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1.0 INTRODUCTION

Filters of some sort are essential to the operation of most

electronic circuits. It is therefore in the interest of anyone

involved in electronic circuit design to have the ability to

develop filter circuits capable of meeting a given set of

specifications. Unfortunately, many in the electronics field

are uncomfortable with the subject, whether due to a lack of

familiarity with it, or a reluctance to grapple with the mathe-

matics involved in a complex filter design.

This Application Note is intended to serve as a very basic

introduction to some of the fundamental concepts and

terms associated with filters. It will not turn a novice into a

filter designer, but it can serve as a starting point for those

wishing to learn more about filter design.

1.1 Filters and Signals: What Does a Filter Do?

In circuit theory, a filter is an electrical network that alters

the amplitude and/or phase characteristics of a signal with

respect to frequency. Ideally, a filter will not add new fre-

quencies to the input signal, nor will it change the compo-

nent frequencies of that signal, but it will change the relative

amplitudes of the various frequency components and/or

their phase relationships. Filters are often used in electronic

systems to emphasize signals in certain frequency ranges

and reject signals in other frequency ranges. Such a filter

has a gain which is dependent on signal frequency. As an

example, consider a situation where a useful signal at fre-

quency f1 has been contaminated with an unwanted signal

at f2. If the contaminated signal is passed through a circuit

(Figure 1) that has very low gain at f2 compared to f1, the

undesired signal can be removed, and the useful signal will

remain. Note that in the case of this simple example, we are

not concerned with the gain of the filter at any frequency

other than f1 and f2. As long as f2 is sufficiently attenuated

relative to f1, the performance of this filter will be satisfacto-

ry. In general, however, a filter’s gain may be specified at

several different frequencies, or over a band of frequencies.

Since filters are defined by their frequency-domain effects

on signals, it makes sense that the most useful analytical

and graphical descriptions of filters also fall into the fre-

quency domain. Thus, curves of gain vs frequency and

phase vs frequency are commonly used to illustrate filter

characteristics,and the most widely-used mathematical

tools are based in the frequency domain.

The frequency-domain behavior of a filter is described math-

ematically in terms of its transfer function or network

function. This is the ratio of the Laplace transforms of its

output and input signals. The voltage transfer function H(s)

of a filter can therefore be written as:

(1)H(s) e

VOUT(s)

VIN(s)

where VIN(s) and VOUT(s) are the input and output signal

voltages and s is the complex frequency variable.

The transfer function defines the filter’s response to any

arbitrary input signal, but we are most often concerned with

its effect on continuous sine waves. Especially important is

the magnitude of the transfer function as a function of fre-

quency, which indicates the effect of the filter on the ampli-

tudes of sinusoidal signals at various frequencies. Knowing

the transfer function magnitude (or gain) at each frequency

allows us to determine how well the filter can distinguish

between signals at different frequencies. The transfer func-

tion magnitude versus frequency is called the amplitude

response or sometimes, especially in audio applications,

the frequency response.

Similarly, the phase response of the filter gives the amount

of phase shift introduced in sinusoidal signals as a function

of frequency. Since a change in phase of a signal also rep-

resents a change in time, the phase characteristics of a filter

become especially important when dealing with complex

signals where the time relationships between signal compo-

nents at different frequencies are critical.

By replacing the variable s in (1) with j0, where j is equal to0b1 , and 0 is the radian frequency (2qf), we can find the

filter’s effect on the magnitude and phase of the input sig-

nal. The magnitude is found by taking the absolute value of

(1):

(2)lH(j0)l e ÀVOUT(j0)

VIN(j0) À
and the phase is:

(3)arg H(j0) e arg
VOUT(j0)

VIN(j0)

TL/H/11221–1

FIGURE 1. Using a Filter to Reduce the Effect of an Undesired Signal at

Frequency f2, while Retaining Desired Signal at Frequency f1

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



As an example, the network of Figure 2 has the transfer

function:

(4)H(s) e

s

s2 a s a 1

TL/H/11221–2

FIGURE 2. Filter Network of Example

This is a 2nd order system. The order of a filter is the high-

est power of the variable s in its transfer function. The order

of a filter is usually equal to the total number of capacitors

and inductors in the circuit. (A capacitor built by combining

two or more individual capacitors is still one capacitor.)

Higher-order filters will obviously be more expensive to

build, since they use more components, and they will also

be more complicated to design. However, higher-order fil-

ters can more effectively discriminate between signals at

different frequencies.

Before actually calculating the amplitude response of the

network, we can see that at very low frequencies (small

values of s), the numerator becomes very small, as do the

first two terms of the denominator. Thus, as s approaches

zero, the numerator approaches zero, the denominator ap-

proaches one, and H(s) approaches zero. Similarly, as the

input frequency approaches infinity, H(s) also becomes pro-

gressively smaller, because the denominator increases with

the square of frequency while the numerator increases lin-

early with frequency. Therefore, H(s) will have its maximum

value at some frequency between zero and infinity, and will

decrease at frequencies above and below the peak.

To find the magnitude of the transfer function, replace s with

j0 to yield:

(5)A(0) e lH(s)l e À j0

b02 a j0 a 1 À
e

0

002 a (1 b 02)2

The phase is:

(6)i(0) e arg H(s) e 90§ b tanb1
02

(1 b 02)

The above relations are expressed in terms of the radian

frequency 0, in units of radians/second. A sinusoid will

complete one full cycle in 2q radians. Plots of magnitude

and phase versus radian frequency are shown in Figure 3.

When we are more interested in knowing the amplitude and

phase response of a filter in units of Hz (cycles per second),

we convert from radian frequency using 0 e 2qf, where f is

the frequency in Hz. The variables f and 0 are used more or

less interchangeably, depending upon which is more appro-

priate or convenient for a given situation.

Figure 3(a) shows that, as we predicted, the magnitude of

the transfer function has a maximum value at a specific fre-

quency (00) between 0 and infinity, and falls off on either

side of that frequency. A filter with this general shape is

known as a band-pass filter because it passes signals fall-

ing within a relatively narrow band of frequencies and atten-

uates signals outside of that band. The range of frequencies

passed by a filter is known as the filter’s passband. Since

the amplitude response curve of this filter is fairly smooth,

there are no obvious boundaries for the passband. Often,

the passband limits will be defined by system requirements.

A system may require, for example, that the gain variation

between 400 Hz and 1.5 kHz be less than 1 dB. This specifi-

cation would effectively define the passband as 400 Hz to

1.5 kHz. In other cases though, we may be presented with a

transfer function with no passband limits specified. In this

case, and in any other case with no explicit passband limits,

the passband limits are usually assumed to be the frequen-

cies where the gain has dropped by 3 decibels (to 02/2 or

0.707 of its maximum voltage gain). These frequencies are

therefore called the b3 dB frequencies or the cutoff fre-

quencies. However, if a passband gain variation (i.e., 1 dB)

is specified, the cutoff frequencies will be the frequencies at

which the maximum gain variation specification is exceed-

ed.

TL/H/11221–3
(a)

TL/H/11221–5
(b)

FIGURE 3. Amplitude (a) and phase (b) response curves

for example filter. Linear frequency and gain scales.

The precise shape of a band-pass filter’s amplitude re-

sponse curve will depend on the particular network, but any

2nd order band-pass response will have a peak value at the

filter’s center frequency. The center frequency is equal to

the geometric mean of the b3 dB frequencies:

fc e 0fI fh (8)

where fc is the center frequency

fI is the lower b3 dB frequency

fh is the higher b3 dB frequency

Another quantity used to describe the performance of a filter

is the filter’s ‘‘Q’’. This is a measure of the ‘‘sharpness’’ of

the amplitude response. The Q of a band-pass filter is the

ratio of the center frequency to the difference between the

2



b3 dB frequencies (also known as the b3 dB bandwidth).

Therefore:

(9)Q e

fc

fh b fI

When evaluating the performance of a filter, we are usually

interested in its performance over ratios of frequencies.

Thus we might want to know how much attenuation occurs

at twice the center frequency and at half the center frequen-

cy. (In the case of the 2nd-order bandpass above, the atten-

uation would be the same at both points). It is also usually

desirable to have amplitude and phase response curves

that cover a wide range of frequencies. It is difficult to obtain

a useful response curve with a linear frequency scale if the

desire is to observe gain and phase over wide frequency

ratios. For example, if f0 e 1 kHz, and we wish to look at

response to 10 kHz, the amplitude response peak will be

close to the left-hand side of the frequency scale. Thus, it

would be very difficult to observe the gain at 100 Hz, since

this would represent only 1% of the frequency axis. A loga-

rithmic frequency scale is very useful in such cases, as it

gives equal weight to equal ratios of frequencies.

