N

MICROCHIP

MPLAB® ASM30
MPLAB® LINK30

AND UTILITIES
USER'S GUIDE

11111111

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= I1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of

Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerlInfo,
PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and Zena are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51317E-page ii

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER’S GUIDE

Table of Contents

g =3 = T = PSPPSR 1

Part 1 - MPLAB ASM30 Assembler

Chapter 1. Assembler Overview
00 1 To [8 o3 1T o I OO RUP P PPTPPPPRPPR 11
I 1 To] e £ 11
1.3 MPLAB ASM30 and Other Development TOOISccooeeeeeieiiiiciiiiiiiiiinns 11
1.4 FEALUIE SBL ..ottt e a e e e e e ae b 12
1.5 INPUY/OULPUL FIIES .ttt e 12

Chapter 2. MPLAB ASM30 Command Line Interface
P25 I [o To [o £ o] 1SR 17
2.2 HIGNIGNES ... e e e 17
ARG I) 4 - ¥ GO PTTR P UPPUPPPPRRON 17
2.4 Options that Modify the Listing OULPULueviiieeiiiiiiiiiiie e 18
2.5 Options that Control Informational QUEPULceeeiiiiiiiiiiiiiiiiiiriiieeeeeeeeee 28
2.6 Options that Control Output File Creationcccccovviiiiiieeeniiiiiiiiieee e 29
P A © 1 1= G @] o 1o L= U 30

Chapter 3. Assembler Syntax
0 A [a1 e Yo [T 1o o PP PP 31
o T o 1T | 1T |) = USSP 31
3.3 INterNal PrePrOCESSOL ...ttt bbb aee e s s seseesesesessseeseneeeees 31
3.4 S0UIrCE COOE FOIMALuuuiiiiiiiiiiiiiiiiiiiiiiieeeeeieeeieeeeee e e e eeeeeeeeeereeeeeeeeeeeeeeees 32
3.5 CONSLANES .ottt et e e e e e aeeenene 35
G TN G IR0 101 0 1= T Y/ 37

Chapter 4. Assembler Expression Syntax and Operation
v I [a1 e Yo [0 (o o PR PPP TP 39
N o 1T |] [T |) USSR 39
G o] (=151 [0 1 1P 39
@ o T=T =1 (0] £ 40
IS oL F- LI @] o 1T = 1 (o] £ PP 41

© 2005 Microchip Technology Inc.

DS51317E-page iii

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Chapter 5. Assembler Symbols

ST 10 To [Tox 1o o PR UPP T PPTPPPPPRPRN 45
LN o 1T |] [T |) = 45
5.3 What are SYmMbOIScooooiiiii e ——— 45
5.4 RESEIVEA NAIMES ...cooiiiiiiiiiiie et 45
5.5 Local SYMDOIS ..o 46
5.6 Giving Symbols Other ValUEScoooiieiiiiii e 47
5.7 The Special DOT Symbol ... 47
5.8 Using Executable Symbols in a Data Contextccccoeeveeiviiiiiiiiiiiiiieeeeeeenenns 47
Chapter 6. Assembler Directives
G/ 0 To [1 Tox 1o o PRSP PPTPPPPPRRRN 49
24 = o | 11T | L 49
6.3 Directives that Define SECHONSccoiiiiiiiiiiiiieie e 50
6.4 Directives that Fill Program MemOrYcouuuiiiiiiieieeceeeiie e e ee e 54
6.5 Directives that Initialize CONSLANTScevveiiiieiiiiiiiiee e 56
6.6 Directives that Declare SymbolS ..., 59
6.7 Directives that Define Symbolsccoooii i 60
6.8 Directives that Modify Section AlignMmentccoovviiiiiiiiie e, 61
6.9 Directives that Format the Output Listingcoo oo 66
6.10 Directives that Control Conditional Assemblyccccccoiiiiiiiiririciiieee e, 67
6.11 Directives for SUbstitution/EXpansionccccooeeiiiei e 68
6.12 Miscellaneous DIreCLIVEScooeeiiiiiiiiii e 71
6.13 Directives for Debug Informationooooeiiiiiiiiiiiccc s 73

Part 2 — MPLAB LINK30 Linker

Chapter 7. Linker Overview

4% e To [8 Tox 1 o o OO PP PPTPPPPPRPRN 77
28 = TTo | 11T | 1 77
7.3 MPLAB LINK30 and Other Development TOOIScccoceevcivniieniiiiiiiiiiiiinnnns 77
T4 FRATUINE SBI ...ttt a e e e e e e et e e 78
7.5 INPUY/OULPUL FIlES ..eiiieeiiieie e 78
Chapter 8. MPLAB LINK30 Command Line Interface
S 700 R 1 (0T [Tt 1o o ISR 83
8.2 HIGhIIGNLS oo, 83
e T T 1= G 83
8.4 Options that Control Output File Creationcccooo e, 84
8.5 Options that Control Run-time Initializationccccccoeeieii e, 89
8.6 Options that Control Informational Qutputccccooeeeii . 91
8.7 Options that Modify the Link Map OULPULccoovviiiiiiiii e 93

DS51317E-page iv

© 2005 Microchip Technology Inc.

Table of Contents

Chapter 9. Linker Scripts

S] 10 To [Tox 1o o O RUP PP PPRPPR 95
S B2 o o | 11T | 1 R RSSRPPPIN 95
9.3 Overview of LINKEr SCHPLS ..ovvvviiiiiiiieiiieiee e, 95
9.4 Command Line INfOrmationueeiueiiiiiiiiiiiieiieieiee e 96
9.5 Contents of @ LINKEN SCHPL ...vvvvviiiiiiiiiieieeeeeee e, 96
9.6 Creating a Custom Linker SCHPLooviiiiiiiiiiiie e 107
9.7 Linker Script Command LanQUAaQJEccceuiiiimiiieieeeeeiiiiieiieee e s s siiieeeeeens 107
9.8 EXpressions in LINKEr SCHPLScviiiiiiiiiiiiiii et 122
Chapter 10. Linker Processing
10.2 INFOAUCTION L.eiiiiiiiiiiiiiee ettt e e e e e e e st eeeeesaans 129
O 7 o o | 17T | L 129
10.3 Overview of Linker Processingcccoooeeiiiiiii e 129
10.4 MemOry AdAreSSINGccoevvuiiiiiiiiiieeee et e e e e e e et e e e e e e e e an e e e 131
10.5 LINKEr AlIOCALIONuiviiiiiieeieeeiie ettt e ee e e e s 133
10.6 Global and Weak SymboIScccooiiiiiiiiiiiiii e 136
L0.7 HANAIES ...ttt ettt et e e e e s e et ee e e e aans 137
10.8 Initialized Dataccoeeieeeieeeeee e 138
10.9 Read-only Datacccoovvviiiieii s 141
10.10 Stack ANIOCALIONcceeiieieeeeeee s 143
10.11 Heap AlIOCALIONeueiiiiiieeiie ittt a e e e e e e e e 144
10.12 Interrupt Vector Tables ... 144
10.13 Optimizing MemMOIY USAQEuuiiiieeiiiiiiiiieiiee e s eiitieeee e e e s s siineeeeee e e s anees 154
Chapter 11. Linker Examples
500 I 1 1 o o 13 o oo 159
112 HIghlIghLS e 159
11.3 Memory Addresses and Relocatable Codecccoevvviiiiiiiiineiiin. 160
11.4 Locating a Variable at a Specific Addressccccoeeeei e, 161
11.5 Locating a Function at a Specific Addressccccciiiiii e, 161
11.6 Saving and Restoring the PSVPAG Registercccccceeviiiiiiii, 162
11.7 Locating a Constant at a Specific Address in Program Memory 163
11.8 Locating and Accessing Data in EEPROM Memorycccoeeeeeee. 164
11.9 Creating an Incrementing Modulo Buffer in X Memorycccccceeeeeeenen. 166
11.10 Creating a Decrementing Modulo Buffer in Y Memoryccceeeeennnes 166
11.11 Locating the Stack at a Specific ADdressccccvvvviiiiii e, 167

© 2005 Microchip Technology Inc. DS51317E-page v

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Part 3 — MPLAB LIB30 Archiver/Librarian

Chapter 12. MPLAB LIB30 Archiver/Librarian

10220 R i £ To [8 o1 1o o PP PPRTT PP 171
2 o Vo | 17T | RPN 171
12.3 MPLAB LIB30 and Other Development TOOISccccvvvvvvveivveeeiieieeeienenee. 172
L12.4 FRATUINE ST ..ottt e e e e e ae bt e e e e e aeeennes 172
12.5 INPUY/OULPUL FIIES ..oeiiiieiiiiiee et 172
L2.8 SYNTAX eetiitiuiii ettt e ettt e e e et e e e et bbb a e e e eeeee b aaaaaeeeeae 173
12.7 OPLIONS ittt e e s e e e e e e e e e 173
D2 TS T ol]) P 175
Part 4 — Utilities
Chapter 13. Utilities Overview
RS 700 R T £ To [F o1 1o o PP PRTT PP 179
RS 7 Vo | 17T | RPN 179
13.3 What @re ULIHHIESeeiiiiiiiiiiiiii e 179
Chapter 14. pic30-bin2hex Utility
2 1o o 13 o o o 181
I o T | o1 T | o £ 181
14.3 INPUY/OULPUL FlES ...t 181
Y | = VPP PR 182
@ o] o o 1 RPN 182
Chapter 15. pic30-nm Utility
T8 R o £ To [F o1 1o o PRSP PRTT PP 183
S0 o TTo | 17T | PR 183
15.3 INPUL/OULPUL FIES ...eeeie e e e e e eeeeeeeeees 183
R Y 1 = G 183
ST TN @ o) 1o 1 1P 184
15.6 OUIPUL FOIMALS ..ovviniiieiii e e e e e e et e e e s 185
Chapter 16. pic30-objdump Utility
16.2 INrOAUCTION ..ttt e e e e e e e e e e e sbbe e 187
G o TTo | 17T | L RPN 187
16.3 INPUL/OULPUL FIESeeiiei e e e e eeeeeeeeees 187
R Y 1 = G 187
LG TSI @ o) 1o 1 1P 188
Chapter 17. pic30-ranlib Utility
I 11 o o 13 o o o P 191
2 o 1T | o1 7T | o] £ 191
17.3 INPUY/OULPUL FlES ..t 191
17,4 SYNTAX ettt 191
A @ o] o 1= RPN 191

DS51317E-page vi

© 2005 Microchip Technology Inc.

Table of Contents

Chapter 18. pic30-strings Utility

Chapter 19. pic30-strip Utility

Chapter 20. pic30-Im Utility

RS0 N T 110 o [U o3 o] o HU U URTOPR 193
18.2 HIGhIIGNLS ... e e e e e s 193
18.3 INPU/OULPUL FIIES oo 193
S TR Y 1 = PP 193
L18.5 OPLONS ooiieeiieieee e —— 194
S T R [0 10 o [8 T o] o [PPSR 195
19.2 HIghlIghtS oo 195
19.3 INPU/OULPUL FIlES ...t 195
F19.4 SYNTAX oiiiiii it ae 195
S T @ o] 1o 1= 196
P24 T8 R T a1 (o o [8 T 1 o] o APPSO 197
20.2 HIghlIghts ..ot e 197
20.3 SYNEAX tiitiiiiiii i e 197
4 I N @ o) 1T 197

Part 5 — Command-Line Simulator

Chapter 21. SIM30 Command-Line Simulator

P22 105 I o Yo [o o) SRR 201
y2 N o 1o] [T | 1 PSPPSR 201
A TG TV 41 = b 201
21,4 OPLONS .ovvviiiiiiiiitiiieeeie et ee e e e et e et et ettt e ettt ettt et e eatteaaaaaetaaaaaaaaaaaaaaaaaaaaaaaas 202

Part 6 — Appendices

Appendix A.

Appendix B.

Appendix C.

