripheral devices like sensors which can only run in slave
mode, the SPI of the AVR can be configured for both master and slave mode. The mode the
AVR is running in is specified by the settings of the master bit (MSTR) in the SPI control register
(SPCR). Special considerations about the SS pin have to be taken into account. This will be
described later in the section “Multi Slave Systems - SS pin Functionality” on page 3.

The master is the active part in this system and has to provide the clock signal a serial data
transmission is based on. The slave is not capable of generating the clock signal and thus can
not get active on its own. The slave just sends and receives data if the master generates the
necessary clock signal. The master however generates the clock signal only while sending data.
That means that the master has to send data to the slave to read data from the slave.

Note: This can be confusing especially if “passive” peripherals like sensors are used. The
need to send random data to a sensor just to read its data is not always clear.

2.1 Data transmission between Master and Slave

The interaction between a master and a slave AVR is shown in Figure 1 on page 1. Two identi-
cal SPI units are displayed. The left unit is configured as master while the right unit is configured
as slave. The MISO, MOSI and SCK lines are connected with the corresponding lines of the
other part. The mode in which a part is running determines if they are input or output signal lines.
Because a bit is shifted from the master to the slave and from the slave to the master simultane-
ously in one clock cycle both 8-bit shift registers can be considered as one 16-bit circular shift
register. This means that after eight SCK clock pulses the data between master and slave will be
exchanged.
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This influences the data handling in the following ways:
1. New bytes to be sent can not be written to the data register (SPDR) / shift register before

the entire shift cycle is completed.
2. Received bytes are written to the Receive Buffer immediately after the transmission is

completed.
3. The Receive Buffer has to be read before the next transmission is completed or data will

be lost.
4. Reading the SPDR will return the data of the Receive Buffer.
After a transfer is completed the SPI Interrupt Flag (SPIF) will be set in the SPI Status Register
(SPSR). This will cause the corresponding interrupt to be executed if this interrupt and the global
interrupts are enabled. Setting the SPI Interrupt Enable (SPIE) bit in the SPCR enables the inter-
rupt of the SPI while setting the I bit in the SREG enables the global interrupts.

2.2 Pins of the SPI
The SPI consists of four different signal lines. These lines are the shift clock (SCK), the Master
Out Slave In line (MOSI), the Master In Slave Out line (MISO) and the active low Slave Select
2
2585C–AVR–07/08

AVR151

AVR151
line (SS). When the SPI is enabled, the data direction of the MOSI, MISO, SCK and SS pins are
overridden according to the following table.

This table shows that just the input pins are automatically configured. The output pins have to be
initialized manually by software. The reason for this is to avoid damages e.g. through driver
contention.

2.3 Multi Slave Systems -
SS pin Functionality

The Slave Select (SS) pin plays a central role in the SPI configuration. Depending on the mode
the part is running in and the configuration of this pin, it can be used to activate or deactivate the
devices. The SS pin can be compared with a chip select pin which has some extra features.
In master mode, the SS pin must be held high to ensure master SPI operation if this pin is con-
figured as an input pin. A low level will switch the SPI into slave mode and the hardware of the
SPI will perform the following actions:
1. The master bit (MSTR) in the SPI Control Register (SPCR) is cleared and the SPI sys-

tem becomes a slave. The direction of the pins will be switched according to Table 2-1.
2. The SPI Interrupt Flag (SPIF) in the SPI Status Register (SPSR) will be set. If the SPI

interrupt and the global interrupts are enabled the interrupt routine will be executed.
This can be useful in systems with more than one master to avoid that two masters are access-
ing the SPI bus at the same time. If the SS pin is configured as output pin it can be used as a
general purpose output pin which does not affect the SPI system.
Note: In cases where the AVR is configured for master mode and it can not be ensured that the SS pin

will stay high between two transmissions, the status of the MSTR bit has to be checked before a
new byte is written. Once the MSTR bit has been cleared by a low level on the SS line, it must be
set by the application to re-enable SPI master mode.