Since the range of amplitudes may also be large, the ampli-

tude scale is usually expressed in decibels (20loglH(j0)l).
Figure 4 shows the curves of Figure 3 with logarithmic fre-

quency scales and a decibel amplitude scale. Note the im-

proved symmetry in the curves of Figure 4 relative to those

of Figure 3.

1.2 The Basic Filter Types

Bandpass

There are five basic filter types (bandpass, notch, low-pass,

high-pass, and all-pass). The filter used in the example in

the previous section was a bandpass. The number of possi-

ble bandpass response characteristics is infinite, but they all

share the same basic form. Several examples of bandpass

amplitude response curves are shown in Figure 5. The

curve in 5(a) is what might be called an ‘‘ideal’’ bandpass

response, with absolutely constant gain within the pass-

band, zero gain outside the passband, and an abrupt bound-

ary between the two. This response characteristic is impos-

sible to realize in practice, but it can be approximated to

varying degrees of accuracy by real filters. Curves (b)

through (f) are examples of a few bandpass amplitude re-

sponse curves that approximate the ideal curves with vary-

ing degrees of accuracy. Note that while some bandpass

responses are very smooth, other have ripple (gain varia-

tions in their passbands. Other have ripple in their stop-

bands as well. The stopband is the range of frequencies

over which unwanted signals are attenuated. Bandpass fil-

ters have two stopbands, one above and one below the

passband.

TL/H/11221–4
(a)

TL/H/11221–6
(b)

FIGURE 4. Amplitude (a) and phase (b) response curves for example bandpass filter.

Note symmetry of curves with log frequency and gain scales.

TL/H/11221–7

(a) (b) (c)

TL/H/11221–8

(d) (e) (f)

FIGURE 5. Examples of Bandpass Filter Amplitude Response

3



Just as it is difficult to determine by observation exactly

where the passband ends, the boundary of the stopband is

also seldom obvious. Consequently, the frequency at which

a stopband begins is usually defined by the requirements of

a given systemÐfor example, a system specification might

require that the signal must be attenuated at least 35 dB at

1.5 kHz. This would define the beginning of a stopband at

1.5 kHz.

The rate of change of attenuation between the passband

and the stopband also differs from one filter to the next. The

slope of the curve in this region depends strongly on the

order of the filter, with higher-order filters having steeper

cutoff slopes. The attenuation slope is usually expressed in

dB/octave (an octave is a factor of 2 in frequency) or dB/

decade (a decade is a factor of 10 in frequency).

Bandpass filters are used in electronic systems to separate

a signal at one frequency or within a band of frequencies

from signals at other frequencies. In 1.1 an example was

given of a filter whose purpose was to pass a desired signal

at frequency f1, while attenuating as much as possible an

unwanted signal at frequency f2. This function could be per-

formed by an appropriate bandpass filter with center fre-

quency f1. Such a filter could also reject unwanted signals at

other frequencies outside of the passband, so it could be

useful in situations where the signal of interest has been

contaminated by signals at a number of different frequen-

cies.

Notch or Band-Reject

A filter with effectively the opposite function of the band-

pass is the band-reject or notch filter. As an example, the

components in the network ofFigure 3 can be rearranged to

form the notch filter of Figure 6, which has the transfer func-

tion

(10)HN(s) e

VOUT

VIN

e

s2 a 1

s2 a s a 1

TL/H/11221–9

FIGURE 6. Example of a Simple Notch Filter

The amplitude and phase curves for this circuit are shown in

Figure 7. As can be seen from the curves, the quantities fc,

fI, and fh used to describe the behavior of the band-pass

filter are also appropriate for the notch filter. A number of

notch filter amplitude response curves are shown in Figure
8. As in Figure 5, curve (a) shows an ‘‘ideal’’ notch re-

sponse, while the other curves show various approximations

to the ideal characteristic.

TL/H/11221–10
(a)

TL/H/11221–11
(b)

FIGURE 7. Amplitude (a) and Phase (b) Response

Curves for Example Notch Filter

Notch filters are used to remove an unwanted frequency

from a signal, while affecting all other frequencies as little as

possible. An example of the use of a notch flter is with an

audio program that has been contaminated by 60 Hz power-

line hum. A notch filter with a center frequency of 60 Hz can

remove the hum while having little effect on the audio sig-

nals.

TL/H/11221–12

(a) (b) (c)

TL/H/11221–13

(d) (e) (f)

FIGURE 8. Examples of Notch Filter Amplitude Responses

4



Low-Pass

A third filter type is the low-pass. A low-pass filter passes

low frequency signals, and rejects signals at frequencies

above the filter’s cutoff frequency. If the components of our

example circuit are rearranged as in Figure 9, the resultant

transfer function is:

(11)HLP(s) e

VOUT

VIN

e

1

s2 a s a 1

TL/H/11221–14

FIGURE 9. Example of a Simple Low-Pass Filter

It is easy to see by inspection that this transfer function has

more gain at low frequencies than at high frequencies. As 0
approaches 0, HLP approaches 1; as 0 approaches infinity,

HLP approaches 0.

Amplitude and phase response curves are shown in Figure
10, with an assortment of possible amplitude reponse

curves in Figure 11. Note that the various approximations to

the unrealizable ideal low-pass amplitude characteristics

take different forms, some being monotonic (always having

a negative slope), and others having ripple in the passband

and/or stopband.

Low-pass filters are used whenever high frequency compo-

nents must be removed from a signal. An example might be

in a light-sensing instrument using a photodiode. If light lev-

els are low, the output of the photodiode could be very

small, allowing it to be partially obscured by the noise of the

sensor and its amplifier, whose spectrum can extend to very

high frequencies. If a low-pass filter is placed at the output

of the amplifier, and if its cutoff frequency is high enough to

allow the desired signal frequencies to pass, the overall

noise level can be reduced.

TL/H/11221–15

(a)
TL/H/11221–16

(b)

FIGURE 10. Amplitude (a) and Phase (b) Response Curves for Example Low-Pass Filter

TL/H/11221–17

(a) (b) (c)

TL/H/11221–18

(d) (e) (f)

FIGURE 11. Examples of Low-Pass Filter Amplitude Response Curves

5



High-Pass

The opposite of the low-pass is the high-pass filter, which

rejects signals below its cutoff frequency. A high-pass filter

can be made by rearranging the components of our exam-

ple network as in Figure 12. The transfer function for this

filter is:

(12)HHP(s) e

VOUT

VIN

e

s2

s2 a s a 1

TL/H/11221–19

FIGURE 12. Example of Simple High-Pass Filter

and the amplitude and phase curves are found in Figure 13.

Note that the amplitude response of the high-pass is a ‘‘mir-

ror image’’ of the low-pass response. Further examples of

high-pass filter responses are shown in Figure 14, with the

‘‘ideal’’ response in (a) and various approximations to the

ideal shown in (b) through (f).

High-pass filters are used in applications requiring the rejec-

tion of low-frequency signals. One such application is in

high-fidelity loudspeaker systems. Music contains significant

energy in the frequency range from around 100 Hz to 2 kHz,

but high-frequency drivers (tweeters) can be damaged if

low-frequency audio signals of sufficient energy appear at

their input terminals. A high-pass filter between the broad-

band audio signal and the tweeter input terminals will pre-

vent low-frequency program material from reaching the

tweeter. In conjunction with a low-pass filter for the low-fre-

quency driver (and possibly other filters for other drivers),

the high-pass filter is part of what is known as a ‘‘crossover

network’’.

TL/H/11221–20
(a)

TL/H/11221–21
(b)

FIGURE 13. Amplitude (a) and Phase (b) Response Curves for Example High-Pass Filter

TL/H/11221–22

(a) (b) (c)

TL/H/11221–23

(d) (e) (f)

FIGURE 14. Examples of High-Pass Filter Amplitude Response Curves

6



All-Pass or Phase-Shift

The fifth and final filter response type has no effect on the

amplitude of the signal at different frequencies. Instead, its

function is to change the phase of the signal without affect-

ing its amplitude. This type of filter is called an all-pass or

phase-shift filter. The effect of a shift in phase is illustrated

in Figure 15. Two sinusoidal waveforms, one drawn in

dashed lines, the other a solid line, are shown. The curves

are identical except that the peaks and zero crossings of

the dashed curve occur at later times than those of the solid

curve. Thus, we can say that the dashed curve has under-

gone a time delay relative to the solid curve.