Assembler Errors/Warnings/Messages

AL INErOTUCTION ..ottt se e e e ee e 207
N o T | o] (e € 207
F e B = = L = 0] =SSP 207
N o] £ PP SPPPPPPPPRPPIN 208
F NI = 1 11 Vo SRR 215
ALB IMESSAGES ..ciiuiiiii ittt 220
Linker Errors/Warnings

2 00 0 o To 11 o 1o o 221
B.2 HIghlIghtS .oooveiiie s 221
0 TN 1 0] £ PP 221
B.4A WAININGS ..oooiiiiiiiiiieee e 226
Deprecated Features

L [011 o o 11 {ox 1o o KSR 229
C.2 HIGRIGNLS ..vuiiiiiiiiiiiiiiiee ettt ettt a e e e e e e e e e e e e e e e e e aa e 229
C.3 MPLAB ASM30 Directives that Define Sectionsccccovvveviiiiiinn. 229
C.4 Reserved Section Names with Implied Attributescccccooe. 230

© 2005 Microchip Technology Inc. DS51317E-page vii

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Appendix D.

MPASM™ Assembler Compatibility

[200 T 1 0T U] 10 o T 231
D 22 o 1Te]] o €U 231
D.3 Compatibilityccooiiii e aes 231
D e] o[RPN 234
D.5 Converting PIC18FXXX Assembly Code to dsPIC30FXXXX
ASSEMDBIY COAE coovviiiiiiiiieeee e, 235
Appendix E. MPLINK™ Linker Compatibility
=00 I o o 11 o o o TR 241
2 o 1T | 11T |] £ 241
E.3 CompatiDilityccooiiiiii e e 241
E.4 Migration to MPLAB LINKS3Occooiiiiiiiiiiiiiies e 241
Appendix F. MPLIB™ Librarian Compatibility
0 0110 [T 1T o RPN 243
2 e] o]) P 243
F.3 CompatibDilityccoooeii e e e 243
e T a1 o] =P 244
Appendix G. Useful Tables
[0 [o [T3 T} o S 245
G.2 HIGhIIGNS oo 245
G.3 ASCII Character SEtccoiieiieeeici e e e e e e aeraas 245
G.4 Hexadecimal to Decimal CONVErSIONcooeeeiiiiiieeeicc s 246
Appendix H. GNU Free Documentation License
H.L Preamble ..ot e e e ae e e e e eeaaes 247
H.2 Applicability and Definitionscccccciuiiiiiiiiiiiiiiiiiiiieieie e ee e e e 247
H.3 Verbatim COPYiNgccoooiiiiiii it eeeeee e 249
H.4 Copying IN QUANLILYccoiiiiieii et ae e e eeeeeeeeees 249
[BT, Lo Lo 1 o= 1 o) o 1R 250
H.6 Combining DOCUMENTScccoiiiiiiiiiiiiiiiiiiii e re e e e eereeeeeeeeees 251
H.7 Collections of DOCUMENLScoooviiiiiiiii e eee e e e e e eeeens 251
H.8 Aggregation with Independent WOrKScccccuvvvivmiiiiiriiiinieiiieesieeeeeeveeenes. 252
L I IR I = 11 F= 11 o o PP 252
[0 O T =T 0T =) 252
H.11 Future Revisions of thiS LICENSEcccooiiiiiiiiiiiiiiii e 252
(€10 1= SRR 253
1o = 261
Worldwide Sales and SEIVICEocuuuiiiiiiiiiiiii it e e e e e e e e e aeeeeaeeereannnes 272

DS51317E-page viii

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using 16-bit
language tools. Items discussed include:

* Document Layout

» Conventions Used in this Guide

 Recommended Reading

e The Microchip Web Site

» Development Systems Customer Change Notification Service
¢ Customer Support

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

Part 1 - MPLAB® ASM30 Assembler
e Chapter 1: Assembler Overview — gives an overview of assembler operation.

e Chapter 2: MPLAB ASM30 Command Line Interface — details command line
options for the assembler.

* Chapter 3: Assembler Syntax — describes syntax used with the assembler.

« Chapter 4: Assembler Expression Syntax and Operation — provides guidelines
for using complex expressions in assembler source files.

« Chapter 5: Assembler Symbols — describes what symbols are and how to use them.

e Chapter 6: Assembler Directives — details the available assembler directives.

© 2005 Microchip Technology Inc. DS51317E-page 1

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Part 2 — MPLAB LINK30 Linker

Chapter 7: Linker Overview — gives an overview of linker operation.

Chapter 8: MPLAB LINK30 Command Line Interface — details command line
options for the linker.

Chapter 9: Linker Scripts — describes how to generate and use linker scripts to
control linker operation.

Chapter 10: Linker Processing — discusses how the linker builds an application
from input files.

Chapter 11: Linker Examples — discusses a number of 16-bit specific linker
examples and shows the equivalent syntax in C and assembly language.

Part 3 — MPLAB LIB30 Archiver/Librarian

Chapter 12: MPLAB LIB30 Archiver/Librarian — details command line options for
the librarian.

Part 4 — Utilities

Chapter 13: Utilities Overview — gives an overview of utilities and their operation.

Chapter 14: pic30-bin2hex Utility — details command line options for
binary-to-hexadecimal conversion.

Chapter 15: pic30-nm Utility — details command line options for listing symbols in
an object file.

Chapter 16: pic30-objdump Utility — details command line options for displaying
information about object files.

Chapter 17: pic30-ranlib Utility — details command line options for creating an
archive index.

Chapter 18: pic30-strings Utility — details command line options for printing
character sequences.

Chapter 19: pic30-strip Utility — details command line options for discarding all
symbols from an object file.

Chapter 20: pic30-Im Utility — details command line options for displaying
information about the MPLAB C30 license.

Part 5 — Command-Line Simulator

Chapter 21: SIM30 Command Line Simulator — describes the command line
simulator that supports 16-bit tools.

DS51317E-page 2

© 2005 Microchip Technology Inc.

Preface

Part 6 — Appendices

Appendix A: Assembler Errors/Warnings/Messages — contains a descriptive list
of the errors, warnings and messages generated by MPLAB ASM30.

Appendix B: Linker Errors/Warnings — contains a descriptive list of the errors
and warnings generated by MPLAB LINK30.

Appendix C: Deprecated Features — describes features that are considered
obsolete.

Appendix D: MPASM™ Assembler Compatibility — contains information on
compatibility with MPASM assembler, examples and recommendations for
migration to MPLAB ASM30.

Appendix E: MPLINK™ Linker Compatibility — contains information on
compatibility with MPLINK linker, examples and recommendations for migration to
MPLAB LINK30.

Appendix F: MPLIB™ Librarian Compatibility — contains information on
compatibility with MPLIB librarian, examples and recommendations for migration to
MPLAB LIB30.

Appendix G: Useful Tables — lists some useful tables: the ASCII character set and
hexadecimal to decimal conversion.

Appendix H: GNU Free Documentation License — details the license requirements
for using the GNU language tools.

© 2005 Microchip Technology Inc. DS51317E-page 3

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants OxFF, 'A’
Italic Courier A variable argument file.o, where file can be

any valid filename

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses... Replaces repeated text var name [,
var name...]
Represents code supplied by [void main (void)
user {
}
Icon

Full
Version
Only

This feature supported only in
the full version of the soft-
ware.

This feature is not supported
on all devices. Devices sup-
ported will be listed in the title
or text.

DS51317E-page 4

© 2005 Microchip Technology Inc.

Preface

RECOMMENDED READING

This documentation describes how to use 16-bit language tools. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated README files
(ASCII text files) included with the software.

dsPIC® Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools (MPLAB ASM30,
MPLAB LINK30 and MPLAB C30) for 16-bit devices. Examples using the 16-bit
simulator, and MPLAB SIM30, are provided.

MPLAB® c30 C Compiler User’s Guide (DS51284)
A guide to using the 16-bit C compiler. MPLAB LINK30 is used with this tool.
16-Bit Language Tools Libraries (DS51456)

DSP, 16-bit peripheral and standard (including math) libraries, as well as MPLAB C30
built-in functions, for use with 16-bit language tools.

dsPIC30F Data Sheet General Purpose and Sensor Families (DS70083)

Data sheet for dsPIC30F digital signal controller (DSC). Gives an overview of the
device and its architecture. Details memory organization, DSP operation and
peripheral functionality. Includes electrical characteristics.

dsPIC30F Family Reference Manual (DS70046)

This manual explains the operation of the dsPIC30F MCU family architecture and
peripheral modules.

dsPIC30F/33F Programmer’s Reference Manual (DS70157)

Programmer’s guide to dsPIC30F/33F devices. Includes the programmer’s model and
instruction set.

© 2005 Microchip Technology Inc. DS51317E-page 5

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail natification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

 In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus and PICkit™ 1development programmers.

DS51317E-page 6 © 2005 Microchip Technology Inc.

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

© 2005 Microchip Technology Inc. DS51317E-page 7

http://support.microchip.com

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 8 © 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 1 —-MPLAB ASM 30 Assembler

Chapter 1. ASsembler OVEIVIEWccccooiiiiiiiiieeeeerr e e 11
Chapter 2. MPLAB ASM30 Command Line Interfaceccccvvvvviiviiiiiiiiiiiieeeeeeee, 17
Chapter 3. Assembler SYNtaXccooiiiiiiiiii e e e 31
Chapter 4. Assembler Expression Syntax and Operationcccceeevvvvvvivviiiiiinneennn. 39
Chapter 5. Assembler SYmMDOIS ... 45
Chapter 6. Assembler DIFrECHIVEScccvvviiiieeiiiiie e e e e e e e ee e 49

© 2005 Microchip Technology Inc. DS51317E-page 9

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 10 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 1. Assembler Overview

1.1 INTRODUCTION

MPLAB ASM30 produces relocatable machine code from symbolic assembly language
for the dsPIC30F/33F DSC and PIC24X MCU family of devices. The assembiler is a
Windows console application that provides a platform for developing assembly lan-
guage code. The assembler is a port of the GNU assembler from the Free Software
Foundation.

1.2 HIGHLIGHTS

Topics covered in this chapter are:

« MPLAB ASM30 and Other Development Tools
* Feature Set
* Input/Output Files

1.3 MPLAB ASM30 AND OTHER DEVELOPMENT TOOLS

MPLAB ASM30 translates user assembly source files. In addition, the MPLAB C30 C
Compiler uses the assembler to produce its object file. The assembler generates relo-
catable object files that can then be put into an archive or linked with other relocatable
object files and archives to create an executable file. See Figure 1-1 for an overview of
the tools process flow.

FIGURE 1-1: TOOLS PROCESS FLOW

C Source Files

(*.c)
T

v Compiler
. Driver
C Compiler Program

v

Source Files (*.s)

x

Assembly Source
Files (*.s) Assembler
Object Fil
(Archiver (Librarian) } J?So)les
Object File Libraries N ink
(*.a) q Linker
]
v 4{ MPLAB® IDE }
Executable File Debug Tool
(*.exe)
Command Line
Simulator

© 2005 Microchip Technology Inc. DS51317E-page 11

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

1.4 FEATURE SET

Notable features of the assembler include:

» Support for the entire 16-bit instruction set

« Support for fixed-point and floating-point data
» Support for COFF and ELF object formats
 Available for Windows

e Command Line Interface

* Rich Directive Set

 Flexible Macro Language

« Integrated component of MPLAB® IDE

1.5 INPUT/OUTPUT FILES

Standard assembler input and output files are listed below.

Extension ‘ Description
Input
.S ‘ source file
Output
.0 object file
st listing file

Unlike the MPASM™ assembler (for use with PICmicro® MCUs), MPLAB ASM30 does
not generate error files, hex files, or symbol and debug files. MPLAB ASM30 is capable
of creating a listing file and a relocatable object file (that may or may not contain debug-
ging information). MPLAB LINKS30, the linker, is used with MPLAB ASM30 to produce
the final object files, map files and final executable file for debugging with MPLAB IDE
(see Figure 1-1).