In slave mode the SS pin is always an input. When SS is held low, the SPI is activated and
MISO becomes output if configured so by the user. All other pins are inputs. When SS is driven
high, all pins are inputs, and the SPI is passive, which means that it will not receive incoming
data. Table 2-2 shows an overview of the SS Pin Functionality.
Note: In slave mode, the SPI logic will be reset once the SS pin is brought high. If the SS pin is brought

high during a transmission, the SPI will stop sending and receiving immediately and both data
received and data sent must be considered as lost.

Table 2-1. SPI Pin overrides

Pin Direction Master Mode Direction Slave Mode

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
3
2585C–AVR–07/08

As shown in Table 2-2, the SS pin in slave mode is always an input pin. A low level activates the
SPI of the device while a high level causes its deactivation. A Single Master Multiple Slave Sys-
tem with an AVR configured in master mode and SS configured as output pin is shown in Figure
2-1. The amount of slaves which can be connected to this AVR is only limited by the number of
I/O pins to generate the slave select signals.

Figure 2-1. Multi Slave System

The ability to connect several devices to the same SPI-bus is based on the fact that only one
master and only one slave is active at the same time. The MISO, MOSI and SCK lines of all the
other slaves are tristated (configured as input pins of a high impedance with no pullup resistors
enabled). A false implementation (e.g. if two slaves are activated at the same time) can cause a
driver contention which can lead to a CMOS latchup state and must be avoided. Resistances of
1 to 10 k ohms in series with the pins of the SPI can be used to prevent the system from latching
up. However this affects the maximum usable data rate, depending on the loading capacitance
on the SPI pins.
Unidirectional SPI devices require just the clock line and one of the data lines. If the device is
using the MISO line or the MOSI line depends on its purpose. Simple sensors for instance are
just sending data (see S2 in Figure 2-1), while an external DAC usually just receives data (see
S3 in Figure 2-1).

Table 2-2. Overview of the SS pin functionality

Mode SS Configuration SS Pin-level Description

Slave Always Input
High Slave deactivated (deselected)

Low Slave activated (selected)

Master

Input
High Master activated (selected)

Low Master deactivated, switched to slave mode

Output
High

Master activated (selected)
Low

SCK
MOSI
MISO

SS (PB4)

SCK
MOSI
MISO
SS

SCK

MISO
SS

SCK
MOSI

SS

SCK
MOSI
MISO
SS

S1

S2

S3

SN

PB0

PB1

PB7

Master Mode
4
2585C–AVR–07/08

AVR151

AVR151
2.4 SPI Timing
The SPI has four modes of operation, 0 through 3. These modes essentially control the way data
is clocked in or out of an SPI device. The configuration is done by two bits in the SPI control reg-
ister (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high
or active low clock. The clock phase (CPHA) control bit selects one of the two fundamentally dif-
ferent transfer formats. To ensure a proper communication between master and slave both
devices have to run in the same mode. This can require a reconfiguration of the master to match
the requirements of different peripheral slaves.
The settings of CPOL and CPHA specify the different SPI modes, shown in Table 2-3. Because
this is no standard and specified different in other literature, the configuration of the SPI has to
be done carefully.

The clock polarity has no significant effect on the transfer format. Switching this bit causes the
clock signal to be inverted (active high becomes active low and idle low becomes idle high). The
settings of the clock phase, however, selects one of the two different transfer timings, which are
described closer in the next two chapters. Since the MOSI and MISO lines of the master and the
slave are directly connected to each other, the diagrams show the timing of both devices, master
and slave. The SS line is the slave select input of the slave. The SS pin of the master is not
shown in the diagrams. It has to be inactive by a high level on this pin (if configured as input pin)
or by configuring it as an output pin.

2.5 A.) CPHA = 0 and CPOL = 0 (Mode 0) and
CPHA = 0 and CPOL = 1
(Mode 1)

The timing of a SPI transfer where CPHA is zero is shown in Figure 2-2. Two wave forms are
shown for the SCK signal - one for CPOL equals zero and another for CPOL equals one.