TL/H/11221–24

FIGURE 15. Two sinusoidal waveforms

with phase difference i. Note that this

is equivalent to a time delay
i

0
.

Since we are dealing here with periodic waveforms, time

and phase can be interchangedÐthe time delay can also be

interpreted as a phase shift of the dashed curve relative to

the solid curve. The phase shift here is equal to i radians.

The relation between time delay and phase shift is TD e

i/2q0, so if phase shift is constant with frequency, time

delay will decrease as frequency increases.

All-pass filters are typically used to introduce phase shifts

into signals in order to cancel or partially cancel any un-

wanted phase shifts previously imposed upon the signals by

other circuitry or transmission media.

Figure 16 shows a curve of phase vs frequency for an all-

pass filter with the transfer function

HAP(s) e

s2 b s a 1

s2 a s a 1

The absolute value of the gain is equal to unity at all fre-

quencies, but the phase changes as a function of frequency.

TL/H/11221–25

FIGURE 16. Phase Response Curve for

Second-Order All-Pass Filter of Example

Let’s take another look at the transfer function equations

and response curves presented so far. First note that all of

the transfer functions share the same denominator. Also

note that all of the numerators are made up of terms found

in the denominator: the high-pass numerator is the first term

(s2) in the denominator, the bandpass numerator is the sec-

ond term (s), the low-pass numerator is the third term (1),

and the notch numerator is the sum of the denominator’s

first and third terms (s2 a 1). The numerator for the all-pass

transfer function is a little different in that it includes all of

the denominator terms, but one of the terms has a negative

sign.

Second-order filters are characterized by four basic proper-

ties: the filter type (high-pass, bandpass, etc.), the pass-

band gain (all the filters discussed so far have unity gain in

the passband, but in general filters can be built with any

gain), the center frequency (one radian per second in the

above examples), and the filter Q. Q was mentioned earlier

in connection with bandpass and notch filters, but in sec-

ond-order filters it is also a useful quantity for describing the

behavior of the other types as well. The Q of a second-order

filter of a given type will determine the relative shape of the

amplitude response. Q can be found from the denominator

of the transfer function if the denominator is written in the

form:

D(s) e s2 a

0O

Q
s a 0O

2.

As was noted in the case of the bandpass and notch func-

tions, Q relates to the ‘‘sharpness’’ of the amplitude re-

sponse curve. As Q increases, so does the sharpness of the

response. Low-pass and high-pass filters exhibit ‘‘peaks’’ in

their response curves when Q becomes large. Figure 17
shows amplitude response curves for second-order band-

pass, notch, low-pass, high-pass and all-pass filters with

various values of Q.

There is a great deal of symmetry inherent in the transfer

functions we’ve considered here, which is evident when the

amplitude response curves are plotted on a logarithmic fre-

quency scale. For instance, bandpass and notch amplitude

resonse curves are symmetrical about fO (with log frequen-

cy scales). This means that their gains at 2fO will be the

same as their gains at fO/2, their gains at 10fO will be the

same as their gains at fO/10, and so on.

The low-pass and high-pass amplitude response curves

also exhibit symmetry, but with each other rather than with

themselves. They are effectively mirror images of each oth-

er about fO. Thus, the high-pass gain at 2fO will equal the

low-pass gain at fO/2 and so on. The similarities between

the various filter functions prove to be quite helpful when

designing complex filters. Most filter designs begin by defin-

ing the filter as though it were a low-pass, developing a low-

pass ‘‘prototype’’ and then converting it to bandpass, high-

pass or whatever type is required after the low-pass charac-

teristics have been determined.

As the curves for the different filter types imply, the number

of possible filter response curves that can be generated is

infinite. The differences between different filter responses

within one filter type (e.g., low-pass) can include, among

others, characteristic frequencies, filter order, roll-off slope,

and flatness of the passband and stopband regions. The

transfer function ultimately chosen for a given application

will often be the result of a tradeoff between the above

characteristics.

1.3 Elementary Filter Mathematics

In 1.1 and 1.2, a few simple passive filters were described

and their transfer functions were shown. Since the filters

were only 2nd-order networks, the expressions associated

with them weren’t very difficult to derive or analyze. When

the filter in question becomes more complicated than a sim-

ple 2nd-order network, however, it helps to have a general

7



TL/H/11221–26

(a) Bandpass (b) Low-Pass (c) High-Pass

(d) Notch (e) All-Pass

FIGURE 17. Responses of various 2nd-order filters as a function

of Q. Gains and center frequencies are normalized to unity.

mathematical method of describing its characteristics. This

allows us to use standard terms in describing filter charac-

teristics, and also simplifies the application of computers to

filter design problems.

The transfer functions we will be dealing with consist of a

numerator divided by a denominator, each of which is a

function of s, so they have the form:

(13)H(s) e

N(s)

D(s)

Thus, for the 2nd-order bandpass example described in (4),

HBP(s) e

s

s2 a s a 1
,

we would have N(s) e s, and D(s) e s2 a s a 1.

The numerator and denominator can always be written as

polynomials in s, as in the example above. To be completely

general, a transfer function for an nth-order network, (one

with ‘‘n’’ capacitors and inductors), can be written as below.

(14)H(s) e H0
snabnb1snb1abnb2snb2a . . . ab1sab0

snaanb1snb1aanb2snb2a . . . aa1saa0

This appears complicated, but it means simply that a filter’s

transfer function can be mathematically described by a nu-

merator divided by a denominator, with the numerator and

denominator made up of a number of terms, each consisting

of a constant multiplied by the variable ‘‘s’’ to some power.

The ai and bi terms are the constants, and their subscripts

correspond to the order of the ‘‘s’’ term each is associated

with. Therefore, a1 is multiplied by s, a2 is multiplied by s2,

and so on. Any filter transfer function (including the 2nd-or-

der bandpass of the example) will have the general form of

(14), with the values of the coefficients ai and bi depending

on the particular filter.

The values of the coefficients completely determine the

characteristics of the filter. As an example of the effect of

changing just one coefficient, refer again toFigure 17, which

shows the amplitude and phase response for 2nd-order

bandpass filters with different values of Q. The Q of a 2nd-

order bandpass is changed simply by changing the coeffi-

cient a1, so the curves reflect the influence of that coeffi-

cient on the filter response.

Note that if the coefficients are known, we don’t even have

to write the whole transfer function, because the expression

can be reconstructed from the coefficients. In fact, in the

interest of brevity, many filters are described in filter design

tables solely in terms of their coefficients. Using this

aproach, the 2nd-order bandpass of Figure 1 could be suffi-

ciently specified by ‘‘a0 e a1 e a2 e b1 e 1’’, with all

other coefficients equal to zero.

Another way of writing a filter’s transfer function is to factor

the polynomials in the numerator and denominator so that

they take the form:

(15)H(s) e H0
(s b z0) (s b z1) (s b z2) . . . (s b zn)

(s b p0)(s b p1)(s b p2) . . . (s b pn)

The roots of the numerator, z0, z1, z2, . . . zn are known as

zeros, and the roots of the denominator, p0, p1, . . . pn are

called poles. zi and pi are in general complex numbers, i.e.,

R a jI, where R is the real part, j e 0b1 , and I is the

imaginary part. All of the poles and zeros will be either real

roots (with no imaginary part) or complex conjugate pairs. A

8



complex conjugate pair consists of two roots, each of which

has a real part and an imaginary part. The imaginary parts of

the two members of a complex conjugate pair will have op-

posite signs and the reals parts will be equal. For example,

the 2nd-order bandpass network function of (4) can be fac-

tored to give:

H(s) e

s#s a 0.5 a j
03
2 J #s a 0.5 b j

03
2 J (16)

The factored form of a network function can be depicted

graphically in a pole-zero diagram. Figure 18 is the pole-

zero diagram for equation (4). The diagram shows the zero

at the origin and the two poles, one at

s e b0.5 b j 03 /2,

and one at

s e b0.5 a j 03 /2.