1.5.1 Source Files

The assembler accepts, as input, a source file that consists of dsPIC30FXXXX
instructions, assembler directives and comments. A sample source file is shown in
Example 1-1.

Note: Microchip Technology strongly suggests a . s extension for assembly
source files. This will enable you to easily use the C compiler driver without
having to specify the option to tell the driver that the file should be treated
as an assembly file. See the “MPLAB® C30 C Compiler User’s Guide”
(DS51284) for more details on the C compiler driver.

DS51317E-page 12

© 2005 Microchip Technology Inc.

Assembler Overview

EXAMPLE 1-1: SAMPLE ASSEMBLER CODE

.title " Sample dsPIC Assembler Source Code"
.sbttl " For illustration only."

; dsPIC registers
.equ CORCONL, CORCON
.equ PSV, 2

.section .const,psv
hello:
.ascii "Hello world!\n\0"

.text
.global _ reset
___reset:
; set PSVPAG to page that contains 'hello'
mov #psvpage (hello) , w0
mov w0, PSVPAG

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

; enable Program Space Visibility
bset.b CORCONL, #PSV

; make a pointer to 'hello'
mov #psvoffset (hello) ,wO

.end

For more information, see also Chapter 3. “Assembler Syntax” and Chapter
6. “Assembler Directives”.

15.2 Object Files

The assembler creates a relocatable object file. These object files do not yet have
addresses resolved and must be linked before they can be used for executables.

By default, the name of the object file created is a . out. Specify the -o option (See
Chapter 2. “MPLAB ASM30 Command Line Interface”) on the command line to
override the default name.

By default, object files are created in the COFF format. To specify COFF or ELF format
explicitly, use the -omf option on the command line, as shown:

pic30-as -omf=coff test.s
pic30-as -omf=elf test2.s

Alternatively, the environment variable PIC30_ OMF may be used to specify object file
format for the dsPIC30F language tools.

© 2005 Microchip Technology Inc. DS51317E-page 13

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

15.3 Listing Files

The assembler has the capability to produce listing files. These listing files are not
absolute listing files, and the addresses that appear in the listing are relative to the start
of sections.

By default, the listing file is displayed on standard output. Specify the -a=<file>
option (See Chapter 2. “MPLAB ASM30 Command Line Interface”) on the
command line to send the listing file to the specified file.

The listing files produced by the assembler are composed of the elements listed below.

Example 1-2 shows a sample listing file.

« Header — contains the name of the assembler, the name of the file being
assembled, and a page number. This is not shown if the -an option is specified.

« Title Line — contains the title specified by the . tit1le directive. This is not shown
if the -an option is specified.

» Subtitle — contains the subtitle specified by the . sbtt1 directive. This is not
shown if the -an option is specified.

« High-level source if the -ah option is given to the assembler. The format for
high-level source is:

<line #>:<filename> ***x* <gource>
For example:
l:hello.c **** f#include <stdio.h>

» Assembler source if the -al option is given to the assembler. The format for
assembler source is:

<line #> <addr> <encoded bytes> <source>
For example:
245 000004 00 OF 78 mov w0, [wl4]

Note 1: Line numbers may be repeated.
2: Addresses are relative to sections in this module and are not absolute.
3: Instructions are encoded in “little endian” order.

e Symbol table if the -as option is given to the assembler. Both, a list of defined
and undefined symbols will be given.

The defined symbols will have the format:
DEFINED SYMBOLS
<filename>:<line #> <section>:<addr> <symbolsx>
For example:
DEFINED SYMBOLS
foo.s:229 .text:00000000 main
The undefined symbols will have the format:
UNDEFINED SYMBOLS
<symbol>
For example:
UNDEFINED SYMBOLS
_printf

DS51317E-page 14

© 2005 Microchip Technology Inc.

Assembler Overview

EXAMPLE 1-2: SAMPLE ASSEMBLER LISTING FILE

MPLAB ASM30 Listing: examplel.l.s page 1
Sample dsPIC Assembler Source Code =
For illustration only.)

1 .
2 .title " Sample dsPIC Assembler Source Code" EE
3 .sbttl " For illustration only." >
4 n
5 ; dsPIC registers <
6 .equ CORCONL, CORCON gg
7 .equ PSV,2 >
8 n
9 .section .const,psv 8

10 hello: 3

11 0000 48 65 6C 6C .ascii "Hello world!\n\0o" =2

11 6F 20 77 6F @

11 72 6C 64 21

11 0A 00

12

13 .text

14 .global _ reset

15 __reset:

16 ; set PSVPAG to page that contains 'hello'

17 000000 00 00 20 mov #psvpage (hello) ,w0

18 000002 00 0O 88 mov w0, PSVPAG

19

20 ; enable Program Space Visibility

21 000004 00 40 AS8 bset.b CORCONL, #PSV

22

23 ; make a pointer to 'hello'

24 000006 00 00 20 mov #psvoffset (hello) , w0

25

26 .end

MPLAB ASM30 Listing: examplel.l.s page 2

Sample dsPIC Assembler Source Code
For illustration only.
DEFINED SYMBOLS
ABS:00000000 fake
examplel.1l.s:10 .const:00000000 hello
examplel.1l.s:15 .text:00000000 __ reset
.text:00000000 .text
.data:00000000 .data
.bss:00000000 .bss
.const:00000000 .const

UNDEFINED SYMBOLS
CORCON
PSVPAG

© 2005 Microchip Technology Inc. DS51317E-page 15

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 16 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 2. MPLAB ASM 30 Command Line Interface

2.1 INTRODUCTION

MPLAB ASM30 may be used on the command line interface as well as with MPLAB
IDE. For information on using the assembler with MPLAB IDE, please refer to “dsPIC®
Language Tools Getting Started” (DS70094).

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

2.2 HIGHLIGHTS

Topics covered in this chapter are:

¢ Syntax

» Options that Modify the Listing Output

» Options that Control Informational Output
« Options that Control Output File Creation
» Other Options

2.3 SYNTAX

The MPLAB ASM30 command line may contain options and file names. Options may
appear in any order and may be before, after or between file names. The order of file
names determines the order of assembly.

pic30-as [options|sourcefiles]...

‘- -’ (two hyphens) by itself names the standard input file explicitly, as one of the files
for the assembler to translate. Except for ‘- -’, any command line argument that begins
with a hyphen (‘-’) is an option. Each option changes the behavior of the assembiler,
but no option changes the way another option works.

Some options require exactly one file name to follow them. The file name may either
immediately follow the option’s letter or it may be the next command line argument. For
example, to specify an output file named test . o, either of the following options would
be acceptable:

®* -0 test.o

® -otest.o

Note: Command line options are case sensitive. I

© 2005 Microchip Technology Inc. DS51317E-page 17

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

2.4 OPTIONS THAT MODIFY THE LISTING OUTPUT

The following options are used to control the listing output. For debugging and general
analysis of code operation, a listing file is helpful. Constructing one with useful
information is accomplished using the options in this section.

e -a[suboption] [=file]

e --listing-lhs-width #

e --listing-lhs-width2 #

e --listing-rhs-width #

e --listing-cont-lines #

24.1 -al[suboption] [=file]

The -a option enables listing output. The -a option supports the following sub options
to further control what is included in the assembly listing:

-ac Omit false conditionals

-ad Omit debugging directives

-ah Include high-level source

-ai Include section information

-al Include assembly

-am Include macro expansions

-an Omit forms processing

-as Include symbols

-a=file Output listing to specified file (must be in current directory).

If no sub-options are specified, the default sub-options used are hls; the -a option by
itself requests high-level, assembly, and symbolic listing. You can use other letters to
select specific options for the listing output.

The letters after the -a may be combined into one option. So for example instead of
specifying -al -an on the command line, you could specify -aln.

DS51317E-page 18

© 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

24.11 -ac

-ac omits false conditionals from a listing. Any lines that are not assembled because

ofafalse .if or .ifdef (orthe .else ofatrue .if or . ifdef) will be omitted from =
the listing. Example 2-1 shows a listing where the -ac option was not used. 2
Example 2-2 shows a listing for the same source where the -ac option was used. >
vy
EXAMPLE 2-1: LISTING FILE GENERATED WITH -al COMMAND LINE >
OPTION g
MPLAB ASM30 Listing: example2.1l.s page 1 83
>
0)
n
1 .data D
2 RN 3
3 Af 1 =
4 .endif Q
5 .long 0
6 .if o
7 .long 0
8 .endif
9 .else
10 Jif 1
11 .endif
12 0000 02 00 00 00 .long 2
13 Lif 0
14 .long 3
15 .else
16 0004 04 00 00 00 .long 4
17 .endif
18 .endif
19
20 Lif 0
21 .long 5
22 .elseif 1
23 Lif 0
24 .long 6
25 .elseif 1
26 0008 07 00 00 00 .long 7
27 .endif
28 .elseif 1
29 .long 8
30 .else
31 .long 9
32 .endif

© 2005 Microchip Technology Inc. DS51317E-page 19

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

EXAMPLE 2-2: LISTING FILE GENERATED WITH -alc COMMAND LINE

OPTION
MPLAB ASM30 Listing: example2.2.s page 1
1 .data
2 .if 0
9 .else
10 Jif 1
11 .endif
12 0000 02 00 00 0O .long 2
13 .if 0
15 .else
16 0004 04 00 00 0O .long 4
17 .endif
18 .endif
19
20 Lif 0
22 .elseif 1
23 .if 0
25 .elseif 1
26 0008 07 00 00 0O .long 7
27 .endif
28 .elseif 1
30 .else
32 .endif

Note: Some lines omitted due to -ac option, i.e., lines 3-8, 14, 21, 24, 29 and 31.|

DS51317E-page 20 © 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

2412 -ad
-ad omits debugging directives from the listing. This is useful if a compiler that
was given a debugging option generated the assembly source code. The compiler- =
generated debugging directives will not clutter the listing. Example 2-3 shows a listing 2
using both the d and h sub-options. Compared to using the h sub-option alone (see >
next section), the listing is much cleaner. w
>
EXAMPLE 2-3: LISTING FILE GENERATED WITH -alhd COMMAND LINE %)
OPTION w
o
MPLAB ASM30 Listing: example2.3.s page 1 >
&
@
1 .file "example2.3.c" E;
2 .text 5
3 .align 2 =
9 .global main ; export
10 _main:
l:example2.3.c **** extern int ADD (int, int);
2:example2.3.c ****
3:example2.3.c **** int
4:example2.3.c **** main(void)
5:example2.3.c ****
16 .set __PA 1
17 000000 00 00 FA 1nk #0
18
6:example2.3.c ***x* return ADD(4, 5);
20 000002 51 00 20 mov #5,wl
21 000004 40 00 20 mov #4,w0
22 000006 00 00 02 call _ADD
22 00 00 00
7:example2.3.c **** }
29
30 00000a 00 80 FA ulnk
31 00000c 00 00 06 return
32 .set __PA 0
37
38 .end

© 2005 Microchip Technology Inc. DS51317E-page 21

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

24.13 -ah

-ah requests a high-level language listing. High-level listings require that the assembly
source code was generated by a compiler, a debugging option like -g was given to the
compiler, and that assembly listings (-al) also be requested. -al requests an output
program assembly listing. Example 2-4 shows a listing that was generated using the
-alh command line option.

