TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7736P,TA7736F

DC MOTOR DRIVER IC

The TA7736P is a 3 phase Bi-directional motor driver IC. It designed for use VCR, tape deck, floppy disk and record player motor drivers.

It contains output power drivers, position sensing circuits, control amplifier and CW / CCW control circuit.

FEATURES

- 3 Phase Bi–Directional Driver and Output Current Up to 1.0 A.
- Few External Parts Required.
- Wide Operating Supply Voltage Range : V_{CC} (opr) (Min.) = 7~20 V
- Forward and Reverse Rotation is Controlled Simply by Means of a CW / CCW Control Signal Fed Into 16PIN.
- High Sensitivity of Position Sensing Amplifier. (V_H = 10 mV_{p-p} (Typ.), Recommend to Use TOSHIBA Ga-As Hall Sensor "THS" Series.)
- Surge Protect Diode Connected for All Input Terminals. (Position Sensing, Control, CW / CCW Control Inputs.)

DIP16-P-300-2.54A : 1.11g (Typ.) HSOP16-P-300-1.00 : 0.50g (Typ.)

BLOCK DIAGRAM

PIN FUNCTION

PIN No.		SYMBOL	FUNCTION DESCRIPTION		
Р	F	STMBOL	FUNCTION DESCRIPTION		
1	5	V _{IN} ⁻	Control Amp. negative terminal		
2	6	V _{IN} ⁺	Control Amp. positive terminal		
3	7	Ha ⁺	a-phase Hall Amp. positive input terminal		
4	8	H _a	a-phase Hall Amp. negative input terminal		
5	9	H _b ⁺	b-phase Hall Amp. positive input terminal		
6	10	H _b	b-phase Hall Amp. negative input terminal		
7	11	H _c ⁺	c-phase Hall Amp. positive input terminal		
8	12	H _c	c-phase Hall Amp. negative input terminal		
9	FIN	GND	GND terminal		
10	3	R _F	Output current detection terminal		
11	15	L _c	c-phase drive output terminal		
12	16	L _b	b-phase drive output terminal		
13	1	V _{CC}	power supply input terminal		
14	2	La	a-phase drive output terminal		
15	13	R _F	Output current detection terminal		
16	4	FRS	Forward rotation / Reverse rotation switch terminal		

F: (14) Pin: No connection

INPUT VS OUTPUT

 V_{NF} shows voltage drop at $R_F.$ This is in the case of star connection, when coil current is I_L V_{NF} = $R_F{\cdot}I_L$

See the following circuit.

Further, if inputs (pin (1), (5), pin (2), (6)) are shorted or $V_1 \ge V_2$, torque at the circuit, becomes zero. However, this zero torque state also can be obtained by setting FRS input (pin (16), (4)) to specified voltage or by placing the circuit in open state and this is rather advantageous as current con sumption is less.

FUNCTION

FRS		N SENSIN	G INPUT	COIL OUTPUT			
(PIN (16), (4))	Ha	Нb	H _c	La	Lb	L _c	
	1	0	1	Н	L	М	
	1	0	0	Н	М	L	
L	1	1	0	М	Н	L	
L	0	1	0	L	Н	М	
	0	1	1	L	М	Н	
	0	0	1	М	L	Н	
	1	0	1	L	Н	М	
	1	0	0	L	М	Н	
н	1	1	0	М	L	Н	
11	0	1	0	н	L	М	
	0	1	1	н	М	L	
	0	0	1	М	н	L	
	1	0	1	High Impedance			
Μ	1	0	0				
	1	1	0				
	0	1	0				
	0	1	1				
	0	0	1				

Note: "1" of Hole element input means that voltage above + 10 mV is applied to the positive side of each hall element from the negative side and "0" means that voltage above +10 mV is applied to the negative side from the positive side. In this case, needless to say, DC potential must be within the specified common mode voltage range of hell element input.

Further, "H", "M" and "L" of output mean $V_{CC} - V_{SAT1} \approx \frac{1}{2} V_{CC}$ and V_{SAT2} , respectively, and "L", "H" and "M" of FRS input mean application of voltage within specified values of V_F, V_R and V_S, respectively.

Further, by applying required voltage for control input (V_{IN} +, V_{IN} -), measure the circuit in operating state.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		V _{CC}	26	V	
Output Current		Ι _Ο	1.0	А	
Power Dissipation	TA7736P	P _D (Note)	1.2	w	
	TA7736F	PD (NOLE)	0.9		
Operating Temperature		T _{opr}	-30~75	°C	
Storage Temperature		T _{stg}	-55~150	°C	

Note: No heat sink

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{CC} = 12 V, Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Quiescent Current		I _{CC1}	1	FRS = Open	2	4	7		
		I _{CC2}		FRS = 5 V	2	5	9	mA	
		I _{CC3}		V _{CC} = 22 V, FRS = GND	2	5	9		
Input Offset Voltage		V _{IO}	1		—	40	_	mV	
Residual Output Voltag	je	V _{OR}	1	V ₁ = V ₂ = 7 V	—	0 10 mV			
Voltage Gain		GV	1	R _{NF} = 2.2 Ω	—	15.0	_		
	Upper	V _{SAT1}	2	I _L = 400 mA	_	1.0	1.5	v	
Saturation Voltage	Lower	V _{SAT2}		I _L = 400 mA		0.4	1.0		
Cut off Current	Upper	I _{OC1}		V = 20 V	_	_	20	μA	
Cut-off Current	Lower	I _{OC2}		V = 20 V	_	_	20		
Position Sensing Input Sensitivity		V _H	1			10	_	mV	
Maximum Position Sen Voltage	tion Sensing Input V _H MAX. 1 —		_	_	400	mV			
Input Operating Voltage	Position	CMR _H	1		2.0	_	V _{CC} - 2.5	V	
	Control	CMRC	1		2.0	_	V _{CC} - 2.5	V	
Rotation Control Input Voltage	CW	V _F	1		—	0	0.4	V	
	STOP	VS	1		2.2	2.7	3.2	V	
	CCW	V _R	1		4.8	5.0	5.8	V	

TEST CIRCUIT 1

TEST CIRCUIT 2

TA7736P

TA7736F

APPLICATION CIRCUIT 1 (Basic application circuit)

Note 1: Set the Zener diode V_Z to the control signal input DC level.

(V_Z setting recommended at 2.5 to 9.0 V; 5.0 V depending on temperature characteristics. With load control input pins (1) and (5), the DC electric potential becomes $V_Z + R_F$, I_L .)

- Note 2: R_F is set depending on the coil impedance, F / V transfer voltage (control input) and required starting torque. Set between 0.3 and 5 Ω .
- Note 3: Connect when dive to control input occurs.

PACKAGE DIMENSIONS

DIP16-P-300-2.54A

Unit: mm

Weight: 1.11 g (Typ.)

PACKAGE DIMENSIONS

HSOP16-P-300-1.00

Weight: 0.50 g (Typ.)

Unit: mm

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.