Snubber Circuits

- A. Overview of Snubber Circuits
- B. Diode Snubbers
- C. Turn-off Snubbers
- D. Overvoltage Snubbers
- E. Turn-on Snubbers
- F. Thyristor Snubbers

William P. Robbins
Professor
Dept. of Electrical Engineering
University of Minnesota
200 Union St. SE.
Minneapolis, MN 555455

Copyright 1997

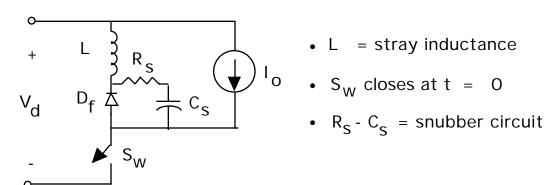
Function of Snubber Circuits

- Protect semiconductor devices by:
 - Limiting device voltages during turn-off transients
 - Limiting device currents during turn-on transients
 - Limiting the rate-of-rise $(\frac{di}{dt})$ of currents through the semiconductor device at device turn-on
 - Limiting the rate-of-rise $(\frac{dv}{dt})$ of voltages across the semiconductor device at device turn-off
 - Shaping the switching trajectory of the device as it turns on/off

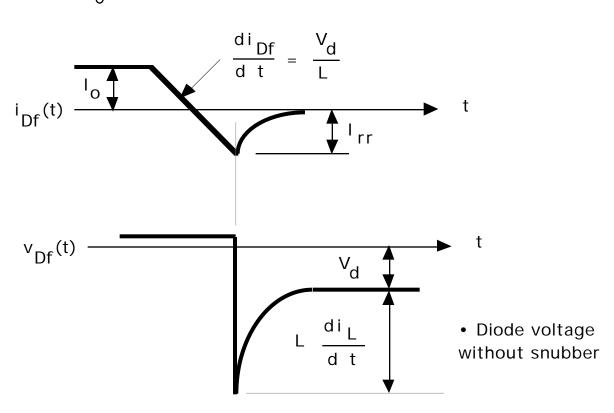
Types of Snubber Circuits

- 1. Unpolarized series R-C snubbers
 - Used to protect diodes and thyristors
- 2. Polarized R-C snubbers
 - Used as turn-off snubbers to shape the turn-on switching trajectory of controlled switches.
 - Used as overvoltage snubbers to clamp voltages applied to controlled switches to safe values.
 - Limit $\frac{dv}{dt}$ during device turn-off
- 3. Polarized L-R snubbers
 - Used as turn-on snubbers to shapte the turn-off switching trajectory of controlled switches.
 - Limit $\frac{di}{dt}$ during device turn-on

Need for Diode Snubber Circuit

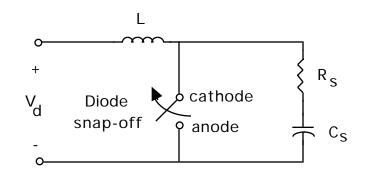


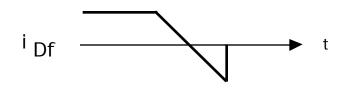
- L = stray inductance



Diode breakdown if $V_d + L \frac{di_L}{dt} > BV_{BD}$

Equivalent Circuits for Diode Snubber





- Worst case assumption- diode snaps off instantaneously at end of diode recovery
- Simplified snubber the capacitive snubber