EXAMPLE 2-4: LISTING FILE GENERATED WITH -alh COMMAND LINE

OPTION
MPLAB ASM30 Listing: example2.4.s page 1

1 .file "example2.4.c"
2 .text

3 .align 2

4 .def _main

5 .val _main

6 .scl 2

7 .type 044

8 .endef

9 .global main ; export
10 _main:
11 .def .bf
12 .val
13 .scl 101
l:example2.4.c **** extern int ADD (int, int);
2:example2.4.c ***x%

3:example2.4.c **** int

4:example2.4.c **** main(void)

S:example2.4.c *xx* {
14 .line 5
15 .endef
16 .set __pA 1
17 000000 00 OO0 FA 1nk #0

18

6:example2.4.c *x*x* return ADD(4, 5);

19 .1n 6
20 000002 51 00 20 mov #5,wl
21 000004 40 00 20 mov #4,w0
22 000006 00 00 02 call _ADD
22 00 00 00

7:example2.4.c **** }
23 .1n 7
24 .def .ef
25 .val .
26 .scl 101
27 .line 7
28 .endef
29

30 00000a 00 80 FA ulnk

31 00000c 00 00 O6 return

32 .set __pA__,0
33 .def _main

34 .val

35 .scl -1

36 .endef

37

38 .end

DS51317E-page 22 © 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

2414 -ai

-ai displays information on each of the code and data sections. This information con-
tains details on the size of each of the sections and then a total usage of program and
data memory. Example 2-5 shows a listing where the -ai option was used.

EXAMPLE 2-5: LISTING FILE GENERATED WITH -ai COMMAND LINE
OPTION

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
bext ox16 ox21 (33)
TOTAL PROGRAM MEMORY USED (bytes) : 0x21 (33)
Section Length (bytes) (dec)
Gata o (o)
bss 0 (0)

TOTAL DATA MEMORY USED (bytes): 0 (0)
24.15 -al

-al requests an assembily listing. This sub-option may be used with other sub-options.
See the other examples in this section.

2.4.1.6 -am

-am expands macros in a listing. Example 2-6 shows a listing where the -am option
was not used. Example 2-7 shows a listing for the same source where the -am option
was used.

EXAMPLE 2-6: LISTING FILE GENERATED WITH -al COMMAND LINE

OPTION
MPLAB ASM30 Listing: example2.5.s page 1
1 .text
2 .macro div_s regl, reg2
3 repeat #18-1
4 div.sw \regl, \reg2
5 .endm
6
7 .macro div_u regl, reg2
8 repeat #18-1
9 div.uw \regl, \reg2
10 .endm
11
12 000000 40 01 20 mov #20, wO
13 000002 52 00 20 mov #5, w2
14 000004 11 00 09 div_u w0, w2
14 02 80 D8
15
16 000008 00 02 BE mov.d w0, wé
17
18 00000a 40 01 20 mov #20, wO
19 00000c B3 FF 2F mov #-5, w3
20 00000e 11 00 09 div_s w0, w3
20 03 00 D8

© 2005 Microchip Technology Inc. DS51317E-page 23

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

EXAMPLE 2-7:

LISTING FILE GENERATED WITH -alm COMMAND LINE
OPTION

MPLAB ASM30 Listing:

example2.6.s

page 1

1 .text

2 .macro div_s regl, reg2
3 repeat #18-1

4 div.sw \regl, \reg2

5 .endm

6

7 .macro div_u regl, reg2
8 repeat #18-1

9 div.uw \regl, \reg2
10 .endm
11
12 000000 40 01 20 mov #20, woO
13 000002 52 00 20 mov #5, w2

14 div_u w0, w2

14 000004 11 00 09 > repeat #18-1

14 000006 02 80 D8 > div.uw w0, w2

15

16 000008 00 02 BE mov.d w0, wé

17

18 00000a 40 01 20 mov #20, woO

19 00000c B3 FF 2F mov #-5, w3
20 div_s w0, w3
20 00000e 11 00 09 > repeat #18-1
20 000010 03 00 D8 > div.sw w0, w3

Note: > signifies expanded macro instructions. I

DS51317E-page 24

© 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

2.4.1.7 -an

-an turns off all forms processing that would be performed by the listing directives

.psize, .eject, .title and .sbttl. Example 2-8 shows a listing where the -an =
option was not used. Example 2-9 shows a listing for the same source where the -an 2
option was used. >
vy
EXAMPLE 2-8: LISTING FILE GENERATED WITH -al COMMAND LINE >
OPTION g
MPLAB ASM30 Listing: example2.7.s page 1 23
User's Guide Example >
Listing Options &
1 .text D
2 .title "User's Guide Example" 3
3 .sbttl " Listing Options" =2
4 .psize 10 Q
5
6 000000 50 00 20 mov #5, woO
7 000002 61 00 20 mov #6, wl
MPLAB ASM30 Listing: example2.7.s page 2

User's Guide Example
Listing Options

8 000004 01 01 40 add w0, wl, w2
9 .eject
MPLAB ASM30 Listing: example2.7.s page 3

User's Guide Example
Listing Options

10
11 000006 24 00 20 mov #2, w4
12 000008 03 00 09 repeat #3
13 00000a 04 22 B8 mul.uu wéd, wéd, wéd
14
15 00000c 16 00 20 mov #1, wé
16 00000e 64 33 DD sl w6, #4, wé
MPLAB ASM30 Listing: example2.7.s page 4

User's Guide Example
Listing Options

17
18 000010 06 20 E1 cp w4, w6
19 000012 00 00 32 bra z, done
20
21 000014 00 00 0O nop
22
23 done:
MPLAB ASM30 Listing: example2.7.s page 5

User's Guide Example
Listing Options
24
25 .end

© 2005 Microchip Technology Inc. DS51317E-page 25

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

EXAMPLE 2-9: LISTING FILE GENERATED WITH -aln COMMAND LINE

OPTION
1 .text
2 .title "User's Guide Example"
3 .sbttl " Listing Options"
4 .psize 10
5
6 000000 50 00 20 mov #5, woO
7 000002 61 00 20 mov #6, wl
8 000004 01 01 40 add w0, wl, w2
9 .eject
10
11 000006 24 00 20 mov #2, w4
12 000008 03 00 09 repeat #3
13 00000a 04 22 BS8 mul.uu w4, w4, wéd
14
15 00000c 16 00 20 mov #1, wé
16 00000e 64 33 DD sl w6, #4, w6
17
18 000010 06 20 E1 cp w4, wé
19 000012 00 00 32 bra z, done
20
21 000014 00 00 0O nop
22
23 done:
24
25 .end
2418 -as

-as requests a symbol table listing. Example 2-10 shows a listing that was generated
using the -as command line option. Note that both defined and undefined symbols are
listed.

EXAMPLE 2-10: LISTING FILE GENERATED WITH -as COMMAND LINE
OPTION

MPLAB ASM30 Listing: sample2b.s

DEFINED SYMBOLS
ABS:00000000 fake
sample2b.s:4 .text:00000000 __reset
sample2b.s:13 .text:0000001c L2
.text:00000000 .text
.data:00000000 .data
.bss:00000000 .bss

UNDEFINED SYMBOLS
i
_J

2.4.1.9 -a=file

=file defines the name of the output file. This file must be in the current directory.

DS51317E-page 26 © 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

2.4.2 --listing-lhs-width #

The --1isting-1hs-width optionis used to set the width of the output data column

The --1isting-1hs-width2 option is used to set the width of the continuation lines
of the output data column of the listing file. By default, this is set to 3 for program
memory and 4 for data memory. If the specified width is smaller than the first line, this
option is ignored. The following lines are extracted from a listing. The output data
column is bolded.

of the listing file. By default, this is set to 3 for program memory and 4 for data memory. <
The following line is extracted from a listing. The output data column is in bold text. E
6 000000 50 00 20 mov #5, wo :5
If the option --1isting-1hs-width 2 is used, then the same line will appear as >
follows in the listing: %)
6 000000 50 00 mov #5, w0 8

6 20
1
2.4.3 --listing-lhs-width2 # 8
3
=2
®
-

2 0000 50 6C 65 61 .ascii "Please pay inside."
2 73 65 20 70

2 61 79 20 69

2 6E 73 69 64

2 65 2E

If the option --1isting-lhs-width2 7 is used, then the same line will appear as
follows in the listing:

2 0000 50 6C 65 61 .ascii "Please pay inside."
2 73 65 20 70 61 79 20
2 69 6E 73 69 64 65 2E

244 --listing-rhs-width #

The --listing-rhs-width option is used to set the maximum width in characters
of the lines from the source file. By default, this is set to 100. The following lines are
extracted from a listing that was created without using the --1isting-rhs-width
option. The text in bold are the lines from the source file.

2 0000 54 68 69 73 .ascii "This line is long."

2 20 6C 69 6E
2 65 20 69 73
2 20 6C 6F 6E
2 67 65 72 20

If the option --1isting-rhs-width 20 is used, then the same line will appear as
follows in the listing:

2 0000 54 68 69 73 .ascii "This line i

2 20 6C 69 6E
2 65 20 69 73
2 20 6C 6F 6E
2 67 65 72 20

The line is truncated (not wrapped) in the listing, but the data is still there.

© 2005 Microchip Technology Inc. DS51317E-page 27

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

245 --listing-cont-lines #

The --1listing-cont-1lines option is used to set the maximum number of
continuation lines used for the output data column of the listing. By default, this is 8.
The following lines are extracted from a listing that was created without using
the--1listing-cont-1lines option. The text in bold shows the continuation lines
used for the output data column of the listing.

2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20

61 20 6C 6F

6E 67 20 63

68 61 72 61

63 74 65 72

20 73 65 71

75 65 6E 63

65 2E

D NDNDDNDDNDDNDDN

Notice that the number of bytes displayed matches the number of bytes in the ASCII
string; however, if the option --1isting-cont-1lines 2 is used, then the output
data will be truncated after 2 continuation lines as shown below.

2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20
2 61 20 6C 6F

2.5 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT

The options in this section control how information is output. Errors, warnings and
messages concerning code translation and execution are controlled through several of
the options in this section.

Any item in parenthesis shows the short method of specifying the option, e.g.,
--no-warn also may be specified as -w.

251 --fatal-warnings

Warnings are treated as if they were errors.

2.5.2 --no-warn (-W)

Warnings are suppressed. If you use this option, no warnings are issued. This option
only affects the warning messages. It does not change how your file is assembled.
Errors are still reported.

2.5.3 --warn

Warnings are issued, if appropriate. This is the default behavior.
254 -J

No warnings are issued about signed overflow.

255 --help

The assembler will show a message regarding the command line usage and options.
The assembler then exits.

2.5.6 --target-help

The assembler will show a message regarding the 16-bit device specific command line
options. The assembler then exits.

DS51317E-page 28

© 2005 Microchip Technology Inc.

MPLAB ASM30 Command Line Interface

2.5.7 --version

The assembler version number is displayed. The assembler then exits.

2.5.8 --verbose (-v)

The assembler version number is displayed. The assembler does not exit. If this is the
only command line option used, then the assembler will print out the version and wait
for entry of the assembly source through standard input. Use <CTRL>-D to send an
EOF character to end assembly.

26 OPTIONS THAT CONTROL OUTPUT FILE CREATION

The options in this section control how the output file is created. For example, to
change the name of the output object file, use -o.

Any item in parenthesis shows the short method of specifying the option, e.g.,
--keep-locals may be specified as -L also.

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

2.6.1 --keep-locals (-L)

Keep local symbols, i.e., labels beginning with . L (upper case only). Normally you do
not see such labels when debugging, because they are intended for the use of
programs (like compilers) that compose assembler programs. Normally both the
assembler and linker discard such symbols. This option tells the assembler to retain
those symbols in the object files.

2.6.2 -o objfile

Name the object file output objfile. In the absence of errors, there is always one
object file output when you run the assembler. By default, it has the name a . out. Use
this option (which takes exactly one filename) to give the object file a different name.
Whatever the object file is called, the assembler overwrites any existing file with the
same name.

2.6.3 -omf = format

Use this option to specify the object file format. Valid format names are COFF and ELF.
Object file format names are not case sensitive.

2.6.4 -R

This option tells the assembler to write the object file as if all data-section data lives in
the text section. The data section part of your object file is zero bytes long because all
its bytes are located in the text section.

2.6.5 --relax

Turn relaxation on. Convert absolute calls and gotos to relative calls and branches
when possible.

2.6.6 --no-relax

Turn relaxation off. This is the default behavior.

