
Demystifying the TLC5940

Matthew T. Pandina
artcfox@gmail.com

August 1, 2011

ii

c© 2010 Matthew T. Pandina. Verbatim copying and redistribution of this entire book is
permitted provided this notice is preserved.

Contents

1 Introduction 1
1.1 A quick word on licensing . 2
1.2 The value of a reference implementation . 2
1.3 More than just a datasheet . 3
1.4 Deciding which features to support . 4
1.5 Setting goals and objectives . 4

2 Connecting the hardware 7

3 Creating the reference implementation 9
3.1 Source Code . 15

4 Refactoring the reference implementation 21
4.1 Source Code . 24

5 Optimizing the refactored code 29
5.1 Source Code . 32

6 Adding features 37
6.1 Source Code . 42

7 Creating the library 49
7.1 Creating the C header file . 51
7.2 Creating the C source code file . 54
7.3 Enhancing the Makefile . 57
7.4 Using the library . 59

A Complete source code listing 61

B Connecting multiple TLC5940 chips in series 69

iii

iv CONTENTS

List of Figures

2.1 Connecting a TLC5940 to an ATmega328P 8

B.1 Connecting two TLC5940 chips in series . 70

v

vi LIST OF FIGURES

Chapter 1

Introduction

This book explains how to turn the datasheet and application notes for the TLC5940, a 16
channel LED driver with dot correction and grayscale PWM control, into an unencumbered
C library for use with an AVR microcontroller. This library uses the CLKO pin of the AVR
to drive the GSCLK line of the TLC5940, which allows grayscale values to be updated at
3906.25 Hz with a CLKI/O of 16 MHz, and 4882.8125 Hz with a CLKI/O of 20 MHz.

The first project in the book guides you through creating a reference implementation based
on the official TLC5940 programming flowchart. The subsequent projects build upon this
implementation, first refactoring it to be ISR-based, then optimizing it to use hardware
SPI, then adding features, and finally turning it into a fully functional library, which can
be reused for multiple projects.

Also available is a zip file1 with the complete source code for every project in the book,
along with schematics and Makefiles.

My background is mostly in software, rather than hardware. Often times it is hard for
someone with experience in an area to step back and explain everything as though it
were new again. When I started writing this tutorial, I had been working with AVR
microcontrollers for only a few months, so I feel that I haven’t lost the newbie perspective
yet. At the end of this tutorial, not only will you have a working, unencumbered library
for the TLC5940, but my hope is that you will have gained a deeper understanding of
the general process of turning a datasheet into working code—a topic which I found to be
arduous and not often discussed.

The sample code was written for the AVR-GCC compiler and tested with an ATmega328P,
but it should be easily modified to work with other compilers and/or microcontrollers.

1http://sites.google.com/site/artcfox/demystifying-the-tlc5940

1

http://sites.google.com/site/artcfox/demystifying-the-tlc5940

2 CHAPTER 1. INTRODUCTION

1.1 A quick word on licensing

Many people that ask how to use the TLC5940 get directed to the Arduino’s TLC5940
library, which is licensed under the GPL. According to the FSF, if you use a library that is
licensed under the GPL, your entire program is considered a derivative work and its source
code must be made available under the GPL. Such is the case, even if you do not modify
a single line of code in the GPL library. If your code is already under a different license
which is not compatible with the GPL, this is not even an option for you.

Thus, I created my own library for the TLC5940 based solely on information provided by
Texas Instruments, and a general architecture tip2 from the AVRfreak, Kevin Rosenberg. I
decided to make this library available under a BSD-style license that permits linking from
code with a different license.

1.2 The value of a reference implementation

When starting from scratch with a new piece of hardware, getting the wiring correct and
writing the correct code to use the hardware can seem like a gargantuan task—especially
if you are not familiar with reading datasheets. Do some research. Is there something
already out there that can get you partway to your goal? If possible, try to find something
that will let you at least prove to yourself that your chip is functional and wired correctly.
There is nothing more frustrating than trying to write and debug code for a non-functional
device, or one that is wired incorrectly.

If you can get a reference implementation for both the hardware and software up and
running, customizing it to suit your particular needs may simply be a matter of some code
refactoring, and perhaps a few hardware modifications. If you can afford to build two
reference implementations, one that remains a “known good” reference implementation,
and one that eventually becomes your prototype implementation, I highly recommend
doing so. When you are fairly certain that your prototype code should be working, but it
is not, you will be in a position to swap hardware components one at a time between your
prototype implementation and the reference implementation to check for bad components.
If you inadvertently destroy a chip, and lack a “known good” hardware and software
environment to test it out in, you might be tricked into believing your code has a bug, when
in fact the problem might be with the hardware. Being able to quickly and systematically
isolate hardware bugs from software bugs can save you hours of needless debugging.

As I was developing my library for the TLC5940, even armed with a reference implementa-
tion, I spent hours chasing the wrong thing. I do not have an oscilloscope, so I was using an

2http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=318194#318194

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=318194#318194

1.3. MORE THAN JUST A DATASHEET 3

LED to view the logic levels of various pins on my AVR. I had just fixed a wiring error in my
prototype implementation, and the LED was not indicating the correct levels with “known
good” code. I thought that the wiring error might have destroyed my ATmega328P, so I
replaced it with a brand new one to no avail. Confused, I grabbed an empty breadboard
and built the most basic circuit and tried to get each AVR to flash the LED at 1 Hz. Each
was able to make the LED flash, but not at the proper rate—even with the LED connected
to the CLKO pin, where it should have been flashing at 16 MHz. Frustrated, and thinking
I had destroyed two of my microcontrollers, I went to bed. The next morning I quickly
realized what had happened. The wiring error destroyed the TLC5940, which is why the
“known good” code was failing. Both ATmega328P chips turned out to be fine—the reason
they appeared to be behaving weirdly was because when I grabbed an LED from my junk
bin, I had unknowingly grabbed an LED that automatically flashes when connected to
power. Never underestimate the value of a good night’s sleep, and never keep a flashing
LED in your junk bin without labeling it as such!

1.3 More than just a datasheet

When trying to use a new piece of hardware, its datasheet will be your primary source
of information. Read the datasheet. If you are still new to reading datasheets this may
seem like a daunting task, but trust me, the more datasheets you read and understand, the
easier it will be to understand new datasheets. You may not understand everything you
read, but you can research or ask questions about the parts that are unclear.

Read the application notes. Often the datasheet is not the only source of information
about a piece of hardware. Poke around on the manufacturer’s website to see if there are
any application notes, flowcharts, or anything else that looks like it might be useful to you.
Sometimes you can even find a complete project with sample code to use for your reference
implementation. Even if you think an application note is unrelated to how you plan on
using the hardware, read it. Often, there are tips and tricks hiding in the application notes
that are not mentioned in the datasheet.

On the Texas Instruments product page for the TLC5940 there are links to its datasheet3,
a bunch of application notes, a user’s guide for a development board, and a programming
flow chart4. Download and read both the datasheet and the programming flowchart. Be
sure to study the programming flowchart until you understand it. This will be the design
guide for the C code, and if you don’t understand how the design works, you will have a
hard time with the C implementation for sure.

3http://www.ti.com/lit/gpn/tlc5940
4http://www.ti.com/litv/pdf/slvc106

http://www.ti.com/lit/gpn/tlc5940
http://www.ti.com/litv/pdf/slvc106
http://www.ti.com/litv/pdf/slvc106

4 CHAPTER 1. INTRODUCTION

1.4 Deciding which features to support

Often times a piece of hardware is capable of doing more than what your application
requires, so you should choose which features you will support. For the TLC5940, I support
using the dot correction values stored in EEPROM, manually setting the dot correction
values at initialization time, and setting the grayscale values. Multiple TCL5940 chips may
be linked together in series to increase the number of channels.

I did not implement the LOD (LED Open Detection) or TEF (Thermal Error Flag) checks,
nor did I implement saving dot correction values to EEPROM as this requires 22 Volts,
and can easily be worked around by setting the dot correction values at initialization time
using the AVR. If these are features you require, by the end of this tutorial you should
have enough knowledge to implement them based on the programming flowchart and the
techniques I describe.

When trying to get a new chip up and running, it is often a good idea to only implement the
bare essentials first, and then once those are fully debugged, add features as needed.

1.5 Setting goals and objectives

There are a multitude of ways you can interface with a piece of hardware. The datasheet
for your device should specify the communication protocol(s) it supports. The TLC5940
uses SPI (Serial Peripheral Interface) to communicate with a microcontroller. If you’ve
used SPI before, this shouldn’t be that difficult. I had never used SPI before, so rather
than trying to learn too many new things at once I decided that I should experiment with
how SPI works before trying to use it to talk to the TLC5940. That way I could be sure
that my SPI code was bug-free before trying to use it in a new design. Looking at the
Application Notes section of Atmel’s website I discovered AVR151: Setup And Use of The
SPI5. Atmel even provides sample code6 along with that App Note. I proceeded to make a
little side project where I configured one ATmega328P to be the master, and another to be
the slave, and I got them talking to each other over the SPI bus. Sometimes you’ll want to
invent a little homework assignment for yourself. There is a plethora of knowledge available
in the form of application notes and code samples on Atmel’s website. Take advantage of
what’s out there.

Armed with my newfound knowledge of how to use SPI, I tried to code something up to
talk to the TLC5940, but got nowhere. Remember that programming flowchart I referred
to earlier? I didn’t actually discover it until after I had done my little SPI homework

5http://atmel.com/dyn/resources/prod documents/doc2585.pdf
6http://atmel.com/dyn/resources/prod documents/AVR151.zip

http://atmel.com/dyn/resources/prod_documents/doc2585.pdf
http://atmel.com/dyn/resources/prod_documents/doc2585.pdf
http://atmel.com/dyn/resources/prod_documents/AVR151.zip

1.5. SETTING GOALS AND OBJECTIVES 5

assignment, and after a very a frustrating week or so trying to talk to the chip using only
the datasheet. Had I done a bit more research in the beginning, I would have saved myself
a lot of frustration.

Even after I found the flowchart, I was torn over how I should use it. The process it describes
is at the bit level, with the GSCLK intertwined with the SCLK. For my application I
wanted to use the AVR’s CLKO pin for the GSCLK, and the AVR’s SPI hardware for
communication. I also wanted everything to run in an ISR, so the AVR could do other
things besides just being stuck in a loop feeding the TLC5940 clock pulses and data. The
flowchart seemed like a poor fit for my application, and as a result I was still getting
nowhere, and becoming even more frustrated.

Then something clicked inside my head. I figured that since I wasn’t getting anywhere, I
might as well directly translate the flowchart into C code at the bit-bang level just to make
some kind of progress. At this point I had spent nearly two weeks messing around with
the TLC5940, and my general mood was being affected. Even though the programming
flowchart was not structured the way I wanted to ultimately structure my code, I figured
that it could serve as my reference implementation. I could start by following the flowchart
exactly for the features I wanted to implement, and then once I got that working, I could
slowly refactor the code until it fit the model I had in my head. By using an iterative
process of starting with something that works, and then changing one thing at a time
testing at each step I was certain that I would be able to get it working. At this point I
think I might have even sarcastically exclaimed “I have an action plan!” before going to
bed feeling confident that my next coding session would be fruitful. The very next day I
had a working implementation.

Rather than let yourself get completely overwhelmed by trying to start with the end result,
break your project down into smaller objectives that can be independently verified and
tested. Writing lots of code for multiple things you’ve never used before and then trying
to figure out where the bugs are is just asking for a headache. Set intermediate goals for
yourself that let you achieve your objective iteratively. You will spend much less time
trying to figure out what part doesn’t work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Connecting the hardware

Before starting on the library, you will want to build your circuit. I prefer to use solderless
breadboards for rapid prototyping because they make it trivial to swap out components or
reconfigure the circuit.

For the reference implementation it does not matter which pins on the AVR are used to
communicate with TLC5940 since the entire protocol will be bit-banged. Ultimately, we
plan to use hardware SPI and the clock output buffer, which are features of the AVR
only available on specific pins. So by starting with those specific pins for the reference
implementation, we will save ourselves from having to reconfigure the hardware later.
Reading about those specific hardware features in the datasheet for the ATmega328P gave
me the information I needed to know to make this determination.

Connect your hardware according to the schematic in Figure 2.1.

R3, the 2.2K resistor between the IREF pin of the TLC5940 and GND, limits the maximum
current that can flow through each of the LEDs to ∼18 mA. If you wish to change this
maximum, look under “Setting maximum channel current” in the TLC5940 datasheet. The
quick and dirty formula is:

RIREF =
39.06

IMAX

where RIREF is the resistor value in Ohms, and IMAX is the maximum current in Amps.

R2, the 10K resistor connected between the BLANK pin of the TLC5940 and VCC, turns
off all outputs when the AVR is not actively driving BLANK low, such as during reset and
programming. The rest of the schematic is pretty standard for an AVR. D1 and C1 are
optional, and provide for ESD protection on the RESET pin and enhanced noise immunity
respectively. D1 should not be used if using High Voltage Programming, and C1 should not

7

8 CHAPTER 2. CONNECTING THE HARDWARE

R
1

10
K

Vcc

Vcc

Vcc

R
3

2.
2K

R
2

10
K

Vcc

C2
22 pF

C3
22 pF

C
1

4.
7

nF

C4
0.1 uF

C5
0.1 uF

C
6

0.
1

uF

Q
1

16
M

14(PCINT0/CLKO/ICP1) PB0
15(PCINT1/OC1A) PB1
16(PCINT2/OC1B/SS) PB2
17(PCINT3/OC2A/MOSI) PB3
18(PCINT4/MISO) PB4
19(PCINT5/SCK) PB5

23(PCINT8/ADC0) PC0
24(PCINT9/ADC1) PC1
25(PCINT10/ADC2) PC2
26(PCINT11/ADC3) PC3
27(PCINT12/SDA/ADC4) PC4
28(PCINT13/SCL/ADC5) PC5

2(PCINT16/RXD) PD0
3(PCINT17/TXD) PD1
4(PCINT18/INT0) PD2
5(PCINT19/OC2B/INT1) PD3
6(PCINT20/XCK/T0) PD4
11(PCINT21/OC0B/T1) PD5
12(PCINT22/OC0A/AIN0) PD6
13(PCINT23/AIN1) PD7

21 AREF

20 AVCC

8 GND

22 GND

9 PB6 (TOSC1/XTAL1/PCINT6)

10 PB7 (TOSC2/XTAL2/PCINT7)

1 PC6 (RESET/PCINT14)

7 VCC

ATMEGA328P−PDIP

U1

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

LED9

LED10

LED11

LED12

LED13

LED14

LED15

LED16

26

SIN
28OUT0

1OUT1

2OUT2

3OUT3

4OUT4

5OUT5

6OUT6

7OUT7

8OUT8

9OUT9

10OUT10

11OUT11

12OUT12

13OUT13

14OUT14

15OUT15

23 BLANK

19 DCPRG

22 GND

18 GSCLK

20 IREF

25 SCLK

21 VCC

27 VPRG

16 XERR

24 XLAT

17

SOUT

TLC5940−NT

U2
D

1
1N

41
48

Vcc
1 2
3 4
5 6

ICSP

MISO
SCK

RESET

+5V
MOSI
GND

J1

Figure 2.1: Connecting a TLC5940 to an ATmega328P

be used if debugWIRE is being used. For more information see AVR042: AVR Hardware
Design Considerations1.

Note that I am not using a voltage regulator, since all of my 5 Volt AC adapters are
switching-mode adapters, meaning they output exactly 5 Volts. If you do not use a
switching-mode adapter, you absolutely must use a voltage regulator to limit VCC to
5 Volts, since un-switched adapters output a much higher voltage than what they claim.
Failure to heed this advice may result in destroying both the AVR and the TLC5940!

I did not include a reset button because I wanted to fit an ATmega328P and three TLC5940
chips on the same breadboard. Feel free to add a normally-open momentary switch between
the RESET pin of the ATmega328P and GND if you would like one.

1http://www.atmel.com/dyn/resources/prod documents/doc2521.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc2521.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2521.pdf

Chapter 3

Creating the reference
implementation

Now that we have a plan for developing the library, and our circuit has been built, we can
begin writing code. Create yourself a new AVR project using your favorite method, grab
the TLC5940 Programming Flow Chart, and we can begin translating the flowchart into
C code.

Here is what my skeleton main.c looks like:

#include <stdint.h>
#include <avr/io.h>

int main(void) {

for (;;) {
}

return 0;
}

To make the source code somewhat self-documenting, we will create defines for the output
pins. This allows us to refer to the pins by more descriptive names rather than the raw
pin names. This will also make it easier if we decide to reassign a pin later, since then we
would only need to make the change in one place.

Knowing the name of the pin is not enough; we also need to know the name of its associated
data direction register and port. This information can be found in the datasheet for the
ATmega328P.

9

10 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

Just below the includes, add the following defines which correspond to the pins we’ve
connected to the TLC5940:

#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB
#define GSCLK_PIN PB0

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

#define DCPRG_DDR DDRD
#define DCPRG_PORT PORTD
#define DCPRG_PIN PD4

#define VPRG_DDR DDRD
#define VPRG_PORT PORTD
#define VPRG_PIN PD7

#define XLAT_DDR DDRB
#define XLAT_PORT PORTB
#define XLAT_PIN PB1

Look back at the programming flowchart, just under the Start symbol. Note that we need
to set the voltage on a bunch of pins high or low. Looking at the rest of the flowchart, we
see many instances where we need to either set a pin high or low, or pulse it high then low.
Since this appears to be quite common, we can create macros to help us.

Before we can change the voltage level of a pin, the AVR requires us to first designate that
pin as an output pin by writing to its data direction register, so we will create a macro for
that as well.

Just below the previous defines, add the following:

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)

11

This is pretty standard stuff here. The reason why the pulse() macro has the seemingly
pointless do { } while (0) construct around it is because the macro expands into multiple
C statements: a call to setHigh() followed by a call to setLow(). This construct allows us
to use the macro inside an unbracketed if() statement and have it interpreted correctly.
Always wrap your multi-line macros inside a do { } while (0) construct. This is especially
important when making a library that will be used by others.

Things are looking good so far. We have enough defined that we can write our initialization
function:

void TLC5940_Init(void) {
setOutput(GSCLK_DDR, GSCLK_PIN);
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(GSCLK_PORT, GSCLK_PIN);
setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

}

First we designate all of the appropriate pins as outputs using our setOutput() macro, and
then we set their levels according to the flowchart. Note that we also designate SIN as an
output pin here, even though we don’t need to set its level yet.

Moving on to the DC Input Cycle section of the flowchart, we see that if we answer “Yes”
to “Use DC EEPROM data?” then the only action in this section is to set DCPRG to
low. Since DCPRG will already be low after calling TLC5940_Init(), this entire section of
the flowchart is optional—assuming we are satisfied with using the dot correction values
stored in EEPROM.

The datasheet for the TLC5940 tells us that the factory defaults for the dot correction
values stored in EEPROM are 100% for all channels. Since we might not always want to use
the defaults, we will create a function for manually setting the dot correction values.

Before we continue, create a define for the number of TLC5940 chips that are linked in
series. For now we will just hard code this value to 1.

Below the first group of defines, add:

#define TLC5940_N 1

12 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

Looking back at the datasheet for the TLC5940, we find that the dot correction data
format consists of 16×6-bit words, forming a 96-bit wide serial data packet, clocked in
MSB first. To avoid complicating things at this stage, and since we will be bit-banging
the entire protocol, let’s not worry about packing this data into bytes. The ATmega328P
has enough memory and we can optimize this part later. Right now we are working on the
reference implementation and structuring things this way will help us better understand
how to pack this data into bytes later on.

Just below the defines, create an array to hold the dot correction data:

uint8_t dcData[96 * TLC5940_N] = {
// MSB LSB

1, 1, 1, 1, 1, 1, // Channel 15
1, 1, 1, 1, 1, 1, // Channel 14
1, 1, 1, 1, 1, 1, // Channel 13
1, 1, 1, 1, 1, 1, // Channel 12
1, 1, 1, 1, 1, 1, // Channel 11
1, 1, 1, 1, 1, 1, // Channel 10
1, 1, 1, 1, 1, 1, // Channel 9
1, 1, 1, 1, 1, 1, // Channel 8
1, 1, 1, 1, 1, 1, // Channel 7
1, 1, 1, 1, 1, 1, // Channel 6
1, 1, 1, 1, 1, 1, // Channel 5
1, 1, 1, 1, 1, 1, // Channel 4
1, 1, 1, 1, 1, 1, // Channel 3
1, 1, 1, 1, 1, 1, // Channel 2
1, 1, 1, 1, 1, 1, // Channel 1
1, 1, 1, 1, 1, 1, // Channel 0

};

As you can see, we’ve arranged this array into 16×6-bit words, corresponding to the dot
correction value for each channel. This arrangement will make it very easy for us to tweak
the value of an individual channel to verify that our function works correctly.

Now that we have our array defined, we can translate this section of the flowchart:

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

uint8_t Counter = 0;

for (;;) {
if (Counter > TLC5940_N * 96 - 1) {

pulse(XLAT_PORT, XLAT_PIN);
break;

} else {
if (dcData[Counter])

setHigh(SIN_PORT, SIN_PIN);

13

else
setLow(SIN_PORT, SIN_PIN);

pulse(SCLK_PORT, SCLK_PIN);
Counter++;

}
}

}

That was pretty straightforward—almost a literal translation. Note that we skipped the
part that deals with writing the dot correction data to EEPROM, since that requires 22
Volts (which we are not supporting).

For our library, we are making a couple assumptions. The first assumption is that we
will only ever set the dot correction values immediately after initializing the library. The
second assumption is that once we manually set the dot correction values that we aren’t
going to switch back to using the EEPROM defaults.

Since we aren’t going to bother with the LOD and TEF detection, we have only one more
section of the flowchart to translate.

Looking again at the datasheet, we find that the grayscale data format consists of 16×12-bit
words, forming a 192-bit wide serial data packet, clocked in MSB first.

Define the grayscale array similar to how we defined the dot correction array:

uint8_t gsData[192 * TLC5940_N] = {
// MSB LSB

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 14
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // Channel 12
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, // Channel 11
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // Channel 10
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, // Channel 9
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, // Channel 8
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, // Channel 7
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, // Channel 6
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, // Channel 5
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 4
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 3
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 2
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // Channel 0

};

We’ve arranged this array into 16×12-bit words, each corresponding to the grayscale value
for a given channel. Rather than initialize each channel to its maximum value like we did
with the dot correction array, channel 0 will be the brightest, and each successive channel

14 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

will be dimmer than the previous (until the values become zero). This gradient will let us
see at a glance that our code works.

Looking at the “Grayscale data input cycle combined with grayscale PWM cycle” section
of the flowchart, note that we need to check if VPRG is high in order to set the flag used
for sending an extra SCLK pulse if we just previously clocked in dot correction data. In
order to read the current state of an output pin, we will create another macro.

Just below the other defines, add the following:

#define outputState(port, pin) ((port) & (1 << (pin)))

This will evaluate to true when the output state of pin is high, and false when low.

Now we can translate this section of the flowchart into C code:

void TLC5940_SetGS_And_GS_PWM(void) {
uint8_t firstCycleFlag = 0;

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
firstCycleFlag = 1;

}

uint16_t GSCLK_Counter = 0;
uint8_t Data_Counter = 0;

setLow(BLANK_PORT, BLANK_PIN);
for (;;) {

if (GSCLK_Counter > 4095) {
setHigh(BLANK_PORT, BLANK_PIN);
pulse(XLAT_PORT, XLAT_PIN);
if (firstCycleFlag) {

pulse(SCLK_PORT, SCLK_PIN);
firstCycleFlag = 0;

}
break;

} else {
if (!(Data_Counter > TLC5940_N * 192 - 1)) {

if (gsData[Data_Counter])
setHigh(SIN_PORT, SIN_PIN);

else
setLow(SIN_PORT, SIN_PIN);

pulse(SCLK_PORT, SCLK_PIN);
Data_Counter++;

}
}
pulse(GSCLK_PORT, GSCLK_PIN);
GSCLK_Counter++;

}

3.1. SOURCE CODE 15

}

There is nothing really too special about any of that code, it is pretty much just a literal
translation of that flowchart section into C. The way the code is structured, the pulsing of
GSCLK and SCLK are intertwined. This is fine for now, but ultimately we will want to
disentangle these clocks from each other.

All that remains to complete the reference implementation is to modify main():

int main(void) {
TLC5940_Init();
TLC5940_ClockInDC(); // try it both with and without this line

for (;;) {
TLC5940_SetGS_And_GS_PWM();

}

return 0;
}

As you can see, this function is simple. First we call our initialization function, TLC5940_Init(),
and then we call TLC5940_ClockInDC() to set the dot correction values. If you are happy us-
ing the dot correction values stored in EEPROM, you can skip the call to TLC5940_ClockInDC()

entirely. Then we simply go into an infinite loop calling TLC5940_SetGS_And_GS_PWM() over
and over.

Before you test, be sure the CLKO fuse on the AVR is unprogrammed, since we are
bit-banging this pin for the reference implementation, and programming the CLKO fuse
now would override our ability to manually set the output level on that pin. Unless you
have specifically programmed this fuse, it should be unprogrammed by default from the
factory.

That wasn’t too bad was it? Try flashing the code onto your ATmega328P now. If
everything works correctly, you should see a row of LEDs with decreasing brightness.

3.1 Source Code

#include <stdint.h>
#include <avr/io.h>

#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB
#define GSCLK_PIN PB0

#define SIN_DDR DDRB

16 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

#define DCPRG_DDR DDRD
#define DCPRG_PORT PORTD
#define DCPRG_PIN PD4

#define VPRG_DDR DDRD
#define VPRG_PORT PORTD
#define VPRG_PIN PD7

#define XLAT_DDR DDRB
#define XLAT_PORT PORTB
#define XLAT_PIN PB1

#define TLC5940_N 1

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

uint8_t dcData[96 * TLC5940_N] = {
// MSB LSB

1, 1, 1, 1, 1, 1, // Channel 15
1, 1, 1, 1, 1, 1, // Channel 14
1, 1, 1, 1, 1, 1, // Channel 13
1, 1, 1, 1, 1, 1, // Channel 12
1, 1, 1, 1, 1, 1, // Channel 11
1, 1, 1, 1, 1, 1, // Channel 10
1, 1, 1, 1, 1, 1, // Channel 9
1, 1, 1, 1, 1, 1, // Channel 8
1, 1, 1, 1, 1, 1, // Channel 7
1, 1, 1, 1, 1, 1, // Channel 6
1, 1, 1, 1, 1, 1, // Channel 5
1, 1, 1, 1, 1, 1, // Channel 4
1, 1, 1, 1, 1, 1, // Channel 3
1, 1, 1, 1, 1, 1, // Channel 2

3.1. SOURCE CODE 17

1, 1, 1, 1, 1, 1, // Channel 1
1, 1, 1, 1, 1, 1, // Channel 0

};

uint8_t gsData[192 * TLC5940_N] = {
// MSB LSB

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 14
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // Channel 12
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, // Channel 11
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // Channel 10
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, // Channel 9
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, // Channel 8
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, // Channel 7
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, // Channel 6
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, // Channel 5
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 4
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 3
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 2
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // Channel 0

};

void TLC5940_Init(void) {
setOutput(GSCLK_DDR, GSCLK_PIN);
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(GSCLK_PORT, GSCLK_PIN);
setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

uint8_t Counter = 0;

for (;;) {
if (Counter > TLC5940_N * 96 - 1) {

pulse(XLAT_PORT, XLAT_PIN);

18 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

break;
} else {

if (dcData[Counter])
setHigh(SIN_PORT, SIN_PIN);

else
setLow(SIN_PORT, SIN_PIN);

pulse(SCLK_PORT, SCLK_PIN);
Counter++;

}
}

}

void TLC5940_SetGS_And_GS_PWM(void) {
uint8_t firstCycleFlag = 0;

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
firstCycleFlag = 1;

}

uint16_t GSCLK_Counter = 0;
uint8_t Data_Counter = 0;

setLow(BLANK_PORT, BLANK_PIN);
for (;;) {

if (GSCLK_Counter > 4095) {
setHigh(BLANK_PORT, BLANK_PIN);
pulse(XLAT_PORT, XLAT_PIN);
if (firstCycleFlag) {

pulse(SCLK_PORT, SCLK_PIN);
firstCycleFlag = 0;

}
break;

} else {
if (!(Data_Counter > TLC5940_N * 192 - 1)) {

if (gsData[Data_Counter])
setHigh(SIN_PORT, SIN_PIN);

else
setLow(SIN_PORT, SIN_PIN);

pulse(SCLK_PORT, SCLK_PIN);
Data_Counter++;

}
}
pulse(GSCLK_PORT, GSCLK_PIN);
GSCLK_Counter++;

}
}

int main(void) {
TLC5940_Init();

3.1. SOURCE CODE 19

TLC5940_ClockInDC(); // try it both with and without this line

for (;;) {
TLC5940_SetGS_And_GS_PWM();

}

return 0;
}

20 CHAPTER 3. CREATING THE REFERENCE IMPLEMENTATION

Chapter 4

Refactoring the reference
implementation

Now that we have our reference implementation, we can begin to modify it toward our
original goal of using the clock output buffer to drive GSCLK, the hardware SPI for sending
the serial data, and an ISR to reset the grayscale counter every 4096 clock cycles. Note
that resetting the grayscale counter is required as it does not automatically reset on its
own.

As written, the reference implementation requires main() to call TLC5940_SetGS_And_GS_PWM()
in a tight loop. It would be handy if we could put this work inside an ISR, so main() remains
free to do other things.

Add the following line below the other includes:

#include <avr/interrupt.h>

Next we need to setup a hardware timer that will call an ISR every 4096 clock cycles. The
easiest way I have found to achieve this, is to use a timer in CTC mode, with a prescale
of 1024, and TOP set to 3. This tip was graciously provided by the AVRfreak, Kevin
Rosenberg. The details of how to setup and configure a timer are outside the scope of this
tutorial, but if you want more information I suggest reading the Newbie’s Guide to AVR
Timers1, by Dean Camera.

Add the following timer initialization code to the end of the TLC5940_Init() function:

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);

1http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106

21

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106

22 CHAPTER 4. REFACTORING THE REFERENCE IMPLEMENTATION

// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));
// Generate an interrupt every 4096 clock cycles
OCR0A = 3;
// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

Next create a skeleton for the ISR:

ISR(TIMER0_COMPA_vect) {
}

The code that we just added to the end of the TLC5940_Init() function configures a
hardware timer to automatically call this ISR every 4096 clock cycles.

Looking back at the programming flowchart, note that when BLANK is high, all outputs
are turned off. When BLANK is low, all outputs are enabled. Our goal will be to minimize
the amount of time the outputs are turned off.

Since shifting in new grayscale values takes time, we will use a trick similar to the one
described in the application note, AVR136: Low-Jitter Multi-Channel Software PWM2,
whereby we shift in the next set of grayscale values at the end of the ISR (while the
previous values are being displayed), and then at the beginning of the next call, pulse
XLAT to complete the update. This both minimizes the amount of time the outputs are
turned off, and it allows us to have a full 4096 cycles to shift in new data and run code
inside main().

We need to take the code that is currently inside TLC5940_SetGS_And_GS_PWM(), move it to
the ISR, and then refactor it to fit into our interrupt-based paradigm.

Modify the ISR as follows:

ISR(TIMER0_COMPA_vect) {
uint8_t firstCycleFlag = 0;
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
firstCycleFlag = 1;

}

if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

2http://www.atmel.com/dyn/resources/prod documents/doc8020.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc8020.pdf

23

}

if (firstCycleFlag)
pulse(SCLK_PORT, SCLK_PIN);

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
uint8_t Data_Counter = 0;
for (;;) {

if (!(Data_Counter > TLC5940_N * 192 - 1)) {
if (gsData[Data_Counter])

setHigh(SIN_PORT, SIN_PIN);
else

setLow(SIN_PORT, SIN_PIN);
pulse(SCLK_PORT, SCLK_PIN);
Data_Counter++;

} else {
xlatNeedsPulse = 1;
break;

}
}

}

Note that we are no longer pulsing GSCLK, since the clock output buffer automatically
handles that for us, and we are no longer using GSCLK_Counter, since the timer automati-
cally triggers the ISR every 4096 clock pulses.

Additionally, we created a static variable, xlatNeedsPulse, to keep track of whether or not
grayscale data was shifted in during the previous call to the ISR. After grayscale data is
shifted in, we set this variable so the next time around we know to pulse XLAT to complete
the previous update cycle. As you can see inside TLC5940_SetGS_And_GS_PWM(), the code
that pulses XLAT (and potentially SCLK), needs to run when BLANK is high. Therefore,
in our refactored ISR, we needed to ensure that these pulses also occur when BLANK is
high.

Update main() to use the new functions:

int main(void) {
TLC5940_Init();
TLC5940_ClockInDC();

// Enable Global Interrupts
sei();

for (;;) {
}

24 CHAPTER 4. REFACTORING THE REFERENCE IMPLEMENTATION

return 0;
}

Note that for the ISR to be called, global interrupts must be enabled with a call to sei().
Global interrupts should not be enabled until after TLC5940_Init() and TLC5940_ClockInDC()

have been called. Also note that we no longer need to call TLC5940_SetGS_And_GS_PWM()
from the main loop.

Using your AVR programmer, program the CLKO fuse, and then flash your AVR with
the improved code. Make sure you see the same output on the LEDs as you did with the
previous reference implementation.

Using CLKO to drive the GSCLK pin of the TLC5940 allows us to achieve very high
PWM rates, which translates into being able to update the grayscale values many times
per second.

4.1 Source Code

#include <stdint.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB
#define GSCLK_PIN PB0

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

#define DCPRG_DDR DDRD
#define DCPRG_PORT PORTD
#define DCPRG_PIN PD4

#define VPRG_DDR DDRD
#define VPRG_PORT PORTD
#define VPRG_PIN PD7

4.1. SOURCE CODE 25

#define XLAT_DDR DDRB
#define XLAT_PORT PORTB
#define XLAT_PIN PB1

#define TLC5940_N 1

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

uint8_t dcData[96 * TLC5940_N] = {
// MSB LSB

1, 1, 1, 1, 1, 1, // Channel 15
1, 1, 1, 1, 1, 1, // Channel 14
1, 1, 1, 1, 1, 1, // Channel 13
1, 1, 1, 1, 1, 1, // Channel 12
1, 1, 1, 1, 1, 1, // Channel 11
1, 1, 1, 1, 1, 1, // Channel 10
1, 1, 1, 1, 1, 1, // Channel 9
1, 1, 1, 1, 1, 1, // Channel 8
1, 1, 1, 1, 1, 1, // Channel 7
1, 1, 1, 1, 1, 1, // Channel 6
1, 1, 1, 1, 1, 1, // Channel 5
1, 1, 1, 1, 1, 1, // Channel 4
1, 1, 1, 1, 1, 1, // Channel 3
1, 1, 1, 1, 1, 1, // Channel 2
1, 1, 1, 1, 1, 1, // Channel 1
1, 1, 1, 1, 1, 1, // Channel 0

};

uint8_t gsData[192 * TLC5940_N] = {
// MSB LSB

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 14
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // Channel 12
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, // Channel 11
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // Channel 10
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, // Channel 9
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, // Channel 8
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, // Channel 7
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, // Channel 6
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, // Channel 5
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 4
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 3

26 CHAPTER 4. REFACTORING THE REFERENCE IMPLEMENTATION

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 2
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Channel 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // Channel 0

};

void TLC5940_Init(void) {
setOutput(GSCLK_DDR, GSCLK_PIN);
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(GSCLK_DDR, GSCLK_PIN);
setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);
// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));
// Generate an interrupt every 4096 clock cycles
OCR0A = 3;
// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

uint8_t Counter = 0;

for (;;) {
if (Counter > TLC5940_N * 96 - 1) {

pulse(XLAT_PORT, XLAT_PIN);
break;

} else {
if (dcData[Counter])

setHigh(SIN_PORT, SIN_PIN);
else

setLow(SIN_PORT, SIN_PIN);
pulse(SCLK_PORT, SCLK_PIN);
Counter++;

}
}

4.1. SOURCE CODE 27

}

ISR(TIMER0_COMPA_vect) {
uint8_t firstCycleFlag = 0;
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
firstCycleFlag = 1;

}

if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

if (firstCycleFlag)
pulse(SCLK_PORT, SCLK_PIN);

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
uint8_t Data_Counter = 0;
for (;;) {

if (!(Data_Counter > TLC5940_N * 192 - 1)) {
if (gsData[Data_Counter])

setHigh(SIN_PORT, SIN_PIN);
else

setLow(SIN_PORT, SIN_PIN);
pulse(SCLK_PORT, SCLK_PIN);
Data_Counter++;

} else {
xlatNeedsPulse = 1;
break;

}
}

}

int main(void) {
TLC5940_Init();
TLC5940_ClockInDC();

// Enable Global Interrupts
sei();

for (;;) {
}

28 CHAPTER 4. REFACTORING THE REFERENCE IMPLEMENTATION

return 0;
}

Chapter 5

Optimizing the refactored code

Now that we have a proven interrupt-based model, we can use the hardware SPI feature of
the AVR to send the serial data to the TLC5940. First, we will replace the wasteful arrays,
dcData and gsData, with smaller arrays whose bits are packed neatly into bytes.

Replace the declaration of dcData with the following:

uint8_t dcData[12 * TLC5940_N] = {
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,

};

We are using binary to represent the data values, to make it easier to see how the packed
values correspond to the unpacked values of the previous implementation. This binary rep-
resentation should help us conceptualize the bit-shifting operations that will be necessary
later when we write functions for setting the values of the individual channels. Note that
reading off the bits starting from the beginning of the array, MSB to LSB (left to right),
gives us the same bits in the same order as before, except now there are “line breaks” every
eight bits instead of six.

Doing the same for the declaration of gsData we have:

29

30 CHAPTER 5. OPTIMIZING THE REFACTORED CODE

uint8_t gsData[24 * TLC5940_N] = {
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000001,
0b00000000,
0b00100000,
0b00000100,
0b00000000,
0b10000000,
0b00010000,
0b00000010,
0b00000000,
0b01000000,
0b00001000,
0b00000001,
0b00000000,
0b00100000,
0b00000100,
0b00000000,
0b10000000,
0b00001111,
0b11111111,

};

Again, reading off the bits will give you the same result as before, but now the “line breaks”
occur every eight bits instead of twelve.

Now that all the bits are packed into bytes, we are free to use the hardware SPI feature of
the AVR to clock out the data more efficiently. Note that since we already set the MISO,
MOSI, and SS pins as ouputs in TLC5940_Init(), we do not need to do that here. Had
we not chosen to connect BLANK to the SS pin on the AVR, we would have needed to
explicitly set this as an output pin before using SPI.

Before we can use the hardware SPI feature of the AVR, it needs to be enabled.

Add the following code to the TLC5940_Init() function just above the timer code:

// Enable SPI, Master, set clock rate fck/2
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);

Because we don’t know how many TLC5940 chips will be connected in series, there may
be a question of what size variable type to use in various places thoughout the library.
Since TLC5940_N is a compile time constant, we can let the preprocessor figure out the

31

appropriate size variable types for us.

Just below the file-wide defines add the following:

#if (12 * TLC5940_N > 255)
#define dcData_t uint16_t
#else
#define dcData_t uint8_t
#endif

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#define dcDataSize ((dcData_t)12 * TLC5940_N)
#define gsDataSize ((gsData_t)24 * TLC5940_N)

This allows us to use the types dcData_t and gsData_t, without having to worry about
whether those types need to be declared as uint8_t or uint16_t. The defines for dcDataSize
and gsDataSize represent the size of the dcData and gsData arrays respectively. The explicit
casts exist to avoid overflow when compiling with the -mint8 option.1

Next we will rewrite the code for clocking in the dot correction data to use the hardware
SPI feature of the AVR.

Modify the TLC5940_ClockInDC() function as follows:

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

for (dcData_t i = 0; i < dcDataSize; i++) {
// Start transmission
SPDR = dcData[i];
// Wait for transmission complete
while (!(SPSR & (1 << SPIF)));

}
pulse(XLAT_PORT, XLAT_PIN);

}

If you’ve read up on SPI, you will see that this SPI code is pretty standard.

Now modify the ISR to take advantage of hardware SPI:

1Though compiling with the -mint8 option may result in smaller and faster code by making the int
type 8 bits rather than 16 bits, realize that it does violate the C standard, and may cause problems if your
code links to functions that do not exclusively use stdint.h types throughout. This includes some functions
in avr-libc, which are known to be incompatible with the -mint8 compile option.

32 CHAPTER 5. OPTIMIZING THE REFACTORED CODE

ISR(TIMER0_COMPA_vect) {
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
for (gsData_t i = 0; i < gsDataSize; i++) {

SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;

}

Note that we also rearranged a few lines in the beginning to eliminate the firstCycleFlag

variable and an if() statement while keeping the logic the same. In doing so we had to
repeat a few lines of code, but the end result is less work being done each iteration (every
4096 clock cycles), so that is a win.

Flash this new code onto your AVR and make sure it works. The iterative process of
making a change followed by testing may seem tedious, but if something were to stop
working between changes you will have a much easier time figuring out where the problem
lies.

5.1 Source Code

#include <stdint.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB

5.1. SOURCE CODE 33

#define GSCLK_PIN PB0

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

#define DCPRG_DDR DDRD
#define DCPRG_PORT PORTD
#define DCPRG_PIN PD4

#define VPRG_DDR DDRD
#define VPRG_PORT PORTD
#define VPRG_PIN PD7

#define XLAT_DDR DDRB
#define XLAT_PORT PORTB
#define XLAT_PIN PB1

#define TLC5940_N 1

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

#if (12 * TLC5940_N > 255)
#define dcData_t uint16_t
#else
#define dcData_t uint8_t
#endif

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#define dcDataSize ((dcData_t)12 * TLC5940_N)

34 CHAPTER 5. OPTIMIZING THE REFACTORED CODE

#define gsDataSize ((gsData_t)24 * TLC5940_N)

uint8_t dcData[12 * TLC5940_N] = {
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,
0b11111111,

};

uint8_t gsData[24 * TLC5940_N] = {
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000001,
0b00000000,
0b00100000,
0b00000100,
0b00000000,
0b10000000,
0b00010000,
0b00000010,
0b00000000,
0b01000000,
0b00001000,
0b00000001,
0b00000000,
0b00100000,
0b00000100,
0b00000000,
0b10000000,
0b00001111,
0b11111111,

};

void TLC5940_Init(void) {
setOutput(GSCLK_DDR, GSCLK_PIN);
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);

5.1. SOURCE CODE 35

setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(GSCLK_DDR, GSCLK_PIN);
setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

// Enable SPI, Master, set clock rate fck/2
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);
// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));
// Generate an interrupt every 4096 clock cycles
OCR0A = 3;
// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

for (dcData_t i = 0; i < dcDataSize; i++) {
// Start transmission
SPDR = dcData[i];
// Wait for transmission complete
while (!(SPSR & (1 << SPIF)));

}
pulse(XLAT_PORT, XLAT_PIN);

}

ISR(TIMER0_COMPA_vect) {
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {

36 CHAPTER 5. OPTIMIZING THE REFACTORED CODE

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
for (gsData_t i = 0; i < gsDataSize; i++) {

SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;

}

int main(void) {
TLC5940_Init();
TLC5940_ClockInDC();

// Enable Global Interrupts
sei();

for (;;) {
}

return 0;
}

Chapter 6

Adding features

Right now the dot correction and grayscale values are hardcoded in the definitions of dcData
and gsData, respectively. This is fine for testing purposes, but it would be nice if we had a
way to set these values programatically, either all at once, or on a per channel basis.

Since we used a binary representation for the packed bits, it will be easier for us to determine
the bit masking and shifting operations necessary.

Start by writing the function for setting the grayscale value of all channels, since this is
the easiest one to write and understand:

void TLC5940_SetAllGS(uint16_t value) {
uint8_t tmp1 = (value >> 4);
uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4);
gsData_t i = 0;
do {

gsData[i++] = tmp1; // bits: 11 10 09 08 07 06 05 04
gsData[i++] = tmp2; // bits: 03 02 01 00 11 10 09 08
gsData[i++] = (uint8_t)value; // bits: 07 06 05 04 03 02 01 00

} while (i < gsDataSize);
}

Next write the function for setting the dot correction value of all channels, since this is
only slightly more complicated:

void TLC5940_SetAllDC(uint8_t value) {
uint8_t tmp1 = (uint8_t)(value << 2);
uint8_t tmp2 = (uint8_t)(tmp1 << 2);
uint8_t tmp3 = (uint8_t)(tmp2 << 2);
tmp1 |= (value >> 4);
tmp2 |= (value >> 2);
tmp3 |= value;

37

38 CHAPTER 6. ADDING FEATURES

dcData_t i = 0;
do {

dcData[i++] = tmp1; // bits: 05 04 03 02 01 00 05 04
dcData[i++] = tmp2; // bits: 03 02 01 00 05 04 03 02
dcData[i++] = tmp3; // bits: 01 00 05 04 03 02 01 00

} while (i < dcDataSize);
}

The details of the bit manipulations involved here are outside the scope of this tutorial,
but the results should be obvious based on the comments in the code. We are simply
extracting and combining certain bits of value to achieve the same “line breaks” as we did
when we manually packed the bits earlier, in preparation for using hardware SPI.

Note that we use temporary variables so all of the bit manipulation code occurs outside the
loop. Even among the temporary variables, the number of bit shifts necessary is reduced
by reusing previously calculated values.

Next we want to create a function that allows us to set the grayscale value for a particular
channel. Depending on how many TLC5940 chips are connected in series, the channel
value might be too large to store in a uint8_t, so first we should define a new data type
called channel_t that will, at compile time, automatically select the correct size data type
to store a channel.

Above the definition of dcDataSize, add the following:

#if (16 * TLC5940_N > 255)
#define channel_t uint16_t
#else
#define channel_t uint8_t
#endif

#define numChannels ((channel_t)16 * TLC5940_N)

This allows us to use channel_t in place of uint8_t or uint16_t when we need to refer to
a channel, and defines numChannels to be the total number of channels.

Write the function to set the grayscale data for an individual channel:

void TLC5940_SetGS(channel_t channel, uint16_t value) {
channel = numChannels - 1 - channel;
uint16_t i = (uint16_t)channel * 3 / 2;

switch (channel % 2) {
case 0:

gsData[i] = (value >> 4);
i++;
gsData[i] = (gsData[i] & 0x0F) | (uint8_t)(value << 4);

39

break;
default: // case 1:

gsData[i] = (gsData[i] & 0xF0) | (value >> 8);
i++;
gsData[i] = (uint8_t)value;
break;

}
}

This function is somewhat complicated by the fact that the channels need to be sent to
the TLC5940 in reverse order, so the first thing we do is reverse the channel that is passed
as a parameter. Then we multiply the channel by 3, divide by 2, and use the remainder to
tell us where in our array of packed bits the channel starts. The bit-masks and bit-shifts
required are different depending on where the channel starts in the packed data. The
formula can be worked out by noting that a grayscale value is 12-bits, being packed into
8-bits, which is equivalent to the ratio 3/2.

We employ a similar technique for setting the dot correction value for an individual channel,
except a dot correction value is 6-bits, being packed into 8-bits, so the ratio becomes
3/4.

Add the following function:

void TLC5940_SetDC(channel_t channel, uint8_t value) {
channel = numChannels - 1 - channel;
uint16_t i = (uint16_t)channel * 3 / 4;

switch (channel % 4) {
case 0:

dcData[i] = (dcData[i] & 0x03) | (uint8_t)(value << 2);
break;

case 1:
dcData[i] = (dcData[i] & 0xFC) | (value >> 4);
i++;
dcData[i] = (dcData[i] & 0x0F) | (uint8_t)(value << 4);
break;

case 2:
dcData[i] = (dcData[i] & 0xF0) | (value >> 2);
i++;
dcData[i] = (dcData[i] & 0x3F) | (uint8_t)(value << 6);
break;

default: // case 3:
dcData[i] = (dcData[i] & 0xC0) | (value);
break;

}
}

40 CHAPTER 6. ADDING FEATURES

Note that since the divisor is now four, there are more potential offsets for the channel to
begin at within the packed bits.

Since we now have functions to initialize dcData and gsData, change their declarations to
the following:

uint8_t dcData[dcDataSize];
uint8_t gsData[gsDataSize];

As written, each iteration of the ISR sends the grayscale data, even if this data has not
changed. We will create a flag to let the ISR know when the data has changed, so we only
send it if it has changed.

Under the declaration for gsData, add the following:

volatile uint8_t gsUpdateFlag;

Change the ISR so it only sends the grayscale data when gsUpdateFlag has been set:

ISR(TIMER0_COMPA_vect) {
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
if (gsUpdateFlag) {

for (gsData_t i = 0; i < gsDataSize; i++) {
SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;
gsUpdateFlag = 0;

}
}

41

When gsUpdateFlag is clear, main() is free to modify gsData. After code inside main()

modifies gsData, it should set gsUpdateFlag, which will cause the ISR to send the updated
values out during its next iteration. Though doing so sounds logical, it will not work by
itself.

Just because gsUpdateFlag is declared volatile, it does not mean that we can set it after
modifying gsData and assume that everything will remain correct. Since we are using C,
the optimizing compiler may rearrange the order of statements that it doesn’t think depend
on each other, or it may cache variables in a register. This might cause gsUpdateFlag to
be set before modifying gsData, and we wouldn’t know unless we looked at the generated
machine code.

What this means for us is that we can’t simply say gsUpdateFlag = 1; from inside main()

after setting gsData. Instead, we need a way to tell the compiler “Hey, when you are
optimizing things, don’t move or cache any values across this line.” The way to tell the
compiler this is with a memory barrier.

Add the following function:

static inline void TLC5940_SetGSUpdateFlag(void) {
__asm__ volatile ("" ::: "memory");
gsUpdateFlag = 1;

}

We will call this function from main() after we update gsData to tell the ISR that it is
now safe to read gsData. Since it includes a memory barrier, the optimizing compiler is
not allowed to cache variables in registers, or move statements across that barrier.

Now all that we need to do is to change main() to use the new functions:

#include <util/delay.h>

int main(void) {
TLC5940_Init();

// The following two lines are optional
TLC5940_SetAllDC(63);
TLC5940_ClockInDC();

// Default all channels to off
TLC5940_SetAllGS(0);

// Enable Global Interrupts
sei();

channel_t i = 0;
for (;;) {

while(gsUpdateFlag); // wait until we can modify gsData

42 CHAPTER 6. ADDING FEATURES

TLC5940_SetAllGS(0);
TLC5940_SetGS(i, 4095);
TLC5940_SetGSUpdateFlag();
_delay_ms(100);
i = (i + 1) % numChannels;

}

return 0;
}

As written, this example will set each output in turn to its max value for 100 ms. Don’t
forget to add the extra include at the top, which allows us to use the _delay_ms() func-
tion.

6.1 Source Code

#include <stdint.h>
#include <avr/io.h>
#include <avr/interrupt.h>

#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB
#define GSCLK_PIN PB0

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

#define DCPRG_DDR DDRD
#define DCPRG_PORT PORTD
#define DCPRG_PIN PD4

#define VPRG_DDR DDRD
#define VPRG_PORT PORTD
#define VPRG_PIN PD7

#define XLAT_DDR DDRB
#define XLAT_PORT PORTB
#define XLAT_PIN PB1

6.1. SOURCE CODE 43

#define TLC5940_N 1

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

#if (12 * TLC5940_N > 255)
#define dcData_t uint16_t
#else
#define dcData_t uint8_t
#endif

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#if (16 * TLC5940_N > 255)
#define channel_t uint16_t
#else
#define channel_t uint8_t
#endif

#define dcDataSize ((dcData_t)12 * TLC5940_N)
#define gsDataSize ((gsData_t)24 * TLC5940_N)
#define numChannels ((channel_t)16 * TLC5940_N)

uint8_t dcData[dcDataSize];
uint8_t gsData[gsDataSize];
volatile uint8_t gsUpdateFlag;

static inline void TLC5940_SetGSUpdateFlag(void) {
__asm__ volatile ("" ::: "memory");
gsUpdateFlag = 1;

}

void TLC5940_Init(void) {
setOutput(GSCLK_DDR, GSCLK_PIN);
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);

44 CHAPTER 6. ADDING FEATURES

setOutput(SIN_DDR, SIN_PIN);

setLow(GSCLK_DDR, GSCLK_PIN);
setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

// Enable SPI, Master, set clock rate fck/2
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);
// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));
// Generate an interrupt every 4096 clock cycles
OCR0A = 3;
// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

}

void TLC5940_SetAllDC(uint8_t value) {
uint8_t tmp1 = (uint8_t)(value << 2);
uint8_t tmp2 = (uint8_t)(tmp1 << 2);
uint8_t tmp3 = (uint8_t)(tmp2 << 2);
tmp1 |= (value >> 4);
tmp2 |= (value >> 2);
tmp3 |= value;

dcData_t i = 0;
do {

dcData[i++] = tmp1; // bits: 05 04 03 02 01 00 05 04
dcData[i++] = tmp2; // bits: 03 02 01 00 05 04 03 02
dcData[i++] = tmp3; // bits: 01 00 05 04 03 02 01 00

} while (i < dcDataSize);
}

void TLC5940_SetDC(channel_t channel, uint8_t value) {
channel = numChannels - 1 - channel;
uint16_t i = (uint16_t)channel * 3 / 4;

switch (channel % 4) {
case 0:

dcData[i] = (dcData[i] & 0x03) | (uint8_t)(value << 2);
break;

case 1:
dcData[i] = (dcData[i] & 0xFC) | (value >> 4);
i++;

6.1. SOURCE CODE 45

dcData[i] = (dcData[i] & 0x0F) | (uint8_t)(value << 4);
break;

case 2:
dcData[i] = (dcData[i] & 0xF0) | (value >> 2);
i++;
dcData[i] = (dcData[i] & 0x3F) | (uint8_t)(value << 6);
break;

default: // case 3:
dcData[i] = (dcData[i] & 0xC0) | (value);
break;

}
}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

for (dcData_t i = 0; i < dcDataSize; i++) {
// Start transmission
SPDR = dcData[i];
// Wait for transmission complete
while (!(SPSR & (1 << SPIF)));

}
pulse(XLAT_PORT, XLAT_PIN);

}

void TLC5940_SetAllGS(uint16_t value) {
uint8_t tmp1 = (value >> 4);
uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4);
gsData_t i = 0;
do {

gsData[i++] = tmp1; // bits: 11 10 09 08 07 06 05 04
gsData[i++] = tmp2; // bits: 03 02 01 00 11 10 09 08
gsData[i++] = (uint8_t)value; // bits: 07 06 05 04 03 02 01 00

} while (i < gsDataSize);
}

void TLC5940_SetGS(channel_t channel, uint16_t value) {
channel = numChannels - 1 - channel;
uint16_t i = (uint16_t)channel * 3 / 2;

switch (channel % 2) {
case 0:

gsData[i] = (value >> 4);
i++;
gsData[i] = (gsData[i] & 0x0F) | (uint8_t)(value << 4);
break;

default: // case 1:
gsData[i] = (gsData[i] & 0xF0) | (value >> 8);
i++;

46 CHAPTER 6. ADDING FEATURES

gsData[i] = (uint8_t)value;
break;

}
}

ISR(TIMER0_COMPA_vect) {
static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle
if (gsUpdateFlag) {

for (gsData_t i = 0; i < gsDataSize; i++) {
SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;
gsUpdateFlag = 0;

}
}

#include <util/delay.h>

int main(void) {
TLC5940_Init();

// The following two lines are optional
TLC5940_SetAllDC(63);
TLC5940_ClockInDC();

// Default all channels to off
TLC5940_SetAllGS(0);

// Enable Global Interrupts
sei();

6.1. SOURCE CODE 47

channel_t i = 0;
for (;;) {

while(gsUpdateFlag); // wait until we can modify gsData
TLC5940_SetAllGS(0);
TLC5940_SetGS(i, 4095);
TLC5940_SetGSUpdateFlag();
_delay_ms(100);
i = (i + 1) % numChannels;

}

return 0;
}

48 CHAPTER 6. ADDING FEATURES

Chapter 7

Creating the library

First we took the flowchart and translated it into C for use as a reference implementation.
Starting with that reference implementation, we refactored it, optimized it, and added
features to it. Our next step is to take what we have written so far and turn in into a
reusable library. This involves creating a separate C header and C source code file for
the prototypes, definitions, and functions related to the TLC5940 chip. Doing this allows
multiple projects to use the library by simply including the header file, and linking to the
object file.

Some features of the code are optional and others require configuration. Any optional fea-
tures that are not being used by a specific project should not increase the size of the com-
piled code, and any feature that is configurable should be configurable without modifying
any source code. We will accomplish these objectives with the help of the C preprocessor,
and by modifying the Makefile.

We will start by making a single parameter configurable. The same approach will be used
for the rest of the configurable parameters.

Recall that we hardcoded the number of TLC5940 chips in series like so:

#define TLC5940_N 1

In order to make this configurable with a default value, wrap the definition as follows:

#ifndef TLC5940_N
#define TLC5940_N 1
#endif

Now, unless TLC5940_N has been previously defined, it will be assigned the default value
of 1. To override the default value, we need to define TLC5940_N before the preprocessor

49

50 CHAPTER 7. CREATING THE LIBRARY

processes that chunk of code. Fortunately for us, there is an easy way to create a project-
wide define using the Makefile.

We will now look at what needs to be done in the Makefile to override a default value.
This will look very similar to how the project-wide define for CLOCK/F_CPU is already im-
plemented.

In your Makefile, below the line that defines FUSES, add the following:

---------- Begin TLC5940 Configuration Section ----------
Define the number of TLC5940 chips that are linked in series
TLC5940_N = 1

Aggregate all of the TLC5940 defines into a single variable
TLC5940_DEFINES = -DTLC5940_N=$(TLC5940_N)
---------- End TLC5940 Configuration Section ----------

and then append $(TLC5940_DEFINES) to the definition of COMPILE, which should be just a
few lines below the definition of FUSES.

For example, if your definition of COMPILE looks like this:

COMPILE = avr-gcc -std=gnu99 -g -Wall -Winline -Os -DF_CPU=$(CLOCK) \
-mmcu=$(DEVICE)

you would change it to this:

COMPILE = avr-gcc -std=gnu99 -g -Wall -Winline -Os -DF_CPU=$(CLOCK) \
-mmcu=$(DEVICE) $(TLC5940_DEFINES)

When invoking avr-gcc, you can use the -D flag to create a define directly on the command
line. Notice how F_CPU is defined on the command line using -DF_CPU=$(CLOCK). Since the
Makefile invokes $(COMPILE) to compile each source code file, anything defined as part of
this command will be defined for every source code file that is compiled. Thus, we can use
this method to create project-wide definitions.

Note that the backslash is a line-continuation character used to split the definition of
COMPILE onto more than one line. In your Makefile, COMPILE may be defined on a single
line, so its definition might not contain a backslash character.

This is the basic structure that we will use for configuring the library from the Makefile,
the only difference between it and the final version, is that that final version will have
multiple configurable options defined as part of the TLC5940_DEFINES variable.

Most of the code we wrote previously will remain unchanged, though we will need to move
some parts to the C header file and some parts to the C source code file.

7.1. CREATING THE C HEADER FILE 51

7.1 Creating the C header file

Create a new file called tlc5940.h with the following contents:

#pragma once

This serves as an include guard, protecting the header file from being included more than
once. When creating a header file, you should always use an include guard.

Next add the includes that are necessary for the header file:

#include <stdint.h>
#include <avr/io.h>

Then add the pin definitions that cannot be remapped due to the use of hardware features
of the AVR, which are only available on certain pins:

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

Next add the configurable pin definitions and other configurable options:

// The following options are configurable from the Makefile
#ifndef DCPRG_DDR
#define DCPRG_DDR DDRD
#endif
#ifndef DCPRG_PORT
#define DCPRG_PORT PORTD
#endif
#ifndef DCPRG_PIN
#define DCPRG_PIN PD4
#endif

#ifndef VPRG_DDR
#define VPRG_DDR DDRD
#endif
#ifndef VPRG_PORT
#define VPRG_PORT PORTD
#endif
#ifndef VPRG_PIN

52 CHAPTER 7. CREATING THE LIBRARY

#define VPRG_PIN PD7
#endif

#ifndef XLAT_DDR
#define XLAT_DDR DDRB
#endif
#ifndef XLAT_PORT
#define XLAT_PORT PORTB
#endif
#ifndef XLAT_PIN
#define XLAT_PIN PB1
#endif

#ifndef TLC5940_MANUAL_DC_FUNCS
#define TLC5940_MANUAL_DC_FUNCS 1
#endif

#ifndef TLC5940_N
#define TLC5940_N 1
#endif
// --

Note that each configurable option has been wrapped, so that it is assigned the default
value only if not previously defined in the Makefile.

Next add the remaining defines:

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

#if (12 * TLC5940_N > 255)
#define dcData_t uint16_t
#else
#define dcData_t uint8_t
#endif

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#if (16 * TLC5940_N > 255)
#define channel_t uint16_t

7.1. CREATING THE C HEADER FILE 53

#else
#define channel_t uint8_t
#endif

#define dcDataSize ((dcData_t)12 * TLC5940_N)
#define gsDataSize ((gsData_t)24 * TLC5940_N)
#define numChannels ((channel_t)16 * TLC5940_N)

The next thing we need to do is declare dcData, gsData, and gsUpdateFlag, but since we
want to be able to modify those variables from inside main.c, they will need to be declared
using the extern type specifier.

Add the variable declarations as follows:

extern uint8_t dcData[dcDataSize];
extern uint8_t gsData[gsDataSize];
extern volatile uint8_t gsUpdateFlag;

These declarations allow any file which includes tlc5940.h to access those variables as if they
were declared inside that file—expanding their global scope beyond the file level.

Next add the definition of TLC5940_SetGSUpdateFlag():

static inline void TLC5940_SetGSUpdateFlag(void) {
__asm__ volatile ("" ::: "memory");
gsUpdateFlag = 1;

}

Note that for the compiler to inline a method, its definition must be in the header file.

To complete our C header file, add the necessary function prototypes:

#if (TLC5940_MANUAL_DC_FUNCS)
void TLC5940_SetDC(channel_t channel, uint8_t value);
void TLC5940_SetAllDC(uint8_t value);
void TLC5940_ClockInDC(void);
#endif

void TLC5940_SetGS(channel_t channel, uint16_t value);
void TLC5940_SetAllGS(uint16_t value);
void TLC5940_Init(void);

Note that the prototypes for the functions regarding manually setting the dot correction
values are wrapped such that they are declared only if TLC5940_MANUAL_DC_FUNCS evaluates
to true. That way if we don’t need to set the dot correction manually (meaning we only
wish to use the values stored in EEPROM), those functions will not be declared.

54 CHAPTER 7. CREATING THE LIBRARY

7.2 Creating the C source code file

Create a new file called tlc5940.c with the following contents:

#include <avr/interrupt.h>

#include "tlc5940.h"

Note that we could have put the #include <avr/interrupt.h> line in our header file, but
since it is only used by the source code file, it makes more sense to put it here.

Next add a define that allows us to keep our datatypes as small as possible:

#if (3 * 16 * TLC5940_N > 255)
#define channel3_t uint16_t
#else
#define channel3_t uint8_t
#endif

This is similar to how we defined the other “automatically sized data types,” except
channel3_t is sized for three times the number of channels.

Next add the variable declarations:

uint8_t dcData[dcDataSize];
uint8_t gsData[gsDataSize];
volatile uint8_t gsUpdateFlag;

Note that we do not use the extern type specifier here, since this is where the variables
are actually being declared.

Next, add all of the functions related to setting the dot correction:

#if (TLC5940_MANUAL_DC_FUNCS)
void TLC5940_SetDC(channel_t channel, uint8_t value) {

channel = numChannels - 1 - channel;
channel_t i = (channel3_t)channel * 3 / 4;

switch (channel % 4) {
case 0:

dcData[i] = (dcData[i] & 0x03) | (uint8_t)(value << 2);
break;

case 1:
dcData[i] = (dcData[i] & 0xFC) | (value >> 4);
i++;
dcData[i] = (dcData[i] & 0x0F) | (uint8_t)(value << 4);
break;

case 2:
dcData[i] = (dcData[i] & 0xF0) | (value >> 2);

7.2. CREATING THE C SOURCE CODE FILE 55

i++;
dcData[i] = (dcData[i] & 0x3F) | (uint8_t)(value << 6);
break;

default: // case 3:
dcData[i] = (dcData[i] & 0xC0) | (value);
break;

}
}

void TLC5940_SetAllDC(uint8_t value) {
uint8_t tmp1 = (uint8_t)(value << 2);
uint8_t tmp2 = (uint8_t)(tmp1 << 2);
uint8_t tmp3 = (uint8_t)(tmp2 << 2);
tmp1 |= (value >> 4);
tmp2 |= (value >> 2);
tmp3 |= value;

dcData_t i = 0;
do {

dcData[i++] = tmp1; // bits: 05 04 03 02 01 00 05 04
dcData[i++] = tmp2; // bits: 03 02 01 00 05 04 03 02
dcData[i++] = tmp3; // bits: 01 00 05 04 03 02 01 00

} while (i < dcDataSize);
}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

for (dcData_t i = 0; i < dcDataSize; i++) {
SPDR = dcData[i];
while (!(SPSR & (1 << SPIF)));

}
pulse(XLAT_PORT, XLAT_PIN);

}
#endif

Note that all of these functions are wrapped with a preprocessor directive so they will be
defined only if we plan to use them.

Next add the rest of the functions:

void TLC5940_SetGS(channel_t channel, uint16_t value) {
channel = numChannels - 1 - channel;
channel3_t i = (channel3_t)channel * 3 / 2;

switch (channel % 2) {
case 0:

gsData[i] = (value >> 4);
i++;

56 CHAPTER 7. CREATING THE LIBRARY

gsData[i] = (gsData[i] & 0x0F) | (uint8_t)(value << 4);
break;

default: // case 1:
gsData[i] = (gsData[i] & 0xF0) | (value >> 8);
i++;
gsData[i] = (uint8_t)value;
break;

}
}

void TLC5940_SetAllGS(uint16_t value) {
uint8_t tmp1 = (value >> 4);
uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4);
gsData_t i = 0;
do {

gsData[i++] = tmp1; // bits: 11 10 09 08 07 06 05 04
gsData[i++] = tmp2; // bits: 03 02 01 00 11 10 09 08
gsData[i++] = (uint8_t)value; // bits: 07 06 05 04 03 02 01 00

} while (i < gsDataSize);
}

void TLC5940_Init(void) {
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

gsUpdateFlag = 1;

// Enable SPI, Master, set clock rate fck/2
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);

// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));

// Generate an interrupt every 4096 clock cycles
OCR0A = 3;

7.3. ENHANCING THE MAKEFILE 57

// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

}

// This interrupt will get called every 4096 clock cycles
ISR(TIMER0_COMPA_vect) {

static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle

if (gsUpdateFlag) {
for (gsData_t i = 0; i < gsDataSize; i++) {

SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;
gsUpdateFlag = 0;

}
}

That takes care of our C source code file.

7.3 Enhancing the Makefile

In the beginning of this chapter we covered the process of making a single parameter
configurable from the Makefile. Now we will apply this process to all of the configurable
options.

Modify that TLC5940 configuration section of your Makefile as follows:

---------- Begin TLC5940 Configuration Section ----------

58 CHAPTER 7. CREATING THE LIBRARY

Define the number of TLC5940 chips that are linked in series
TLC5940_N = 1

Flag to choose whether to include routines for manually setting the dot
correction
0 = Do not include dot correction routines (generates smaller code)
1 = Include dot correction routines (will still read from EEPROM by default)
TLC5940_MANUAL_DC_FUNCS = 1

DDR, PORT, and PIN connected to DCPRG
DCPRG_DDR = DDRD
DCPRG_PORT = PORTD
DCPRG_PIN = PD4

DDR, PORT, and PIN connected to VPRG
VPRG_DDR = DDRD
VPRG_PORT = PORTD
VPRG_PIN = PD7

DDR, PORT, and PIN connected to XLAT
XLAT_DDR = DDRB
XLAT_PORT = PORTB
XLAT_PIN = PB1

This line integrates all options into a single flag called:
$(TLC5940_DEFINES)
which should be appended to the definition of COMPILE below
TLC5940_DEFINES = -DTLC5940_N=$(TLC5940_N) \

-DTLC5940_MANUAL_DC_FUNCS=$(TLC5940_MANUAL_DC_FUNCS) \
-DDCPRG_DDR=$(DCPRG_DDR) \
-DDCPRG_PORT=$(DCPRG_PORT) \
-DDCPRG_PIN=$(DCPRG_PIN) \
-DVPRG_DDR=$(VPRG_DDR) \
-DVPRG_PORT=$(VPRG_PORT) \
-DVPRG_PIN=$(VPRG_PIN) \
-DXLAT_DDR=$(XLAT_DDR) \
-DXLAT_PORT=$(XLAT_PORT) \
-DXLAT_PIN=$(XLAT_PIN)

---------- End TLC5940 Configuration Section ----------

Any default behavior or pin configuration that you wish to override in the library should
be changed within this section of the Makefile.

Don’t forget to append ${TLC5940_DEFINES} to the definition of COMPILE, as described in
the beginning of this chapter.

You will also need to modify the OBJECTS variable to add tlc5940.o to the list of object files
necessary to compile and link your project.

7.4. USING THE LIBRARY 59

For example, if your previous definition of OBJECTS looked like:

OBJECTS = main.o

you would modify it so it looks like:

OBJECTS = main.o tlc5940.o

7.4 Using the library

With our TLC5940 library written and the changes made to the Makefile, all that remains
is to modify our main.c file.

Modify your main.c file so it looks like the following:

#include <stdint.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

#include "tlc5940.h"

int main(void) {
TLC5940_Init();

#if (TLC5940_MANUAL_DC_FUNCS)
TLC5940_SetAllDC(63);
TLC5940_ClockInDC();

#endif

// Default all channels to off
TLC5940_SetAllGS(0);

// Enable Global Interrupts
sei();

channel_t i = 0;
for (;;) {

while(gsUpdateFlag); // wait until we can modify gsData
TLC5940_SetAllGS(0);
TLC5940_SetGS(i, 4095);
TLC5940_SetGSUpdateFlag();
_delay_ms(100);
i = (i + 1) % numChannels;

}

return 0;

60 CHAPTER 7. CREATING THE LIBRARY

}

And there you have it!

I hope you found this tutorial informative, both in learning about the TLC5940, and in
learning how to turn a datasheet and its related application notes into useful code.

Appendix A

Complete source code listing

The most up-to-date copy of this book, along with the schematics, Makefiles, and complete
source code listing of every project featured in this book, is available for download1.

The source code for the finished library is reproduced below:

/*

tlc5940.h

Copyright 2010 Matthew T. Pandina. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY MATTHEW T. PANDINA "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL MATTHEW T. PANDINA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1http://sites.google.com/site/artcfox/demystifying-the-tlc5940

61

http://sites.google.com/site/artcfox/demystifying-the-tlc5940

62 APPENDIX A. COMPLETE SOURCE CODE LISTING

*/

#pragma once

#include <stdint.h>
#include <avr/io.h>

#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB3

#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB5

#define BLANK_DDR DDRB
#define BLANK_PORT PORTB
#define BLANK_PIN PB2

// The following options are configurable from the Makefile
#ifndef DCPRG_DDR
#define DCPRG_DDR DDRD
#endif
#ifndef DCPRG_PORT
#define DCPRG_PORT PORTD
#endif
#ifndef DCPRG_PIN
#define DCPRG_PIN PD4
#endif

#ifndef VPRG_DDR
#define VPRG_DDR DDRD
#endif
#ifndef VPRG_PORT
#define VPRG_PORT PORTD
#endif
#ifndef VPRG_PIN
#define VPRG_PIN PD7
#endif

#ifndef XLAT_DDR
#define XLAT_DDR DDRB
#endif
#ifndef XLAT_PORT
#define XLAT_PORT PORTB
#endif
#ifndef XLAT_PIN
#define XLAT_PIN PB1
#endif

63

#ifndef TLC5940_MANUAL_DC_FUNCS
#define TLC5940_MANUAL_DC_FUNCS 1
#endif

#ifndef TLC5940_N
#define TLC5940_N 1
#endif
// --

#define setOutput(ddr, pin) ((ddr) |= (1 << (pin)))
#define setLow(port, pin) ((port) &= ˜(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))
#define pulse(port, pin) do { \

setHigh((port), (pin)); \
setLow((port), (pin)); \

} while (0)
#define outputState(port, pin) ((port) & (1 << (pin)))

#if (12 * TLC5940_N > 255)
#define dcData_t uint16_t
#else
#define dcData_t uint8_t
#endif

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#if (16 * TLC5940_N > 255)
#define channel_t uint16_t
#else
#define channel_t uint8_t
#endif

#define dcDataSize ((dcData_t)12 * TLC5940_N)
#define gsDataSize ((gsData_t)24 * TLC5940_N)
#define numChannels ((channel_t)16 * TLC5940_N)

extern uint8_t dcData[dcDataSize];
extern uint8_t gsData[gsDataSize];
extern volatile uint8_t gsUpdateFlag;

static inline void TLC5940_SetGSUpdateFlag(void) {
__asm__ volatile ("" ::: "memory");
gsUpdateFlag = 1;

}
#if (TLC5940_MANUAL_DC_FUNCS)

64 APPENDIX A. COMPLETE SOURCE CODE LISTING

void TLC5940_SetDC(channel_t channel, uint8_t value);
void TLC5940_SetAllDC(uint8_t value);
void TLC5940_ClockInDC(void);
#endif

void TLC5940_SetGS(channel_t channel, uint16_t value);
void TLC5940_SetAllGS(uint16_t value);
void TLC5940_Init(void);

/*

tlc5940.c

Copyright 2010 Matthew T. Pandina. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY MATTHEW T. PANDINA "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL MATTHEW T. PANDINA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include <avr/interrupt.h>

#include "tlc5940.h"

#if (3 * 16 * TLC5940_N > 255)
#define channel3_t uint16_t
#else
#define channel3_t uint8_t
#endif

uint8_t dcData[dcDataSize];
uint8_t gsData[gsDataSize];

65

volatile uint8_t gsUpdateFlag;

#if (TLC5940_MANUAL_DC_FUNCS)
void TLC5940_SetDC(channel_t channel, uint8_t value) {

channel = numChannels - 1 - channel;
channel_t i = (channel3_t)channel * 3 / 4;

switch (channel % 4) {
case 0:

dcData[i] = (dcData[i] & 0x03) | (uint8_t)(value << 2);
break;

case 1:
dcData[i] = (dcData[i] & 0xFC) | (value >> 4);
i++;
dcData[i] = (dcData[i] & 0x0F) | (uint8_t)(value << 4);
break;

case 2:
dcData[i] = (dcData[i] & 0xF0) | (value >> 2);
i++;
dcData[i] = (dcData[i] & 0x3F) | (uint8_t)(value << 6);
break;

default: // case 3:
dcData[i] = (dcData[i] & 0xC0) | (value);
break;

}
}

void TLC5940_SetAllDC(uint8_t value) {
uint8_t tmp1 = (uint8_t)(value << 2);
uint8_t tmp2 = (uint8_t)(tmp1 << 2);
uint8_t tmp3 = (uint8_t)(tmp2 << 2);
tmp1 |= (value >> 4);
tmp2 |= (value >> 2);
tmp3 |= value;

dcData_t i = 0;
do {

dcData[i++] = tmp1; // bits: 05 04 03 02 01 00 05 04
dcData[i++] = tmp2; // bits: 03 02 01 00 05 04 03 02
dcData[i++] = tmp3; // bits: 01 00 05 04 03 02 01 00

} while (i < dcDataSize);
}

void TLC5940_ClockInDC(void) {
setHigh(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);

for (dcData_t i = 0; i < dcDataSize; i++) {
SPDR = dcData[i];
while (!(SPSR & (1 << SPIF)));

66 APPENDIX A. COMPLETE SOURCE CODE LISTING

}
pulse(XLAT_PORT, XLAT_PIN);

}
#endif

void TLC5940_SetGS(channel_t channel, uint16_t value) {
channel = numChannels - 1 - channel;
channel3_t i = (channel3_t)channel * 3 / 2;

switch (channel % 2) {
case 0:

gsData[i] = (value >> 4);
i++;
gsData[i] = (gsData[i] & 0x0F) | (uint8_t)(value << 4);
break;

default: // case 1:
gsData[i] = (gsData[i] & 0xF0) | (value >> 8);
i++;
gsData[i] = (uint8_t)value;
break;

}
}

void TLC5940_SetAllGS(uint16_t value) {
uint8_t tmp1 = (value >> 4);
uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4);
gsData_t i = 0;
do {

gsData[i++] = tmp1; // bits: 11 10 09 08 07 06 05 04
gsData[i++] = tmp2; // bits: 03 02 01 00 11 10 09 08
gsData[i++] = (uint8_t)value; // bits: 07 06 05 04 03 02 01 00

} while (i < gsDataSize);
}

void TLC5940_Init(void) {
setOutput(SCLK_DDR, SCLK_PIN);
setOutput(DCPRG_DDR, DCPRG_PIN);
setOutput(VPRG_DDR, VPRG_PIN);
setOutput(XLAT_DDR, XLAT_PIN);
setOutput(BLANK_DDR, BLANK_PIN);
setOutput(SIN_DDR, SIN_PIN);

setLow(SCLK_PORT, SCLK_PIN);
setLow(DCPRG_PORT, DCPRG_PIN);
setHigh(VPRG_PORT, VPRG_PIN);
setLow(XLAT_PORT, XLAT_PIN);
setHigh(BLANK_PORT, BLANK_PIN);

gsUpdateFlag = 1;

67

// Enable SPI, Master, set clock rate fck/2
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);

// CTC with OCR0A as TOP
TCCR0A = (1 << WGM01);

// clk_io/1024 (From prescaler)
TCCR0B = ((1 << CS02) | (1 << CS00));

// Generate an interrupt every 4096 clock cycles
OCR0A = 3;

// Enable Timer/Counter0 Compare Match A interrupt
TIMSK0 |= (1 << OCIE0A);

}

// This interrupt will get called every 4096 clock cycles
ISR(TIMER0_COMPA_vect) {

static uint8_t xlatNeedsPulse = 0;

setHigh(BLANK_PORT, BLANK_PIN);

if (outputState(VPRG_PORT, VPRG_PIN)) {
setLow(VPRG_PORT, VPRG_PIN);
if (xlatNeedsPulse) {

pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}
pulse(SCLK_PORT, SCLK_PIN);

} else if (xlatNeedsPulse) {
pulse(XLAT_PORT, XLAT_PIN);
xlatNeedsPulse = 0;

}

setLow(BLANK_PORT, BLANK_PIN);

// Below this we have 4096 cycles to shift in the data for the next cycle

if (gsUpdateFlag) {
for (gsData_t i = 0; i < gsDataSize; i++) {

SPDR = gsData[i];
while (!(SPSR & (1 << SPIF)));

}
xlatNeedsPulse = 1;
gsUpdateFlag = 0;

}
}

68 APPENDIX A. COMPLETE SOURCE CODE LISTING

Appendix B

Connecting multiple TLC5940
chips in series

It is actually very easy to link multiple TLC5940 chips in series to increase the total number
of PWM outputs.

In your Makefile, change the definition of TLC5940_N to the actual number of TLC5940
chips you are linking, and wire each additional TLC5940 chip to the previous one as shown
in Figure B.1.

Connect the first TLC5940 chip to your AVR as if you were using a single TLC5940, then
connect each additional TLC5940 chip the same way, except do not make any connections
to the AVR, and do not include the 10K pull-up resister on BLANK. Then connect the
BLANK, SCLK, XLAT, GSCLK, DCPRG, and VPRG pins of each additional TLC5940
chip to the BLANK, SCLK, XLAT, GSCLK, DCPRG, and VPRG pins of the previous,
and connect the SIN pin of each additional chip to previous chip’s SOUT pin. For more
information about this process, consult the datasheet for the TLC5940.

Since we are using the clock out feature of the AVR to drive GSCLK, the maximum number
of TLC5940 chips that may be cascaded is limited by how much grayscale data the AVR
can send over the SPI bus in 4096 clock cycles.

If you connect enough TLC5940 chips in series such that you cannnot send the grayscale
data for all channels out in 4096 clock cycles, you will have to get creative and most likely
modify the library to use a hardware timer instead of COUT to drive the GSCLK line. If
you do this, be sure to update the TOP value of Timer 0 accordingly so that the ISR fires
every 4096 pulses of GSCLK, rather than every 4096 clock pulses.

69

70 APPENDIX B. CONNECTING MULTIPLE TLC5940 CHIPS IN SERIES

R
1

10
K

Vcc

Vcc

Vcc

R
3

2.
2K

R
2

10
K

Vcc

C2
22 pF

C3
22 pF

C
1

4.
7

nF

C4
0.1 uF

C5
0.1 uF

C
6

0.
1

uF

Q
1

16
M

14(PCINT0/CLKO/ICP1) PB0
15(PCINT1/OC1A) PB1
16(PCINT2/OC1B/SS) PB2
17(PCINT3/OC2A/MOSI) PB3
18(PCINT4/MISO) PB4
19(PCINT5/SCK) PB5

23(PCINT8/ADC0) PC0
24(PCINT9/ADC1) PC1
25(PCINT10/ADC2) PC2
26(PCINT11/ADC3) PC3
27(PCINT12/SDA/ADC4) PC4
28(PCINT13/SCL/ADC5) PC5

2(PCINT16/RXD) PD0
3(PCINT17/TXD) PD1
4(PCINT18/INT0) PD2
5(PCINT19/OC2B/INT1) PD3
6(PCINT20/XCK/T0) PD4
11(PCINT21/OC0B/T1) PD5
12(PCINT22/OC0A/AIN0) PD6
13(PCINT23/AIN1) PD7

21 AREF

20 AVCC

8 GND

22 GND

9 PB6 (TOSC1/XTAL1/PCINT6)

10 PB7 (TOSC2/XTAL2/PCINT7)

1 PC6 (RESET/PCINT14)

7 VCC

ATMEGA328P−PDIP

U1

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

LED9

LED10

LED11

LED12

LED13

LED14

LED15

LED16

26

SIN
28OUT0

1OUT1

2OUT2

3OUT3

4OUT4

5OUT5

6OUT6

7OUT7

8OUT8

9OUT9

10OUT10

11OUT11

12OUT12

13OUT13

14OUT14

15OUT15

23 BLANK

19 DCPRG

22 GND

18 GSCLK

20 IREF

25 SCLK

21 VCC

27 VPRG

16 XERR

24 XLAT

17

SOUT

TLC5940−NT

U2

D
1

1N
41

48

Vcc
1 2
3 4
5 6

ICSP

MISO
SCK

RESET

+5V
MOSI
GND

J1

Vcc
R

4
2.

2K
C

7
0.

1
uF

LED17

LED18

LED19

LED20

LED21

LED22

LED23

LED24

LED25

LED26

LED27

LED28

LED29

LED30

LED31

LED32

26

SIN
28OUT0

1OUT1

2OUT2

3OUT3

4OUT4

5OUT5

6OUT6

7OUT7

8OUT8

9OUT9

10OUT10

11OUT11

12OUT12

13OUT13

14OUT14

15OUT15

23 BLANK

19 DCPRG

22 GND

18 GSCLK

20 IREF

25 SCLK

21 VCC

27 VPRG

16 XERR

24 XLAT

17

SOUT

TLC5940−NT

U3

Figure B.1: Connecting two TLC5940 chips in series

	Introduction
	A quick word on licensing
	The value of a reference implementation
	More than just a datasheet
	Deciding which features to support
	Setting goals and objectives

	Connecting the hardware
	Creating the reference implementation
	Source Code

	Refactoring the reference implementation
	Source Code

	Optimizing the refactored code
	Source Code

	Adding features
	Source Code

	Creating the library
	Creating the C header file
	Creating the C source code file
	Enhancing the Makefile
	Using the library

	Complete source code listing
	Connecting multiple TLC5940 chips in series