Table 2-3. SPI Mode Configuration

SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge

0 0 0 Falling Rising

1 0 1 Rising Falling

2 1 0 Rising Falling

3 1 1 Falling Rising
5
2585C–AVR–07/08

Figure 2-2. SPI Transfer Format with CPHA = 0

When the SPI is configured as a slave, the transmission starts with the falling edge of the SS
line. This activates the SPI of the slave and the MSB of the byte stored in its data register
(SPDR) is output on the MISO line. The actual transfer is started by a software write to the
SPDR of the master. This causes the clock signal to be generated. In cases where the CPHA
equals zero, the SCK signal remains zero for the first half of the first SCK cycle. This ensures
that the data is stable on the input lines of both the master and the slave. The data on the input
lines is read with the edge of the SCK line from its inactive to its active state (rising edge if CPOL
equals zero and falling edge if CPOL equals one). The edge of the SCK line from its active to its
inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one) causes the
data to be shifted one bit further so that the next bit is output on the MOSI and MISO lines.
After eight clock pulses the transmission is completed. In both the master and the slave device
the SPI interrupt flag (SPIF) is set and the received byte is transferred to the receive buffer.

2.6 B.) CPHA = 1 and CPOL = 0 (Mode 2) and
CPHA = 1 and CPOL = 1
(Mode 3)

The timing of a SPI transfer where CPHA is one is shown in Figure 2-3. Two wave forms are
shown for the SCK signal - one for CPOL equals zero and another for CPOL equals one.

SAMPLE

*Not defined but normally MSB of character just received.

SCK CYCLE#
(FOR REFERENCE)

SCK (CPOL=0)
SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

SS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB 123456 LSB

MSB 123456 LSB *
6
2585C–AVR–07/08

AVR151

AVR151
Figure 2-3. SPI Transfer Format with CPHA = 1

Like in the previous cases the falling edge of the SS lines selects and activates the slave. Com-
pared to the previous cases, where CPHA equals zero, the transmission is not started and the
MSB is not output by the slave at this stage.
The actual transfer is started by a software write to the SPDR of the master what causes the
clock signal to be generated. The first edge of the SCK signal from its inactive to its active state
(rising edge if CPOL equals zero and falling edge if CPOL equals one) causes both the master
and the slave to output the MSB of the byte in the SPDR. As shown in Figure 2-3, there is no
delay of half a SCK-cycle like in Mode 0 and 1. The SCK line changes its level immediately at
the beginning of the first SCK-cycle. The data on the input lines is read with the edge of the SCK
line from its active to its inactive state (falling edge if CPOL equals zero and rising edge if CPOL
equals one).
After eight clock pulses the transmission is completed. In both the master and the slave device
the SPI interrupt flag (SPIF) is set and the received byte is transferred to the receive buffer.

SAMPLE

*Not defined but normally LSB of previously transmitted character.

SCK CYCLE#
(FOR REFERENCE)

SCK (CPOL=0)
SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

SS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB 123456 LSB

MSB 123456 LSB*
7
2585C–AVR–07/08

2.6.1 Considerations for high speed transmissions

Parts which run at higher system clock frequencies and SPI modules capable of running at
speed grades up to half the system clock require a more specific timing to match the needs of
both the sender and receiver. The following two diagrams show the timing of the AVR in master
and in slave mode for the SPI Modes 0 and 1. The exact values of the displayed times vary
between the different parts and are not an issue in this application note. However the functional-
ity of all parts is in principle the same so that the following considerations apply to all parts.

Figure 2-4. Timing Master Mode

The minimum timing of the clock signal is given by the times “1” and “2”. The value “1” specifies
the SCK period while the value “2” specifies the high / low times of the clock signal. The maxi-
mum rise and fall time of the SCK signal is specified by the time “3”. These are the first timings of
the AVR to check if they match the requirements of the slave.
The Setup time “4” and Hold time “5” are important times because they specify the requirements
the AVR has on the interface of the slave. These times determine how long before the clock
edge the slave has to have valid output data ready and how long after the clock edge this data
has to be valid.
If the Setup and Hold time are long enough the slave suits to the requirements of the AVR but
does the AVR suit to the requirements of the slave?
The time “6” (Out to SCK) specifies the minimum time the AVR has valid output data ready
before the clock edge occurs. This time can be compared to the Setup time “4” of the slave.
The time “7” (SCK to Out) specifies the maximum time after which the AVR outputs the next data
bit while the time “8” (SCK to Out high) the minimum time specifies during which the last data bit
is valid on the MOSI line after the SCK was set back to its idle state.