© 2005 Microchip Technology Inc. DS51317E-page 29

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

2.6.7 -Z

Generate object file even after errors. After an error message, the assembler normally
produces no output. If for some reason, you are interested in object file output even
after the assembler gives an error message, use the -z option. If there are any errors,
the assembler continues anyway, and writes an object file after a final warning
message of the form “n errors, m warnings, generating bad object file”.

2.6.8 -MD file

Write dependency information to £ile. The assembler can generate a dependency
file. This file consists of a single rule suitable for describing the dependencies of the
main source file. The rule is written to the file named in its argument. This feature can
be used in the automatic updating of makefiles.

2.7 OTHER OPTIONS

The options in this section perform functions not defined in previous sections.

2.7.1 --defsym sym=value

Define symbol symto given value.

2.7.2 -I dir

Use this option to add di rto the list of directories that the assembler searches for files
specified in . include directives. You may use -I as many times as necessary to
include a variety of paths. The current working directory is always searched first; after
that, the assembler searches any - I directories in the same order as they were
specified (left to right) on the command line.

2.7.3 -p, --processor=PROC

Specify the target processor, e.g.:
pic30-as -p30F2010 file.s

DS51317E-page 30

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 3. Assembler Syntax

3.1 INTRODUCTION
Syntax for MPLAB ASM30 source code is defined here.

3.2 HIGHLIGHTS

Topics covered in this chapter are:
« Internal Preprocessor

« Source Code Format

¢ Constants

e Summary

3.3 INTERNAL PREPROCESSOR

The assembler has an internal preprocessor. The internal processor:

1. Adjusts and removes extra white space. It leaves one space or tab before the
keywords on a line, and turns any other white space on the line into a single
space.

2. Removes all comments, replacing them with a single space, or an appropriate
number of new lines.

3. Converts character constants into the appropriate numeric value.

Note: If you have a single character (e.g., ‘b’) in your source code, this will be
changed to the appropriate numeric value. If you have a syntax error that
occurs at the single character, the assembler will not display ‘b’, but instead
display the first digit of the decimal equivalent.

For example, if you had .global mybuf, ‘©’in your source code, the error
message would say “Error: Rest of line ignored. First ignored character is ‘9’.”
Notice the error message says ‘9'. This is because the ‘b’ was converted to its
decimal equivalent 98. The assembler is actually parsing .global mybuf, 98

The internal processor does not do:

1. macro preprocessing

2. include file handling

3. anything else you may get from your C compiler’s preprocessor

You can do include file preprocessing with the . include directive (See Chapter

6. “Assembler Directives”.) You can use the C compiler driver to get other C
preprocessing style preprocessing by giving the input file a . S suffix (See the “MPLAB®
C30 C Compiler User’s Guide” (DS51284) for more information.)

© 2005 Microchip Technology Inc. DS51317E-page 31

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

If the first line of an input file is #NO_APP or if you use the - £ option, white space and
comments are not removed from the input file. Within an input file, you can ask for white
space and comment removal in certain portions by putting a line that says #APP before
the text that may contain white space or comments, and putting a line that says
#NO_APP after this text. This feature is mainly intended to support assembly
statements in compilers whose output is otherwise free of comments and white space.

Note: Excess white space, comments and character constants cannot be used
in the portions of the input text that are not preprocessed.

3.4 SOURCE CODE FORMAT

Assembly source code consists of statements and white spaces.

White space is one or more spaces or tabs. White space is used to separate pieces of
a source line. White space should be used to make your code easier for people to read.
Unless within character constants, any white space means the same as exactly one
space.

Each statement has the following general format and is followed by a new line.

[label:] [mnemonic [operands]] [; comment]
OR
[label:] [directive [arguments]] [; comment]

* Label

e Mnemonic
« Directive
« Operands
e Arguments
« Comments

34.1 Label

A label is one or more characters chosen from the set of all letters, digits and the two
characters underline (_) and period (.). Labels may not begin with a decimal digit,
except for the special case of a local symbol. (See Section 5.5 “Local Symbols” for
more information.) Case is significant. There is no length limit; all characters are
significant.

Label definitions must be immediately followed by a colon. A space, tab, end of line or
an assembler mnemonic or directive may follow the colon.

Label definitions may appear on a line by themselves and will reference the next
address.

The value of a label after linking is the absolute address of a location in memory.

3.4.2 Mnemonic

Mnemonics tell the assembler what machine instructions to assemble. For example,
addition (ADD), branches (BR2) or moves (MOV). Unlike labels that you create yourself,
mnemonics are provided by the assembly language. Mnemonics are not case
sensitive.

See the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for more details.

DS51317E-page 32

© 2005 Microchip Technology Inc.

Assembler Syntax

3.4.3 Directive

Assembler directives are commands that appear in the source code but are not

translated directly into machine code. Directives are used to control the assembler; its
input, output and data allocation. The first character of a directive is a period (.). More
details are provided in Chapter 6. “ Assembler Directives” on the available directives.

3.4.4 Operands

Each machine instruction takes from 0 up to 8 operands. (See the “dsPIC30F/33F Pro-
grammer’s Reference Manual’ (DS70157). These operands give information to the
instruction on the data that should be used and the storage location for the instruction.
Operands must be separated from mnemonics by one or more spaces or tabs.

Commas should separate multiple operands. If commas do not separate operands, a
warning will be displayed and the assembler will take its best guess on the separation
of the operands. Operands consist of literals, file registers condition codes, destination
select and accumulator select.

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

3.4.4.1 LITERALS

Literal values are distinguished with a preceding pound sign (‘#"). Literal values can be
hexadecimal, octal, binary or decimal format. Hexadecimal numbers are distinguished
by a leading 0x. Octal numbers are distinguished by a leading 0. Binary humbers are
distinguished by a leading B. Decimal numbers require no special leading or trailing
character.

Examples:

#0xe, #016, #0b1110 and #14 all represents the literal value 14.
#-5 represents the literal value -5.

#symbol represents the value of symbol.

3.4.4.2 FILE REGISTERS

File registers represent on-chip general purpose and special function registers. File
registers are distinguished from literal values because they do not have the preceding
pound sign.

Each of the following examples tells the processor to move the data located in the file
register whose address is 14 to wO:

mov OxE, wO
mov 016, wO
mov 14, woO
.equ symbol, 14
mov symbol, w0

3.4.43 REGISTERS

The following register names are built into the assembler:
w0, wl, w2, w3, w4, wh, wé, w7, w8, w9, wl0, wll, wl2, wl3, wl4, wl5, W0, W1, W2,
W3, W4, W5, W6, W7, W8, W9, W10, Wil, W12, W13, W14, W15.

3.4.44 CONDITION CODES

Condition codes are used with BRA instructions. See the “dsPIC30F/33F Programmer’s
Reference Manual” (DS70157) for more details.

bra C, label

© 2005 Microchip Technology Inc. DS51317E-page 33

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

3.44.5 DESTINATION SELECT

The PIC18CXXX-compatible instructions accept WREG as an optional argument to
specify whether the result should be placed into WREG (WO) or into the file register. See
the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for more details.

add sym, WREG

3446 ACCUMULATOR SELECT

The DSP instructions take an accumulator select operand (A or B) to specify which
accumulator to use.

ADD A

3.4.5 Arguments

Each directive takes from 0 up to 3 arguments. These arguments give additional
information to the directive on how it should carry out the command. Arguments must
be separated from directives by one or more spaces or tabs. Commas must separate
multiple arguments. More details are provided in Chapter 6. “Assembler Directives”
on the available directives.

3.4.6 Comments

Comments can be represented in the assembler in one of two ways described below.

3.4.6.1 SINGLE LINE COMMENT

This type of comment extends from the comment character to the end of the line. For
a single line comment, use a semicolon (';).
Example:

mov w0, wl;The rest of this line is a comment.

3.4.6.2 MULTILINE COMMENT

This type of comment can span multiple lines. For a multi-line comment, use
[* ... *I. These comments cannot be nested.
Example:

/* All

of these
lines

are
comments */

DS51317E-page 34

© 2005 Microchip Technology Inc.

Assembler Syntax

3.5 CONSTANTS

A constant is a value written so that its value is known by inspection, without knowing
any context. Examples are:
.byte 74, 0112, 0b01001010, O0x4A, Ox4a, 'J’, ’'\J’';All the same value

.ascii "Ring the bell\7";A string constant
.float 0f-31415926535897932384626433832795028841971.693993751E-40

* Numeric Constants
¢ Character Constants

3.5.1 Numeric Constants

The assembler distinguishes three kinds of numbers according to how they are stored
in the machine. Integers are numbers that would fit into a Long in the C language.
Floating-point numbers are IEEE 754 floating-point numbers. Fixed-point numbers are
Q-15 fixed-point format.

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

3.5.1.1 INTEGERS

A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01’
An octal integer is ‘0’ followed by zero or more of the octal digits ‘01234567'.

A decimal integer starts with a non-zero digit followed by zero or more decimal digits
‘0123456789'.

A hexadecimal integer is ‘Ox’ or ‘OX’ followed by one or more hexadecimal digits
‘0123456789abcdefABCDEF'.

To denote a negative integer, use the prefix operator *-'.

3.5.1.2 FLOATING-POINT NUMBERS

A floating-point number is represented in IEEE 754 format. A floating-point number is
written by writing (in order):

< An optional prefix, which consists of the digit ‘0’, followed by the letter ‘e’, ‘f’ or ‘d’
in upper or lower case. Because floating point constants are used only with
.float and .double directives, the precision of the binary representation is
independent of the prefix.

« An optional sign: either ‘+" or *-".
« An optional integer part: zero or more decimal digits.
< An optional fractional part: ‘.’ followed by zero or more decimal digits.
« An optional exponent, consisting of:
- An‘E’or‘e’.
- Optional sign: either ‘+' or *-'.
- One or more decimal digits.

At least one of the integer part or fractional part must be present. The floating-point
number has the usual base-10 value.

Floating-point numbers are computed independently of any floating-point hardware in
the computer running the assembiler.

© 2005 Microchip Technology Inc. DS51317E-page 35

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

3.5.1.3 FIXED-POINT NUMBERS

A fixed-point number is represented in Q-15 format. This means that 15 bits are used
to represent the fractional portion of the number. The most significant bit is the sign bit,
followed by an implied binary point, and 15 bits of magnitude, i.e.:

bit no. 15 . 14 13 12 ... 1 0

value 20 21 22 23 0 214 215

The smallest number in this format is -1, represented by:
0x8000 (1.000 0000 0000 0000)

the largest number is nearly 1 (.99996948), represented by:
0x7FFF (0.111 1111 1111 1111)

A fixed-point number is written in the same format as a floating-point number, but its
value is constrained to be in the range [-1.0, 1.0).

3.5.2 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. A string can contain potentially
many bytes and their values may not be used in arithmetic expressions.

3.5.21 CHARACTERS

A single character may be written as a single quote immediately followed by that
character, or as a single quote immediately followed by that character and another
single quote. The assembler accepts the following escape characters to represent
special control characters:

TABLE 3-1: ESCAPE CHARACTERS

- Hex
Escape Character Description value

\a Bell (alert) character 07
\b Backspace character 08
\f Form-feed character oC
\n New-line character 0A
\r Carriage return character (0]
\t Horizontal tab character 09
\v Vertical tab character 0B
\\ Backslash 5C
\? Question mark character 3F
\" Double quote character 22
\digit digit digit |Octal character code. The numeric code is 3 octal digits.

\x hex-digits Hex character code. All trailing hex digits are combined.

Either upper or lower case x works.

The value of a character constant in a numeric expression is the machine’s byte-wide
code for that character. The assembler assumes your character code is ASCII.

3.5.2.2 STRINGS

A string is written between double quotes. It may contain double quotes or null
characters. The way to get special characters into a string is to escape the characters,
preceding them with a backslash ‘\' character. The same escape sequences that apply
to strings also apply to characters.

DS51317E-page 36

© 2005 Microchip Technology Inc.