TL/H/11221–27

FIGURE 18. Poie-Zero Diagram for the Filter inFigure 2

The pole-zero diagram can be helpful to filter designers as

an aid in visually obtaining some insight into a network’s

characteristics. A pole anywhere to the right of the imagi-

nary axis indicates instability. If the pole is located on the

positive real axis, the network output will be an increasing

exponential function. A positive pole not located on the real

axis will give an exponentially increasing sinusoidal output.

We obviously want to avoid filter designs with poles in the

right half-plane!

Stable networks will have their poles located on or to the

left of the imaginary axis. Poles on the imaginary axis indi-

cate an undamped sinusoidal output (in other words, a sine-

wave oscillator), while poles on the left real axis indicate

damped exponential response, and complex poles in the

negative half-plane indicate damped sinusoidal response.

The last two cases are the ones in which we will have the

most interest, as they occur repeatedly in practical filter de-

signs.

Another way to arrange the terms in the network function

expression is to recognize that each complex conjugate pair

is simply the factored form of a second-order polynomial. By

multiplying the complex conjugate pairs out, we can get rid

of the complex numbers and put the transfer function into a

form that essentially consists of a number of 2nd-order

transfer functions multiplied together, possibly with some

first-order terms as well. We can thus think of the complex

filter as being made up of several 2nd-order and first-order

filters connected in series. The transfer function thus takes

the form:

(17)H(s) e H0
(s2ab11sab10)(s2ab21sab20) . . .

(s2aa11saa10)(s2aa21saa20) . . .

This form is particularly useful when you need to design a

complex active or switched-capacitor filter. The general ap-

proach for designing these kinds of filters is to cascade sec-

ond-order filters to produce a higher-order overall response.

By writing the transfer function as the product of second-or

der polynomials, we have it in a form that directly corre-

sponds to a cascade of second-order filters. For example,

the fourth-order low-pass filter transfer function

(18)HLP(s) e

1

(s2 a 1.5s a 1)(s2 a 1.2s a 1)

can be built by cascading two second-order filters with the

transfer functions

(19)

and

(20)H2(s) e

1

(s2 a 1.2s a 1)

This is illustrated in Figure 19, which shows the two 2nd-or-

der amplitude responses together with the combined 4th-or-

der response.

TL/H/11221–28
(a)

TL/H/11221–29
(b)

FIGURE 19. Two Second-Order Low-Pass Filters (a) can

be Cascaded to Build a Fourth-Order Filter (b).

Instead of the coefficients a0, a1, etc., second-order filters

can also be described in terms of parameters that relate to

observable quantities. These are the filter gain H0, the char-

acteristics radian frequency 0O, and the filter Q. For the

general second-order low-pass filter transfer function we

have:

H(s) e

H0a0

(s2 a a1s a a0)
e

H000
2

(s2a

00

Q
s a 00

2) (21)

which yields: 02
0 e a0, and Q e 00/a1 e 0a0 /a1.

The effects of H0 and 00 on the amplitude response are

straightforward: H0 is the gain scale factor and 00 is the

frequency scale factor. Changing one of these parameters

will alter the amplitude or frequency scale on an amplitude
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response curve, but the shape, as shown in Figure 20, will

remain the same. The basic shape of the curve is deter-

mined by the filter’s Q, which is determined by the denomi-

nator of the transfer function.

TL/H/11221–30
(a)

TL/H/11221–31
(b)

FIGURE 20. Effect of changing H0 and 00. Note that,

when log frequency and gain scales are used, a change

in gain or center frequency has no effect on the shape

of the response curve. Curve shape is determined by Q.

1.4 Filter Approximations

In Section 1.2 we saw several examples of amplitude re-

sponse curves for various filter types. These always includ-

ed an ‘‘ideal’’ curve with a rectangular shape, indicating that

the boundary between the passband and the stopband was

abrupt and that the rolloff slope was infinitely steep. This

type of response would be ideal because it would allow us

to completely separate signals at different frequencies from

one another. Unfortunately, such an amplitude response

curve is not physically realizable. We will have to settle for

the best approximation that will still meet our requirements

for a given application. Deciding on the best approximation

involves making a compromise between various properties

of the filter’s transfer function. The important properties are

listed below.

Filter Order. The order of a filter is important for several

reasons. It is directly related to the number of components

in the filter, and therefore to its cost, its physical size, and

the complexity of the design task. Therefore, higher-order

filters are more expensive, take up more space, and are

more difficult to design. The primary advantage of a higher-

order filter is that it will have a steeper rolloff slope than a

similar lower-order filter.

Ultimate Rolloff Rate. Usually expressed as the amount of

attenuation in dB for a given ratio of frequencies. The most

common units are ‘‘dB/octave’’ and ‘‘dB/decade’’. While

the ultimate rolloff rate will be 20 dB/decade for every filter

pole in the case of a low-pass or high-pass filter and

20 dB/decade for every pair of poles for a bandpass filter,

some filters will have steeper attenuation slopes near the

cutoff frequency than others of the same order.

Attenuation Rate Near the Cutoff Frequency. If a filter is

intended to reject a signal very close in frequency to a sig-

nal that must be passed, a sharp cutoff characteristic is

desirable between those two frequencies. Note that this

steep slope may not continue to frequency extremes.

Transient Response. Curves of amplitude response show

how a filter reacts to steady-state sinusoidal input signals.

Since a real filter will have far more complex signals applied

to its input terminals, it is often of interest to know how it will

behave under transient conditions. An input signal consist-

ing of a step function provides a good indication of this.

Figure 21 shows the responses of two low-pass filters to a

step input. Curve (b) has a smooth reaction to the input

step, while curve (a) exhibits some ringing. As a rule of

thumb, filters will sharper cutoff characteristics or higher Q

will have more pronounced ringing.

TL/H/11221–32

FIGURE 21. Step response of two different filters.

Curve (a) shows significant ‘‘ringing’’, while curve (b)

shows none. The input signal is shown in curve (c).

Monotonicity. A filter has a monotonic amplitude response

if its gain slope never changes signÐin other words, if the

gain always increases with increasing frequency or always

decreases with increasing frequency. Obviously, this can

happen only in the case of a low-pass or high-pass filter. A

bandpass or notch filter can be monotonic on either side of

the center frequency, however. Figures 11(b) and (c) and

14(b) and (c) are examples of monotonic transfer functions.

Passband Ripple. If a filter is not monotonic within its pass-

band, the transfer function within the passband will exhibit

one or more ‘‘bumps’’. These bumps are known as ‘‘ripple’’.

Some systems don’t necessarily require monotonicity, but

do require that the passband ripple be limited to some maxi-

mum value (usually 1 dB or less). Examples of passband

ripple can be found inFigures 5(e) and (f) , 8(f) , 11(e) and (f) ,
and 14(e) and (f) . Although bandpass and notch filters do

not have monotonic transfer functions, they can be free of

ripple within their passbands.

Stopband Ripple. Some filter responses also have ripple in

the stopbands. Examples are shown in Figure 5(f) , 8(g) ,
11(f) , and 14(f) . We are normally unconcerned about the

amount of ripple in the stopband, as long as the signal to be

rejected is sufficiently attenuated.

Given that the ‘‘ideal’’ filter amplitude response curves are

not physically realizable, we must choose an acceptable ap-

proximation to the ideal response. The word ‘‘acceptable’’

may have different meanings in different situations.

The acceptability of a filter design will depend on many in-

terrelated factors, including the amplitude response charac-

teristics, transient response, the physical size of the circuit

and the cost of implementing the design. The ‘‘ideal’’ low-

pass amplitude response is shown again in Figure 22(a) . If

we are willing to accept some deviations from this ideal in

order to build a practical filter, we might end up with a curve

like the one in Figure 22(b) , which allows ripple in the pass-
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band, a finite attenuation rate, and stopband gain greater

than zero. Four parameters are of concern in the figure:

TL/H/11221–33

(a) ‘‘ideal’’ Low-Pass Filter Response

TL/H/11221–34

(b) Amplitude Response Limits

for a Practical Low-Pass Filter

TL/H/11221–35

(c) Example of an Amplitude Response Curve Falling

with the Limits Set by fc, fs, Amin, and Amax

TL/H/11221–36

(d) Another Amplitude Response

Falling within the Desired Limits

FIGURE 22

Amax is the maximum allowable change in gain within the

passband. This quantity is also often called the maximum

passband ripple, but the word ‘‘ripple’’ implies non-mono-

tonic behavior, while Amax can obviously apply to monotonic

response curves as well.

Amin is the minimum allowable attenuation (referred to the

maximum passband gain) within the stopband.

fc is the cutoff frequency or passband limit.

fs is the frequency at which the stopband begins.

If we can define our filter requirements in terms of these

parameters, we will be able to design an acceptable filter

using standard ‘‘cookbook’’ design methods. It should be

apparent that an unlimited number of different amplitude re-

sponse curves could fit within the boundaries determined by

these parameters, as illustrated in Figure 22(c) and (d) . Fil-

ters with acceptable amplitude response curves may differ

in terms of such characteristics as transient response, pass-

band and stopband flatness, and complexity. How does one

choose the best filter from the infinity of possible transfer

functions?

Fortunately for the circuit designer, a great deal of work has

already been done in this area, and a number of standard

filter characteristics have already been defined. These usu-

ally provide sufficient flexibility to solve the majority of filter-

ing problems.

The ‘‘classic’’ filter functions were developed by mathemati-

cians (most bear their inventors’ names), and each was de-

signed to optimize some filter property. The most widely-

used of these are discussed below. No attempt is made

here to show the mathematical derivations of these func-

tions, as they are covered in detail in numerous texts on

filter theory.

Butterworth

The first, and probably best-known filter approximation is

the Butterworth or maximally-flat response. It exhibits a

nearly flat passband with no ripple. The rolloff is smooth and

monotonic, with a low-pass or high-pass rolloff rate of

20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-or-

der Butterworth low-pass filter would have an attenuation

rate of 100 dB for every factor of ten increase in frequency

beyond the cutoff frequency.

The general equation for a Butterworth filter’s amplitude re-

sponse is

H(0) e

1

1 a # 0

00J2n (22)

where n is the order of the filter, and can be any positive

whole number (1, 2, 3, . . . ), and 0 is the b3 dB frequency

of the filter.

Figure 23 shows the amplitude response curves for Butter-

worth low-pass filters of various orders. The frequency scale

is normalized to f/fb3 dB so that all of the curves show 3 dB

attenuation for f/fc e 1.0.

TL/H/11221–37

FIGURE 23. Amplitude Response Curves for

Butterworth Filters of Various Orders

The coefficients for the denominators of Butterworth filters

of various orders are shown in Table 1(a). Table 1(b) shows

the denominators factored in terms of second-order polyno-

mials. Again, all of the coefficients correspond to a corner

frequency of 1 radian/s (finding the coefficients for a differ-

ent cutoff frequency will be covered later). As an example,
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TABLE 1(a). Butterworth Polynomials

Denominator coefficients for polynomials of the form sn a anb1snb1 a anb2snb2 a . . . a a1s a a0.

n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 1

2 1 1.414

3 1 2.000 2.000

4 1 2.613 3.414 2.613

5 1 3.236 5.236 5.236 3.236

6 1 3.864 7.464 9.142 7.464 3.864

7 1 4.494 10.098 14.592 14.592 10.098 4.494

8 1 5.126 13.137 21.846 25.688 21.846 13.137 5.126

9 1 5.759 16.582 31.163 41.986 41.986 31.163 16.582 5.759

10 1 6.392 20.432 42.802 64.882 74.233 64.882 42.802 20.432 6.392

TABLE 1(b). Butterworth Quadratic Factors

n

1 (s a 1)

2 (s2 a 1.4142s a 1)

3 (s a 1)(s2 a s a 1)

4 (s2 a 0.7654s a 1)(s2 a 1.8478s a 1)

5 (s a 1)(s2 a 0.6180s a 1)(s2 a 1.6180s a 1)

6 (s2 a 0.5176s a 1)(s2 a 1.4142s a 1)(s2 a 1.9319)

7 (s a 1)(s2 a 0.4450s a 1)(s2 a 1.2470s a 1)(s2 a 1.8019s a 1)

8 (s2 a 0.3902s a 1)(s2 a 1.1111s a 1)(s2 a 1.6629s a 1)(s2 a 1.9616s a 1)

9 (s a 1)(s2 a 0.3473s a 1)(s2 a 1.0000s a 1)(s2 a 1.5321s a 1)(s2 a 1.8794s a 1)

10 (s2 a 0.3129s a 1)(s2 a 0.9080s a 1)(s2 a 1.4142s a 1)(s2 a 1.7820s a 1)(s2 a 1.9754s a 1)

the tables show that a fifth-order Butterworth low-pass fil-

ter’s transfer function can be written:

H(s) e

1

s5a3.236s4a5.236s3a5.236s2a3.236sa1

(22)

e

1

(s a 1)(s2 a 0.6180s a 1)(s2 a 1.6180s a 1)

This is the product of one first-order and two second-order

transfer functions. Note that neither of the second-order

transfer functions alone is a Butterworth transfer function,

but that they both have the same center frequency.

Figure 24 shows the step response of Butterworth low-pass

filters of various orders. Note that the amplitude and dura-

tion of the ringing increases as n increases.

Chebyshev

Another approximation to the ideal filter is the Chebyshev

or equal ripple response. As the latter name implies, this

sort of filter will have ripple in the passband amplitude re-

sponse. The amount of passband ripple is one of the pa-

rameters used in specifying a Chebyshev filter. The Chebys-

chev characteristic has a steeper rolloff near the cutoff fre-

quency when compared to the Butterworth, but at the ex-

pense of monotonicity in the passband and poorer transient

response. A few different Chebyshev filter responses are

shown in Figure 25. The filter responses in the figure have

0.1 dB and 0.5 dB ripple in the passband, which is small

compared to the amplitude scale in Figure 25(a) and (b) , so

it is shown expanded in Figure 25(c) .

TL/H/11221–38

FIGURE 24. Step responses for Butterworth

low-pass filters. In each case 00 e 1

and the step amplitude is 1.0.
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TL/H/11221–39
(a)

TL/H/11221–40
(b)

TL/H/11221–41
(c)

FIGURE 25. Examples of Chebyshev amplitude

responses. (a) 0.1 dB ripple (b) 0.5 dB ripple. (c)

Expanded view of passband region showing form of

response below cutoff frequency.

Note that a Chebyshev filter of order n will have nb1 peaks

or dips in its passband response. Note also that the nominal

gain of the filter (unity in the case of the responses inFigure
25 ) is equal to he filter’s maximum passband gain. An odd-

order Chebyshev will have a dc gain (in the low-pass case)

equal to the nominal gain, with ‘‘dips’’ in the amplitude re-

sponse curve equal to the ripple value. An even-order

Chebyshev low-pass will have its dc gain equal to he nomi-

nal filter gain minus the ripple value; the nominal gain for an

even-order Chebyshev occurs at the peaks of the passband

ripple. Therefore, if you’re designing a fourth-order Che-

byshev low-pass filter with 0.5 dB ripple and you want it

to have unity gain at dc, you’ll have to design for a nominal

gain of 0.5 dB.

The cutoff frequency of a Chebyshev filter is not assumed to

be the b3 dB frequency as in the case of a Butterworth

filter. Instead, the Chebyshev’s cutoff frequency is normally

the frequency at which the ripple (or Amax) specification is

exceeded.

The addition of passband ripple as a parameter makes the

specification process for a Chebyshev filter a bit more com-

plicated than for a Butterworth filter, but also increases flexi-

bility.

Figure 26 shows the step response of 0.1 dB and 0.5 dB

ripple Chebyshev filters of various orders. As with the But-

terworth filters, the higher order filters ring more.

TL/H/11221–42
(a) 0.1 dB Ripple

TL/H/11221–43
(b) 0.5 dB Ripple

FIGURE 26. Step responses for Chebyshev

low-pass filters. In each case, 00 e 1,

and the step amplitude is 1.0.

Bessel

All filters exhibit phase shift that varies with frequency. This

is an expected and normal characteristic of filters, but in

certain instances it can present problems. If the phase in-

creases linearly with frequency, its effect is simply to delay

the output signal by a constant time period. However, if the

phase shift is not directly proportional to frequency, compo-

nents of the input signal at one frequency will appear at the

output shifted in phase (or time) with respect to other fre-

quencies. The overall effect is to distort non-sinusoidal

waveshapes, as illustrated in Figure 27 for a square wave

passed through a Butterworth low-pass filter. The resulting

waveform exhibits ringing and overshoot because the

square wave’s component frequencies are shifted in time

with respect to each other so that the resulting waveform is

very different from the input square wave.
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TL/H/11221–44

FIGURE 27. Response of a 4th-order Butterworth low-

pass (upper curve) to a square wave input (lower

curve). The ‘‘ringing’’ in the response shows that the

nonlinear phase shift distorts the filtered wave shape.

When the avoidance of this phenomenon is important, a

Bessel or Thompson filter may be useful. The Bessel char-

acteristic exhibits approximately linear phase shift with fre-

quency, so its action within the passband simulates a delay

line with a low-pass characteristic. The higher the filter or-

der, the more linear the Bessel’s phase response. Figure 28
shows the square-wave response of a Bessel low-pass fil-

ter. Note the lack of ringing and overshoot. Except for the

‘‘rounding off’’ of the square wave due to the attenuation of

high-frequency harmonics, the waveshape is preserved.

TL/H/11221–45

FIGURE 28. Response of a 4th-order Bessel low-pass

(upper curve) to a square wave input (lower curve).

Note the lack of ringing in the response. Except for the

‘‘rounding of the corners’’ due to the reduction of high

frequency components, the response is a relatively

undistorted version of the input square wave.

The amplitude response of the Bessel filter is monotonic

and smooth, but the Bessel filter’s cutoff characteristic is

quite gradual compared to either the Butterworth or Che-

byshev as can be seen from the Bessel low-pass amplitude

response curves in Figure 29. Bessel step responses are

plotted in Figure 30 for orders ranging from 2 to 10.

TL/H/11221–46

FIGURE 29. Amplitude response curves for Bessel

filters of various orders. The nominal delay of each

filter is 1 second.

TL/H/11221–47

FIGURE 30. Step responses for Bessel low-pass filters.

In each case, 00 e 1 and the input step amplitude is 1.0.

Elliptic

The cutoff slope of an elliptic filter is steeper than that of a

Butterworth, Chebyshev, or Bessel, but the amplitude re-

sponse has ripple in both the passband and the stopband,

and the phase response is very non-linear. However, if the

primary concern is to pass frequencies falling within a cer-

tain frequency band and reject frequencies outside that

band, regardless of phase shifts or ringing, the elliptic re-

sponse will perform that function with the lowest-order filter.

The elliptic function gives a sharp cutoff by adding notches

in the stopband. These cause the transfer function to drop

to zero at one or more frequencies in the stopband. Ripple

is also introduced in the passband (seeFigure 31 ). An ellip-

tic filter function can be specified by three parameters

(again excluding gain and cutoff frequency): passband rip-

ple, stopband attenuation, and filter order n. Because of the

greater complexity of the elliptic filter, determination of coef-

ficients is normally done with the aid of a computer.

TL/H/11221–48

FIGURE 31. Example of a elliptic low-pass amplitude

response. This particular filter is 4th-order with Amax e

0.5 dB and fs/fc e 2. The passband ripple is similar in

form to the Chebyshev ripple shown inFigure 25(c) .

1.5 Frequency Normalization and Denormalization

Filter coefficients that appear in tables such as Table 1 are

normalized for cutoff frequencies of 1 radian per second, or

0O e 1. Therefore, if these coefficients are used to gener-

ate a filter transfer function, the cutoff (or center) frequency

of the transfer function will be at 0 e 1. This is a conve-

nient way to standardize filter coefficients and transfer func-

tions. If this were not done, we would need to produce a

different set of coefficients for every possible center fre-

quency. Instead, we use coefficients that are normalized for

0O e 1 because it is simple to rescale the frequency be-
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havior of a 1 r.p.s. filter. In order to denormalize a transfer

function we merely replace each ‘‘s’’ term in the transfer

function with s/0O, where 0O is the desired cutoff frequen-

cy. Thus the second-order Butterworth low-pass function

(23)H(s) e

1

(s2 a 2s a 1)

could be denormalized to have a cutoff frequency of

1000 Hz by replacing s with s/2000q as below:

H(s) e

1

s2

4 x 106q2
a

S2s

2000q
a 1

e

4 x 106q2

s2 a 2828.4qs a 4 x 106q2

e

3.948 x 107

s2 a 8885.8s a 3.948 x 107

If it is necessary to normalize a transfer function, the oppo-

site procedure can be performed by replacing each ‘‘s’’ in

the transfer function with 0Os.

APPROACHES TO IMPLEMENTING FILTERS:

ACTIVE, PASSIVE, AND SWITCHED-CAPACITOR

2.1 Passive Filters

The filters used for the earlier examples were all made up of

passive components: resistors, capacitors, and inductors,

so they are referred to as passive filters. A passive filter is

simply a filter that uses no amplifying elements (transistors,

operational amplifiers, etc.). In this respect, it is the simplest

(in terms of the number of necessary components) imple-

mentation of a given transfer function. Passive filters have

other advantages as well. Because they have no active

components, passive filters require no power supplies.

Since they are not restricted by the bandwidth limitations of

op amps, they can work well at very high frequencies. They

can be used in applications involving larger current or volt-

age levels than can be handled by active devices. Passive

filters also generate little nosie when compared with circuits

using active gain elements. The noise that they produce is

simply the thermal noise from the resistive components,

and, with careful design, the amplitude of this noise can be

very low.

Passive filters have some important disadvantages in cer-

tain applications, however. Since they use no active ele-

ments, they cannot provide signal gain. Input impedances

can be lower than desirable, and output impedances can be

higher the optimum for some applications, so buffer amplifi-

ers may be needed. Inductors are necessary for the synthe-

sis of most useful passive filter characteristics, and these

can be prohibitively expensive if high accuracy (1% or 2%,

for example), small physical size, or large value are re-

quired. Standard values of inductors are not very closely

spaced, and it is diffcult to find an off-the-shelf unit within

10% of any arbitrary value, so adjustable inductors are often

used. Tuning these to the required values is time-consuming

and expensive when producing large quantities of filters.

Futhermore, complex passive filters (higher than 2nd-order)

can be difficult and time-consuming to design.

2.2 Active Filters

Active filters use amplifying elements, especially op amps,

with resistors and capacitors in their feedback loops, to syn-

thesize the desired filter characteristics. Active filters can

have high input impedance, low output impedance, and vir-

tually any arbitrary gain. They are also usually easier to de-

sign than passive filters. Possibly their most important attri-

bute is that they lack inductors, thereby reducing the prob-

lems associated with those components. Still, the problems

of accuracy and value spacing also affect capacitors, al-

though to a lesser degree. Performance at high frequencies

is limited by the gain-bandwidth product of the amplifying

elements, but within the amplifier’s operating frequency

range, the op amp-based active filter can achieve very good

accuracy, provided that low-tolerance resistors and capaci-

tors are used. Active filters will generate noise due to the

amplifying circuitry, but this can be minimized by the use of

low-noise amplifiers and careful circuit design.

Figure 32 shows a few common active filter configurations

(There are several other useful designs; these are intended

to serve as examples). The second-order Sallen-Key low-

pass filter in (a) can be used as a building block for higher-

order filters. By cascading two or more of these circuits,

filters with orders of four or greater can be built. The two

resistors and two capacitors connected to the op amp’s

non-inverting input and to VIN determine the filter’s cutoff

frequency and affect the Q; the two resistors connected to

the inverting input determine the gain of the filter and also

affect the Q. Since the components that determine gain and

cutoff frequency also affect Q, the gain and cutoff frequency

can’t be independently changed.

Figures 32(b) and 32(c) are multiple-feedback filters using

one op amp for each second-order transfer function. Note

that each high-pass filter stage in Figure 32(b) requires

three capacitors to achieve a second-order response. As

with the Sallen-Key filter, each component value affects

more than one filter characteristic, so filter parameters can’t

be independently adjusted.

The second-order state-variable filter circuit in Figure 32(d)
requires more op amps, but provides high-pass, low-pass,

and bandpass outputs from a single circuit. By combining

the signals from the three outputs, any second-order trans-

fer function can be realized.

When the center frequency is very low compared to the op

amp’s gain-bandwidth product, the characteristics of active

RC filters are primarily dependent on external component

tolerances and temperature drifts. For predictable results in

critical filter circuits, external components with very good

absolute accuracy and very low sensitivity to temperature

variations must be used, and these can be expensive.

When the center frequency multiplied by the filter’s Q is

more than a small fraction of the op amp’s gain-bandwidth

product, the filter’s response will deviate from the ideal

transfer function. The degree of deviation depends on the

filter topology; some topologies are designed to minimize

the effects of limited op amp bandwidth.

2.3 The Switched-Capacitor Filter

Another type of filter, called the switched-capacitor filter,

has become widely available in monolithic form during the

last few years. The switched-capacitor approach over-

comes some of the problems inherent in standard active

filters, while adding some interesting new capabilities.

Switched-capacitor filters need no external capacitors or in-

ductors, and their cutoff frequencies are set to a typical ac-

curacy of g0.2% by an external clock frequency. This al-

lows consistent, repeatable filter designs using inexpensive

crystal-controlled oscillators, or filters whose cutoff frequen-

cies are variable over a wide range simply by changing the

clock frequency. In addition, switched-capacitor filters can

have low sensitivity to temperature changes.
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(a) Sallen-Key 2nd-Order Active Low-Pass Filter

TL/H/11221–50

(b) Multiple-Feedback 4th-Order Active High-Pass Filter.

Note that there are more capacitors than poles.

TL/H/11221–51

(c) Multiple-Feedback 2nd-Order Bandpass Filter

TL/H/11221–52

(d) Universal State-Variable 2nd-Order Active Filter

FIGURE 32. Examples of Active Filter Circuits Based on Op Amps, Resistors, and Capacitors

Switched-capacitor filters are clocked, sampled-data sys-

tems; the input signal is sampled at a high rate and is pro-

cessed on a discrete-time, rather than continuous, basis.

This is a fundamental difference between switched-capaci-

tor filters and conventional active and passive filters, which

are also referred to as ‘‘continuous time’’ filters.

The operation of switched-capacitor filters is based on the

ability of on-chip capacitors and MOS switches to simulate

resistors. The values of these on-chip capacitors can be

closely matched to other capacitors on the IC, resulting in

integrated filters whose cutoff frequencies are proportional

to, and determined only by, the external clock frequency.

Now, these integrated filters are nearly always based on

state-variable active filter topologies, so they are also active

filters, but normal terminology reserves the name ‘‘active

filter’’ for filters built using non-switched, or continuous, ac-

tive filter techniques. The primary weakness of switched-ca-

pacitor filters is that they have more noise at their outputsÐ

both random noise and clock feedthroughÐthan standard

active filter circuits.

National Semiconductor builds several different types of

switched-capacitor filters. Three of these, the LMF100, the

MF5, and the MF10, can be used to synthesize any of the

filter types described in Section 1.2, simply by appropriate

choice of a few external resistors. The values and place-

ment of these resistors determine the basic shape of the

amplitude and phase response, with the center or cutoff

frequency set by the external clock. Figure 33 shows the

filter block of the LMF100 with four external resistors con-

nected to provide low-pass, high-pass, and bandpass out-

puts. Note that this circuit is similar in form to the universal

state-variable filter inFigure 32(d) , except that the switched-

capacitor filter utilizes non-inverting integrators, while the

conventional active filter uses inverting integrators. Chang-

ing the switched-capacitor filter’s clock frequency changes

the value of the integrator resistors, thereby proportionately

changing the filter’s center frequency. The LMF100 and

MF10 each contain two universal filter blocks, while the

MF5 has a single second-order filter.

While the LMF100, MF5, and MF10 are universal filters,

capable of realizing all of the filter types, the LMF40,

LMF60, MF4, and MF6 are configured only as fourth- or

sixth-order Butterworth low-pass filters, with no external

components necessary other than a clock (to set fO) and a

power supply. Figures 34 and 35 show typical LMF40 and

LMF60 circuits along with their amplitude response curves.

Some switched-capacitor filter products are very special-

ized. The LMF380 (Figure 36) contains three fourth-order

Chebyshev bandpass filters with bandwidths and center fre-

quency spacings equal to one-third of an octave. This filter

is designed for use with audio and acoustical instrumenta-

tion and needs no external components other than a clock.

An internal clock oscillator can, with the aid of a crystal and

two capacitors, generate the master clock for a whole array

of LMF380s in an audio real-time analyzer or other multi-fil-

ter instrument.

Other devices, such as the MF8 fourth-order bandpass filter

(Figure 37) and the LMF90 fourth-order notch filter (Figure
38) have specialized functions but may be programmed for

a variety of response curves using external resistors in the

case of the MF8 or logic inputs in the case of the LMF90.
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TL/H/11221–53

FIGURE 33. Block diagram of a second-order universal switched-capacitor filter, including external resistors

connected to provide High-Pass, Bandpass, and Low-Pass outputs. Notch and All-Pass responses can be obtained

with different external resistor connections. The center frequency of this filter is proportional to the clock frequency.

Two second-order filters are included on the LMF100 or MF10.

TL/H/11221–54

(a)

TL/H/11221–55
(b)

FIGURE 34. Typical LMF40 and LMF60 application circuits. The circuits shown operate on g5V power supplies and

accept CMOS clock levels. For operation on single supplies or with TTL clock levels, see Sections 2.3 and 2.4.

TL/H/11221–56
(a) LMF40

TL/H/11221–57
(b) LMF60

FIGURE 35. Typical LMF40 and LMF60 amplitude response curves.

The cutoff frequency has been normalized to 1 in each case.
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TL/H/11221–58

(a)

TL/H/11221–59

(b)

FIGURE 36. LMF380 one-third octave filter array. (a) Typical application circuit for the top audio octave. The clock is

generated with the aid of the external crystal and two 30 pF capacitors. (b) Response curves for the three filters.
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TL/H/11221–60

FIGURE 37. The MF8 is a fourth-order bandpass filter. Three external resistors determine the filter function.

A five-bit digital input sets the bandwidth and the clock frequency determines the center frequency.

TL/H/11221–61

(a)

TL/H/11221–62

(b)

FIGURE 38. LMF90 fourth-order elliptic notch filter. The clock can be generated externally, or internally with

the aid of a crystal. Using the circuit as shown in (a), a 60 Hz notch can be built. Connecting pin 3 to Va yields

a 50 Hz notch. By tying pin to ground or Va, the center frequency can be doubled

or tripled. The response of the circuit in (a) is shown in (b).
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TL/H/11221–63

FIGURE 39. Block diagram of the LMF120 customizable switched-capacitor filter array.

The internal circuit blocks can be internally configured to provide up to three filters with a total

of 12 poles. Any unused circuitry can be disconnected to reduce power consumption.

Finally, when a standard filter product for a specific applica-

tion can’t be found, it often makes sense to use a cell-based

approach and build an application-specific filter. An example

is the LMF120, a 12th-order customizable switched-capaci-

tor filter array that can be configured to perform virtually any

filtering function with no external components. A block dia-

gram of this device is shown in Figure 39. The three input

sample-and-hold circuits, six second-order filter blocks, and

three output buffers can be interconnected to build from one

to three filters, with a total order of twelve.

2.4 Which Approach is BestÐActive, Passive, or

Switched-Capacitor?

Each filter technology offers a unique set of advantages and

disadvantages that makes it a nearly ideal solution to some

filtering problems and completely unacceptable in other ap-

plications. Here’s a quick look at the most important differ-

ences between active, passive, and switched-capacitor fil-

ters.

Accuracy: Switched-capacitor filters have the advantage of

better accuracy in most cases. Typical center-frequency ac-

curacies are normally on the order of about 0.2% for most

switched-capacitor ICs, and worst-case numbers range

from 0.4% to 1.5% (assuming, of course, that an accurate

clock is provided). In order to achieve this kind of precision

using passive or conventional active filter techniques re-

quires the use of either very accurate resistors, capacitors,

and sometimes inductors, or trimming of component values

to reduce errors. It is possible for active or passive filter

designs to achieve better accuracy than switched-capacitor

circuits, but additional cost is the penalty. A resistor-pro-

grammed switched-capacitor filter circuit can be trimmed to

achieve better accuracy when necessary, but again, there is

a cost penalty.

Cost: No single technology is a clear winner here. If a sin-

gle-pole filter is all that is needed, a passive RC network

may be an ideal solution. For more complex designs,

switched-capacitor filters can be very inexpensive to buy,

and take up very little expensive circuit board space. When

good accuracy is necessary, the passive components, es-

pecially the capacitors, used in the discrete approaches can

be quite expensive; this is even more apparent in very com-

pact designs that require surface-mount components. On

the other hand, when speed and accuracy are not important

concerns, some conventional active filters can be built quite

cheaply.

Noise: Passive filters generate very little noise (just the ther-

mal noise of the resistors), and conventional active filters

generally have lower noise than switched-capacitor ICs.

Switched-capacitor filters use active op amp-based integra-

tors as their basic internal building blocks. The integrating

capacitors used in these circuits must be very small in size,

so their values must also be very small. The input resistors

on these integrators must therefore be large in value in or-

der to achieve useful time constants. Large resistors pro-

duce high levels of thermal noise voltage; typical output

noise levels from switched-capacitor filters are on the order

of 100 mV to 300 mVrms over a 20 kHz bandwidth. It is

interesting to note that the integrator input resistors in

switched-capacitor filters are made up of switches and ca-

pacitors, but they produce thermal noise the same as ‘‘real’’

resistors.

(Some published comparisons of switched-capacitor vs. op

amp filter noise levels have used very noisy op amps in the

op amp-based designs to show that the switched-capacitor

filter noise levels are nearly as good as those of the op

amp-based filters. However, filters with noise levels
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at least 20 dB below those of most switched-capacitor de-

signs can be built using low-cost, low-noise op amps such

as the LM833.)

Although switched-capacitor filters tend to have higher

noise levels than conventional active filters, they still

achieve dynamic ranges on the order of 80 dB to 90 dBÐ

easily quiet enough for most applications, provided that the

signal levels applied to the filter are large enough to keep

the signals ‘‘out of the mud’’.

Thermal noise isn’t the only unwanted quantity that

switched-capacitor filters inject into the signal path. Since

these are clocked devices, a portion of the clock waveform

(on the order of 10 mV p–p) will make its way to the filter’s

output. In many cases, the clock frequency is high enough

compared to the signal frequency that the clock feed-

through can be ignored, or at least filtered with a passive

RC network at the output, but there are also applications

that cannot tolerate this level of clock noise.

Offset Voltage: Passive filters have no inherent offset volt-

age. When a filter is built from op amps, resistors and ca-

pacitors, its offset voltage will be a simple function of the

offset voltages of the op amps and the dc gains of the vari-

ous filter stages. It’s therefore not too difficult to build filters

with sub-millivolt offsets using conventional techniques.

Switched-capacitor filters have far larger offsets, usually

ranging from a few millivolts to about 100 mV; there are

some filters available with offsets over 1V! Obviously,

switched-capacitor filters are inappropriate for applications

requiring dc precision unless external circuitry is used to

correct their offsets.

Frequency Range: A single switched-capacitor filter can

cover a center frequency range from 0.1 Hz or less to

100 kHz or more. A passive circuit or an op amp/resistor/

capacitor circuit can be designed to operate at very low

frequencies, but it will require some very large, and probably

expensive, reactive components. A fast operational amplifi-

er is necessary if a conventional active filter is to work prop-

erly at 100 kHz or higher frequencies.

Tunability: Although a conventional active or passive filter

can be designed to have virtually any center frequency that

a switched-capacitor filter can have, it is very difficult to vary

that center frequency without changing the values of sever-

al components. A switched-capacitor filter’s center (or cut-

off) frequency is proportional to a clock frequency and can

therefore be easily varied over a range of 5 to 6 decades

with no change in external circuitry. This can be an impor-

tant advantage in applications that require multiple center

frequencies.

Component Count/Circuit Board Area: The switched-ca-

pacitor approach wins easily in this category. The dedicat-

ed, single-function monolithic filters use no external compo-

nents other than a clock, even for multipole transfer func-

tions, while passive filters need a capacitor or inductor per

pole, and conventional active approaches normally require

at least one op amp, two resistors, and two capacitors per

second-order filter. Resistor-programmable switched-ca-

pacitor devices generally need four resistors per second-or-

der filter, but these usually take up less space than the com-

ponents needed for the alternative approaches.

Aliasing: Switched-capacitor filters are sampled-data devic-

es, and will therefore be susceptible to aliasing when the

input signal contains frequencies higher than one-half the

clock frequency. Whether this makes a difference in a par-

ticular application depends on the application itself. Most

switched-capacitor filters have clock-to-center-frequency

ratios of 50:1 or 100:1, so the frequencies at which aliasing

begins to occur are 25 or 50 times the center frequencies.

When there are no signals with appreciable amplitudes at

frequencies higher than one-half the clock frequency, alias-

ing will not be a problem. In a low-pass or bandpass applica-

tion, the presence of signals at frequencies nearly as high

as the clock rate will often be acceptable because although

these signals are aliased, they are reflected into the filter’s

stopband and are therefore attenuated by the filter.

When aliasing is a problem, it can sometimes be fixed by

adding a simple, passive RC low-pass filter ahead of the

switched-capacitor filter to remove some of the unwanted

high-frequency signals. This is generally effective when the

switched-capacitor filter is performing a low-pass or band-

pass function, but it may not be practical with high-pass or

notch filters because the passive anti-aliasing filter will re-

duce the passband width of the overall filter response.

Design Effort: Depending on system requirements, either

type of filter can have an advantage in this category, but

switched-capacitor filters are generally much easier to de-

sign. The easiest-to-use devices, such as the LMF40, re-

quire nothing more than a clock of the appropriate frequen-

cy. A very complex device like the LMF120 requires little

more design effort than simply defining the desired perform-

ance characteristics. The more difficult design work is done

by the manufacturer (with the aid of some specialized soft-

ware). Even the universal, resistor-programmable filters like

the LMF100 are relatively easy to design with. The proce-

dure is made even more user-friendly by the availability of

filter software from a number of vendors that will aid in the

design of LMF100-type filters. National Semiconductor pro-

vides one such filter software package free of charge. The

program allows the user to specify the filter’s desired per-

formance in terms of cutoff frequency, a passband ripple,

stopband attenuation, etc., and then determines the re-

quired characteristics of the second-order sections that will

be used to build the filter. It also computes the values of the

external resistors and produces amplitude and phase vs.

frequency data.

Where does it make sense to use a switched-capacitor filter

and where would you be better off with a continuous filter?

Let’s look at a few types of applications:

Tone Detection (Communications, FAXs, Modems, Bio-

medical Instrumentation, Acoustical Instrumentation,

ATE, etc.): Switched-capacitor filters are almost always the

best choice here by virtue of their accurate center frequen-

cies and small board space requirements.

Noise Rejection (Line-Frequency Notches for Biomedi-

cal Instrumentation and ATE, Low-Pass Noise Filtering

for General Instrumentation, Anti-Alias Filtering for

Data Acquisition Systems, etc.): All of these applications

can be handled well in most cases by either switched-ca-

pacitor or conventional active filters. Switched-capacitor fil-

ters can run into trouble if the signal bandwidths are high

enough relative to the center or cutoff frequencies to cause

aliasing, or if the system requires dc precision. Aliasing

problems can often be fixed easily with an external resistor

and capacitor, but if dc precision is needed, it is usually best

to go to a conventional active filter built with precision op

amps.
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Controllable, Variable Frequency Filtering (Spectrum

Analysis, Multiple-Function Filters, Software-Controlled

Signal Processors, etc.): Switched-capacitor filters excel

in applications that require multiple center frequencies be-

cause their center frequencies are clock-controlled. More-

over, a single filter can cover a center frequency range of 5

decades. Adjusting the cutoff frequency of a continuous fil-

ter is much more difficult and requires either analog

switches (suitable for a small number of center frequen-

cies), voltage-controlled amplifiers (poor center frequency

accuracy) or DACs (good accuracy over a very limited con-

trol range).

Audio Signal Processing (Tone Controls and Other

Equalization, All-Pass Filtering, Active Crossover Net-

works, etc.): Switched-capacitor filters are usually too noisy

for ‘‘high-fidelity’’ audio applications. With a typical dynamic

range of about 80 dB to 90 dB, a switched-capacitor filter

will usuallly give 60 dB to 70 dB signal-to-noise ratio (as-

suming 20 dB of headroom). Also, since audio filters usually

need to handle three decades of signal frequencies at the

same time, there is a possibility of aliasing problems. Con-

tinuous filters are a better choice for general audio use, al-

though many communications systems have bandwidths

and S/N ratios that are compatible with switched capacitor

filters, and these systems can take advantage of the tunabil-

ity and small size of monolithic filters.
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