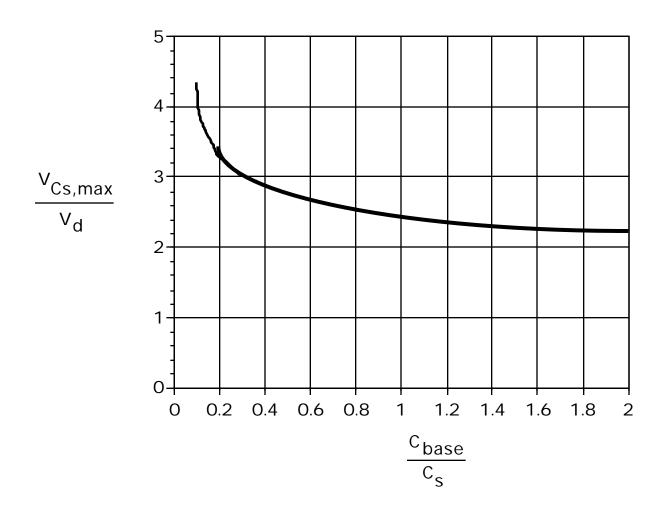
- Governing equation $\frac{d^2v_{CS}}{dt^2} + \frac{v_{CS}}{L C_S} = \frac{V_d}{L C_S}$
- Boundary conditions $v_{CS}(0^+) = 0$ and $i_L(0^+) = I_{rr}$

Performance of Capacitive Snubber

•
$$v_{Cs}(t) = V_d - V_d \cos(ot) + V_d \sqrt{\frac{C_{base}}{C_s}} \sin(ot)$$

•
$$c_{base} = L \frac{1}{\sqrt{L C_s}}$$
 ; $c_{base} = L \frac{I_{rr}}{V_d}^2$

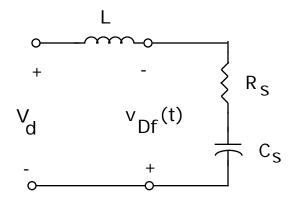
•
$$V_{cs,max} = V_d + \sqrt{1 + \frac{C_{base}}{C_s}}$$



Snubbers - 6 W.P. Robbins © 1997

Effect of Adding Snubber Resistance

Equivalent circuit with snubber resistance R_s



- Governing equation $L C_S \frac{d^2 v_{Df}}{dt^2} + R_S C_S \frac{dv_{Df}}{dt} + v_{Df} = -V_d$
- Boundary conditions

$$v_{Df}(0^{+}) = -I_{rr}R_{s}$$
 and $\frac{dv_{Df}(0^{+})}{dt} = -\frac{I_{rr}}{C_{s}} - \frac{R_{s}V_{d}}{L} + \frac{I_{rr}R_{s}^{2}}{L}$

• Solution for $v_{Df}(t)$

$$v_{Df}(t) = -V_d - V_d e^{-t} \sqrt{\frac{C_{base}}{C_s}} \sin(at - -)$$

$$a = o \sqrt{1 - \frac{2}{o^2}}$$
; $o = \frac{1}{\sqrt{L C_S}}$; $= \frac{R_S}{2L}$

$$tan() = -\frac{R_b}{a^L} - \frac{R_b}{a}; tan() = \frac{R_b}{a}; R_{base} = \frac{V_d}{I_{rr}}, C_{base} = \frac{L}{(V_d/I_{rr})^2}$$