Assembler Syntax

3.6 SUMMARY

Table 3-2 summarizes the general syntax rules that apply to the assembiler:

<

TABLE 3-2: SYNTAX RULES E
Character Character Description Syntax Usage ;
period begins a directive or label >

; semicolon begin single-line comment 2
/* slash, asterisk begin multiple-line comment 8
*/ asterisk, slash end multiple-line comment >
colon end a label definition 8

pound begin a literal value g
re’ character in single quotes specifies single character value =2
"string" character string in double quotes | specifies a character string 2

© 2005 Microchip Technology Inc. DS51317E-page 37

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 38 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 4. Assembler Expression Syntax and Operation

4.1 INTRODUCTION

Expression syntax and operation for MPLAB ASM30 is discussed here.

4.2 HIGHLIGHTS

Topics covered in this chapter are:

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

« Expressions
¢ Operators
» Special Operators

4.3 EXPRESSIONS

An expression specifies an address or numeric value. White space may precede and/or
follow an expression. The result of an expression must be an absolute number, or else
an offset into a particular section. If an expression is not absolute, and there is not
enough information when the assembler sees the expression to know its section, the
assembler terminates with an error message in this situation.

431 Empty Expressions

An empty expression has no value: it is just white space or null. Wherever an absolute
expression is required, you may omit the expression, and the assembler assumes a
value of (absolute) 0.

4.3.2 Integer Expressions

An integer expression is one or more arguments delimited by operators. Arguments are
symbols, numbers or sub expressions. Sub expressions are a left parenthesis ‘(’
followed by an integer expression, followed by a right parenthesis ‘)’; or a prefix
operator followed by an argument.

Integer expressions involving symbols in program memory are evaluated in Program
Counter (PC) units. On the 16-bit device, the Program Counter increments by 2 for
each instruction word. For example, to branch to the next instruction after label 1., spec-
ify L+2 as the destination.

Example:
bra L+2

© 2005 Microchip Technology Inc. DS51317E-page 39

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

44 OPERATORS

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be

preceded and/or followed by white space.

44.1 Prefix Operators

The assembler has the following prefix operators. Each takes one argument, which

must be absolute.

TABLE 4-1: PREFIX OPERATORS
Operator Description Example
- Negation. Two’s complement negation. -1
~ Bit-wise not. One’s complement. ~flags

4.4.2 Infix Operators

Infix operators take two arguments, one on either side. Operators have a precedence,
but operations with equal precedence are performed left to right. Apart from + or —, both

operators must be absolute, and the result is absolute.

TABLE 4-2: OPERATORS

Operator Description Example
* Multiplication 5 * 4 (=20)
/ Division. Truncation is the same as the C operator /. 23 / 4 (=5)
% Remainder 30 % 4 (=2)
<< Shift Left. Same as the C operator ‘<<’ 2 << 1 (=4)
>> Shift Right. Same as the C operator ‘>>’ 2 >> 1 (=1)

Bit-wise Inclusive Or 2 | 4 (=6)

& Bit-wise And 4 & 6 (=4)

» Bit-wise Exclusive Or 4 %6 (=2)

Bit-wise Or Not

0x1010 ! 0x5050
(=0xBFBF)

Addition. If either argument is absolute, the result has the
section of the other argument. You may not add together
arguments from different sections.

4 + 10 (=14)

Subtraction. If the right argument is absolute, the result
has the section of the left argument. If both arguments
are in the same section, the result is absolute. You may
not subtract arguments from different sections.

14 - 4 (=10)

DS51317E-page 40

© 2005 Microchip Technology Inc.

Assembler Expression Syntax and Operation

4.5 SPECIAL OPERATORS

The assembler provides a set of special operators for the following:

» Accessing Data in Program Memory %
« Obtaining a Program Address of a Symbol or Constant ;
» Obtaining a Handle to a Program Address w
» Obtaining the Size of a Specific Section 5)
« Obtaining the Starting Address of a Specific Section =z
w
* TABLE 4-3: SPECIAL OPERATORS JC:
Operators Description Support 8
tblpage (name) Get page for table read/write operations All %
tbloffset (name) Get pointer for table read/write operations All %
psvpage (name) Get page for PSV data window operations All -
psvoffset (name) Get pointer for PSV data window operations All
paddr (1abel) Get 24-bit address of 1abel in program memory All
handle (label) Get 16-bit reference to Iabel in program memory All
dmaoffset (name) Get the offset of a symbol within DMA memory 24H/33
.sizeof. (name) Get size of section name in address units All
.startof. (name) Get starting address of section name All
Legend: All Support for all devices

24H
33

Support for PIC24H MCUs
Support for dsPIC33F DSCs

45.1 Accessing Data in Program Memory

The 16-bit device modified-Harvard architecture is comprised of two separate address
spaces: one for data storage and one for program storage. Data memory is 16 bits wide
and is accessed with a 16-bit address; program memory is 24 bits wide and is accessed
with a 24-bit address.

Normally, 16-bit instructions can read or write data values only from data memory, while
program memory is reserved for instruction storage. This arrangement allows for very
fast execution, since the two memory buses can work simultaneously and
independently of each other. In other words, a 16-bit instruction can read, modify and
write a location in data memory at the same time the next instruction is being fetched
from program memory.

Occasionally, circumstances may arise when the programmer or application designer
is willing to sacrifice some execution speed in return for the ability to read constant data
directly from program memory. For example, certain DSP algorithms require large
tables of coefficients that would otherwise consume data memory needed to buffer
real-time data. To accommodate these needs, the 16-bit device modified-Harvard
architecture permits instructions to access data stored in program memaory.

There are two methods available for accessing data in program memory:

« Table Read/Write Instructions
« Program Space Visibility (PSV) Data Window

In either case, the programmer must compensate for the different address width
between data memory and program memory. For example, a pointer is commonly used
to access constant data tables, yet pointers for table read/write instructions can specify
an address of only 16 bits. A pointer used to access the PSV data window can specify
only 15 bits — the most significant bit must be set for an address in the data window
range (0x8000 to OxFFFF).

© 2005 Microchip Technology Inc. DS51317E-page 41

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

As explained in the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157), two
special function registers can be used to specify the upper bits of a PSV or table
read/write address: DSPPAG and TBLPAG, respectively.

45.1.1 TABLE READ/WRITE INSTRUCTIONS

The tblpage () and tbloffset () operators provided by the assembler can be used
with table read/write instructions. These operators may be applied to any symbol
(usually representing a table of constant data) in program memory.

Suppose a table of constant data is declared in program memory like this:

.text
fib_data:
.word 0, 1, 2, 3, 5, 8, 13

To access this table with table read/write instructions, use the tblpage () and
tbloffset () operators as follows:

; Set TBLPAG to the page that contains the fib data array.
mov #tblpage (fib data), woO
mov w0, _TBLPAG
; Make a pointer to fib data for table instructiomns
mov #tbloffset (fib data), woO
; Load the first data value
tblrdl [wO++], wl

The programmer must ensure that the constant data table does not exceed the
program memory page size that is implied by the TBLPAG register. The maximum table
size implied by the TBLPAG register is 64 Kbytes. If additional constant data storage is
required, simply create additional tables each with its own symbol, and repeat the code
sequence above to load the TBLPAG register and derive a pointer.

45.1.2 PROGRAM SPACE VISIBILITY (PSV) DATA WINDOW

The psvpage () and psvoffset () operators can be used with the PSV data window.
These operators may be applied to any symbol (usually representing a table of
constant data) in program memory.

Suppose a table of constant data is declared in program memory like this:

.text
fib data:
.word 0, 1, 2, 3, 5, 8, 13

To access this table through the PSV data window, use the psvpage () and
psvoffset () operators as follows:

; Enable Program Space Visibility
bset.b CORCONL, #PSV

; Set PSVPAG to the page that contains the fib data array.
mov #psvpage (fib data), woO
mov w0, _PSVPAG

; Make a pointer to fib data in the PSV data window

mov #psvoffset (fib data), wo
; Load the first data wvalue
mov [wO++], wil

The programmer must ensure that the constant data table does not exceed the
program memory page size that is implied by the PSVPAG register. The maximum
table size implied by the PSVPAG register is 32 Kbytes. If additional constant data
storage is required, simply create additional tables each with its own symbol, and
repeat the code sequence above to load the PSVPAG register and derive a pointer.

DS51317E-page 42

© 2005 Microchip Technology Inc.

Assembler Expression Syntax and Operation

4.5.2 Obtaining a Program Address of a Symbol or Constant

The paddr () operator can be used to obtain the program address of a constant or
symbol. For example, if you wanted to set up an interrupt vector table without using the
default naming conventions, you could use the paddr () operator.

.section ivt, code
goto reset

.pword paddr (ivl)
.pword paddr (iv2)

45.3 Obtaining a Handle to a Program Address

The handle () operator can be used to obtain the a 16-bit reference to a label in
program memory. If the final resolved program counter address of the label fits in 16
bits, that value is returned by the handle () operator. If the final resolved address
exceeds 16 bits, the address of a jump table entry is returned instead. The jump table
entry is a GOTO instruction containing a 24-bit absolute address. The handle jump table
is created by the linker and is always located in low program memory. Handles permit
any location in program memory to be reached via a 16-bit address and are provided
to facilitate the use of C function pointers.

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

The handle jump table is created by the linker and contains an entry for each unique
label that is used with the handle () operator.

* 45.4 Obtaining the DMA Offset of a Symbol - PIC24H/dsPIC33F
Devices Only

The dmaoffset () operator can be used to obtain the offset of a symbol within DMA
memory. For example, to declare a buffer in DMA memory, and load its offset into a reg-
ister, you could use:

.section *,bss,dma
buf: .space 256

.text
mov #dmaoffset (buf), WO

To construct a table of DMA offsets for several symbols, you could use:

.word dmaoffset (bufl)
.word dmaoffset (buf2)
.word dmaoffset (buf3l)

455 Obtaining the Size of a Specific Section

The .sizeof. (section name) operator can be used to obtain the size of a specific
section after the link process has occurred. For example, if you wanted to find the final
size of the .data section, you could use:

mov #.sizeof. (.data), w0

Note: Whenthe .sizeof. (section name) operator is used on a section in
program memory, the size returned is the size in program counter units.
The 16-bit device program counter increments by 2 for each
instruction word.

© 2005 Microchip Technology Inc. DS51317E-page 43

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

4.5.6 Obtaining the Starting Address of a Specific Section

The .startof. (section name) operator can be used to obtain the starting
address of a specific section after the link process has occurred. For example, if you
wanted to obtain the starting address of the .data section, you could use:

mov #.startof. (.data), wl

DS51317E-page 44 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 5. Assembler Symbols

5.1 INTRODUCTION
Symbols are defined and their use with MPLAB ASM30 is discussed.

5.2 HIGHLIGHTS

Topics covered in this chapter are:

« What are Symbols

* Reserved Names

* Local Symbols

e Giving Symbols Other Values

» The Special DOT Symbol

» Using Executable Symbols in a Data Context

5.3 WHAT ARE SYMBOLS

A symbol is one or more characters chosen from the set of all letters, digits and the two
characters underline (_) and period (.). Symbols may not begin with a digit. Case is
significant (e.g., foo is a different symbol than Foo). There is no length limit and all
characters are significant.

Each symbol has exactly one name. Each name in an assembly language program
refers to exactly one symbol. You may use that symbol name any number of times in a
program.

5.4 RESERVED NAMES

The following symbol names (case-insensitive) are reserved for the assembler. Do not
use .equ, .equiv or .set (See Chapter 6. “Assembler Directives”) with these
symbols.