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87
8
2585C–AVR–07/08

AVR151

AVR151
Figure 2-5. Timing Slave Mode

In principle the timings are the same in slave mode like previously described in master mode.
Because of the switching of the roles between master and slave the requirements on the timing
are inverted as well. The minimum times of the master mode are now maximum times and vice
versa.

2.7 SPI Transmission Conflicts
A write collision occurs if the SPDR is written while a transfer is in progress. Since this register is
just single buffered in the transmit direction, writing to SPDR causes data to be written directly
into the SPI shift register. Because this write operation would corrupt the data of the current
transfer, a write-collision error in generated by setting the WCOL bit in the SPSR. The write
operation will not be executed in this case and the transfer continues undisturbed.
A write collision is generally a slave error because a slave has no control over when a master
will initiate a transfer. A master, however, knows when a transfer is in progress. Thus a master
should not generate write collision errors, although the SPI logic can detect these errors in a
master as well as in a slave mode.

2.8 Emulating the SPI
When emulating the SPI using the ICE200 hardware emulator, be aware of the fact that the
peripherals on this emulator are not stopped on a break point but continue to run with the speed
they are configured for.
When emulating the SPI using the ICEPRO the timing can be less accurate than it is the case on
the part itself. This is caused by longer internal signal lines of the ICEPRO which is the price we
had to pay for its ability to upgrade and its flexibility.

2.9 Setup the SPI
The configuration of the SPI in master mode will be shown in two different ways. The first exam-
ple will show how to implement an SPI communication which is controlled by polling the interrupt
flags. The second example will show how to implement an interrupt controlled communication.
A communication between two AVR devices will be shown by sending a “Text String” from the
part configured as master to the other part configured as slave. The received characters will be
compared to the expected ones and the result of this communication test will be output on the
Port D. These examples are well suited to be implement by using two development boards like
the STK500.

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1515

9

X

9
2585C–AVR–07/08

In all the examples shown here the SPI is configured to run in mode 0 with MSB transmitted first.
This is done by setting the bits CPOL, CPHA and DORD in the register SPCR to zero. In the
same register the SPI is enabled by setting the SPE bit, while the SCK frequency is specified to
CK/4 in the first example and the assembler code of the second example. It is set to CK/16 in the
C code of the second example.
To compare the configuration of the SPI in the different examples the attention has to be
directed on the settings of the Master / Slave Select (MSTR) bit and the SPI Interrupt Enable
(SPIE) bit.
Notes: 1. Because both examples show the transmission between a single master and a single slave it

is not necessary to check if the MSTR bit is still set before the master initiates a new transmis-
sion. This code has to be added in a multi master application.

2. Although the settings of the Clock Rate Select bits have no effect in slave mode it has to be
ensured that the system clock (CK) of the slave is at least four times higher than the SPI clock
(SCK).

3. Pending SPI interrupts are cleared by a dummy access to the SPSR and the SPDR.
Two files come along with this application note which contain the C code shown in this
examples.
To run the code, setup two STK500 development boards as shown in Figure 2-6. The code is
written for ATmega162, but can be compiled for any part with hardware SPI and PORTA,
PORTB and PORTD.

Figure 2-6. Hardware setup

ATmega162
as SPI Master

ATmega162
as SPI Slave

8 LEDs

8 switches

8 LEDs

STK500 #1 STK500 #2

PORTD PORTD

PORTA

PORTB
10
2585C–AVR–07/08

AVR151

AVR151
2.9.1 Example 1 - SPI communication controlled by polling:

2.9.1.1 Master Side:

If no interrupts are used there is just the SPI module and its pins to configure. Important in this
example is the setting of the SS pin as output pin. This has to be done before the SPI is enabled
in master mode. Enabling the SPI while the SS pin is still configured as an input pin would cause
the SPI to switch to slave mode immediately if a low level is applied to this pin. This pin is always
configured as an input pin in slave mode (see Figure 2-7 on page 11). Using polling gives the
fastest communication. This is why polling is most commonly used in master mode.