Performance of R-C Snubber

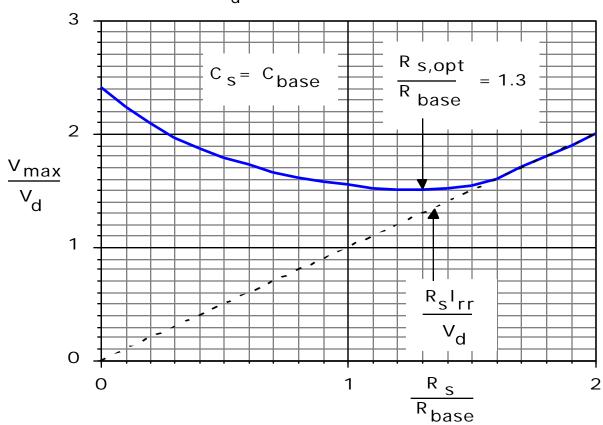
• At
$$t = t_m v_{Df}(t) = V_{max}$$

•
$$t_m = \frac{\tan^{-1}(a/)}{a} + \frac{a}{a} = 0$$

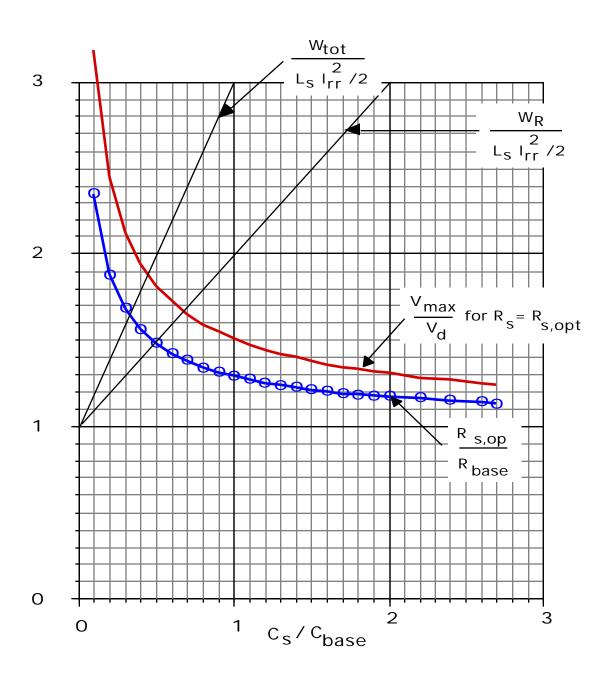
•
$$\frac{V_{\text{max}}}{V_{\text{d}}} = 1 + \sqrt{1 + C_{\text{N}}^{-1} - R_{\text{N}}} \exp(-t_{\text{m}})$$

•
$$C_N = \frac{C_S}{C_{base}}$$
 and $R_N = \frac{R_S}{R_{base}}$

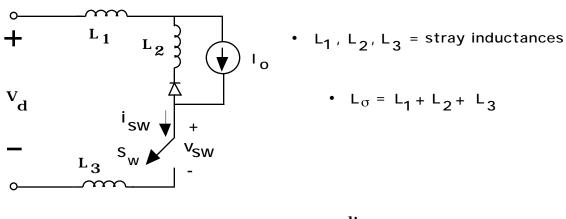
•
$$C_{base} = \frac{L_s I_{rr}^2}{V_d^2}$$
 and $R_{base} = \frac{V_d}{I_{rr}}$

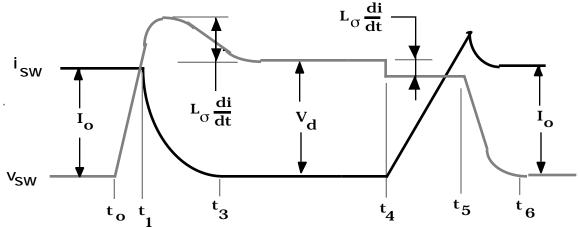


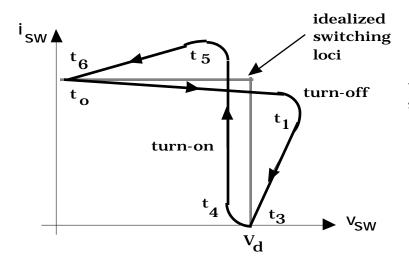
Diode Snubber Design Nomogram



Need for Snubbers with Controlled Switches



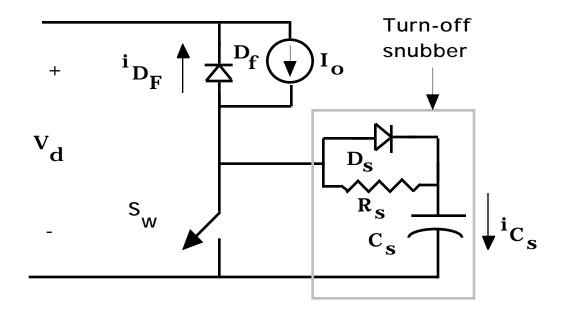




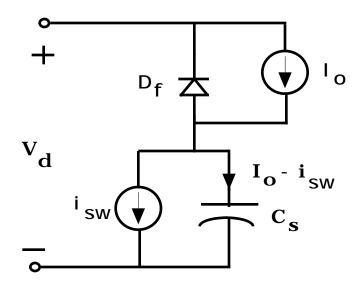
- Overvoltage at turn-off due to stray inductance
- Overcurrent at turn-on due to diode reverse recovery

Turn-on Snubber for Controlled Switches

Circuit configuration



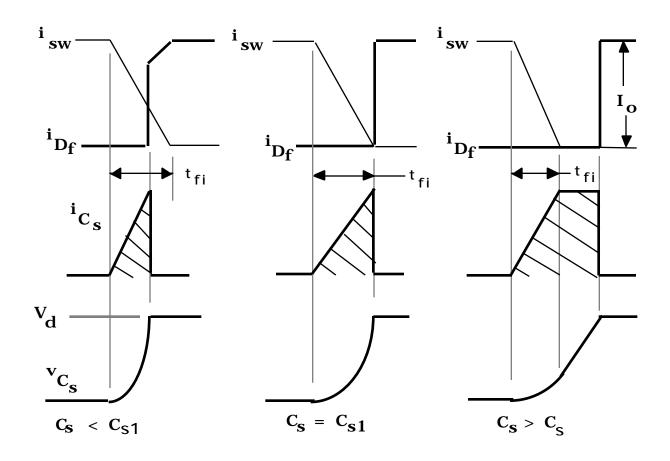
• Equivalent circuit during switch turn-off



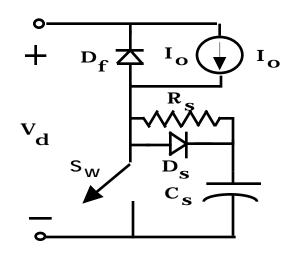
- Assumptions
 - 1. No stray inductance.
 - 2. $i_{SW}(t) = I_0(1 t/t_{fi})$
 - 3. i_{SW}(t) uneffected by snubber circuit.

Turn-off Snubber Operation

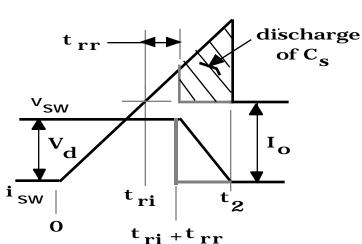
- Capacitor voltage and current for 0 < t < t_{fi}
 - $i_{CS}(t) = \frac{I_o t}{t_{fi}}$ and $v_{CS}(t) = \frac{I_o t^2}{2C_S t_{fi}}$
- For $C_S = C_{S1}$, $V_{CS} = V_d$ at $t = t_{fi}$ yielding $C_{S1} = \frac{I_o t_{fi}}{2V_d}$
- Circuit waveforms for varying values of C_S



Benefits of Snubber Resistance at S_W Turn-on

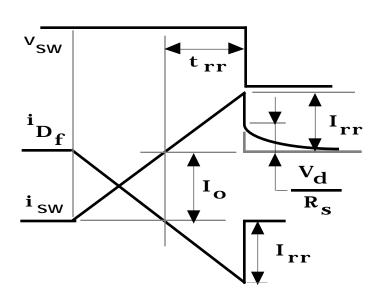


- D_S shorts out R_S during S_W turn-off.
- During S_W turn-on, D_S reverse-biased and C_S discharges thru R_S .



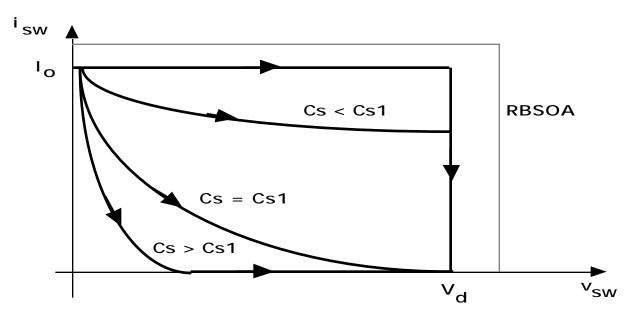
- Turn-on with $R_S = 0$
 - Energy stored on C_S dissipated in S_W.
 - Extra energy dissipation in S_W because of lengthened voltage fall time.

- Turn-on with $R_S > 0$
 - Energy stored on C_S dissipated in R_S rather than in S_W .
 - Voltage fall time kept quite short.

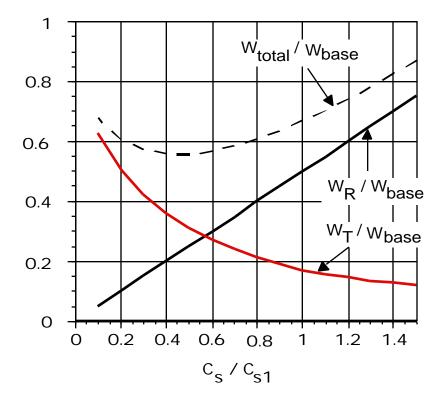


Effect of Snubber Capacitance

Switching trajectory



Energy dissipation



 W_R = dissipation in resistor

 W_T = dissipation in switch S_W

$$C_{s1} = \frac{I_o t_{fi}}{2V_d}$$

$$W_{total} = W_R + W_T$$

$$W_{base} = 0.5 V_{dlo}t_{fi}$$

Turn-off Snubber Design Procedure

- Selection of C_S
 - Minimize energy dissipation (W_T) in BJT at turn-on
 - Minimize W_R + W_T
 - · Keep switching locus within RBSOA
 - Reasonable value is $C_S = C_{S1}$
- Selection of R_s

• Limit
$$i_{cap}(0^+) = \frac{V_d}{R_s} < I_{rr}$$

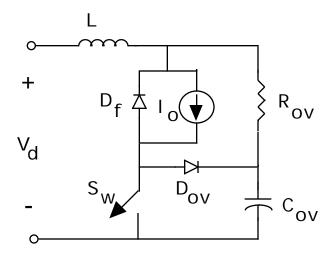
• Usually designer specifies I_{rr} < 0.2 I_{o} so

$$\frac{V_d}{R_S} = 0.2 I_0$$

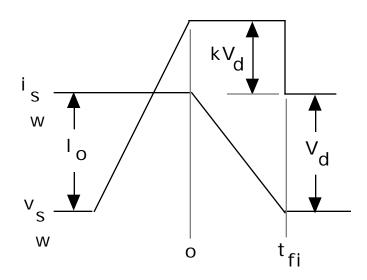
- Snubber recovery time (BJT in on-state)
 - Capacitor voltage = V_d exp(-t/R_SC_S)
 - Time for v_{Cs} to drop to 0.1 V_d is 2.3 R_sC_s
 - BJT must remain on for a time of 2.3 $R_S C_S$

Overvoltage Snubber for Controlled Switches

• Circuit configuration - D_{OV} , R_{OV} , and C_{OV} form overvoltage snubber



- Overvoltage snubber limits magnitude of voltage developed across $\mathbf{S}_{\mathbf{W}}$ as it turns off.
- $\bullet \qquad \text{Switch S}_{\text{W}} \text{ waveforms without overvoltage snubber} \\$
 - t_{fi} = switch current fall time ; kV_d = overvoltage on S_w

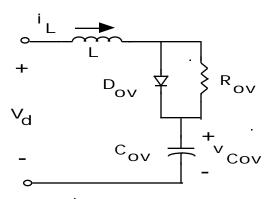


•
$$kV_d = L \frac{di_L}{dt} = L \frac{I_o}{t_{fi}}$$

• L =
$$\frac{kV_dt_{fi}}{I_o}$$

Operation of Overvoltage Snubber

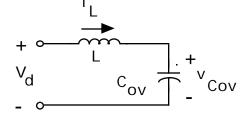
- $\mathrm{D}_{\mathrm{OV}}, \mathrm{C}_{\mathrm{OV}}$ provide alternate path for inductor current as S_{W} turns off.
 - Switch current can fall to zero much faster than L current.
- $\mathbf{D_f}$ forced to be on (approximating a short ckt) by $\mathbf{I_O}$ after $\mathbf{S_W}$ is off.
- Equivalent circuit after turn-off of S_w.



Pov on for
$$0 < t < \frac{\sqrt{L C_{OV}}}{2}$$

$$t_{fi} << \frac{\sqrt{L C_{OV}}}{2}$$

•
$$t_{fi} \ll \frac{\sqrt{L C_{OV}}}{2}$$



• Equivalent circuit while inductor current decays to zero

$$v_{COV}(O^{+}) = V_{d}$$
 $i_{L}(O^{+}) = I_{O}$

$$\int_{L}^{1} (t) = I_{O}\cos\left[\frac{t}{\sqrt{L C_{OV}}}\right]$$

Charge-up of Cov from L W C_{ov}

0

Discharge of Cov thru Rov with time constant R ov C ov $V_{sw,max}$

Energy transfer from L to C_{OV}

$$\frac{C_{OV} (V_{SW,max})^2}{2} = \frac{L (I_0)^2}{2}$$

Overvoltage Snubber Design

$$\cdot C_{OV} = \frac{L_S I_O^2}{(v_{SW,max})^2}$$

- Limit $v_{sw,max}$ to 0.1 V_d
- Using $L_S = \frac{kV_d t_{fi}}{I_0}$ in equation for C_{OV} yields

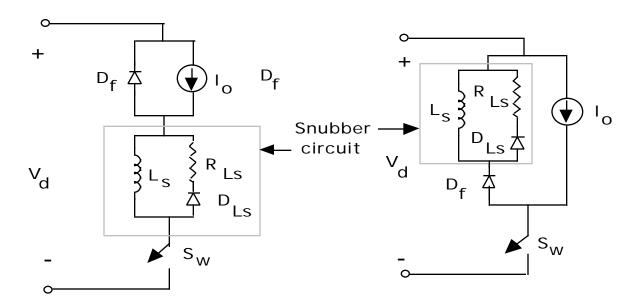
•
$$C_{OV} = \frac{kV_d t_{fi} I_o^2}{I_O(0.1 V_d)^2} = \frac{100 k t_{fi} I_o}{V_d^2}$$

- $C_{OV} = 200 C_{S1}$ where $C_{S1} = \frac{t_{fi}I_{O}}{2V_{d}}$ which is used in turn-off snubber
- Recovery time of C_{OV} (2.3 $R_{OV}C_{OV}$) must be less than off-time duration, t_{Off} , of the switch Sw.

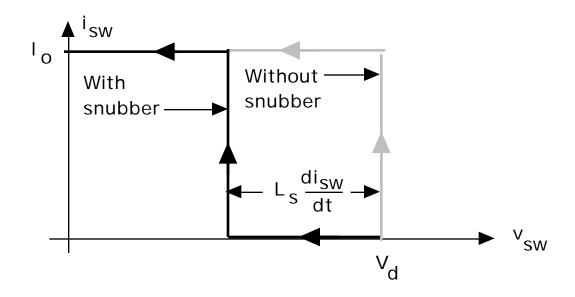
•
$$R_{OV} = \frac{t_{Off}}{2.3 C_{OV}}$$

Turn-on Snubber Circuit

Circuit topology

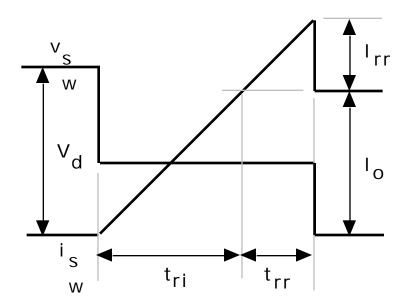


- Circuit reduces V_{SW} as switch S_W turns on. Voltage drop $L_S \frac{di_{SW}}{dt}$ provides the voltage reduction.
- Switching trajectories with and without turn-on snubber.

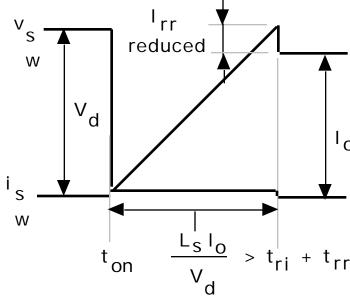


Turn-on Snubber Operating Waveforms

• Small values of snubber inductance $(L_S < L_{s1})$

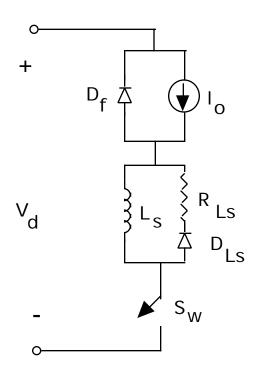


- $\frac{di_{SW}}{dt}$ controlled by switch S_W and drive circuit.
- $v_{SW} = \frac{L_S I_0}{t_{ri}}$
- Large values of snubber inductance $(L_S > L_{S1})$.

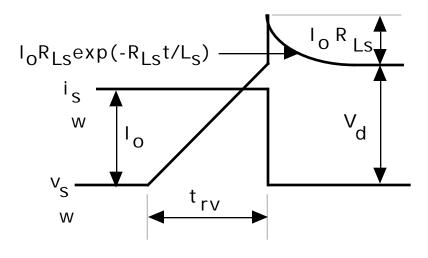


- $\frac{di_{SW}}{dt}$ limited by circuit to $\frac{V_d}{t} < \frac{I_o}{t}$
 - $L_{s1} = \frac{V_d t_{ri}}{I_o}$
- I_{rr} reduced when $L_s > L_{s1}$ because I_{rr} proportional to $\sqrt{\frac{di_{sw}}{dt}}$

Turn-on Snubber Recovery at Switch Turn-off



- Assume switch current fall time t_{ri} = 0.
- Inductor current must discharge thru D_{Ls} R_{Ls} series segment.



 Switch waveforms at turn-off with turn-on snubber in circuit.

- Overvoltage smaller if t_{fi} smaller.
- Time of 2.3 L_S/R_{LS} required for inductor current to decay to 0.1 I_O
- Off-time of switch must be $> 2.3 L_s/R_{ls}$

Turn-on Snubber Design Trade-offs

- Selection of inductor L_s
 - Larger L_S decreases energy dissipation in switch at turn-on

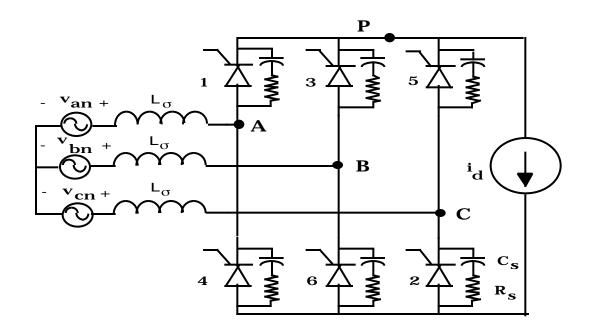
•
$$W_{sw} = W_B (1 + I_{rr}/I_o)^2 [1 - L_s/L_{s1}]$$

•
$$W_B = V_d I_o t_{fi}/2$$
 and $L_{s1} = V_d t_{fi}/I_o$

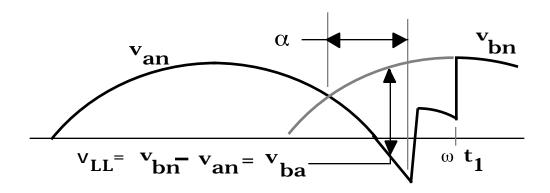
•
$$L_S > L_{S1} W_{SW} = 0$$

- Larger L_S increases energy dissipation in R_{LS}
 - $W_R = W_B L_S / L_{S1}$
- $L_S > L_{S1}$ reduces magnitude of reverse recovery current I_{rr}
- Inductor must carry current I_O when switch is on makes inductor expensive and hence turn-on snubber seldom used
- Selection of resistor R_{LS}
 - Smaller values of R_{LS} reduce switch overvoltage I_0 R_{LS} at turn-off
 - Limiting overvoltage to $0.1V_d$ yields $R_{Ls} = 0.1 V_d/I_0$
 - Larger values of R_{LS} shortens minimum switch off-time of 2.3 L_{S}/R_{LS}

Thyristor Snubber Circuit



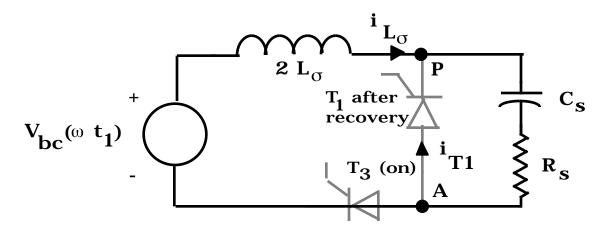
- $v_{an}(t) = V_S sin(t), v_{bn}(t) = V_S sin(t 120^\circ), v_{cn}(t) = V_S sin(t 240^\circ)$
- · Phase-to-neutral waveforms



- $v_{LL}(t) = \sqrt{3} V_{S} \sin(t 60^{\circ})$
- Maximum rms line-to-line voltage $V_{LL} = \sqrt{\frac{3}{2}} V_{S}$

Equivalent Circuit for SCR Snubber Calculations

• Equivalent circuit after T1 reverse recovery



- Assumptions
 - Trigger angle = 90° so that $v_{LL}(t)$ = maximum = $\sqrt{2} V_{LL}$
 - Reverse recovery time t_{rr} << period of ac waveform so that $v_{LL}(t)$ equals a constant value of $v_{bc}(t_1) = \sqrt{2} V_{LL}$
 - Worst case stray inductance L gives rise to reactance equal to or less than 5% of line impedance.
 - Line impedance = $\frac{V_S}{\sqrt{2}I_{a1}} = \frac{\sqrt{2}V_{LL}}{\sqrt{6}I_{a1}} = \frac{V_{LL}}{\sqrt{3}I_{a1}}$ where I_{a1} = rms value of fundamental component of the line current.

• L = 0.05
$$\frac{V_{LL}}{\sqrt{3}I_{a1}}$$

Component Values for Thyristor Snubber

- Use same design as for diode snubber but adapt the formulas to the thyristor circuit notation
- Snubber capacitor $C_S = C_{base} = L = \frac{I_{rr}}{V_d}^2$
 - From snubber equivalent circuit 2 L $\frac{di_L}{dt} = \sqrt{2} V_{LL}$
 - $I_{rr} = \frac{di_L}{dt} t_{rr} = \frac{\sqrt{2}V_{LL}}{2L} t_{rr} = \frac{\sqrt{2}V_{LL}}{2 \frac{0.05 V_{LL}}{\sqrt{3} I_{a1}}} t_{rr} = 25 I_{a1}t_{rr}$
 - $V_d = \sqrt{2} V_{LL}$
 - $C_S = C_{base} = \frac{0.05 \text{ V}_{LL}}{\sqrt{3} \text{ I}_{a1}} = \frac{25 \text{ I}_{a1} \text{t}_{rr}}{\sqrt{2} \text{V}_{LL}}^2 = \frac{8.7 \text{ I}_{a1} \text{t}_{rr}}{\text{V}_{LL}}$
 - Snubber resistance $R_S = 1.3 R_{base} = 1.3 \frac{V_d}{I_{rr}}$
 - $R_S = 1.3 \frac{\sqrt{2}V_{LL}}{25 I_{a1}t_{rr}} = \frac{0.07 V_{LL}}{I_{a1}t_{rr}}$
 - Energy dissipated per cycle in snubber resistance = W_R

•
$$W_R = \frac{L I_{rr}^2}{2} + \frac{C_s V_d^2}{2} = 18 I_{a1} V_{LL} (t_{rr})^2$$