TABLE 5-1: SYMBOL NAMES — RESERVED

WO wi w2 W3 w4 W5 W6 w7
w8 W9 W10 w11 w12 W13 w14 W15
WREG |A B ov C Z N GE
LT GT LE NOV NC NZ NN GEU
LTU GTU LEU OA OB SA SB

© 2005 Microchip Technology Inc. DS51317E-page 45

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

5.5 LOCAL SYMBOLS

Local symbols are used when temporary scope for a label is needed. There are ten
local symbol names, which can be reused throughout the program. They may be
referred to using the names ‘0’, ‘'1’, ..., ‘9’. To define a local symbol, write a label of the
form ‘N:’ (where N represents any digit 0-9). To refer to the most recent previous
definition of that symbol, write ‘Nb’, using the same digit as when you defined the label.
To refer to the next definition of a local label, write ‘Nf'. The ‘b’ stands for “backwards”
and the ‘f’ stands for “forwards”. There is no restriction on how to use these labels, but
remember that at any point in assembly, at most, 10 prior local labels and, at most, 10
forward local labels may be referred to.

EXAMPLE 5-1:

print string:
mov w0, wl
1:
cp0.b [wl]
bra z,9f

mov.b [wl++],wO0
call print char
bra 1b

9:
return

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names
stored in the symbol table, appearing in error messages, and optionally emitted to the
object file have the following parts:

TABLE 5-2: SYMBOL PARTS
Parts Description
L All local labels begin with ‘L.
Digit If the label is written ‘0:", then the digit is ‘0'. If the label is written ‘1,
then the digit is ‘1. And so on up through ‘9'.
CTRL-A This unusual character is included so you do not accidentally invent a

symbol of the same name. The character has ASCII value ‘\001'.

Ordinal number This is a serial number to keep the labels distinct. The first ‘0:’ gets the
number ‘1’; the 15th ‘0:" gets the number ‘15’; and so on. Likewise for

the other labels ‘1:" through ‘9:’. For instance, the first ‘1.’ is named

L1C-Al, the 44th ‘3. is named L3C-A44.

EXAMPLE 5-2:
00000100 <print strings:
100: 80 00 78 mov.w w0, wl
00000102 <Ll1-1>:
102: 11 04 eO0 cp0.b [wl]
104: 03 00 32 bra Z, . + 0x8
106: 31 40 78 mov.b [wl++], wO
108: 02 00 07 rcall + 0x6
10a: fb ££f 37 bra + OxXFFFFFFF8
0000010c <L9-1>:
10c: 00 00 06 return

DS51317E-page 46

© 2005 Microchip Technology Inc.

Assembler Symbols

5.6 GIVING SYMBOLS OTHER VALUES

A symbol can be given an arbitrary value by writing a symbol, followed by an equals

sign ‘=, followed by an expression. This is equivalent to using the . set directive
(See Chapter 6. “Assembler Directives”.)

Example:

PSV = 4

5.7 THE SPECIAL DOT SYMBOL
The special symbol ‘.’ refers to the current address that is being assembled into. Thus,
the expression:
melvin: .word . ; 1n a data section

defines melvin to contain its own data address. Assigning a value to . is treated the
same as a .org directive. Thus the expression:

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

= .+2

is the same as saying:
.0rg .+2
The symbol ‘$' is accepted as a synonym for ‘.’

When used in an executable section, ‘.’ refers to a Program Counter address. On the
16-bit device, the Program Counter increments by 2 for each instruction word. Odd
values are not permitted.

5.8 USING EXECUTABLE SYMBOLS IN A DATA CONTEXT

The 16-bit device modified-Harvard architecture includes separate address spaces for
data storage and program storage. Most instructions and assembler directives imply a
context which is compatible with symbols from one address space or the other. For
example, the CALL instruction implies an executable context, so the assembler reports
an error if a program tries to CALL a symbol located in a data section.

Likewise, instructions and directives that imply a data context cannot be used with
symbols located in an executable section. Assembling the following code sequence will
result in an error, as shown:

.text
msg: .asciz "Here is an important message"
mov #msg, w0

Assembler messages:
Error: Cannot reference executable symbol (msg) in a data context

In this example the mov instruction implies a data context. Because symbol msg is
located in an executable section, an error is reported. Possibly the programmer was
trying to derive a pointer for use with the PSV window. The special operators described
in Section 4.5 “Special Operators” can be used whenever an executable symbol
must be referenced in a data context:

.text
msg: .asciz "Here is an important message"
mov #psvoffset (msg),wo

Here the psvoffset () operator derives a 16-bit value which is suitable for use in a
data context.

© 2005 Microchip Technology Inc. DS51317E-page 47

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

The next example shows how the special symbol “.” can be used with a data directive
in an executable section:

.text
fred: .long paddr(.)

Here the paddr () operator derives a 24-bit value which is suitable for use in a data
context. The . long directive pads the value to 32 bits and encodes it into the . text
section.

DS51317E-page 48 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 6. Assembler Directives

6.1 INTRODUCTION

Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output, and data allocation.

Note: Directives are not instructions (movlw, btfss, goto, etc). For instruction set
information, consult your device data sheet.

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

While there are some similarities with MPASM assembler directives, most MPLAB
ASM30 directives are new or different in some way. The differences between MPASM
assembler and MPLAB ASM30 directives have been pointed out in Appendix

D. “MPASM™ Assembler Compatibility”. All MPLAB ASM30 directives are
preceded by a period “.".

Directives that are supported, but deprecated, are listed in
Appendix C. “Deprecated Features”.

6.2 HIGHLIGHTS

Topics covered in this chapter are:

« Directives that Define Sections

« Directives that Fill Program Memory

« Directives that Initialize Constants

« Directives that Declare Symbols

« Directives that Define Symbols

« Directives that Modify Section Alignment
« Directives that Format the Output Listing
« Directives that Control Conditional Assembly
« Directives for Substitution/Expansion

» Miscellaneous Directives

« Directives for Debug Information

© 2005 Microchip Technology Inc. DS51317E-page 49

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

6.3 DIRECTIVES THAT DEFINE SECTIONS

Sections are locatable blocks of code or data that will occupy contiguous locations in
the 16-bit device memory. Three sections are pre-defined: . text for executable code,
.data for initialized data and .bss for uninitialized data. Other sections may be
defined; the linker defines several that are useful for locating data in specific areas of
16-bit memory.

Section directives are:

e .bss

» .data

 .pushsection name [, attrl],...,attrn]]
e .popsection

» .section name [, “flags”] (deprecated)
 .section name [, attrl],...,attrn]]

o text

.bss

Definition

Assemble the following statements onto the end of the .bss (uninitialized data)
section.

Example

; The following symbols (Bl and B2) will be placed in
; the uninitialized data section.

.bss

Bl: .space 4 ; 4 bytes reserved for Bl
B2: .space 1 ; 1 byte reserved for B2
.data

Definition

Assemble the following statements onto the end of the . data (initialized data) section.
Example

; The following symbols (D1 and D2) will be placed in
; the initialized data section.

.data
D1: .long 0x12345678 ; 4 bytes
D2: .byte OxFF ; 1 byte

Jpushsection name [, attrl[,...,attrn]]

Push the current section description onto the section stack, and assemble the following
code into a section named name. The syntax is identical to . section.

popsection

Replace the current section description with the top section on the section stack. This
section is popped off the stack.

DS51317E-page 50

© 2005 Microchip Technology Inc.

Assembler Directives

.section name [, “flags”] (deprecated)
.section name [, attrl],...,attrn]]

Assembles the following code into a section named name. If the character * is specified
for name, the assembler will generate a unique name for the section based on the input
file name in the format £ilename . scnn, where n represents the number of
auto-generated section names.

Sections named * can be used to conserve memory because the assembler will not
add alignment padding to these sections. Sections that are not named * may be com-
bined across several files, so the assembler must add padding in order to guarantee
the requested alignment.

If the optional argument is not present, the section attributes depend on the section
name. A table of reserved section names with implied attributes is given in Reserved
Section Names with Implied Attributes. If the section name matches a reserved name,
the implied attributes will be assigned to that section. If the section name is not
recognized as a reserved name, the default attribute will be data (initialized storage in
data memory).

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

Implied attributes for reserved section names other than [. text, .data, .bss] are
deprecated. A warning will be issued if implied attributes for these reserved section are
used.

If the first optional argument is quoted, it is taken as one or more flags that describe the
section attributes. Quoted section flags are deprecated (see Appendix
C. “Deprecated Features”). A warning will be issued if quoted section flags are used.

If the first optional argument is not quoted, it is taken as the first element of an attribute
list. Attributes may be specified in any order, and are case-insensitive. Two categories
of section attributes exist: attributes that represent section types, and attributes that
modify section types.

Attributes that Represent Section Types

Attributes that represent section types are mutually exclusive. At most one of the
attributes listed below may be specified for a given section.

* TABLE 6-1: ATTRIBUTES THAT REPRESENT SECTION TYPES

Attribute Description Support

code executable code in program memory All
data initialized storage in data memory All
bss uninitialized storage in data memory All
persist persistent storage in data memory All
psv constants in program memory All
eedata non-volatile storage in data EEPROM 30
Legend: All Supported on all devices

30 Supported on dsPIC30F DSCs

© 2005 Microchip Technology Inc. DS51317E-page 51

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Attributes that Modify Section Types

Depending on the attribute, all or some section types may be modified by it, as shown

Attribute does not apply to section

This attribute could be used by a linker to merge identical constants
across input files. If n=0, the section contains null-terminated strings
of variable length.

K%

below.
* TABLE 6-2: ATTRIBUTES THAT MODIFY SECTION TYPES
Attribute applies to
Attribute Description
code data bss |persist| psv |eedata
address(a) |locate at absolute All All All All All 30
address a
near locate in the first 8K of — All All All — —
memory
xmemory locate in X address space — 30/33 | 30/33 | 30/33 — —
ymemory locate in Y address space — 30/33 | 30/33 | 30/33 — —
reverse(n) |align the ending address — All All All All 30
+1
align(n) align the starting address All All All All All 30
noload allocate, do not load All All All All All 30
merge(n) mergable elements of All All — — All 30
size n**
info do not allocate or load All All All — — —
dma locate in DMA space — 24H/33 | 24H/33 | 24H/33 — —
Legend: Al = Attribute applies to section — All devices
24H = Attribute applies to section — PIC24H MCUs
30 = Attribute applies to section — dsPIC30F DSCs
33 = Attribute applies to section — dsPIC33F DSCs

Attributes that modify section types may be used in combination. For example,
“xmemory,address(a)” is a valid attribute string, but “xmemory,address(a),ymemory” is
not.

* TABLE 6-3: COMBINING ATTRIBUTES THAT MODIFY SECTION TYPES

address | near Xxmemory | ymemory | reverse align | noload | merge | info dma

address All All All — — All — — | 24H/33
near All All All All All All All — —
Xxmemory 30/33 30/33 — 30/33 30/33 | 30/33 30/33 — —
ymemory 30/33 30/33 — 30/33 30/33 | 30/33 30/33 — —
reverse — All All All — All All — | 24H/33
align — All All All — All All — | 24H/33
noload All All All All All All — — | 24H/33
merge — All All All All All — — —
info — — — — — — — — —
dma 24H/33 — — — 24H/33 | 24H/33 | 24H/33 — —
Legend: All = May be combined — All devices

24H = Supported on PIC24H MCUs

30 = Supported on dsPIC30F DSCs

33 = Supported on dsPIC33F DSCs

May not be combined

DS51317E-page 52 © 2005 Microchip Technology Inc.

Assembler Directives

Reserved Section Names with Implied Attributes

The following section names are available for user applications and are recognized to

have implied attributes: <
* Reserved Name Implied Attribute(s) Support E

.text code All w

.data data All 5)

.bss bss All <

.xbss bss, xmemory 30/33 88

.xdata data, xmemory 30/33 5?

.nbss bss, near All 8

.ndata data, near All 3

.ndconst data, near All %?

.pbss bss, persist All -

.dconst data All

.ybss bss, ymemory 30/33

.ydata data, ymemory 30/33

.const psv All

.eedata eedata 30

Legend: All = Supported on all devices

30 = Supported on dsPIC30F DSCs

33 Supported on dsPIC33F DSCs

Reserved section names may be used with explicit attributes. If the explicit attribute(s)
conflict with any implied attribute(s), an error will be reported.

