2N3415 # **NPN General Purpose Amplifier** This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100A for characteristics. ### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 25 | V | | Vcво | Collector-Base Voltage | 25 | V | | V _{EBO} | Emitter-Base Voltage | 5.0 | V | | Ic | Collector Current - Continuous | 500 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ## **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |-----------------|---|--------|-------| | | | 2N3415 | | | P_D | Total Device Dissipation | 625 | mW | | | Derate above 25°C | 5.0 | mW/°C | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # NPN General Purpose Amplifier (continued) | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | | |---|---|--|-----|-----------|----------|--|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | | | | | | | | | | | | OFF CHA | RACTERISTICS | | | | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown
Voltage* | $I_C = 10 \text{ mA}, I_B = 0$ | 25 | | V | | | | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 10 \mu A, I_E = 0$ | 25 | | V | | | | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | I _E = 10 μA, I _C = 0 | 5.0 | | V | | | | | Ісво | Collector-Cutoff Current | V _{CB} = 25 V, I _E = 0
V _{CB} = 25 V, I _E = 0, T _A = 100°C | | 0.1
15 | μA
μA | | | | | I _{EBO} | Emitter-Cutoff Current | $V_{EB} = 5.0 \text{ V}, I_{C} = 0$ | | 0.1 | μΑ | | | | | | RACTERISTICS* | | | | | | | | | h _{FE} | DC Current Gain | $V_{CE} = 4.5 \text{ V}, I_{C} = 2.0 \text{ mA}$ | 180 | 540 | | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_C = 50 \text{ mA}, I_B = 3.0 \text{ mA}$ | | 0.3 | V | | | | | $V_{\text{BE}(\text{sat})}$ | Base-Emitter Saturation Voltage | $I_C = 50 \text{ mA}, I_B = 3.0 \text{ mA}$ | 0.6 | 1.3 | V | | | | | SMALL S | IGNAL CHARACTERISTICS | | | | | | | | | h _{fe} | Small-Signal Current Gain | $I_C = 2.0 \text{ mA}, V_{CE} = 4.5 \text{ V},$
f = 1.0 kHz | 180 | | | | | | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%