Figure 2-7. Polled master - initialization and transmission

2.9.1.2 Slave Side:

To configure the AVR to run in slave mode there is no order required in which the registers have
to be initialized. The MISO pin has to be defined as an output pin, while all other pins are config-
ured automatically as input pins if the SPI is enabled (see Table 2-8). To configure the AVR to
run in slave mode the MSTR bit has to be set to zero. In this case the Clock Rate Select bits
SPR0 and SPR1 do not care because of the synchronous transmission.
All other settings of the SPI configuration register (SPCR) have to be the same as in master
mode. This is essential for a successful communication between the two devices.

Master
Initialization

Configure /SS,
MOSI and SCK as

output pins

Set bits SPE and
MSTR of the

SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

Send String

Current
character

= 0 ?

Copy character to
SPDR register

Wait for SPI
Interrupt Flag

Advance to next
character of string

No Return

Yes
11
2585C–AVR–07/08

Figure 2-8. Polled slave - initialization and reception

Slave
Initialization

Configure MISO
as output pin

Set bit SPE of the
SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

Receive/Verify
String

Current
character

= 0 ?

Wait for SPI
Interrupt Flag

Advance to next
character of string

No Transmission
successful

Yes

SPDR =
current

character ?

Yes Transmission
failed

No
12
2585C–AVR–07/08

AVR151

AVR151
2.9.2 Example 2 - SPI communication controlled by interrupts:

In master mode interrupt controlled communication makes mainly sense if the SCK clock is gen-
erated by dividing the system clock by a large division factor (like 64 or 128). In this case the
processor can do other processing instead of just waiting to send/receive the next byte. In slave
mode where the part does not know when a communication starts an interrupt controlled imple-
mentation can ensure that the part will react in time so that write collision errors will be avoided.

2.9.2.1 Master Side:

The initialization of the SPI happens in a similar way to the one in the previous example. Like
before in master mode the SS pin has to be set as output first and then the SPI can be enabled.
The SPI interrupt is enabled by setting the SPIE bit in the SPCR.

Figure 2-9. Interrupt controlled master - initialization and transmission

2.9.2.2 Slave Side:

A slave never knows when the master is going to start a new communication. Interrupts are a
perfect feature to react on such undetermined events so this is a common way to implement the
SPI in slave mode.
In this example the main program has to be notified about transmission errors and the comple-
tion of the transmission.

Master
Initialization

Configure /SS,
MOSI and SCK as

output pins

Set bits SPE and
MSTR of the

SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

SPI Interrupt
Handler

Current
character

= 0 ?

Copy character to
SPDR register

ClearToSend =
true

Advance to next
character of string

Return

Select SPI speed
and enable SPI

Interrupt

Enable global
interrupts

No

Yes

Send String

ClearToSend =
true ?

Copy character to
SPDR

ClearToSend =
false

Send String

Yes

No
13
2585C–AVR–07/08

Figure 2-10. Interrupt controlled slave - initialization and transmission

Slave
Initialization

Configure MISO
as output pin

Set bit SPE of the
SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

SPI Interrupt
Handler

SPDR =
current

character ?

Advance to next
character of string

Return

Enable SPI
Interrupt

Enable global
interrupts

Receive/Verify
String

Use LEDs to show
TransmitState

Current
character

= 0 ?

TransmitState =
success

Disable SPI
Interrupt

Yes

Yes

No

TransmitState =
error

Disable SPI
Interrupt

No
14
2585C–AVR–07/08

AVR151

2585C–AVR–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, AVR Studio®, and others, are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1. Introduction
	2. General description of the SPI
	2.1 Data transmission between Master and Slave
	2.2 Pins of the SPI
	2.3 Multi Slave Systems - SS pin Functionality
	2.4 SPI Timing
	2.5 A.) CPHA = 0 and CPOL = 0 (Mode 0) and CPHA = 0 and CPOL = 1 (Mode 1)
	2.6 B.) CPHA = 1 and CPOL = 0 (Mode 2) and CPHA = 1 and CPOL = 1 (Mode 3)
	2.6.1 Considerations for high speed transmissions

	2.7 SPI Transmission Conflicts
	2.8 Emulating the SPI
	2.9 Setup the SPI
	2.9.1 Example 1 - SPI communication controlled by polling:
	2.9.1.1 Master Side:
	2.9.1.2 Slave Side:

	2.9.2 Example 2 - SPI communication controlled by interrupts:
	2.9.2.1 Master Side:
	2.9.2.2 Slave Side:

