
BoostC v7 C Compiler
for PICmicro

Reference Manual

V1.62

Index
BoostC compiler..9

Introduction...9
BoostC Compiler specification...9

Base Data types ...9
Special Data types ...9
Special Language Features ..9
Code Production and Optimization Features ..9
Debugging features ...10
Full MPLAB integration ...10
Librarian..10
Code Analysis...10

Installation ..11
Compilation model and toolchain...13

Preprocessor..13
Compiler..13
Linker... 14
Librarian..14
Differences with C2C compilation model...14

MPLAB integration...15
Features.. 15
Setting the MPLAB Language Tool Locations...15
Creating a project under MPLAB IDE..17
Using ICD2..21

Command line options...22
BoostC command line..22
Optimization..22
BoostLink command line...23

-rb.. 23
-swcs s1 s2 s3... 23
-isrnoshadow... 24
-isrnocontext.. 24
 -icd2 .. 24
-hexela... 24
libc Library .. 25

Code entry points...25
SourceBoost IDE..25
Preprocessor...26
Predefined macros...26
Directives...26

#include... 27
#define... 28
#undef... 29
#if, #else, #endif.. 30
#ifdef.. 31
#ifndef.. 32
#error... 33
#warning.. 34

Pragma directives...34
#pragma DATA.. 35
#pragma CLOCK_FREQ... 36
#pragma OPTIMIZE... 37
#pragma config.. 38

Setting Device Configuration Options...39
Device Configuration Methods..39

Page 2 SourceBoost Technologies BoostC™ Manual

Where to find Configuration Options..39
Using #pragma config for device configuration..40
Using #pragma DATA for device configuration...40

Initialization of EEPROM Data...41
C language..42

Program structure..42
Data types...42

Base data types... 42
Structures and unions.. 43
Typedef... 43
Enum... 43
Code size vs Data Types... 43
Rom... 45
Volatile... 45
Static... 46
Constants.. 46

Strings... 46
Variables...47

Register mapped variables.. 47
Bit access.. 47
PORTB vs portb or notes about naming convention..47

Arrays.. 48
Pointers...48

Strings as function arguments... 48
Operators..48

Arithmetic... 49
Arithmetic Operator Examples... 49
Assignment.. 50
Assignment Operator Examples..50
Comparison... 54
Comparison Operator Examples..54
Logical... 56
Logical Operator Examples... 56
Bitwise... 57
Bitwise Operator Examples... 58
Conditionals... 59
Conditional Examples.. 59

Program Flow...61
Program Flow Examples.. 61

Inline assembly...63
asm.. 64
 _asm... 64
Variable Referencing in asm.. 64
Assembly in multi-line macros... 65
Constants in asm... 65
Labels an asm... 65
Inline assembly example 1.. 66
Inline assembly example 2.. 66
Inline assembly example 3.. 67
User Data.. 67

Functions..68
Inline functions... 68
Special functions... 68
General functions and interrupts..68
Functions pointers... 69
Memory mapped functions.. 70

Dynamic memory management...70
C language superset..71

References as function arguments...71
Notes on using references as function arguments...71

BoostC™ Manual SourceBoost Technologies Page 3

Function overloading...72
Function templates...72

Parametric timing functions..73
void delay_us(unsigned char t)..73
void delay_10us(unsigned char t)..73
void delay_100us(unsigned char t)..73
void delay_ms(unsigned char t)...73
void delay_s(unsigned char t)..73

System Libraries...74
General purpose functions..74

clear_bit(var, num)... 74
set_bit(var, num).. 74
test_bit(var, num)... 74
MAKESHORT(dst, lobyte, hibyte)..74
LOBYTE(dst, src).. 74
HIBYTE(dst, src).. 75
void nop(void).. 75
void clear_wdt(void)... 75
void sleep(void)... 75
void reset(void).. 75

String and Character Functions..75
void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src)..75
void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len)..75
unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)...75
signed char strcmp(const char *src1, const char *src2)
signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)...75
signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)...75
signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len)..76
signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)...76
void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src)..76
void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len)..76
char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)...76
unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)...76
unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)...76
char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)...76
char* strchr(const char *src, char ch)..76
char* strrchr(const char *src, char ch)...77
char* strstr(const char *ptr1, const char *ptr2)

Page 4 SourceBoost Technologies BoostC™ Manual

char* strstr(const char *src, rom char *src)..77
Conversion Functions..77

unsigned char sprintf(char* buffer, const char *format, unsigned int val)...77
Left justifies the field, the default is right justification..77
unsigned char sprintf32(char* buffer, const char *format, unsigned long val)..79
int strtoi(const char* buffer, char** endPtr, unsigned char radix)...79
long strtol(const char* buffer, char** endPtr, unsigned char radix);..79
int atoi(const char* buffer).. 79
long atol(const char* buffer) .. 80
char* itoa(int val, char* buffer, unsigned char radix)..80
char* ltoa(long val, char* buffer, unsigned char radix)...80
unsigned char sqrt(unsigned short val)..80

Lightweight Conversion Functions...80
void uitoa_hex(char* buffer, unsigned int val, unsigned char digits)..80
void uitoa_bin(char* buffer, unsigned int val, unsigned char digits)..80
void uitoa_dec(char* buffer, unsigned int val, unsigned char digits)..80
unsigned int atoui_hex(const char* buffer)...81
unsigned int atoui_bin(const char* buffer)..81
unsigned int atoui_dec(const char* buffer)..81
unsigned char sqrt1(unsigned short val)..81

Character ..81
char toupper(char ch).. 81
char tolower(char ch)... 81
char isdigit(char ch)... 81
char isalpha(char ch)... 81
char isalnum(char ch).. 81
char isblank(char ch)... 81
char iscntrl(char ch)... 81
char isgraph(char ch)... 82
char islower(char ch)... 82
char isprint(char ch)... 82
char ispunct(char ch)... 82
char isspace(char ch).. 82
char isupper(char ch)... 82
char isxdigit(char ch)... 82
void* memchr(const void *ptr, char ch, unsigned char len)..82
signed char memcmp(const void *ptr1, const void *ptr2, unsigned char len)...83
void* memcpy(void *dst, const void *src, unsigned char len)...83
void* memmove(void *dst, const void *src, unsigned char len)..83
void* memset(void *ptr, char ch, unsigned char len)..83

Miscellaneous Functions ..83
unsigned short rand(void).. 83
void srand(unsigned short seed)...83
max(a, b)... 83
min(a, b).. 83
abs(a).. 83
void startCRC16(void)... 83
unsigned short CRC16(unsigned char *mem, size_type len)...83
unsigned short CRC16(unsigned char mem)...83

I2C functions...84
i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files) ...84

UART driver...84
Driver Features.. 84
Rationale... 84
Adding UART driver to your code..84
Configuration... 85
Memory... 85
Helper Macros... 86
Initialisation.. 87
Interrupt Handler.. 87
Data Receive... 88

BoostC™ Manual SourceBoost Technologies Page 5

Data Transmit.. 88
UART Driver API... 89

LCD functions...92
lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files) ...92

Flash functions...92
unsigned short flash_read(unsigned short addr) (PIC16 only)...92
void flash_loadbuffer(unsigned short data) (PIC16 only)...92
void flash_write(unsigned short addr) (PIC16 only)...92
void flash_erase(unsigned long addr) (PIC18 only)...92
void flash_read(unsigned long addr, unsigned char * buf) (PIC18 only)..92
unsigned short flash_read(unsigned long addr) (PIC18 only)..93
void flash_write(unsigned long addr, const unsigned char * buf) (PIC18 only)..93
unsigned char flash_verify(unsigned long addr, const unsigned char * buf) (PIC18 only)........................93

EEPROM functions...93
unsigned char eeprom_read(unsigned char addr) (PIC16)..93
unsigned char eeprom_read(unsigned short addr) (PIC18)...93
void eeprom_write(unsigned char addr, unsigned char data) (PIC16)...93
void eeprom_write(unsigned short addr, unsigned char data) (PIC18)..93

ADC functions...94
short adc_measure(char ch).. 94

One wire bus functions..94
char oo_busreset().. 94
short oo_get_data()... 95
char oo_read_scratchpad().. 95
void oo_start_conversion().. 95
char oo_conversion_busy()... 95
char oo_wait_for_completion()... 96

PC System Requirements...97
Technical support..98

BoostC Support Subscription...98
Licensing Issues ..98
General Support...98

Legal Information...100

Page 6 SourceBoost Technologies BoostC™ Manual

This page is intentionally left blank.

BoostC™ Manual SourceBoost Technologies Page 7

Page 8 SourceBoost Technologies BoostC™ Manual

BoostC compiler

Introduction
Thank you for choosing BoostC. BoostC is our next generation C compiler that
works with PIC16, PIC18 and some PIC12 processors.

This ANSI C compatible compiler supports features like source level symbolic
debugging, signed data types, structures/unions and pointers.

The BoostC compiler can be used within our SourceBoost IDE (Integrated
Development Environment), or it can be integrated into Microchip MPLAB.

BoostC Compiler specification

Base Data types

Size Type name Specification

1 bit bit, bool boolean
8 bit char signed, unsigned
16 bit short, int signed, unsigned
32 bit long signed, unsigned

Special Data types
• Single bit - single bit data type for efficient flag storage.
• Fixed address - fixed address data types allow easy access to target device

registers.
• Read only - code memory based constants.

Special Language Features
• References as function arguments.
• Function overloading.
• Function templates.

Code Production and Optimization Features
• ANSI 'C' compatible - Makes code highly portable.
• Produces optimized code for both PIC16 (14bit core) and PIC18 (16bit core)

targets.
• Support for Data Structures and Unions - Data structures and arrays can

be comprised of base data types or other data structures. Arrays of base
data types or data structures can be created.

• Support for pointers - pointers can be used in "all the usual ways".
• Inline Assembly - Inline assembly allows hand crafted assembly code to be

used when necessary.
• Inline Functions - Inline functions allows a section of code to be written as

a function, but when a reference is made to it the inline function code is
inserted instead of a function call. This speeds up code execution.

BoostC™ Manual SourceBoost Technologies Page 9

• Eliminates unreachable (or dead) code - reduces code memory usage.
• Removal of Orphan (uncalled) functions - reduces code memory usage.
• Minimal Code Page switching - code where necessary for targets with

multiple code pages.
• Automatic Banks Switching for Variables - allows carefree use of

variables.
• Efficient RAM usage - local variables in different code sections can share

memory. The linker analyzes the program to prevent any clashes.
• Dynamic memory management.

Debugging features
• Source Level and Instruction Level Debugger - linker Generates COF file

output for source level debugging under SourceBoost Debugger.
• Step into, Step over, Step out and Step Back – these functions operate

both at source level and instruction level.
• Multiple Execution Views - see where the execution of the code is at

source level and assembly level at the same time.
• Monitoring variables - variables can be added to the watch windows to

allow their values to be examined and modified. There is no need to know
where a variable is stored.

Full MPLAB integration
• Use of the MPLAB Project Manager within MPLAB IDE.
• Creation and Editing of source code from within MPLAB IDE.
• Build a project without leaving MPLAB IDE environment.
• Source level debugging and variable monitoring using:

• MPLAB simulator;
• MPLAB ICD2;
• MPLAB ICE2000.

Librarian
• Allows generation of library files - this simplifies management and control

of regularly used, shared code.
• Reduce compilation time - using library files reduces compilation time.

Code Analysis
• Call tree view - SourceBoost IDE can display the function call tree.
• Target Code Usage - From the complete program, down to Function level

the code space usage can be viewed in SourceBoost IDE.
• Target RAM Usage - From the complete program, down to Function level

the RAM usage can be examined and reviewed in SourceBoost IDE.

Page 10 SourceBoost Technologies BoostC™ Manual

Installation
The BoostC compiler cannot be downloaded or installed on its own. BoostC is part
of the SourceBoost software package that includes the SourceBoost IDE and other
Language Suites. It is available for download from our site
http://www.sourceboost.com

When you buy a license, you will activation code(s) and detailed instructions on
how to activate the compiler and other tools you have licensed.

To install SourceBoost IDE and BoostC on your system, please follow these simple
steps:

• Execute the installer sourceboost.exe and follow on-screen directions.

• Please pay attention to the integration dialog:

To integrate BoostC with MPLAB, choose the correct Microchip installation
directory, then click on “Integrate” before stepping to the next installation
wizard dialog.

• The rest of the installation process is straightforward. At the end,
SourceBoost IDE is ready to be used on your system. Should any difficulty
arise, please double check your system configuration and mail all details
to support@sourceboost.com

BoostC™ Manual SourceBoost Technologies Page 11

mailto:support@sourceboost.com
mailto:support@sourceboost.com
http://www.sourceboost.com/

• Please note: if the installation step “MPLAB Integration” is skipped, the
necessary MPLAB integration files will be installed to the \mplab
subdirectory of the chosen SourceBoost installation directory. These files
can always be manually copied to the correct location – please see the
“MPLAB Integration” section later in this manual.

Page 12 SourceBoost Technologies BoostC™ Manual

Compilation model and toolchain

Preprocessor
The preprocessor pp.exe is automatically invoked by the compiler.

Compiler
There are actually two separate compilers: one for pic16 and one for pic18 targets.

When you work under SourceBoost IDE, there is no need to specify which one to
use: the IDE picks the correct compiler based on the selected target.

The output of the compiler is one or more .obj files, that are further processed by
librarian or linker, in order to get a .lib or .hex file.

BoostC™ Manual SourceBoost Technologies Page 13

Linker
BoostLink Optimizing Linker links .obj files generated by compiler into a .hex file
that is ready to send to target. It also generates some auxiliary files used for
debugging and code analysis.

Librarian
Librarian is built into BoostLink linker executable and gets activated by -lib
command line argument. There is a dedicated box in the Option dialog inside
SourceBoost IDE that changes project target to library instead of hex file.

To create a target independent library, include boostc.h instead of system.h into
the library sources. This way no target specific information (like target dependent
constants or variables mapped to target specific registers) is included into the
library. Note that this is the only case in which system.h does not be included into
the code.

Differences with C2C compilation model
The main difference between BoostC and our previous generation C2C compiler is
that the latter had a built-in linker and created an .asm file needing to be
assembled using an external assembler (like MPASM), while the BoostC toolsuite
doesn't need any external tools and directly generates the target .hex file.

Another difference is in how compilers handle read-only variables located in code
memory. BoostC uses the special data type specifier 'rom', while C2C placed any
variable defined as 'const' into code memory.

Page 14 SourceBoost Technologies BoostC™ Manual

MPLAB integration
BoostC C compiler can be integrated into Microchips MPLAB integrated
development environment (IDE). The MPLAB integration option should be selected
during the SourceBoost software package installation.

Please note: To use BoostC under MPLAB the MPLAB integration button must be
pressed during the SourceBoost package installation. This copies some files and
sets the required registry keys required for integration to work.

In case the installation step “MPLAB Integration” failed, the files in the
<SourceBoost>\mplab directory can be manually copied into

<MPLAB IDE>\MPLAB IDE\Core\MTC Suites for MPLAB 8.x, or

<MPLAB IDE>\Third Party\MTC Suites for MPLAB 7.x, or

<MPLAB IDE>\LegacyLanguageSuites for MPLAB 6.x.

In the above examples, <MPLAB IDE> refers to the MPLAB installation directory
and <SourceBoost> refers to the SourceBoost IDE and compilers installation
directory.

Features
When BoostC is integrated into MPLAB IDE it allows the following:

• Use of the MPLAB Project Manager within MPLAB IDE.
• Creation and Editing of source code from within MPLAB IDE.
• Build a project without leaving MPLAB IDE.
• Source level debugging and variable monitoring using: MPLAB simulator,

MPLAB ICD2, MPLAB ICE2000.

Setting the MPLAB Language Tool Locations
Note: this process only needs to be performed once.

The procedure below specifies paths assuming the default installation folder has
been used for the SourceBoost software package.

1. Start MPLAB IDE.

2. Menu Project Set Language Tool Locations.
Note: if BoostC C compiler does not appear in the Registered Tools list, then
the integration process during the SourceBoost installation was not
performed or was unsuccessful.

BoostC™ Manual SourceBoost Technologies Page 15

3. Set BoostC C compiler for PIC16 location:

4. Now set BoostLink Linker location:

Page 16 SourceBoost Technologies BoostC™ Manual

5. Set BoostC C compiler for PIC18 location:

6. Eventually, set BoostLink Linker location in the PIC18 tree:

Creating a project under MPLAB IDE
Before attempting to do this, please ensure that the “Setting the MPLAB
language tool locations” process illustrated in the above section has been
successfully performed.

BoostC™ Manual SourceBoost Technologies Page 17

The following steps will help you create a project under MPLAB IDE, that will be
built using the BoostC C compiler, compiling for a PIC16 Target. The project name
is test and the project and source code will be located in folder
C:\PicPrograms\test

1. Menu Project New. Enter a project name and directory.
Note: this can be an existing directory containing a SourceBoost IDE project.

2. Menu Project Select Language Toolsuite. Select the BoostC C
Compiler for PIC16.

3. Menu File New. Type code into the Untitled window.
Note: If you already have Source Files, this step and steps 4 can be skipped.

Page 18 SourceBoost Technologies BoostC™ Manual

4. Menu File Save As. Locate the project folder using the Save As dialog
box.

5. Add the test.c source file to the project by right clicking on Source Files in
the project tree – as shown below.

BoostC™ Manual SourceBoost Technologies Page 19

6. Add the libc.pic16.lib file (found in the C:\Program Files\SourceBoost\Lib
folder) to the project by right clicking on Library Files in the project tree.

7. Check the final project. It should look as below:

8. Menu Project Build (or press the build button on the tool bar). The code
should then be built.

You can now use the MPLAB simulator, ICD2 or ICE to run the code, or a
programmer to program a device. Please refer to the “Using ICD2” section of this
document before using ICD2 to avoid potential problems.

For ease of project browsing, you can also add the project header files to the
project tree in the same way as the source files where added.

Page 20 SourceBoost Technologies BoostC™ Manual

Using ICD2
The are a few things to be aware of when using or planning using ICD2:

1. RAM usage: ICD2 uses some of the target devices RAM, leaving less room
for the actual application.

In order to reserve the RAM required by ICD2, and prevent Boost Linker
from using it, the icd2.h header file must be included into one file in the
source code, eg:

#include <system.h>
#include <icd2.h> // allocates RAM used by ICD2

void main()
{
 while(1);
}

2. SFR usage: ICD2 uses some Special Function Registers. This prevents the
use of some peripheral devices when using ICD2 to debug code.

Important: It is down the user to ensure that the ICD2 special function
registers are not accessed. On some targets these registers reside at the
same address as other peripheral device special function registers. Please
check the documentation provided in the MPLAB IDE help for ICD2 resource
usage in order to prevent problems.

3. Break point overrun: Due to timing skew in the target device (caused by
instruction prefetch), execution will pass the instruction address where a
breakpoint is set before it stops.

4. NOP at ROM address 0: See the BoostLink command line option -icd2 to
add a NOP at ROM address 0.

BoostC™ Manual SourceBoost Technologies Page 21

Command line options
To get full list of BoostC compiler and BoostLink linker command line options run
compiler or linker from command line.

BoostC command line
BoostC Optimizing C Compiler Version x.xx
http://www.sourceboost.com
Copyright(C) 2004-2010 Pavel Baranov
Copyright(C) 2004-2010 David Hobday

Licensed to <license info>

Usage: boostc.pic16.exe [options] files

Options:
 -t name target processor (default name=PIC16F690)
 -T name configuration (.tdf) file directory
 -On optimization level (default n=2)
 n=0 - optimization turned off
 n=1 - optimization turned on
 n=2 – global optimization turned on
 n=a - aggressive optimization turned on
 n=p - 32 bit long promotion turned on
 -Wn warning level (default n=1)
 n=0 - no warnings
 n=1 - some warnings
 n=2 - all warnings
 -Werr treat warnings as errors (default off)
 -i debug inline code (default off)
 -Su disable initialization of uninitialized static variables
 -d name define 'name'
 -m generate dependencies file (default off)
 -16x use PIC16 extended instructions (PIC16F193x and alike, default
off) --PIC16 compiler only--
 -idx num index size in bytes (default num=1) --PIC18 7.00+ compiler only--
 -obj object file output directory
 -o name specify name for generated object file
 -v verbose mode turned on (default off)
 -I path1;path2 additional include directories
 -beep issue sound at the end of compilation (default off)

Optimization
Code optimization is controlled by -O command line option and #pragma.

Optimize flags:
-O0 no or very minimal optimization
-O1 regular optimization
-O2 global optimization (this option is recommended for most applications)
-Oa aggressive optimization (produces shorter code and optimizes out some

variables - this can make debugging more difficult!)
-Op promotes results of some 16 bit operations to 32 bits (can result in

more efficient code is some cases).

Page 22 SourceBoost Technologies BoostC™ Manual

BoostLink command line
BoostLink Optimizing Linker Version x.xx
http://www.sourceboost.com
Copyright(C) 2004-2010 Pavel Baranov
Copyright(C) 2004-2010 David Hobday

Licensed to <license info>

Usage: boostlink_pic.exe [options] files
Options:
 -t name target processor
 -On optimization level 0-1 (default n=1)
 n=0 - no optimization
 n=1 - pattern matching and bank switching optimize on
 -v verbose mode
 -d path directory for project output
 -p name project (output) name for multiple .obj file linking
 -ld path directory for library search
 -rb address ROM base (start) address to use
 -rt address ROM top (end) address to use

 -swcs s1 s2 s3 use software call stack. Hardware stack is allocated by
 specifying stack depths s1,s2,s3 (optional)
 s1 = main and task routines hardware stack allocation
 s2 = ISR hardware stack allocation
 s3 = PIC18 low priority ISR hardware stack allocation

 -isrnoshadow ISR No use of Shadow registers
 -isrnocontext ISR No context Save/restore is added to ISR(PIC18 only)

 -icd2 add NOP at first ROM address for correct ICD2 operation
 -hexela always add extended linear address record to .hex file
 -beep issue sound at the end of link (default off)
 -idx num array index size in bytes (num=1 or num=2, default num=1)

Switches for making libraries:
 -lib make library file from supplied .obj and .lib files
 -p name project (library output file) name

-rb

This command line option causes the code generated by the linker to start at the
address specified. Boot loaders often reside in the low area of ROM.

Example

-rb 0x0800

-swcs s1 s2 s3

This command line option to the linker tells it to use a software call stack in
addition to the hardware call stack. This allows subroutine calls deeper than the
call hardware call stack of the PIC. A function call that is made on the software call
stack uses an extra byte of RAM to hold the return point number. This option must
be used when using Novo RTOS. Where possible the hardware stack is used for
efficiency. By specifying the depth of hardware stack to use for main (and Novo
tasks) s1, ISR (interrupt service routine) s2 and low priority ISR (PIC18 only) s3,
provides control over when the software call stack is used instead of the hardware
call stack. The software call stack is applied to functions higher up in the call tree,
so calls lower down the call tree still use the hardware call stack. If no hardware
stack depths are specified, then the software stack is only used in functions that
contain or call functions that contain a Novo RTOS Sys_Yield() function.

BoostC™ Manual SourceBoost Technologies Page 23

Example:

-swcs 6 2

Main routine will use hardware call stack up to a depth of 6 and then start using
software call stack. Interrupt routine will use hardware call stack up to a depth of 2
and start using software call stack. An ISR uses hardware call stack depth of 1 to
save the address of the point where the code was interrupted, so in this example it
only leaves a hardware call stack depth 1 for subsequent calls within the ISR.

-isrnoshadow

This command line switch tells the linker not to use the PIC18 shadow registers for
interrupt service routine (ISR) context saving. This option is required as a work
around for silicon bugs in some PIC18's.

-isrnocontext

This option only works with PIC18's. When use this prevents the linker adding
extra code for context saving. This allow the programmer to generate their own
minimal ISR context saving code, or have none at all.

Example:
// Context saving example
// Assumes that the ISR code will only modify w and and bsr

// create context saving buffer at fixed address
char context[2]@0x0000;

void interrupt()
{

asm movff _bsr, _context
asm movwf _context+1
....
asm movwf _context+1
asm movff _bsr, _context

}

 -icd2

Use this command line switch to add a NOP instruction at the first ROM address
used (usually address 0). This is required on some devices for correct operation of
Microchip ICD2 (In Circuit Debugger).

-hexela

Always add extended linear address record to .hex file. Without this switch an
extended linear address record is only added to the .hex file if required by
addresses included in the .hex file.

Page 24 SourceBoost Technologies BoostC™ Manual

libc Library

When a project is being linked, SourceBoost IDE adds libc.pic16.lib or
libc.pic18.lib to the linker command line, if it can find this library in its default
location.
The libc library contains necessary code for multiplication, division and dynamic
memory allocation. It also includes code for string operations.

Code entry points
Entry points depend on the code address range using by the BoostLink linker. By
default, the linker uses all available code space, but it's also possible to specify
code start and end addresses that linker should use through linker command line
options.

For PIC16:
Reset (main) entry point <code start> + 0x00
Interrupt entry point <code start> + 0x04

For PIC18:
Reset (main) entry point <code start> + 0x00
Interrupt entry point <code start> + 0x08
Low priority ISR entry point <code start> + 0x18

SourceBoost IDE
The SourceBoost IDE is thoroughly covered in a separate manual.

BoostC™ Manual SourceBoost Technologies Page 25

Preprocessor
The pp.exe preprocessor is automatically invoked by the compiler. It executes a
series of parametrized text substitutions and replacement (macro processing),
besides evaluating special directives.

All preprocessor directives start with a '#'. Non standard directives are always
contained in statements with a leading ANSI keyword #pragma, so to avoid
potential conflicts when porting code to other compilers and/or with advanced
source analysis tools (lint, static checkers, code formatters, flow analyzers and so
on).

Predefined macros

_BOOSTC always defined

_PIC16 defined for all supported PIC12 and PIC16 targets

_PIC16x defined if PIC16 extended instruction set is used (PIC16F193x and alike)

_PIC18 defined for all supported PIC18 targets

Directives
The following directives are supported by pp:

#include

#define

#undef

#if

#else

#endif

#ifdef

#ifndef

#error

#warning

These directives are individually explained in the following pages.

Page 26 SourceBoost Technologies BoostC™ Manual

#include

Syntax: #include <filename.h>
or
#include “filename.h”

Elements: filename is any valid PC filename. It may include standard drive
and path information.
In the event no path is given, the following applies:

a) If filename appears between “”, the directory of the projects is
searched first.

b) If the delimiters <> are used, only the IDE include path list is
searched for filename.

If the file is not found, an error will be issued and compilation shall
stop.

Purpose: Text from the include file filename.h is inserted at the point of the
source where this directive appears, at compile time.

Examples: #include <system.h>

BoostC™ Manual SourceBoost Technologies Page 27

#define

Syntax: #define id statement

or

#define id(a, b...) statement

Elements: id is any valid preprocessor identifier.

statement is any valid text.

a, b and so on are local preprocessor identifiers, that in the given
form model a function's formal parameters, separated by commas.

Purpose: Both forms produce a basic string replacement of id with the given
text. Replacement will take place from the point where the #define
statement appears in the program, and below.

The second form represents a preprocessor pseudo-function. The
local identifiers are positionally matched up with the original text,
and are replaced with the text passed to the macro wherever it is
used.

Examples: #define LEN 16
#define LOWNIBBLE(x) ((x) & 0x0F)
...

a = 69;

le = a + LEN; // becomes le = a + 16;

b = LOWNIBBLE(a); // same as b = a & 0x0F;

Page 28 SourceBoost Technologies BoostC™ Manual

#undef

Syntax: #undef id

Elements: id is any valid preprocessor identifier previously defined via #define.

Purpose: Starting with the line where this directive appears, id will no more
have meaning for the preprocessor, i.e. a subsequent #ifdef id shall
evaluate to logical FALSE.

Please note that id can then be reused and assigned a different
value.

Examples: #define LEN 16
#define LOWNIBBLE(x) ((x) & 0x0F)
...
a = 69;
le = a + LEN; // becomes le = a + 16;

#undef LEN // LEN is not recognized anymore by pp
...

#define LEN 24 /* This is now valid and does not cause
“double definition attempt” errors. */

BoostC™ Manual SourceBoost Technologies Page 29

#if, #else, #endif

Syntax: #if expr
 code
#else
 code
#endif

Elements: expr is any valid expression using constants, standard operators
and preprocessor identifiers.
code is one or more valid C source code line.

Purpose: The preprocessor evaluates the constant expression expr and, if it
is non-zero, will process the lines up to the optional #else or the
#endif. Otherwise the optional #else branch code will be processed,
if present.

The latter two preprocessor directives are also used with specialized
forms of the #if directive (see #ifdef, #ifndef).

NOTE: expr cannot contain C variables ! Only constant expressions
and operators can be used.

Examples: // Conditionally initialize a RAM variable

#if STARTDELAY > 20
 slow = 1;
#else
 slow = 0;
#endif

Page 30 SourceBoost Technologies BoostC™ Manual

#ifdef

Syntax: #ifdef id
 code
#endif

Elements: id is any valid preprocessor identifier.

code is one or more lines of valid C source code.

Purpose: When the preprocessor encounters this directive, it evaluates
whether the identifier id is in its symbol table (eg previously
specified within a #define statement).
In case id is defined, the lines of code between #ifdef and #endif
(or an optional #else, if present) will be processed.

In the opposite case, code statements between #ifdef and #endif
will be ignored by the compiler.

NOTE: id can not be a C variable ! Only preprocessor identifiers
created via #define can be used.

Examples: #define DEBUG
...

#ifdef DEBUG
 printf(“Reached test point #1”);
#endif

BoostC™ Manual SourceBoost Technologies Page 31

#ifndef

Syntax: #ifndef id
 code
#endif

Elements: id is any valid preprocessor identifier.

code is one or more lines of valid C source code.

Purpose: When the preprocessor encounters this directive, it evaluates
whether the identifier id is in its symbol table (eg previously
specified within a #define statement).

In case id is not defined, the lines of code between #ifndef and
#endif (or an optional #else, if present) will be processed.

In the opposite case, code statements between #ifndef and
#endif will be ignored by the compiler.

NOTE: id can not be a C variable ! Only preprocessor identifiers
created via #define can be used.

Examples: #ifndef DEBUG
 printf(“Debug disabled !”);
#else
 printf(“Reached test point #1”);
#endif

Page 32 SourceBoost Technologies BoostC™ Manual

#error

Syntax: #error text

Elements: text is any valid text.

Purpose: When the preprocessor encounters this directive, it stops
compilation and issues and error. The user supplied text is
printed as an informational message.

This directive is useful when coupled with the expression checking
features of the preprocessor, to validate the coherence of
configuration choices and defines made elsewhere in the sources
and include files (or on the command line).

Examples: #ifndef PWM_DEFAULT
 #error “MUST define a default value for speed !”
#endif

BoostC™ Manual SourceBoost Technologies Page 33

#warning

Syntax: #warning text

Elements: text is any valid text.

Purpose: When the preprocessor encounters this directive, it forces the
compiler to issue a warning. The user supplied text is printed as
an informational message.

This directive is useful when coupled with the expression checking
features of the preprocessor, to validate the coherence of
configuration choices and defines made elsewhere in the sources
and include files (or on the command line).

Examples: #ifndef NODEADDR
 #warning “ADDR not defined, will enter dynamic mode.”
#endif

Pragma directives
Specific BoostC preprocessor directives all follow the ANSI keyword #pragma, so
to avoid potential conflicts when porting code to other compilers and/or with
advanced source analysis tools (lint, static checkers, code formatters, flow
analyzers and so on).

The following directives are supported by pp:

#pragma DATA

#pragma CLOCK_FREQ

#pragma OPTIMIZE

#pragma config

These directives are individually explained in the following pages.

Page 34 SourceBoost Technologies BoostC™ Manual

#pragma DATA

Syntax: #pragma DATA addr, d1, d2, ...

or

#pragma DATA addr, “abcdefg1”, “abcdefg2”, ...
Elements: addr is any valid code memory address.

d1, d2... are 8-bit integer constants.

“abcdefgX” is a character string, the ASCII values of the
charcters will be stored as 8 bit value.

Purpose: User data can be placed at a specific location using this construct.
In particular, this can be used to specify target configuration word
or to set some calibration/configuration data into on-chip eeprom.

Examples: #pragma DATA 0x200, 0xA, 0xB, "test"
//Set PIC16 configuration word
#pragma DATA 0x2007, _HS_OSC & _WDT_OFF & _LVP_OFF
//Put some data into eeprom
#pragma DATA 0x2100, 0x12, 0x34, 0x56, 0x78, "ABCD"

BoostC™ Manual SourceBoost Technologies Page 35

#pragma CLOCK_FREQ

Syntax: #pragma CLOCK_FREQ Frequency_in_Hz

Elements: Frequency_in_Hz is the processor's clock speed.

Purpose: The CLOCK_FREQ directive tells the compiler under what clock
frequency the code is expected to run.

Note: delay code generated by the linker is based on this figure.

Examples: //Set 20 MHz clock frequency
#pragma CLOCK_FREQ 20000000

Page 36 SourceBoost Technologies BoostC™ Manual

#pragma OPTIMIZE

Syntax: #pragma OPTIMIZE “Flags”

Elements: Flags are the optimization flags also used on the command line.

Purpose: This directive sets new optimization, at function level.
It must be used in the global scope and applies to the function
that follows this pragma.

The pragma argument should be enclosed into quotes and is
same as argument of the -O compiler command line options.

Empty quotes reset the optimization level previously set by this
pragma.

This is the current list of valid optimization flags:

0 no or very minimal optimization
1 light optimization
2 regular optimization (recommended)
a aggressive optimization
p promotes results of some 16 bit operations to 32 bits

Examples: //Use aggressive optimization for function 'foo'
#pragma OPTIMIZE "a"

void foo()
{
 ...
}

BoostC™ Manual SourceBoost Technologies Page 37

#pragma config

Syntax: #pragma config “option1” = “setting1” ,“option2” =
“setting2”, ...

Elements: Option is one of the target devices options, setting is the
desired setting of the option. More than one option can be set
with each #pragma config statements.

Purpose: This directive allows setting of the target devices configuration
options.

Examples:
// Enable Watchdog timer and set prescaler
#pragma WDT = ON, WDTPS = 128

// Turn stack overflow reset on
#pragma STVR = ON

Notes: #pragma config only works with target devices that have config
option data. An alternative method of configuration for some
target devices is to use #pragma DATA. Please see the “Setting
Device Configuration Options” section of this manual.

Page 38 SourceBoost Technologies BoostC™ Manual

Setting Device Configuration Options
In order for a program to be able to run on a target device the device
configuration options need to be correctly set. For example having the wrong
oscillator configuration setting may mean that the device has no clock, making it
impossible for any code to be executed.

Configuration options typically controlled:

● Oscillator configuration

● Brown out reset

● Power up reset timer

● Watchdog configuration

● Peripheral configurations

● Pin configurations

● Low voltage programming

● Memory protection

● Table read protection

● Stack overflow handling

The exact configuration options available depend on exactly which device is being
used. The PIC18 devices have many more configuration options than the
PIC16/PIC12 devices.

Device Configuration Methods
A number of methods can be used to configure devices.

1) Combining configuration bit masks in the source code using #pragma DATA.

2) Setting configuration options in the source code using #pragma config.

3) Setting configuration options in the source code development environment or
in the programmer software. For example Microchip MPLAB has a
“Configuration Bits” menu option where the configuration bits can be set.

The method that can be used is target dependent. The PIC12 and PIC16 target
devices support configuration using #pragma DATA. The PIC18 target devices
support configuration using #pragma config, although some PIC18 target devices
also support configuration using #pragma DATA.

The recommended configuration method, where available, is #pragma config due
to its readability in the source code.

Where to find Configuration Options
You can find the defined configuration options for a given device by looking in the
target devices BoostC header file (PIC18XXXX.h and PIC16XXXX.h) which can be
found in the installation directory (typically “C:\Program
File\SourceBoost\include”). Its also worth looking at relevant Microchip data sheet
to find the exact function of each option.

BoostC™ Manual SourceBoost Technologies Page 39

file:///../Program

Using #pragma config for device configuration
Configuration data can be set on some devices using the compiler directive:
#pragma config. This directive can be used to set one or more configuration
options at a time.

Configuration Example:
// PIC18F8720 Coniguration
// oscillator config
#pragma config OSC = ECIO, OSCS = OFF

// power and brown out config
#pragma config PWRT = OFF, BOR = ON, BORV = 27
#pragma config WDT = ON, WDTPS = 128

// Processor mode config
#pragma config MODE = MC, WAIT = OFF

// Miscellaneous config
#pragma config CCP2MUX = ON
#pragma config STVR = ON
#pragma config LVP = ON
#pragma config DEBUG = OFF

// Code protection config
#pragma config CP0 = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF
#pragma config CP4 = OFF, CP5 = OFF, CP6 = OFF, CP7 = OFF
#pragma config CPB = OFF, CPD = OFF

// Write block protection config
#pragma config WRT0 = OFF, WRT1 = OFF, WRT2 = OFF, WRT3 = OFF
#pragma config WRT4 = OFF, WRT5 = OFF, WRT6 = OFF, WRT7 = OFF
#pragma config WRTB = OFF, WRTC = OFF, WRTD = OFF

// Table read block protection config
#pragma config EBTR0 = OFF, EBTR1 = OFF, EBTR2 = OFF, EBTR3 = OFF
#pragma config EBTR4 = OFF, EBTR5 = OFF, EBTR6 = OFF, EBTR7 = OFF
#pragma config EBTRB = OFF

Using #pragma DATA for device configuration
Configuration data can be set on some devices using the compiler directive:
#pragma DATA.

#pragma DATA is actually a generally purpose way of writing data to the target
during the programming process. With the appropriate address and data
definitions it can be used to set the target configuration bits.

Configuration Example 1:

// Configuration for PIC16F874A
#pragma DATA _CONFIG, _CP_OFF & _PWRTE_OFF & _WDT_OFF & _HS_OSC & _LVP_OFF

Configuration Example 2:

// Configuration for PIC18F452
#pragma DATA _CONFIG1H, _OSCS_OFF_1H & _HS_OSC_1H
#pragma DATA _CONFIG2L, _BOR_ON_2L & _BORV_20_2L & _PWRT_OFF_2L
#pragma DATA _CONFIG2H, _WDT_OFF_2H & _WDTPS_128_2H

Page 40 SourceBoost Technologies BoostC™ Manual

#pragma DATA _CONFIG3H, _CCP2MX_ON_3H
#pragma DATA _CONFIG4L, _STVR_ON_4L & _LVP_OFF_4L & _DEBUG_OFF_4L
#pragma DATA _CONFIG5L, _CP0_OFF_5L & _CP1_OFF_5L & _CP2_OFF_5L & _CP3_OFF_5L
#pragma DATA _CONFIG5H, _CPB_OFF_5H & _CPD_OFF_5H
#pragma DATA _CONFIG6L, _WRT0_OFF_6L & _WRT1_OFF_6L & _WRT2_OFF_6L & _WRT3_OFF_6L
#pragma DATA _CONFIG6H, _WRTC_OFF_6H & _WRTB_OFF_6H & _WRTD_OFF_6H
#pragma DATA _CONFIG7L, _EBTR0_OFF_7L & _EBTR1_OFF_7L & _EBTR2_OFF_7L & _EBTR3_OFF_7L
#pragma DATA _CONFIG7H, _EBTRB_OFF_7H

Initialization of EEPROM Data
It is often desirable to program the PIC on board EEPROM with initial data as part
of the programming process. This initial data can be included in the source code.
EEPROM initialization data is set using the pragma directive: #pragma DATA.

Example:

// Initializes EEPROM with data: 0C 22 38 48 45 4C 4C 4F 00 FE 99
#pragma DATA _EEPROM, 12, 34, 56, "HELLO", 0xFE, 0b10011001

BoostC™ Manual SourceBoost Technologies Page 41

C language
This section of the manual contains a condensed list of BoostC C compiler features.
It is in no way intended to replace a complete C language manual or ANSI/ISO
specification. It is targeted, instead, at the already expert C programmer that
needs a quick reference of BoostC and its peculiarities due to the specific PIC
target platform.

Program structure
Every source file should include the general system header file, that in turn
includes target specific header (containing register mapped variables specific for
this target), some internal functions prototypes needed for code generation and
string manipulation function prototypes:

#include <system.h>

//Rest of the source code goes here, after the system include

The only exception to this rule is a project that outputs a library. Library sources
should not include any system headers to avoid duplicate variable declaration
error.

Data types

Base data types

Size Type

1 bit bit, bool

8 bits char, unsigned char, signed char

16 bits short, unsigned short, signed short

16 bits int, unsigned int, signed int

32 bits long, unsigned long, signed long

The difference between bit and bool data types is in the way how an expression
(longer than 1 bit) is assigned to a bit or bool operands.

• bit operands receive the least significant bit of the right side expression;

• bool operands receive the value of the right side expression casted to bool.

For example:

Page 42 SourceBoost Technologies BoostC™ Manual

bool a;
bit b;
char x;
...
a = x & 2; // 'a' will be 'true' if the bit #1 in 'x' is set
 // and 'false' otherwise

b = x & 2; // 'b' will always be false, because bit #0
 // (the least significant bit) in the expression
 // result is zero - regardless of the value of 'x'

Structures and unions

Both struct and union keywords are supported.

Typedef

New names for data types can be defined using typedef operation:

typedef unsigned char uchar;

Enum

Enumerated data types are an handy type of automatically defined constant series.
The declaration assigns a value of zero to the first symbolic constant of the list,
and the assigns subsequent values (automatically incremented) to the following
constants.

The user can, as well, arbitrarily assign numerical (signed) values at the beginning
as well as in the middle of the series. Values following an explicit assignment use
that value as a base and keep on incrementing from that point.

The data type for an enum type or typedef variable is, as per ANSI definition, the
smaller type that can contain the absolute maximum value of the constant series.

enum ETypes { E_NONE=0, E_RED, E_GREEN, E_BLUE };

// Same as :
// #define E_NONE 0
// #define E_RED 1
// #define E_GREEN 2
// #define E_BLUE 3

Code size vs Data Types

Be sure to always use the smallest data types possible. The rule is simple: the
bigger data types are used, the bigger code will be generated.
Thus, always follow these rules of thumb:

• Use char (8-bit or byte) as the default, everywhere;

• Use short or int (16-bit or word) for common arithmetic, counters and to hold
ADC conversion results on advanced cores (with 10-bit or more internal ADC).

• Only as a as last resort, and only where absolutely necessary, use long (32-bit,
dword) variables.

BoostC™ Manual SourceBoost Technologies Page 43

Another rule that also affects the size of produced code, though in a much smaller
degree, is about sign.

Use unsigned data types wherever you can, and signed only when necessary.
Unsigned math always generates smaller (and typically faster) code than signed.

Page 44 SourceBoost Technologies BoostC™ Manual

Rom

Strings or arrays of data can be placed into program memory.

Such variables are declared using regular data types and rom storage specifier.

Such rom variables must be initialized within declaration:
rom char *text = "Test string"; // text with trailing zero
rom char *ptr = "\x64\11\12"; // 4 bytes: 0x64, 0x0B, 0x0C, 0x00
rom char *data = { 0x64, 11, 12 }; // 3 data bytes: 0x64, 0x0B, 0x0C

Please keep in mind that the rom storage specifier has several limitations:

• rom can be used with char data types only;
• there is no implicit cast between rom and regular data types. Though BoostC

will not generate an explicit error for such a cast, it is expected that the
operand should be casted back to its original type.
If this is not done, the resulting code will behave unpredictably.

• a rom pointer is internally limited to 8-bits: the constant array size is thus
limited to 256 elements. This is coherent with smaller cores constraints;

• access to rom elements has to be done exclusively through the [] operators
and they cannot be referenced with substring pointer initialized at
runtime. Please keep in mind that rom variables must always and exclusively
be initialized within declaration;

Example of wrong referencing with a runtime initialized pointer:
/*
Part of the following code is WRONG and will FAIL because BoostC cannot
dynamically create the pointer to mystr[OFFSET] when the mystr array is
located in ROM.
*/

rom char *mystr = "Str_one \0 Str_two \0";

/* WRONG: a rom pointer must be initialized in declaration */
rom char *substr;

 substr = &mystr[OFFSET]; //** WRONG **
 cc = substr[0]; //** WRONG **

 cc = mystr[OFFSET]; // Correct

Volatile

The volatile type specifier should be used with variables that:

a) Can be changed outside the normal program flow, and

b) Should not receive intermediate values within expressions.

For example, if a bit variable is mapped to a port pin, it is a good programming
practice to declare such variable as volatile.

Code generated for expressions with volatile variables is a little longer when
compared to 'regular' code:

BoostC™ Manual SourceBoost Technologies Page 45

volatile bit pinB1@0x6.1; //declare bit variable mapped to pin 1, port B

Currently compiler generates different code only for expressions that assign values
to volatile bit variables. Also volatile variables are not checked for being initialized.

Static

Both global and local variables can be declared as static. This limits their scope to
the current module.

Constants

Constants can be expressed in binary, octal, decimal and hexadecimal forms:

0bXXXX
or
XXXXb

binary number, where X is either 1 or 0

0XXXX octal number, where X is a number between 0 and 7
XXXX decimal number, where X is a number between 0 and 9
0xXXXX hexadecimal number, where X is a number between 0 and 9

or A and F

Strings
Besides regular characters, strings can include escape sequences:

\nn ASCII character, value nn is decimal

\xnn ASCII character, value nn is hexadecimal

\a ASCII character 0x07 (ALERT)

\b ASCII character 0x08 (Backspace)

\t ASCII character 0x09 (Horizontal Tab)

\r ASCII character 0x0D (CR, Carriage Return)

\v ASCII character 0x0B (Vertical Tab)

\f ASCII character 0x0C (Form Feed)

\n ASCII character 0x0A (LF, Line Feed)

\\ ASCII character 0x5C (the «\» character)

\' ASCII character 0x27 (the «'» character)

\" ASCII character 0x22 (the «"» character)

\? ASCII character 0x3F (the «?» character)

Page 46 SourceBoost Technologies BoostC™ Manual

Variables
Variables can be declared and used in the standard ANSI C way.
The linker will place variables at specific addresses. BoostLink analyzes the call and
scope trees, so that it can re-use the same pool of RAM memory locations for
variables that don't collide with each other, being used disjointly by unrelated
routines active at different times.

This is a very effective way to minimize data memory usage.

Register mapped variables

Variables can be forced to be placed at certain addresses. Syntax is the same as in
the legacy C2C compiler:

char var@<addr>;

where <addr> is an hex or decimal address.
This technique is used to access target specific registers from code.
Please note that system header files already contain all target specific registers, so
there is no need to define them again in the user's code.

Bit variables can also have fixed addresses. Their address includes bit position and
can be made in 2 forms:

bit b; //variable will be placed by linker at arbitrary position
bit b1@0x40.1; // dotted: access bit 1 of register 0x40
bit b2@0x202; // bit offset: access bit 2 of register 0x40 (0x40*8 + 2)

Bit access

Besides 'bit' variables, individual bits of every variable can be accessed using the '.'
operator:

char var;
var.2 = 1; //set bit 2 of variable 'var'

PORTB vs portb or notes about naming convention

What is the difference between PORTB and portb beside the case? The first one
refers to a literal which value is the address of port B and the second is a variable
mapped to this address. Thus to access port B the variable portb should be used
in the code:

#include <system.h> //this is where all system variables are declared
...
portb = 1; //output 1 to port B
PORTB = 1; //compile error, PORTB is a literal and this expression becomes
 //something like 0x0006 = 1 after pre-processing

BoostC™ Manual SourceBoost Technologies Page 47

This difference comes from naming convention used in majority of the
programming world: use small letters for variable names and capitals for defines.
SourceBoost system headers where all the system variables are declared adopt
this convention too (SourceBoost compilers don't care about cases in variable
names but if you use system variables declared in system.h you should follow this
convention).

Arrays
Arrays can have any number of dimensions. The only constraint is that an array
must fit into a single RAM bank.

Pointers
Pointers can be used in the standard general way, the only exception being
variables declared with the rom storage specifiers, that can only be accessed
through the [] operators.

Strings as function arguments

If a function has one or more char* arguments, it can be called with a constant
string passed as an argument.
The compiler will reuse the same RAM memory allocated for such arguments when
several similar calls are made within same code block.
For example, the code below will use the same memory block to temporarily store
the strings "Date" and "Time":
...
foo("Date");
foo("Time");
...

Operators
If an operation result is not explicitly casted, it is promoted by default to 16 bit
precision. For example, given the following expression:

long l = a * 100 / b; //'a' and 'b' are 16 bit long variables

the result of the multiplication will be stored in a 16-bit long (word) temporary
variable, that will be then divided by b. This 16-bit long result will eventually be
stored in l. This is the ANSI 'C' standard behavior.

This behavior can be changed using the -Op compiler command line option or a
local #pragma OPTIMIZE directive.
When this optimization is applied to the given expression, the multiplication result
will be promoted to 32-bit long (dword) temporary variable, that will then be
divided by b: the result, that is now 32 bit long, will eventually be stored in l.

Page 48 SourceBoost Technologies BoostC™ Manual

Arithmetic

+ - * / % ++ --

Arithmetic Operator Examples

// + is a binary operator. It is used to add or produce
// the arithmetic sum of two operands.

// Example:

c = a + b;
// or

c = 5 + 7; // After the operation c = 12

// - is a binary operator. It is used to subtract or produce
// the difference of two operands. In other words, the second
// operand is subtracted from the first operand.

// Example:

c = a - b;
// or

c = 18 – 12; // After the operation c = 6

// * is a binary operator. It is used to multiply or produce
// the arithmetic product of two operands.

// Example:

c = a * b;
// or

c = 5 * 7; // After the operation c = 35

// / is a binary operator. It is used to divide or produce
// the quotient of two operands. In other words, the first
// operand is divided by the second operand.

// Example:

c = a / b;
// or

c = 24 / 8; // After the operation c = 3

// % is a binary operator. It is used to produce the modulus
// or remainder when two operands are divided.

// Examples:

c = a % b;

BoostC™ Manual SourceBoost Technologies Page 49

// or
c = 25 % 8; // After the operation c = 1

C = 17 % 3; // 17 % 3 = 5 with a remainder of 2
 // After the operation c = 2

c = 17 % 4; // 17 % 4 = 4 with a remainder of 1
 // After the operation c = 1

// ++ is a unary operator. It is used for pre-incrementing
// or post-incrementing an operand.

// Examples:

X = 10;
c = x++; // Post-increment.

 // After the operation x = 11, c = 10

X = 10;
c = ++x; // Pre-increment.

 // After the operation x = 11, c = 11

// -- is a unary operator. It is used for pre-decrementing
// or post-decrementing an operand.

// Examples:

x = 10;
c = x--; // Post-decrement.

 // After the operation x = 9, c = 10

x = 10;
c = --x; // Pre-decrement.

 // After the operation x = 9, c = 9

Assignment

= += -= *= /= %= &= |= ^= <<= >>=

Assignment Operator Examples

// = is the ASSIGN operator. The value of the variable or
// expression on the right side of the equal is assigned
// to the variable on the left side of the equal.

// Examples:

x = 3; // Whatever was in the variable x
 // has been replaced with 3.

x = 2 + 4; // Whatever was in the variable x
 // has been replaced with 6.

Page 50 SourceBoost Technologies BoostC™ Manual

c = x + y; // If x has a value of 12 and y has a value of 16.
 // Whatever was in the variable c will
 // be replaced with 28.

// += is the combined ADD and ASSIGN operator. The variable
// on the left side of the operator will be added to the
// variable or expression on the right side. The result is
// then assigned to the variable on the left side of the
// operator.

// Examples:

x += 2; // If x has an initial value of 14. After
 // the operation x will be 16.

c += x + y; // If c has an initial value of 10 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 38.

// -= is the combined SUBTRACT and ASSIGN operator. The variable
// or expression on the right side of the operator will be
// subtracted from the variable on the left side. The result
// is then assigned to the variable on the left side of the
// operator.

// Examples:

x -= 2; // If x has an initial value of 14. After
 // the operation x will be 12.

c -= x + y; // If c has an initial value of 38 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 10.

// *= is the combined MULTIPLY and ASSIGN operator. The variable
// on the left side of the operator will be multiplied by the
// variable or expression on the right side. The result is
// then assigned to the variable on the left side of the
// operator.

// Examples:

x *= 2; // If x has an initial value of 14. After
 // the operation x will be 28.

c *= x + y; // If c has an initial value of 10 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 280.

// /= is the combined DIVIDE and ASSIGN operator. The variable
// on the left side of the operator will be divided by the
// variable or expression on the right side. The result
// is then assigned to the variable on the left side of
// the operator.

// Examples:

x /= 2; // If x has an initial value of 14. After

BoostC™ Manual SourceBoost Technologies Page 51

 // the operation x will be 7.

c /= x + y; // If c has an initial value of 280 and x has
 // the value 12 and y has the value 16.
 // After the operation c will be 10.

// %= is the combined MODULUS and ASSIGN operator. The variable
// on the left side of the operator will be divided by the
// variable or expression on the right side. The result,
// which is a remainder only, is then assigned to the
// variable on the left side of the operator.

// Examples:

x %= 2; // If x has an initial value of 15. After
 // the operation x will be 1.

y %= 7; // If y has an initial value of 17. After
 // the operation y will be 3.

c %= x + y; // If c has an initial value of 19 and x has
 // the value 4 and y has the value 3.
 // After the operation c will be 5.

// &= is the combined BITWISE-AND and ASSIGN operator. The variable
// on the left side of the operator will be ANDed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x &= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 4.

c &= 0x07; // If c has an initial value of 0x0E. After
 // the operation c will be 0x06.

y &= 0b11110001; // If y has an initial value of 0b10001111.
 // After the operation y will
 // be 0b10000001.

// |= is the combined BITWISE-OR and ASSIGN operator. The variable
// on the left side of the operator will be ORed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x |= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 15.

c |= 0x07; // If c has an initial value of 0x0E. After
 // the operation c will be 0x0F.

y |= 0b11110000; // If y has an initial value of 0b10001110.
 // After the operation y will
 // be 0b11111110.

Page 52 SourceBoost Technologies BoostC™ Manual

// ^= is the combined BITWISE-XOR and ASSIGN operator. The variable
// on the left side of the operator will be XORed on a bit-by-bit
// basis with the variable or constant on the right side. The
// result is then assigned to the variable on the left side of
// the operator.

// Examples:

x ^= y; // If x has an initial value of 14 and y has the
 // value 5. After the operation x will be 11.

c ^= 0x07; // If c has a value of 0x0E. After the
 // operation c will be 0x09.

y ^= 0b11111000; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b11100110.

// <<= is the combined SHIFT-LEFT and ASSIGN operator. The variable
// on the left side of the operator will be shifted left by the
// number of places indicated by the variable or constant on
// the right. The result is then assigned to the variable on
// the left side of the operator.

// Examples:

x <<= y; // If x has an initial value of 14 and y has the
 // value 2. After the operation x will be 56.

c <<= 0x01; // If c has an initial value of 0x0E. After the
 // operation c will be 0x1C.

y <<= 0b00000010; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b01111000.

// >>= is the combined SHIFT-RIGHT and ASSIGN operator. The
// variable on the left side of the operator will be shifted
// right by the number of places indicated by the variable
// or constant on the right. The result is then assigned to
// the variable on the left side of the operator.

// Examples:

x >>= y; // If x has an initial value of 14 and y has the
 // value 2. After the operation x will be 3.

c >>= 0x01; // If c has an initial value of 0x0E. After the
 // operation c will be 0x07.

y >>= 0b00000010; // If y has an initial value of 0b00011110.
 // After the operation y will
 // be 0b00000111.

BoostC™ Manual SourceBoost Technologies Page 53

Comparison

== != < <= > >=

Comparison Operator Examples

// == is a binary operator. It is used to see if one operand
// IS equal to another operand.

// Example1:

if(x == y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 8.
 c = x + y; // The final value for c will be 16.
}

// Example2:

if(x == y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 5.
 c = x + y; // The final value for c will be 0.
}

// != is a binary operator. It is used to see if one operand
// is NOT equal to another operand.

// Example1:

if(x != y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 5.
 c = x * y; // The final value for c will be 40.
}

// Example2:

if(x != y) // If c has an initial value of 0, and
{ // x has the value 8 and y has the value 8.
 c = x * y; // The final value for c will be 0.
}

// < is a binary operator. It is used to see if one operand
// is LESS than another operand.

// Example1:

if(x < y) // If c has an initial value of 0, and
{ // x has the value 40 and y has the value 65.
 c = y – x; // The final value for c will be 25.
}

// Example2:

if(x < y) // If c has an initial value of 0, and
{ // x has the value 65 and y has the value 40.
 c = y – x; // The final value for c will be 0.
}

// <= is a binary operator. It is used to see if one operand

Page 54 SourceBoost Technologies BoostC™ Manual

// is LESS than or EQUAL to another operand.

// Example1:

if(x <= y) // If x has a value of 22 and y has a value of 33.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x <= y) // If x has a value of 15 and y has a value of 8.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

// Example3:

if(x <= y) // If x has a value of 46 and y has a value of 46.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// > is a binary operator. It is used to see if one operand
// is GREATER than another operand.

// Example1:

if(x > y) // If c has an initial value of 0, and
{ // x has the value 28 and y has the value 14.
 c = x / y; // The final value for c will be 2.
}

// Example2:

if(x > y) // If c has an initial value of 0, and
{ // x has the value 14 and y has the value 28.
 c = x / y; // The final value for c will be 0.
}

// >= is a binary operator. It is used to see if one operand
// is GREATER than or EQUAL to another operand.

// Example1:

if(x >= y) // If x has a value of 25 and y has a value of 10.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x >= y) // If x has a value of 8 and y has a value of 15.

BoostC™ Manual SourceBoost Technologies Page 55

 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

// Example3:

if(x >= y) // If x has a value of 34 and y has a value of 34.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

Logical

&& || !

Logical Operator Examples

// && is a binary operator. It is used to determine if both operands
// are true. The operands are expressions that evaluate to true
// or false.

// Example1:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 70 the alarm will be turned OFF.

// Example2:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 105 the alarm will be turned ON.

// Example3:

if((temp > 50) && (temp < 100))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If temp has a value of 25 the alarm will be turned ON.

Page 56 SourceBoost Technologies BoostC™ Manual

// || is a binary operator. It is used to determine if either
// operand is true. The operands are expressions that evaluate
// to true or false.

// Example1:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 8 the LED will be turned ON.

// Example2:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 6 the LED will be turned OFF.

// Example3:

if((volt > 7) || (volt < 5))
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// If volt has a value of 4 the LED will be turned ON.

// ! is a unary operator. It is used to complement an evaluated
// operand. The operand is an expression that evaluates to
// true or false.

// Example1:

if(!(pressure > 120))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If pressure has a value of 75 the alarm will be turned OFF.

// Example2:

if(!(pressure > 120))
 clear_bit(PORTA, ALARM_bit); // Turn alarm OFF
else
 set_bit(PORTA, ALARM_bit); // Turn alarm ON

// If pressure has a value of 125 the alarm will be turned ON.

Bitwise

& | ^ ~ << >>

BoostC™ Manual SourceBoost Technologies Page 57

Bitwise Operator Examples

// & is a binary operator. It is used to produce the logical product
// of two operands. The individual bits of two operands are ANDed
// together to produce the final results.

// Examples:

c = x & y; // If x has a value of 14 and y has a value
 // of 5. After the operation c will be 4.

x = y & 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x06.

x = y & 0b11110001; // If y has a value of 0b10001111.
 // After the operation x will
 // be 0b10000001.

// | is a binary operator. It is used to produce the logical sum of
// two operands. The individual bits of two operands are ORed
// together to produce the final results.

// Examples:

c = x | y; // If x has a value of 14 and y has a value
 // of 5. After the operation c will be 15.

x = y | 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x0F.

x = y | 0b11110000; // If y has a value of 0b10001110.
 // After the operation x will
 // be 0b11111110.

// ^ is a binary operator. It is used to produce the logical
// difference of two operands. The individual bits of two operands
// are XORed together to produce the final results.

// Examples:

x = y ^ 0x07; // If y has a value of 0x0E. After the
 // operation x will be 0x09.

x = y ^ 0b11111000; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b11100110.

// ~ is a unary operator. It is used to produce the complement of an
// operand. The individual bits of the operand are complemented.
// The ones become zeros and the zeros become ones.

// Examples:

x = ~y; // If y has a value of 0x0E. After the
 // operation x will be 0xF1.

x = ~0b01010111; // After the operation x will
 // be 0b10101000.

Page 58 SourceBoost Technologies BoostC™ Manual

// << is a binary operator. The operand on the left side of the
// operator will be shifted left by the number of places
// indicated by the operand on the right.

// Examples:

c = x << y; // If x has a value of 14 and y has a value
 // of 2. After the operation c will be 56.

x = y << 0x01; // If y has a value of 0x0E. After the
 // operation x will be 0x1C.

x = y << 0b00000010; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b01111000.

// >> is a binary operator. The operand on the left side of the
// operator will be shifted right by the number of places
// indicated by the operand on the right.

// Examples:

c = x >> y; // If x has a value of 14 and y has a value of 2.
 // After the operation c will be 3.

x = y >> 0x01; // If y has a value of 0x0E. After the operation
 // x will be 0x07.

x = y >> 0b00000010; // If y has a value of 0b00011110.
 // After the operation x will
 // be 0b00000111.

Conditionals

if / else statement
switch statement
? : ternary operator

Conditional Examples

// if / else is a two-way decision making statement. If the
// expression evaluates to true, the first statement
// will be executed. If it evaluates to false the
// second statement will be executed.

// Example1:

if(x > y) // If x has a value of 25 and y has a value of 10.
 set_bit(PORTA, LED_bit); // Turn LED ON

BoostC™ Manual SourceBoost Technologies Page 59

else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned ON.

// Example2:

if(x > y) // If x has a value of 8 and y has a value of 15.
 set_bit(PORTA, LED_bit); // Turn LED ON
else
 clear_bit(PORTA, LED_bit); // Turn LED OFF

// In this example the LED will be turned OFF.

// switch is a multi-way decision making statement. The variable is
// compared with the different cases. The case that matches
// will have its statements executed.

// Example1:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has a value of 5 the red LED will
// be turned ON and the green LED will be turned OFF.

// Example2:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has a value of 10 the green LED will
// be turned ON and the red LED will be turned OFF.

// Example3:

switch(weight)
{
 case 5:
 set_bit(PORTA, red_LED); // Turn red LED ON

Page 60 SourceBoost Technologies BoostC™ Manual

 clear_bit(PORTA, green_LED); // Turn green LED OFF
 break;
 case 10:
 set_bit(PORTA, green_LED); // Turn green LED ON
 clear_bit(PORTA, red_LED); // Turn red LED OFF
 break;
 default:
 clear_bit(PORTA, green_LED); // Turn green LED OFF
 clear_bit(PORTA, red_LED); // Turn red LED OFF
}

// If the 'weight' variable has any value other than 5 or 10,
// both the green and red LEDs will be turned OFF.

// ? : is an if/else operator. This operator can be used inside an
// expression to determine if a part of it is true or false.

// Example1: turn the LED ON turn the LED OFF

(volts > 5) ? set_bit(PORTA, LED_bit) : clear_bit(PORTA, LED_bit);

// If 'volts' has a value of 7 turn the LED ON.

// Example2: turn the LED ON turn the LED OFF

(volts > 5) ? set_bit(PORTA, LED_bit) : clear_bit(PORTA, LED_bit);

// If 'volts' has a value of 3 turn the LED OFF.

Program Flow
while
do / while
for
break
continue

Program Flow Examples

// while is a loop control construct. It controls the execution of
// a block of statements for as long as an expression evaluates
// to true. The expression is evaluated first and if true,
// executes the block. If it evaluates to false, stop the
// execution.

// Example1:

while(number > 0)
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.
}

BoostC™ Manual SourceBoost Technologies Page 61

// If 'number' has a value of 3 'factorial' will become 6.
// factorial = 3 x 2 x 1 ;

// Example2:

while(number > 0)
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.
}

// If 'number' has a value of 0, 'factorial' will stay
// equal to 1 because the loop was never entered.

// do / while is a loop control construct. It controls the execution
// of a block of statements for as long as an expression
// evaluates to true. The block is executed at least once
// before the expression is evaluated. If it evaluates to
// false, stop the execution. If it evaluates to true,
// continue the execution.

// Example1:

do
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.

} while(number > 0);

// If 'number' has a value of 4 'factorial' will become 24.
// factorial = 4 x 3 x 2 x 1 ;

// Example2:

do
{
 factorial *= number; // 'factorial' is initialized to 1
 --number; // before entering the loop.

} while(number > 0);

// If 'number' has a value of 0, 'factorial' will become 0 because
// the loop was entered, before the expression was evaluated.

// for is a loop control construct. It controls the number of times
// a block of statements is executed. The construct has an
// initial value, a final value, and a loop-count value that is
// incremented each time after the block is executed.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of 21.

// break is an option that can be used to exit out of a for-loop,

Page 62 SourceBoost Technologies BoostC™ Manual

// based upon the evaluation of an expression.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 if(volts == 5)
 break;

 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of only 10.

// continue is an option used to redirect a for-loop based upon the
// evaluation of an expression. If the expression evaluates
// to true, the block of statements will not be executed.

// Example1:

for(volts = 0; volts < 7; volts++)
{
 if(volts == 5)
 continue;

 sum += volts; // 'sum' is initialized to 0
} // before entering the loop.

// Upon exiting the loop 'sum' will have a value of only 16.
// 'sum' will only have the values 0, 1, 2, 3, 4, & 6 added together.

Goto

In the vast majority of programming books, the usage of 'goto' is heavily
deprecated. This is true for BoostC and PIC C coding as well: it should normally be
avoided.

There are, anyway, some very specific circumstances where it may still be useful:
to optimize early exit cases within complex nested control structures or to simplify
local error handling (it can somehow mimic try/catch exception handling syntax).
while(...)
{
 while(...)
 {
 while(...)
 {
 goto exit;
 }
 }
}
exit:

Inline assembly
Use the asm or _asm operators to embed assembly into C code.

BoostC™ Manual SourceBoost Technologies Page 63

Bank switching and code page switching code should NOT be added to inline
assembly code. The linker will add the appropriate Bank switching and code page
switching code.

asm

Code will be affected as follows:

● Bank switching added automatically.

● Code page switching added automatically.

 _asm

Code will be affected as follows:

● Bank switching added automatically.

● Code page switching added automatically.

● Other optimizations applied (including dead code removal).

Assembly operators can be used in single line or multi line modes. Single line
mode operates on one assembly instruction that follows the asm or _asm
operators on the same line:
asm nop

In multi line mode assembly instructions are enclosed into curly braces that should
be placed on different than assembly code lines:
asm
{

nop
nop
nop

}

Variable Referencing in asm

To refer to a C variable from inline assembly, simply prefix its name with an
underscore '_'.
asm movwf _a ;copy content of W into variable a

To get address of a variable use the 'movlw' instruction:

asm movlw low(_a) ;copy low byte of address of variable a into W
asm movlw high(_a) ;copy low byte of address of variable a into W

Page 64 SourceBoost Technologies BoostC™ Manual

Assembly in multi-line macros

When multi-line macros are used in the code pre-processor concatenetes them into
one line. Because of this it is not possible to use asembly blocks in the macros.
Each assembly line in a multi-line macro should be prefixed with the asm or _asm
keyword:

//This will compile
#define MAKESHORT(dst, lobyte, hibyte) asm movf _##lobyte, W \

 asm movwf _##dst \
 asm movf _##hibyte, W \
 asm movwf _##dst##+1

//And this will generate compile error
#define MAKESHORT(dst, lobyte, hibyte) asm { \
 movf _##lobyte, W \
 movwf _##dst \
 movf _##hibyte, W \
 movwf _##dst##+1 \
 }

Constants in asm

Inline assembly supports decimal and hexadecimal constants only:

XXXX decimal number, where X is a number between 0 and 9
0xXXXX hexadecimal number, where X is a number between 0 and 9

or A and F
0bXXXX binary number, where X is a number between 0 and 1

Labels an asm

Labels in assembly are defined using an identified followed by a colon.

#define LOOP() asm start: \
 asm goto start

BoostC™ Manual SourceBoost Technologies Page 65

Inline assembly example 1
// Example showing use of bit tests and labels in inline assembly
#include <system.h>

void foo()
{
 unsigned char i, b;
 i = 0;
 b = 12;
 asm
 {
 start:
 btfsc _i, 4
 goto end
 btfss _b, 0
 goto iter

 iter:
 movlw 0
 movwf _b
 end:
 }
}

Inline assembly example 2

// Example for PIC18F8720 target showing how to access bytes of
// integer arguments
#include <system.h>

int GetTmr1Val()
{
 int x;
 asm
 {
 movf _tmr1h, W
 movwf _x+1 ; write to high byte of variable x
 movf _tmr1l, W
 movwf _x ; write to low byte of variable x
 }

 return x;
}

Page 66 SourceBoost Technologies BoostC™ Manual

Inline assembly example 3

// Example of how to access structure members from inline assembly.
//
// Note: This code may not work as expected if the data structure
// is modified causing member count2 to have a different offset.

struct Stats
{

unsigned int count0; // stored in bytes 0 & 1
unsigned char count1;// stored in byte 2
unsigned int count2; // stored in bytes 3 & 4

};

struct Stats myStats;

void AddCount2()
{
 int x;
 asm
 {
 movf _myStats+3, W
 addlw 0x01
 movwf _myStats+3
 btfsc _status, C
 incf _myStats+4,F
 }
}

User Data

User data can be placed at the current location using the 'data' assembly
instruction followed by comma separated numbers or strings.
Example:

// Code below will place bytes 10,11,116,101,115,116,0
// at current code location
asm data 0xA, 0xB, "test"

BoostC™ Manual SourceBoost Technologies Page 67

Functions

Inline functions

Functions declared as inline are repeatedly embedded into the code for each
occurrence. When a function is defined as inline, its body must be defined before it
gets called for the first time.

Though any function can be declared as inline, procedures (functions with no
return value and a possibly empty argument list) are best suited to be used as
inline. An exception to this rule are inline functions with reference arguments. Such
functions will not overload variables passed as arguments but will operate directly
on them:

inline void foo(char &port)
{

port = 0xFF; // set all pins of a port
}

An heavy usage of inline functions obviously augments code size.

Special functions

void main(void)

Program entry point. This function is mandatory for every C program.

void interrupt(void)

Interrupt handler function. Is linked to high priority interrupts for PIC18 parts.

void interrupt_low(void)

Low priority interrupt handler, can be used only on the PIC18 family.

General functions and interrupts

Standard user functions are not thread-safe: their local variables are not saved
when function execution gets interrupted by an interrupt. This can lead to very
hard to trace errors.

To help prevent this pitfall, the linker generates a serious warning when a function
is called from both main() and interrupt threads.

If you really need to use same function in both threads, you need to duplicate its
code and assign a different name to the second copy, or ensure that interrupts are
appropriately disabled when the function is called from non-interrupt code so that
its execution cannot be interrupted.

Page 68 SourceBoost Technologies BoostC™ Manual

//This function gets called from main thread
void foo()
{
 ...
}

//Copy of 'foo' that will be called from interrupt thread
void foo_interrupt()
{
 ...
}

//Interrupt thread
void interrupt(void)
{
 ...
 foo_interrupt();
 ...
}

//Main thread
void main(void)
{
 ...
 foo();
 ...
}

Functions pointers

Function pointers are supported with the following limitations:

● arrays of function pointers are not supported.

void foo1()
{
 ...
}

void foo2()
{
 ...
}

//Pointer to a function
void (*foo)();

//Program entry point
void main(void)
{
 ...
 foo = foo1;
 foo(); //foo1 is called
 foo = foo2;
 foo(); //foo2 is called
 ...
}

BoostC™ Manual SourceBoost Technologies Page 69

Memory mapped functions

Functions just as variables can be forced to be placed at certain addresses. Syntax
is the same as in the legacy C2C compiler:

void foo() @ <addr>;

where <addr> is an hex or decimal address.

//This function placed at address 0x100
void foo1() @ 0x100
{
 ...
}

In most cases there is no need to use memory mapped functions as linker will
analyze the code and optimize function allocation. Only very special occasions
require this feature.

Dynamic memory management
Dynamic memory management is used to dynamically create and destroy objects
at run time.
For example, this functionality may be needed when a program needs to keep
several data packets. Memory for this packets can also be allocated at compile
time, but this way the memory may not be available for other variables even if it's
not used.
The solution is to use dynamic memory allocation. Objects to store data are
created as soon as they are needed and destroyed after data gets processed.
This way all available target data memory is used most efficiently.

The amount of possible objects that can be allocated depends on the specific PIC
part at hand, and on the application.

When the application is built, the linker uses RAM memory left after allocation of
global and local variables as a heap. When some memory gets allocated at run
time by the 'alloc' call, it gets allocated from this heap. The bigger the heap, the
more run time objects can exist at any given time.

void* alloc(unsigned char size)

Dynamically allocate memory 'size' bytes long. Max size is 127 bytes. Returns
NULL if memory can't be allocated.

void free(void *ptr)

Free memory previously allocated by 'alloc'. Passing any other pointer will lead to
unpredictable results.

Page 70 SourceBoost Technologies BoostC™ Manual

C language superset
The BoostC compiler has some advanced features "borrowed" from C++ language.
These features allow development of more flexible and powerful code, but their
use is merely optional.

References as function arguments
Function arguments can be references to other variables.
When such argument changes inside a function the original variable used in
function call changes too.
This is a very powerful way to alter the data flow without blowing up the generated
code:

void foo(char &n) //'n' is a reference
{
 n = 100;
}

void main(void)
{
 char a = 0;
 foo(a); //upon return 'a' will have value of 100
 ...
}

Notes on using references as function arguments

For general efficiency, the mechanism used to pass a variable by reference is that
of taking a copy of the variable data when the function is called, and by copying
the data back to the original variable after the function has been exited.

Passing a large structure by reference will generate a large amount of code to copy
the data back and fourth. Passing volatile variables (those declared using the
volatile type specifier) may result in not the behavior you would expect, despite
being a volatile variable its value will only get updated on exit of the function.

General guidelines:

● Don't pass large data structures by reference.

● Don't pass volatile data by reference.

BoostC™ Manual SourceBoost Technologies Page 71

Function overloading
There can be more than one function in the same application having a given name.
Such functions must anyway differ by the number and type of their arguments:
void foo(void) //'foo' number 1
{
...
}

void foo(char *ptr) //'foo' number 2
{
...
}

void foo(char a, char b) //'foo' number 3
{
...
}

void main(void)
{
 foo(); //'foo' number 1 gets called
 foo("test"); //'foo' number 2 gets called
 foo(10, 20); //'foo' number 3 gets called
 ...
}

The compiler will generate internal references to the functions so that no
ambiguity is possible (name mangling), and will select which function will be
invoked for each call analyzing how many parameters are passed, as well as their
type.

Function templates
Functions can be declared and defined using data type placeholders.
This feature allows writing very general code (for example, linked lists handling)
that is not tied to a particular data type and, what may be more important, allows
the user to create template libraries contained in header files:

template <class T>
void foo(T *t)
{
...
}

void main(void)
{
 short s;
 foo<char>("test"); //'foo(char*)' gets called
 foo<short>(&s); //'foo(short*)' gets called
 ...
}

Page 72 SourceBoost Technologies BoostC™ Manual

Parametric timing functions
Most of software based timing functions are strictly dependent on clock speed.
As this parameter is usually well known at linking time, depending only on
hardware design and implementation, such functions can be dynamically
generated, once the clock frequency is correctly assigned with the CLOCK_FREQ
pragma.

These functions can be used in the standard way when writing any program for
BoostC.

void delay_us(unsigned char t)

(generated function) Delays execution for 't' micro seconds. Declared in boostc.h
This function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma. In some cases when clock frequency is too low it's not
physically possible to generate this function. If that's the case linker will issue a
warning.

void delay_10us(unsigned char t)

(generated function) Delays execution for 't*10' micro seconds. Declared in
boostc.h This function gets generated every time a project is linked and is
controlled by the CLOCK_FREQ pragma. In some cases, when clock frequency is
too low, it's not physically possible to generate this function.
If that's the case, the linker will issue a warning.

void delay_100us(unsigned char t)

(generated function) Delays execution for 't*100' micro seconds. Declared in
boostc.h This function gets generated every time a project is linked and is
controlled by the CLOCK_FREQ pragma. In some cases, when clock frequency is
too low, it's not physically possible to generate this function.
If that's the case, the linker will issue a warning.

void delay_ms(unsigned char t)

(generated function) Delays execution for 't' milli seconds. Declared in boostc.h
This function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma.

void delay_s(unsigned char t)

(generated function) Delays execution for 't' seconds. Declared in boostc.h This
function gets generated every time a project is linked and is controlled by the
CLOCK_FREQ pragma.

Notes about delays: The delays provided are at least the value specified, the
delays will be longer rather than shorter. The delays produced may be larger than
expected if the delay routine is interrupted by an interrupt.

When the clock frequency is such that the delay becomes highly inaccurate then
the delay overhead, unit delay and delay resolution of the delay are displayed
during the linking process.

BoostC™ Manual SourceBoost Technologies Page 73

Delay Overhead – The delay created in calling, setting up and returning from the
delay function.

Unit Delay – The amount of additional delay generated for a delay value increase
of 1.

Delay Resolution – The amount the delay value has to be increased before an
actual increase in the delay occurs. A delay resolution of 4 would mean that the
delay value may need to be increased by a value of up to 4 in order to see an
increase in the delay.

System Libraries
A number of standard functions are included into BoostC installations. The number
of such functions isn't static. It increases from release to release as new features
are added. Most of these functions are declared in boostc.h (It's not recommended
to include boostc.h directly into your code. Instead include system.h which in turn
included boostc.h)

General purpose functions

clear_bit(var, num)

(macro) Clears bit 'num' in variable 'var'. It is recommended to use this macro
only if the argument 'num' is a constant. If 'num' is not a constant inefficient code
may be generated. Declared in boostc.h

set_bit(var, num)

(macro) Sets bit 'num' in variable 'var'. It is recommended to use this macro only
if the argument 'num' is a constant. If 'num' is not a constant inefficient code may
be generated. Declared in boostc.h

test_bit(var, num)

(macro) Tests if bit 'num' in variable 'var' is set. It is recommended to use this
macro only if the argument 'num' is a constant. If 'num' is not a constant
inefficient code may be generated. Declared in boostc.h

MAKESHORT(dst, lobyte, hibyte)

(macro) Makes a 16 bit long value (stored in 'dst') from two 8-bit long values (low
byte 'lobyte' and high byte 'hibyte'). 'dst' must be a 16-bit long variable. Declared
in boostc.h
 unsigned short res;
 MAKESHORT(res, adresl, adresh); //make 16 bit value from adresh:adresl
registers and write it into variable 'res'

LOBYTE(dst, src)

(macro) Gets low byte from 'src' and writes it into 'dst'. Declared in boostc.h

Page 74 SourceBoost Technologies BoostC™ Manual

HIBYTE(dst, src)

(macro) Gets high byte from 'src' and writes it into 'dst'. 'src' must be a 16-bit long
variable. Declared in boostc.h

void nop(void)

(inline function) Generates one 'nop' instruction. Declared in boostc.h

void clear_wdt(void)

(inline function) Generates one 'clrwdt' instruction. Declared in boostc.h

void sleep(void)

(inline function) Generates one 'sleep' instruction. Declared in boostc.h

void reset(void)

(inline function) “Soft” resets the CPU. Please note that “soft” reset may differ
from hardware reset in the way how SFRs get initialised. Declared in boostc.h

String and Character Functions

void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src)

void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len)

(function) Copies zero terminated string 'src' into destination buffer 'dst'.
Destination buffer must be big enough for string to fit. Declared in string.h

unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)

(function) Returns length of a string. Declared in string.h

signed char strcmp(const char *src1, const char *src2)
signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)

signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)

(function) Compares two strings. Returns -1 if string #1 is less than string #2, 1 if
string #1 is greater than string #2 or 0 is string #1 is same as string #2. Declared
in string.h

BoostC™ Manual SourceBoost Technologies Page 75

signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len)

signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)

(function) Compares first 'len' characters of two strings. Returns -1 if string #1 is
less than string #2, 1 if string #1 is greater than string #2 or 0 is string #1 is
same as string #2. Declared in string.h

void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src)

void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len)

(function) Appends zero terminated string 'src' to destination string 'dst'.
Destination buffer must be big enough for string to fit. Declared in string.h

char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)

unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)

(function) Locates the first occurrence of a character in the string that doesn't
match any character in the search string. Declared in string.h

unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)

(function) Locates the first occurrence of a character in the string. Declared in
string.h

char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)

(function) Breaks string pointed into a sequence of tokens, each of which is
delimited by a character from delimiter string. Declared in string.h

char* strchr(const char *src, char ch)

(function) Locates the first occurrence of a character in the string. Declared in
string.h

Page 76 SourceBoost Technologies BoostC™ Manual

char* strrchr(const char *src, char ch)

(function) Locates the last occurrence of a character in the string. Declared in
string.h

char* strstr(const char *ptr1, const char *ptr2)
char* strstr(const char *src, rom char *src)

(function) Locates the first occurrence of a sub-string in the string. Declared in
string.h

Conversion Functions
Note: When using conversion functions that store the ASCII result in a buffer, be
sure to provide a buffer of sufficient size or other memory may get overwritten.
The buffer needs to be enough to store the resulting characters and a null
terminator.

unsigned char sprintf(char* buffer, const char *format, unsigned int val)

Outputs a numerical value to a string in the specified format. The buffer must be
long enough to hold the result. Only one numerical value can be output at a time.
Declared in stdio.h.

Format specified in the format string with the following format:

%[Flags][Width][Radix specifier]

Flags

Flag Description

- Left justifies the field, the default is right justification.

+ Causes the output to be prefixed with a sign, either + or negative.

space

space Prefixes positive numbers with a space (where the sign would go), and
negative numbers with a '-'.

0 Pads numerical values with leading zeroes' to make the specified width

 Width

Implementation of field width is non standard - If a justification width is specified
the width will be padded or truncated to the width value specified. The most
significant digits and sign maybe truncated. This is done to prevent unexpected
buffer overrun which can occur in standard implementations.

Radix Specifier

Radix Description

BoostC™ Manual SourceBoost Technologies Page 77

Specifier

o Radix is octal (base 8), value is unsigned

d Radix is decimal (base 10), values is signed.

u Radix is decimal (base 10), value is unsigned

X Radix is hexadecimal (base 16), value is unsigned

b Radix is binary (base 2), value is unsigned

Examples

Radix
Specifying

Example output Description

“%d” “-120” decimal signed integer

“%u” “150” decimal unsigned integer

“%o” “773” octal unsigned integer

“%X” “ABF1” hex unsigned integer

“%b” “101101” binary unsigned integer

Justification Example output Description

“%8d” “ 231” right justified, padded to 8 characters
length

“%016u” “0000000000045102” right justified, padded with zeroes to 16
characters length

“%-8b” “10 ” left justified, padded 8 characters length

Display of
sign

Example output Description

“%+8d” “ +972“ right justified, padded 8 characters length,
signed always displayed

“% 8d” “ 765“ right justified, padded 8 characters length,
positive signed displayed as ' '

Display of sign only applies to signed decimal radix. Radix and field width added
just to show complete format specification

Page 78 SourceBoost Technologies BoostC™ Manual

unsigned char sprintf32(char* buffer, const char *format, unsigned long
val)

Outputs a numerical value to a string in the specified format. The buffer must be
long enough to hold the result. Only one numerical value can be output at a time.
Declared in stdio.h.

This function operates as sprintf, but it handles a 32bit value. It also supports the
“%l” radix specifier, which is handled the same as “%d”.

int strtoi(const char* buffer, char** endPtr, unsigned char radix)

(Function) String to integer. A function that converts the numerical character
string supplied into a signed integer (16 bit) value using the radix specified. Radix
valid range 2 to 26.

buffer: Pointer to a numerical string.

endPtr: Address of a pointer. This is filled by the function with the address where
string scan has ended. Allows determination of where there is the first non-
numerical character in the string. Passing a NULL is valid and causes the end scan
address not to be saved.

radix: The radix (number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 (decimal), 16 (hexadecimal).

Return: The converted value.

long strtol(const char* buffer, char** endPtr, unsigned char radix);

(Function) String to long integer. A function that converts the numerical character
string supplied into a signed long integer (32 bit) value using the radix specified.
Radix valid range 2 to 26.

buffer: Pointer to a numerical string

endPtr: Address of a pointer. This is filled by the function with the address where
string scan has ended. Allows determination of where there is the first non-
numerical character in the string. Passing a NULL is valid and causes the end scan
address not to be saved.

radix: The radix (number base) to use for the conversion, typical values: 2
(binary), 8 (octal), 10 (decimal), 16 (hexadecimal).

Return: The converted value.

int atoi(const char* buffer)

(Macro) ASCII to integer. A macro that converts the numerical character string
supplied into a signed integer (16 bit) value using a radix of 10.

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro implemented as: #define atoi(buffer) strtoi(buffer, NULL, 10)

BoostC™ Manual SourceBoost Technologies Page 79

long atol(const char* buffer)

(Macro) ASCII to long integer. A macro that converts the numerical character
string supplied into a signed long integer (32 bit) value using a radix of 10.

buffer: Pointer to a numerical string.

Return: The converted value.

Note: Macro implemented as: #define atoi(buffer) strtoi(buffer, NULL, 10)

char* itoa(int val, char* buffer, unsigned char radix)

(Function) Integer to ASCII. Function that converts an integer (16 bit) value into a
character string.

char* ltoa(long val, char* buffer, unsigned char radix)

(Function) Long integer to ASCII. Function that converts an long integer (32 bit)
value into a character string.

unsigned char sqrt(unsigned short val)

(Function) Integer square root. Function that returns square root from an unsigned
16 bit integer.

Lightweight Conversion Functions
The standard conversion functions offer a lot of flexibility at the cost of ROM, RAM
and execution time. For application that are short of RAM and ROM, or require
shorter execution time, it maybe desirable to use the following lightweight
functions.

void uitoa_hex(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, hexadecimal representation. This function
converts a 16 bit unsigned integer into a hex value with leading zeros. The number
of digits is specified using by the digits parameter.

void uitoa_bin(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, binary representation. This function converts
a 16 bit unsigned integer into a binary value with leading zeros. The number of
digits is specified using by the digits parameter.

void uitoa_dec(char* buffer, unsigned int val, unsigned char digits)

(Function) Unsigned integer to ASCII, decimal representation. This function
converts and 16 bit unsigned integer into a decimal value with leading zeros. The
number of digits is specified using by the digits parameter.

Page 80 SourceBoost Technologies BoostC™ Manual

unsigned int atoui_hex(const char* buffer)

(Function) ASCII to unsigned integer, hexadecimal representation. This function
converts a hexadecimal string value into 16 bit unsigned integer.

unsigned int atoui_bin(const char* buffer)

(Function) ASCII to unsigned integer, binary representation. This function converts
a binary string value into 16 bit unsigned integer.

unsigned int atoui_dec(const char* buffer)

(Function) ASCII to unsigned integer, decimal representation. This function
converts a decimal string value into 16 bit unsigned integer.

unsigned char sqrt1(unsigned short val)

(Function) Integer square root. Function that returns square root from an unsigned
16 bit integer. Unlike sqrt this function is far shorter but its execution time may be
longer than sqrt.

Character

char toupper(char ch)

(function) Converts lowercase character to uppercase. Declared in ctype.h

char tolower(char ch)

(function) Converts uppercase character to lowercase. Declared in ctype.h

char isdigit(char ch)

(function) Checks if character 'ch' is a digit. Returns non zero if this is a digit.
Declared in ctype.h

char isalpha(char ch)

(function) Checks if character 'ch' is a letter. Returns non zero if this is a letter.
Declared in ctype.h

char isalnum(char ch)

(function) Checks if character 'ch' is a letter or a digit. Returns non zero if this is a
letter or a digit. Declared in ctype.h

char isblank(char ch)

(function) Returns a 1 if the argument is a standard blank character. All other
inputs will return a 0. The following are the standard blank characters:
' ' (space) or '\t' (horizontal tab). Declared in ctype.h

char iscntrl(char ch)

(function) Returns a 1 if the argument is a valid control character. All other inputs
will return a 0. Declared in ctype.h

BoostC™ Manual SourceBoost Technologies Page 81

char isgraph(char ch)

(function) Returns a 1 if the argument is a valid displayable ASCII character. All
other inputs will return a 0. Declared in ctype.h

char islower(char ch)

(function) Returns a 1 if the argument is a valid lower-case ASCII letter. All other
inputs will return a 0. Declared in ctype.h

char isprint(char ch)

(function) Returns a 1 if the argument is a valid printable ASCII character. All
other inputs will return a 0. Declared in ctype.h

char ispunct(char ch)

(function) Returns a 1 if the argument is a valid punctuation character. All other
inputs will return a 0. The following are the implemented punctuation characters:
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

char isspace(char ch)

(function) Returns a 1 if the argument is a standard white-space character. All
other inputs will return a 0. Declared in ctype.h. The following are the standard
white-space characters:

Character Description Character
ASCII code

Character Escape
sequence

space 0x20 ' '

horizontal tab 0x09 '\t'

vertical tab 0x0B '\v'

newline 0x0A '\n'

carriage return 0x0D '\r'

form feed 0x0C '\f'

char isupper(char ch)

(function) Returns a 1 if the argument is a valid upper-case ASCII letter. All other
inputs will return a 0. Declared in ctype.h

char isxdigit(char ch)

(function) Returns a 1 if the argument is a valid hexadecimal character. All other
inputs will return a 0. Declared in ctype.h

void* memchr(const void *ptr, char ch, unsigned char len)

(function) Locates the first character in memory. Declared in memory.h

Page 82 SourceBoost Technologies BoostC™ Manual

signed char memcmp(const void *ptr1, const void *ptr2, unsigned char
len)

(function) Compares memory. Declared in memory.h

void* memcpy(void *dst, const void *src, unsigned char len)

(function) Copies memory. Declared in memory.h

void* memmove(void *dst, const void *src, unsigned char len)

(function) Moves memory. Declared in memory.h

void* memset(void *ptr, char ch, unsigned char len)

(function) sets memory. Declared in memory.h

Miscellaneous Functions

unsigned short rand(void)

(function) Generates pseudo random number. Declared in rand.h Defined in
rand.lib

void srand(unsigned short seed)

(function) Sets seed for pseudo random number generator. Declared in rand.h
Defined in rand.lib

max(a, b)

(Macro) Returns the value of the argument with the largest value.

min(a, b)

(Macro) Returns the value of the argument with the smallest value.

abs(a)

(Macro) Returns absolute value of the argument.

void startCRC16(void)

(function) Call this function to initialise crc16 code before every crc16 conversion.
Declared in crc16.h Defined in crc16.lib

unsigned short CRC16(unsigned char *mem, size_type len)

(function) Calculate CRC16 over len bytes of data pointed by mem. Declared in
crc16.h Defined in crc16.lib

unsigned short CRC16(unsigned char mem)

(function) Calculate CRC16 over one byte of data passed in mem. Declared in
crc16.h Defined in crc16.lib

BoostC™ Manual SourceBoost Technologies Page 83

// Calculate CRC16 for data stored in char array 'arr'
unsigned short crc; //This variable will hold CRC16 value
StartCRC16(); //start crc operation
crc = CRC16(arr, sizeof(arr)); //calculate CRC16 for data in array

I2C functions

i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files)

UART driver
SourceBoost UART or RS232 driver is a header based template library that works
with hardware UARTs. It uses asynchronous interrupt driven code that operates on
user supplied memory in circular buffer fashion. All driver calls are not blocking.
The UART driver replaces old rs232 driver from rs232_driver.h. rs232_driver.h is
still included into SourceBoost installation for backward compatibility but all new
development code should use the new UART driver from uart_driver.h

Driver Features

• Very flexible UI where every UART bit is configured separately

• Asynchronous send and receive

• Any number UARTS can be used in the same application

• All code is header based, no libraries need to be added to project

• Interrupt driven

• All calls are non blocking

• Uses user supplied memory

• Stores data in circular buffers

Rationale

SourceBoost UART driver uses function templates. This provides several
advantages over more traditional library based approach. Template arguments
pass to the driver code information that is known at compile time and this lets
compiler generate very efficient code. Template arguments make code highly
configurable where every aspect of hardware UART can be customised: starting
from receive and transmit registers and up to the bits that indicate frame errors or
data overflow.

Adding UART driver to your code

To add serial driver to your code just include the header file uart_driver.h
#include "uart_driver.h"

Page 84 SourceBoost Technologies BoostC™ Manual

Configuration

Driver can be used in single and multiple port modes. The single port mode can be
used if user application needs to work with one serial port only. To enable single
port mode define SINGLE_PORT_MODE in compiler command line or in source files
before serial driver is included. If SINGLE_PORT_MODE is not defined driver will
work in multiple port mode:
#define SINGLE_PORT_MODE
#include "uart_driver.h"

Note that you don't have to use single port mode if your code uses only one UART.
Multiple port mode can still be used in applications that work with one UART but
such code will use a bit more ram and generate slightly bigger code.

Memory

UART driver does not allocate any memory to deal with serial data but uses
application supplied memory instead. Application code must supply receive and
transmit buffers and a number of utility variables. In single port mode these
variables must have pre-defined names as specified in the table below. For
multiple port mode they can have any names. With the exception of rxCnt all these
variables are used internally by the driver and user code should not access or
especially modify any of them.

unsigned char
txBuffer[TX_BUFFER_SIZE]

Memory for circular transmit buffer. Can be of any size
but power of 2 sizes produce most compact code. Used
internally by driver code.

unsigned char txHead Position in transmit buffer where data to be transmit is
written. Used internally by the driver. User code is
responsible to set this variable to zero at start up.

unsigned char txTail Position in transmit buffer to the next data byte to be
sent out. Used internally by the driver. User code is
responsible to set this variable to zero at start up.

unsigned char
rxBuffer[RX_BUFFER_SIZE]

Memory for circular receive buffer. Can be of any size but
power of 2 sizes produce most compact code. Used
internally by the driver.

unsigned char rxHead Position in receive buffer where next received data byte is
written. Used internally by the driver. User code is
responsible to set this variable to zero at start up.

unsigned char rxTail Position in receive buffer where next received data byte is
read from. Used internally by the driver. User code is
responsible to set this variable to zero at start up.

unsigned char rxCnt Number of data bytes in receive buffer. Can be used by
user code to check if there is any data in receive buffer.
User code is responsible to set this variable to zero at
start up.

BoostC™ Manual SourceBoost Technologies Page 85

Helper Macros

Because UART river is header based and uses function templates all its API
functions use some template arguments. Template arguments pass to the driver
information that is known at compile time and this helps compiler to generate very
efficient code. This also makes driver highly configurable. To make code more
readable it's a good idea to use defines that will replace template calls with more
readable identifiers.

For PIC18 targets such defines for UART1 will look like:
#define uart1Init \

rs232Init<PIE1,TX1IE,PIE1,RC1IE,RCSTA,CREN,RCSTA,SPEN>
#define uart1TxInterruptHandler \

rs232TxInterruptHandler<PIR1,TX1IF,TXREG1,sizeof(txBuffer), \
TXSTA,TXEN,TXSTA,TRMT>

#define uart1RxInterruptHandler \
rs232RxInterruptHandler<PIR1,RC1IF,RCREG1,sizeof(rxBuffer), \
RCSTA,CREN,RCSTA,OERR,RCSTA,FERR>

#define uart1Rx \
rs232Rx<sizeof(rxBuffer)>

#define uart1Tx \
rs232Tx<sizeof(txBuffer),TXSTA,TXEN>

for PIC18 UART2:
#define uart2Init \

rs232Init<PIE3,TX2IE,PIE3,RC2IE,RCSTA2,CREN,RCSTA2,SPEN>
#define uart2TxInterruptHandler \

rs232TxInterruptHandler<PIR3,TX2IF,TXREG2,sizeof(txBuffer), \
TXSTA2,TXEN,TXSTA2,TRMT>

#define uart2RxInterruptHandler \
rs232RxInterruptHandler<PIR3,RC2IF,RCREG2,sizeof(rxBuffer), \
RCSTA2,CREN,RCSTA2,OERR,RCSTA2,FERR>

#define uart2Rx \
rs232Rx<sizeof(rxBuffer)>

#define uart2Tx \
rs232Tx<sizeof(txBuffer),TXSTA2,TXEN>

and for PIC16 UART:
#define uartInit \

rs232Init<PIE1,TXIE,PIE1,RCIE,RCSTA,CREN,RCSTA,SPEN>
#define uartTxInterruptHandler \

rs232TxInterruptHandler<PIR1,TXIF,TXREG,sizeof(txBuffer), \
TXSTA,TXEN,TXSTA,TRMT>

#define uartRxInterruptHandler \
rs232RxInterruptHandler<PIR1,RCIF,RCREG,sizeof(rxBuffer), \
RCSTA,CREN,RCSTA,OERR,RCSTA,FERR>

#define uartRx \
rs232Rx<sizeof(rxBuffer)>

#define uartTx \
rs232Tx<sizeof(txBuffer),TXSTA,TXEN>

Page 86 SourceBoost Technologies BoostC™ Manual

Initialisation

User code is responsible to set up port baud rate and configure interrupts used for
UART transmit and receive. After this is done user code must call rs232Init driver
function. Sample initialisation for PIC18 may look like:

//Configure serial port speed and interrupt
ipr1.TXIP = 0; ipr1.RCIP = 0; //use low priority interrupt
txsta.BRGH = 1; //high speed
spbrg = 64; //9600kbps/10Mhz

//Configure UART pins
trisc.7 = 1;
trisc.6 = 0;

//Init uart driver
uart1Init();

Interrupt Handler

UART driver uses interrupts to receive and transmit data and its interrupt handlers
must be called from relevant interrupt code. Note that single port code does not
use any call arguments but in multiple port mode buffers and helper variables
must be passed to the handlers as call arguments. Sample code below shows how
to write code for single port mode:

… other interrupt code ...
uart1TxInterruptHandler();
if(uart1RxInterruptHandler())
{

… new data just arrived ...
}
… other interrupt code …

and for multiple port mode:
… other interrupt code …
uart1TxInterruptHandler(txBuffer, txTail, txHead);
if(uart1RxInterruptHandler(rxBuffer, rxHead, rxCnt))
{

… new data just arrived ...
}
… other interrupt code …

BoostC™ Manual SourceBoost Technologies Page 87

Data Receive

To check if there is any data in receive buffer the rxCnt variable can be used. This
variable will contain number of data bytes available in receive buffer. Example of
the code that check and reads incoming data for single port mode is below:
if(rxCnt)
{

unsigned char data = uart1Rx();
... code that handles incoming data ...

}

And this is receive code for multiple port mode:
if(rxCnt)
{

unsigned char data = uart1Rx(rxBuffer, rxTail, rxCnt);
... code that handles incoming data ...

}

Alternatively other mechanism that passes information about received data from
interrupt handler can be employed:
void interrupt(void)
{

...
if(uart1RxInterruptHandler())
{

// Signal rx semaphore
SysSignalSemaphoreIsr(hRxSem);

}
...

}
...
unsigned char Rx(void)
{

//Wait for serial data to come
Sys_WaitSemaphore(hRxSem, EVENT_NO_TIMEOUT);
//Read one byte from rx queue
SysCriticalSectionBegin();
unsigned char data = uart1Rx();
SysCriticalSectionEnd();
return data;

}

Data Transmit

To transmit data call uart1Tx. For single port mode such code may look like:
uart1Tx(data);

And for multiple port mode:
uart1Tx(data, txBuffer, txHead);

Page 88 SourceBoost Technologies BoostC™ Manual

UART Driver API

Detailed description of driver template arguments for hardcore programmers.

rs232Init
Driver initialisation code

Template arguments

unsigned short
TxIrqEnableRegisterAddr

address of the register where tx irq enable
flag is located

unsigned char TxIrqEnableBit zero based position of tx irq enable bit

unsigned short
RxIrqEnableRegisterAddr

address of the register where rx irq enable
flag is located

unsigned char RxIrqEnableBit zero based position of rx irq enable bit

unsigned short
RxEnableRegisterAddr

address of the register where rx enable flag
is located

unsigned char RxEnableBit zero based position of rx enable bit

unsigned short
UartEnableRegisterAddr

address of the register where uart enable flag
is located

unsigned char UartEnableBit zero based position of uart enable bit

Function arguments

void none

Return value

void none

rs232TxInterruptHandler
Transmit interrupt handler

Template arguments

unsigned short
TxIrqFlagRegisterAddr

address of the register where tx interrupt flag
is located

unsigned char TxIrqFlagBit zero based position of tx interrupt bit

unsigned short
TxDataRegisterAddr

address of the data tx register

unsigned char TxBufferSize size of the tx buffer

unsigned short
TxEnableRegisterAddr

address of the register where tx enable flag is
located

unsigned char TxEnableBit zero based position of tx enable bit

BoostC™ Manual SourceBoost Technologies Page 89

unsigned short
TxFinishedRegisterAddr

address of the register where tx finished flag
is located

unsigned char TxFinishedBit zero based position of tx finished bit

Function arguments

void none in single port mode

unsigned char *txBuffer address of transmit buffer (used in multiple port mode
only)

unsigned char &txTail reference to txTail variable (used in multiple port mode
only)

unsigned char &txHead reference to txHead variable (used in multiple port
mode only)

Return value

void none

rs232RxInterruptHandler
Receive interrupt handler

Template arguments

unsigned short
RxIrqFlagRegisterAddr

address of the register where rx interrupt flag
is located

unsigned char RxIrqFlagBit zero based position of rx interrupt bit

unsigned short
RxDataRegisterAddr

address of the data rx register

unsigned char RxBufferSize size of the rx buffer

unsigned short
RxEnableRegisterAddr

address of the register where rx enable flag
is located

unsigned char RxEnableBit zero based position of rx enable bit

unsigned short
RxOverflowRegisterAddr

address of the register where rx overflow
error flag is located

unsigned char RxOverflowBit zero based position of rx overflow error bit

unsigned short
RxFrameRegisterAddr

address of the register where rx frame error
flag is located

unsigned char RxFrameBit zero based position of rx frame error bit

Function arguments

void none in single port mode

Page 90 SourceBoost Technologies BoostC™ Manual

unsigned char *rxBuffer address of receive buffer (used in multiple port mode
only)

unsigned char &rxHead reference to rxHead variable (used in multiple port
mode only)

unsigned char &rxCnt reference to rxCnt variable (used in multiple port
mode only)

Return value

bool true if new data was received and false if no
new data was received

rs232Rx
Receive one byte of data

Template arguments

unsigned char RxBufferSize size of the rx buffer

Function arguments

void none in single port mode

unsigned char *rxBuffer address of receive buffer (used in multiple port mode
only)

unsigned char &rxTail reference to rxTail variable (used in multiple port
mode only)

unsigned char &rxCnt reference to rxCnt variable (used in multiple port
mode only)

Return value

unsigned char data byte received over UART

rs232Tx
Transmit one byte of data

Template arguments

unsigned char TxBufferSize size of the tx buffer

unsigned short
TxEnableRegisterAddr

address of the register where tx enable flag
is located

unsigned char TxEnableBit zero based position of tx enable bit

Function arguments

unsigned char data data byte to send

BoostC™ Manual SourceBoost Technologies Page 91

unsigned char *txBuffer address of receive buffer (used in multiple port mode
only)

unsigned char &txHead reference to rxHead variable (used in multiple port
mode only)

Return value

void none

LCD functions

lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files)

Flash functions

unsigned short flash_read(unsigned short addr) (PIC16 only)

(function) Reads flash content from address 'addr'. Works with PIC16 devices.
Declared in flash.h Defined in flash.pic16.lib

void flash_loadbuffer(unsigned short data) (PIC16 only)

(function) Stores 'data' in an internal buffer of 4 shorts long. Must be called four
times to fill the internal buffer. Data in this buffer is used by flash_write to store
data in flash. Works with PIC16 devices. Declared in flash.h Defined in
flash.pic16.lib

void flash_write(unsigned short addr) (PIC16 only)

(function) Writes data from an internal buffer into flash at address 'addr'. The
internal buffer that is 4 shorts long must be filled using 4 calls to flash_loadbuffer.
Works with PIC16 devices. Declared in flash.h Defined in flash.pic16.lib

void flash_erase(unsigned long addr) (PIC18 only)

(function) Erases a block of code memory of 64 bytes starting from address 'addr'.
The address must be 64 bytes aligned. Works with PIC18 devices. Declared in
flash.h Defined in flash.pic18.lib

void flash_read(unsigned long addr, unsigned char * buf) (PIC18 only)

(function) Reads a block of 64 bytes of code memory starting from address 'addr'
into provided buffer 'buf'. The address must be 64 bytes aligned. The buffer must
be big enough to hold 64 bytes. Works with PIC18 devices. Declared in flash.h
Defined in flash.pic18.lib

Page 92 SourceBoost Technologies BoostC™ Manual

unsigned short flash_read(unsigned long addr) (PIC18 only)

(function) Reads 2 bytes from code memory starting from address 'addr'. The
address must be 2 bytes aligned. Works with PIC18 devices. Declared in flash.h
Defined in flash.pic18.lib

void flash_write(unsigned long addr, const unsigned char * buf) (PIC18 only)

(function) Writes a block of 64 bytes from buffer 'buf' into code memory starting
from address 'addr'. The address must be 64 bytes aligned. The buffer must be big
enough to hold 64 bytes. Works with PIC18 devices. Declared in flash.h Defined in
flash.pic18.lib

Notes: Before write started the value of global interrupt enable bit (GIE) is
remembered and interrupts are disabled. After write GIE is restored to its original
value.

This function does not monitor completion of the write operation and does not
clear the EEIF flag. It's up to the calling code to make sure that the operation is
complete before another write operation and clear the EEIF flag if necessary. For
example such code may look like:
//Include Flash header
#include <flash.h>
...
//Declare buffer 64 bytes long to work with flash blocks
unsigned char buf[BLOCK_SIZE];
...
flash_write(0x12000, buf); //write into code memory at address 0x12000
pir2.EEIF = 0; //clear the flash write complete interrupt flag

unsigned char flash_verify(unsigned long addr, const unsigned char * buf)
(PIC18 only)

(function) Verifies if a 64 bytes long block of code memory starting from address
'addr' matches the data in buffer 'buf'. Returns true if they match and false
otherwise. The address must be 64 bytes aligned. The buffer must be big enough
to hold 64 bytes. Works with PIC18 devices. Declared in flash.h Defined in
flash.pic18.lib

EEPROM functions

unsigned char eeprom_read(unsigned char addr) (PIC16)

unsigned char eeprom_read(unsigned short addr) (PIC18)

(function) Reads eeprom content from address 'addr'. Works with PIC16 and PIC18
devices. Declared in eeprom.h Defined in eeprom.pic16.lib and eeprom.pic18.lib

void eeprom_write(unsigned char addr, unsigned char data) (PIC16)

void eeprom_write(unsigned short addr, unsigned char data) (PIC18)

(function) Writes 'data' into eeprom at address 'addr'. Works with PIC16 and PIC18
devices. Declared in eeprom.h Defined in eeprom.pic16.lib and eeprom.pic18.lib

BoostC™ Manual SourceBoost Technologies Page 93

Notes: Before write started the value of global interrupt enable bit (GIE) is
remembered and interrupts are disabled. After write GIE is restored to its original
value.

This function does not monitor completion of the write operation and does not
clear the EEIF flag. It's up to the calling code to make sure that the operation is
complete before another write operation and clear the EEIF flag if necessary. For
example such code may look like:
//Include EEPROM header
#include <eeprom.h>
...
//Test write into eeprom location 0xD0
eeprom_write(0xD0, 0xA5); //write 0xA5 into EEPROL location 0xD0
pir2.EEIF = 0; //clear the eeprom write complete interrupt flag
val = eeprom_read(0xD0); //read EEPROM location 0xD0
if(0xA5 != val) //Check if read matches write

error();

ADC functions

short adc_measure(char ch)

(function) Reads ADC channel 'ch'. ADC must be initialized before using this
function. Works with PIC16F devices that have ADC units. Declared in adc.h
Defined in adc.pic16.lib

A sample ADC initialization can look like:
volatile bit adc_on @ ADCON0 . ADON; //AC activate flag

set_bit(adcon1, ADFM); // AD result needs to be right justified
set_bit(adcon1, PCFG0); // all analog inputs
set_bit(adcon1, PCFG1); // Vref+ = Vdd
set_bit(adcon1, PCFG2); // Vref- = Vss

set_bit(adcon0, ADCS1); // Select Tad = 32 * Tosc (this depends on the X-
tal here 10 MHz, should work up to 20 MHz)
clear_bit(adcon0, CHS0); // Channel 0
clear_bit(adcon0, CHS1); //
clear_bit(adcon0, CHS2); //
adc_on = 1; // Activate AD module

One wire bus functions

char oo_busreset()

(function) Resets the one wire bus. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

Here is a typical scenario how to use the one wire library:

Page 94 SourceBoost Technologies BoostC™ Manual

// To be able to use the one wire library two global bit variables need to
be declared in the code.
// These are the variables that control port pin ised for one wire
communication. For example
// if the one wire interface is connected to pin 6 of port B the
declaration will look like this:

#define OO_PORT PORTB
#define OO_TRIS TRISB
#define OO_PIN 6

volatile bit oo_bus @ OO_PORT . OO_PIN;
volatile bit oo_bus_tris @ OO_TRIS . OO_PIN;

...

// Reset the one wire bus
oo_busreset();

// Start the conversion (non-blocking function)
oo_start_conversion();

// Wait for completion, you could do other stuff here
// But make sure that this function returns zero before
// reading the scratchpad
if(oo_wait_for_completion())
{
 //handle conversion time out
}

// Read the scratchpad
if(oo_read_scratchpad())
{
 //handle conversion error
}

// And extract the temperature information
short data = oo_get_data();

short oo_get_data()

(function) Reads data from one wire bus. Declared in oo.h Defined in oo.pic16.lib
and oo.pic18.lib

char oo_read_scratchpad()

(function) Reads scratchpad. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

void oo_start_conversion()

(function) Starts conversion. Declared in oo.h Defined in oo.pic16.lib and
oo.pic18.lib

char oo_conversion_busy()

(function) Checks if conversion is in progress. Returns 0 if no conversion is active.
Declared in oo.h Defined in oo.pic16.lib and oo.pic18.lib

BoostC™ Manual SourceBoost Technologies Page 95

char oo_wait_for_completion()

(function) Waits for a conversion to complete. Returns 0 if conversion completed
within 1 sec. Declared in oo.h Defined in oo.pic16.lib and oo.pic18.lib

Page 96 SourceBoost Technologies BoostC™ Manual

PC System Requirements
In order to install and run the Compiler/SourceBoost Integrated Development
Environment, a PC with the following specification is required:

Minimum System Specification

Microsoft Windows 98/ME/NT/2000/XP/Vista/7,

Adobe Reader and a web browser (to allow access to help files and manuals).

Pentium Processor or equivalent,

128MB of RAM,

CD ROM Drive,

80MB of disk space,

16Bit Color display Adapter at 800x600 Resolution.

Recommended System Specification

As the Minimum System Specification, plus:

2.0GHz (or faster) Processor,

512MByte (or more) RAM,

16Bit Color display Adapter at 1024x768 Resolution (or higher).

BoostC™ Manual SourceBoost Technologies Page 97

Technical support
For example projects and updates please refer to our website:
http://www.sourceboost.com

We operate a forum where technical and license issue problems can be posted.
This should be the first place to visit:
http://forum.sourceboost.com

BoostC Support Subscription
By buying a support subscription you will receive priority technical support via
email. This ensures that your query or problem will be at the front of the queue
and receive the highest priority attention.

BoostC Support Subscriptions are here:
http://www.sourceboost.com/Products/BoostC/BuyLicense/SupportSubscription.html

Licensing Issues
If you have licensing issues, then please send a mail to:
support@sourceboost.com

General Support
For general support issues, please use our support forum:
http://forum.sourceboost.com

We are always pleased to hear your comments, this helps us to satisfy your needs.
Post your comments on the SourceBoost Forum or send an email to:
support@sourceboost.com

Page 98 SourceBoost Technologies BoostC™ Manual

mailto:support@sourceboost.comoror
http://www.sourceboost.ipbhost.com/
mailto:support@sourceboost.com
http://www.sourceboost.com/Products/BoostC/BuyLicense/SupportSubscription.html
http://www.sourceboost.ipbhost.com/
http://www.sourceboost.com/

BoostC™ Manual SourceBoost Technologies Page 99

Legal Information
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE AUTHOR RESERVES THE RIGHT TO REJECT ANY LICENSE (REGISTRATION) REQUEST WITHOUT
EXPLAINING THE REASONS WHY SUCH REQUEST HAS BEEN REJECTED. IN CASE YOUR LICENSE
(REGISTRATION) REQUEST GETS REJECTED YOU MUST STOP USING THE SourceBoost IDE, BoostC,
BoostC++, BoostBasic, C2C-plus, C2C++ and P2C-plus COMPILERS AND REMOVE THE WHOLE
SourceBoost IDE INSTALLATION FROM YOUR COMPUTER.

Microchip, PIC, PICmicro and MPLAB are registered trademarks of Microchip
Technology Inc.

BoostC, BoostC++ and BoostLink are trademarks of SourceBoost Technologies.
Other trademarks and registered trademarks used in this document are the
property of their respective owners.

http://www.sourceboost.com
Copyright© 2004-2011 Pavel Baranov

Copyright© 2004-2011 David Hobday

Page 100 SourceBoost Technologies BoostC™ Manual

http://www.sourceboost.com/

	BoostC compiler
	Introduction
	BoostC Compiler specification
	Base Data types
	Special Data types
	Special Language Features
	Code Production and Optimization Features
	Debugging features
	Full MPLAB integration
	Librarian
	Code Analysis

	Installation
	Compilation model and toolchain
	Preprocessor
	Compiler
	Linker
	Librarian
	Differences with C2C compilation model

	MPLAB integration
	Features
	Setting the MPLAB Language Tool Locations
	Creating a project under MPLAB IDE
	Using ICD2

	Command line options
	BoostC command line
	Optimization
	BoostLink command line
	-rb
	-swcs s1 s2 s3
	-isrnoshadow
	-isrnocontext
	 -icd2
	-hexela
	libc Library

	Code entry points

	SourceBoost IDE
	Preprocessor
	Predefined macros
	Directives
	#include
	#define
	#undef
	#if, #else, #endif
	#ifdef
	#ifndef
	#error
	#warning

	Pragma directives
	#pragma DATA
	#pragma CLOCK_FREQ
	#pragma OPTIMIZE
	#pragma config

	Setting Device Configuration Options
	Device Configuration Methods
	Where to find Configuration Options
	Using #pragma config for device configuration
	Using #pragma DATA for device configuration

	Initialization of EEPROM Data

	C language
	Program structure
	Data types
	Base data types
	Structures and unions
	Typedef
	Enum
	Code size vs Data Types
	Rom
	Volatile
	Static
	Constants

	Strings
	Variables
	Register mapped variables
	Bit access
	PORTB vs portb or notes about naming convention

	Arrays
	Pointers
	Strings as function arguments

	Operators
	Arithmetic
	Arithmetic Operator Examples
	Assignment
	Assignment Operator Examples
	Comparison
	Comparison Operator Examples
	Logical
	Logical Operator Examples
	Bitwise
	Bitwise Operator Examples
	Conditionals
	Conditional Examples

	Program Flow
	Program Flow Examples

	Inline assembly
	asm
	 _asm
	Variable Referencing in asm
	Assembly in multi-line macros
	Constants in asm
	Labels an asm
	Inline assembly example 1
	Inline assembly example 2
	Inline assembly example 3
	User Data

	Functions
	Inline functions
	Special functions
	General functions and interrupts
	Functions pointers
	Memory mapped functions

	Dynamic memory management

	C language superset
	References as function arguments
	Notes on using references as function arguments

	Function overloading
	Function templates

	Parametric timing functions
	void delay_us(unsigned char t)
	void delay_10us(unsigned char t)
	void delay_100us(unsigned char t)
	void delay_ms(unsigned char t)
	void delay_s(unsigned char t)

	System Libraries
	General purpose functions
	clear_bit(var, num)
	set_bit(var, num)
	test_bit(var, num)
	MAKESHORT(dst, lobyte, hibyte)
	LOBYTE(dst, src)
	HIBYTE(dst, src)
	void nop(void)
	void clear_wdt(void)
	void sleep(void)
	void reset(void)

	String and Character Functions
	void strcpy(char *dst, const char *src)
void strcpy(char *dst, rom char *src)
	void strncpy(char *dst, const char *src, unsigned char len)
void strncpy(char *dst, rom char *src, unsigned char len)
	unsigned char strlen(const char *src)
unsigned char strlen(rom char *src)
	signed char strcmp(const char *src1, const char *src2)
signed char strcmp(rom char *src1, const char *src2)
signed char strcmp(const char *src1, rom char *src2)
signed char strcmp(rom char *src1, rom char *src2)
	signed char stricmp(const char *src1, const char *src2)
signed char stricmp(rom char *src1, const char *src2)
signed char stricmp(const char *src1, rom char *src2)
signed char stricmp(rom char *src1, rom char *src2)
	signed char strncmp(char *src1, char *src2, unsigned char len)
signed char strncmp(rom char *src1, char *src2, unsigned char len)
signed char strncmp(char *src1, rom char *src2, unsigned char len)
signed char strncmp(rom char *src1, rom char *src2, unsigned char len)
	signed char strnicmp(char *src1, char *src2, unsigned char len)
signed char strnicmp(rom char *src1, char *src2, unsigned char len)
signed char strnicmp(char *src1, rom char *src2, unsigned char len)
signed char strnicmp(rom char *src1, rom char *src2, unsigned char len)
	void strcat(char *dst, const char *src)
void strcat(char *dst, rom char *src)
	void strncat(char *dst, const char *src, unsigned char len)
void strncat(char *dst, rom char *src, unsigned char len)
	char* strpbrk(const char *ptr1, const char *ptr2)
char* strpbrk(const char *src, rom char *src)
	unsigned char strcspn(const char *src1, const char *src2)
unsigned char strcspn(rom char *src1, const char *src2)
unsigned char strcspn(const char *src1, rom char *src2)
unsigned char strcspn(rom char *src1, rom char *src2)
	unsigned char strspn(const char *src1, const char *src2)
unsigned char strspn(rom char *src1, const char *src2)
unsigned char strspn(const char *src1, rom char *src2)
unsigned char strspn(rom char *src1, rom char *src2)
	char* strtok(const char *ptr1, const char *ptr2)
char* strtok(const char *src, rom char *src)
	char* strchr(const char *src, char ch)
	char* strrchr(const char *src, char ch)
	char* strstr(const char *ptr1, const char *ptr2)
char* strstr(const char *src, rom char *src)

	Conversion Functions
	unsigned char sprintf(char* buffer, const char *format, unsigned int val)
	Flags

	Left justifies the field, the default is right justification.
	 Width
	Radix Specifier

	unsigned char sprintf32(char* buffer, const char *format, unsigned long val)
	int strtoi(const char* buffer, char** endPtr, unsigned char radix)
	long strtol(const char* buffer, char** endPtr, unsigned char radix);
	int atoi(const char* buffer)
	long atol(const char* buffer)
	char* itoa(int val, char* buffer, unsigned char radix)
	char* ltoa(long val, char* buffer, unsigned char radix)
	unsigned char sqrt(unsigned short val)

	Lightweight Conversion Functions
	void uitoa_hex(char* buffer, unsigned int val, unsigned char digits)
	void uitoa_bin(char* buffer, unsigned int val, unsigned char digits)
	void uitoa_dec(char* buffer, unsigned int val, unsigned char digits)
	unsigned int atoui_hex(const char* buffer)
	unsigned int atoui_bin(const char* buffer)
	unsigned int atoui_dec(const char* buffer)
	unsigned char sqrt1(unsigned short val)

	Character
	char toupper(char ch)
	char tolower(char ch)
	char isdigit(char ch)
	char isalpha(char ch)
	char isalnum(char ch)
	char isblank(char ch)
	char iscntrl(char ch)
	char isgraph(char ch)
	char islower(char ch)
	char isprint(char ch)
	char ispunct(char ch)
	char isspace(char ch)
	char isupper(char ch)
	char isxdigit(char ch)
	void* memchr(const void *ptr, char ch, unsigned char len)
	signed char memcmp(const void *ptr1, const void *ptr2, unsigned char len)
	void* memcpy(void *dst, const void *src, unsigned char len)
	void* memmove(void *dst, const void *src, unsigned char len)
	void* memset(void *ptr, char ch, unsigned char len)

	Miscellaneous Functions
	unsigned short rand(void)
	void srand(unsigned short seed)
	max(a, b)
	min(a, b)
	abs(a)
	void startCRC16(void)
	unsigned short CRC16(unsigned char *mem, size_type len)
	unsigned short CRC16(unsigned char mem)

	I2C functions
	i2c_init, i2c_start, i2c_restart, i2c_stop, i2c_read, i2c_write
(for more information look into i2c_driver.h and i2c_test.c files)

	UART driver
	Driver Features
	Rationale
	Adding UART driver to your code
	Configuration
	Memory
	Helper Macros
	Initialisation
	Interrupt Handler
	Data Receive
	Data Transmit
	UART Driver API

	LCD functions
	lcd_setup, lprintf, lcd_clear, lcd_write, lcd_funcmode, lcd_datamode
(for more information look into lcd_driver.h and lcd.c files)

	Flash functions
	unsigned short flash_read(unsigned short addr) (PIC16 only)
	void flash_loadbuffer(unsigned short data) (PIC16 only)
	void flash_write(unsigned short addr) (PIC16 only)
	void flash_erase(unsigned long addr) (PIC18 only)
	void flash_read(unsigned long addr, unsigned char * buf) (PIC18 only)
	unsigned short flash_read(unsigned long addr) (PIC18 only)
	void flash_write(unsigned long addr, const unsigned char * buf) (PIC18 only)
	unsigned char flash_verify(unsigned long addr, const unsigned char * buf) (PIC18 only)

	EEPROM functions
	unsigned char eeprom_read(unsigned char addr) (PIC16)
	unsigned char eeprom_read(unsigned short addr) (PIC18)
	void eeprom_write(unsigned char addr, unsigned char data) (PIC16)
	void eeprom_write(unsigned short addr, unsigned char data) (PIC18)

	ADC functions
	short adc_measure(char ch)

	One wire bus functions
	char oo_busreset()
	short oo_get_data()
	char oo_read_scratchpad()
	void oo_start_conversion()
	char oo_conversion_busy()
	char oo_wait_for_completion()

	PC System Requirements
	Technical support
	BoostC Support Subscription
	Licensing Issues
	General Support

	Legal Information