Implied attributes for reserved section names other than [. text, .data, .bss] are
deprecated. A warning will be issued if these names are used without explicit attributes.

Section Directive Examples

.section foo ;foo is initialized data memory.
.section bar,bss,xmemory,align(256) ;bar is uninitialized
;X data memory, aligned.
.section *,data,near ;section is near
;initialized data memory.
.section bufl,bss,address (0x800) ;bufl is uninitialized
;data memory at 0x800.
.section tabl,psv,address (0x10000) ;tabl is psv constants
;at 0x10000.

© 2005 Microchip Technology Inc. DS51317E-page 53

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

text

Definition

Assemble the following statements onto the end of the . text (executable code)
section.

Example

; The following code will be placed in the executable
; code section.
.text
.global _ reset
___reset:
mov BAR, wl
mov FOO, wO

LOOP:
cp0.b [w0]
bra Z, DONE
mov.b [wO++], [wl++]
bra LOOP
DONE :
.end

6.4 DIRECTIVES THAT FILL PROGRAM MEMORY
These directives are only allowed in a code (executable) section. If they are not in a
code section, a warning is generated and the rest of the line is ignored.
Fill directives are:

« fillupper [value]
« fillvalue [value]
« .pfillvalue [value]
« Section Example

fillupper [value]

Definition

Define the upper byte (bits 16-23) to be used when this byte is skipped due to alignment
or data defining directives. If value is not specified, it is reset to the default 0x00.
Directives that may cause an upper byte to be filled are: .align, .ascii, .asciz,
.byte, .double, .£fil1, .fixed, . float, .hword, .int, .long, .skip, . space,
.stringand .word. The value is persistent for a given code section, throughout the
entire source file, and may be changed to another value by issuing subsequent
.fillupper directives.

Example
See Section Example that follows.

DS51317E-page 54 © 2005 Microchip Technology Inc.

Assembler Directives

fillvalue [value]

Definition

Define the byte value to be used as fill in a code section when the lower word (bits 0-15)
is skipped due to alignment or data defining directives. If value is not specified, the
default value of 0x0000 is used. Directives that may cause the lower word to filled are:
.align, .fi11, .skip, .organd .space. The value is persistent for a given code
section, throughout the entire source file, and may be changed to another value by
issuing subsequent . £fillvalue directives.

Example
See Section Example that follows.

pfillvalue [value]

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

Definition

Define the byte value to be used as fill in a code section when memory (bits 0-23) is
skipped due to an alignment or data defining p directive. If value is not specified, it is
reset to its default 0x000000. Directives that may cause a program word to be filled are:
.palign, .pfill, .pskip, .porg, and .pspace. The value is persistent for a given
code section, throughout the entire source file, and may be changed to another value
by issuing subsequent .pfillvalue directives.

Example
See Section Example below.

Section Example

.section .myconst, code
.fillvalue 0x12

.fillupper 0x34

.pfillvalue 0x56
0x12 0x12 0x34 Lfill 4
0x12 0x12

0x34 .align 2 ;Align to next p-word
0x56 0x56 0x56 .pfill 8

0x56 0x56 0x56
0x56 0x56

0x56 .palign 2 ;Align to next p-word
.fillvalue ;Reset fillvalue
.pfillvalue ;Reset pfillvalue
0x00 0x00 0x34 Lfil1 4
0x00 0x00
0x34 .align 2 ;Align to next p-word

0x00 0x00 0x00 .pfill 8
0x00 0x00 0x00
0x00 0x00

0x00 .palign 2 ;Align to next p-word

© 2005 Microchip Technology Inc. DS51317E-page 55

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

6.5 DIRECTIVES THAT INITIALIZE CONSTANTS

Constant initialization directives are:

o .ascii “stringl” | <##> [, ..., “stringn” | <##>]
e .asciz “stringl” | <##>q [, ..., “stringn” | <##>]
» .byte exprl], ..., exprn]

» .pbyte exprl], ..., exprn]

« .double valuel], ..., valuen]

« fixed valuel], ..., valuen]

« .float valuel], ..., valuen]

« .single valuel], ..., valuen]

» .hword exprl], ..., exprn]

e .intexprl], ..., exprn]

« .long exprl], ..., exprn]

 .short exprl], ..., exprn]

e .string “str”

« .word exprl], ..., exprn]

* .pword exprq], ..., expry]

ascii “stringq” | <##>, [, ..., “string,” | <##>,]

Assembles each string (with no automatic trailing zero byte) or <##> into successive
bytes in the current section.<##> is a way of specifying a character by its ASCII code.
For example, given that the ASCII code for a new line character is 0xa, the following
two lines are equivalent:

.ascii "hello\n","line 2\n"
.ascii "hello",<0xa>,"line 2", <0xa>

Note: Ifthe ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £illupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

asciz “stringy” | <##>1 [, ..., “string,)” | <##>,]

Assembles each string with an automatic trailing zero byte or <##> into successive
bytes in the current section.

Note: Ifthe ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £illupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

DS51317E-page 56 © 2005 Microchip Technology Inc.

Assembler Directives

Jbyte exprq[, ..., expry]

Assembles one or more successive bytes in the current section.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £fillupper value specified or the NOP opcode (0x00) if no . £fillupper has
been specified.

pbyte exprq[, ..., exprq]

Assembles one or more successive bytes in the current section. This directive will allow
you to create data in the upper byte of program memory.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

.double valueq[, ..., value,]

Assembles one or more double-precision (64-bit) floating-point constants into
consecutive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £illupper value specified or the NOP opcode (0x00) if no. fillupper has
been specified.

Floating point numbers are in IEEE format (see Section 3.5.1.2 “Floating-Point
Numbers™).

The following statements are equivalent:
.double 12345.67

.double 1.234567e4
.double 1.234567e04
.double 1.234567e+04
.double 1.234567E4
.double 1.234567E04

.double 1.234567E+04

Itis also possible to specify the hexadecimal encoding of a floating point constant. The
following statements are equivalent and encode the value 12345.67 as a 64-bit
double-precision number:

.double 0e:40C81CD5C28F5C29
.double 0£f:40C81CD5C28F5C29
.double 0d:40C81CD5C28F5C29

fixed valueq[, ..., value,]

Assembles one or more 2-byte fixed-point constants (range -1.0 <= f < 1.0) into
consecutive addresses in little-endian format. Fixed-point numbers are in Q-15 format
(Section 3.5.1.3 “Fixed-Point Numbers”).

© 2005 Microchip Technology Inc. DS51317E-page 57

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

float value4], ..., value,]

Assembles one or more single-precision (32-bit) floating-point constants into
consecutive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £illupper value specified or the NOP opcode (0x00) if no. fillupper has
been specified.

Floating point numbers are in IEEE format (see Section 3.5.1.2 “Floating-Point
Numbers™).

The following statements are equivalent:

.float 12345.67
.float 1.234567e4

.float 1.234567e04
.float 1.234567e+04
.float 1.234567E4

.float 1.234567E04

.float 1.234567E+04

Itis also possible to specify the hexadecimal encoding of a floating-point constant. The
following statements are equivalent and encode the value 12345.67 as a 32-bit
double-precision number:

.float 0e:4640E6AE
.float 0f:4640E6AE
.float 0d:4640E6AE

.single valueq][, ..., value,]

Assembles one or more single-precision (32-bit), floating-point constants into
consecutive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . £illupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

Floating point numbers are in IEEE format.

hword exprq], ..., exprq]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

nt exprqf, ..., expry]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

Jlong exprq], ..., expry]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format.

DS51317E-page 58

© 2005 Microchip Technology Inc.

Assembler Directives

.short exprq[, ..., exprp]

Same as .word.

.string “str”

Same as .asciz.

word exprq[, ..., exprql

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

pword exprq[, ..., expry]

Assembles one or more 3-byte numbers into consecutive addresses in the current
section.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

6.6 DIRECTIVES THAT DECLARE SYMBOLS

Declare symbol directives are:
 .bss symbol, length [, algn]

e .comm symbol, length [, algn]
« .extern symbol

« .global symbol .globl symbol
¢ .lcomm symbol, length

* .weak symbol

.bss symbol, length [, algn]

Reserve length (an absolute expression) bytes for a local symbol. The addresses are
allocated in the bss section, so that at run-time the bytes start off zeroed. symbol is
declared local so it is not visible to other objects. If algn is specified, it is the address
alignment required for symbol. The bss location counter is advanced until it is a
multiple of the requested alignment. The requested alignment must be a power of 2.

.comm symbol, length [, algn]

Declares a common symbol named symbol. When linking, a common symbol in one
object file may be merged with a defined or common symbol of the same name in
another object file. If the linker does not see a definition for that symbol, then it will
allocate 1ength bytes of uninitialized memory. If the linker sees multiple common
symbols with the same name, and they do not all have the same size, the linker will
allocate space using the largest size.

If algn is specified, it is the address alignment required for symbol. The requested
alignment must be a power of two. algn is supported when the object file format is
ELF; otherwise, it is ignored.

© 2005 Microchip Technology Inc. DS51317E-page 59

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

.extern symbol

Declares a symbol name that may be used in the current module, but it is defined as
global in a different module.

.global symbol
.globl symbol

Declares a symbol symbol that is defined in the current module and is available to
other modules.

dcomm symbol, length

Reserve length bytes for a local common denoted by symbol. The section and value
of symbol are those of the new local common. The addresses are allocated in the bss
section, so that at run-time, the bytes start off zeroed. symbo1 is not declared global
so it is normally not visible to the linker.

.weak symbol

Marks the symbol named symbol as weak. When a weak-defined symbol is linked with
a normal-defined symbol, the normal-defined symbol is used with no error. When a
weak-undefined symbol is linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.

6.7 DIRECTIVES THAT DEFINE SYMBOLS

Define symbol directives are:

 .equ symbol, expression
* .equiv symbol, expression
 .set symbol, expression

.equ symbol, expression

Set the value of symbol t0 expression. You may set a symbol any number of times
in assembly. If you set a global symbol, the value stored in the object file is the last
value equated to it.

.equiv symbol, expression

Like . equ, except the assembler will signal an error if symbol is already defined.

.set symbol, expression

Same as . equ.

DS51317E-page 60 © 2005 Microchip Technology Inc.

Assembler Directives

6.8 DIRECTIVES THAT MODIFY SECTION ALIGNMENT

There are two ways to modify section alignment: implicitly and explicitly. Implicit
alignment occurs first.

« Implicit Alignment in Program Memory

« Explicit Section Alignment Directives

6.8.1 Implicit Alignment in Program Memory

In addition to directives that explicitly align the location counter (such as .align,
.palign, .org, .porg, etc) many statements cause an implicit alignment to occur
under certain conditions. Implicit alignment occurs when padding is inserted so that the
next statement begins at a valid address. Padding uses the current . £illvalue and
.fillupper values if specified; otherwise the value zero is used.

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

In data memory, a valid address is available for each byte. Since no data directives
specify memory in quantities of less than one byte, implicit alignment is not required in
data memory.

In program memory, a valid address is available for each instruction word (3 bytes).
Since data directives can specify individual bytes, implict alignment to the next valid
address is sometimes required.

The following conditions cause implicit alignment in program memory:
1. Labels must be aligned to a valid address.
For example, the following source code:
.text
.pbyte 0x11
Ll:
.pbyte 0x22
.pbyte 0x33,0x44
generates implicit alignment as shown:
Disassembly of section .text:

00000000 <.text>:

0: 11 00 00 nop
00000002 <Ll>:
2: 22 33 44 .pword 0x443322

Note: Two bytes of padding were inserted so that label 1.1 would be aligned to a
valid address.

© 2005 Microchip Technology Inc. DS51317E-page 61

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

2. Instructions must be aligned to a valid address.
For example, the following source code:
.text
.pbyte 0x11
mov w2,w3
generates implicit alignment as shown:
Disassembly of section .text:
00000000 <.texts>:
0: 11 00 00 nop
2: 82 01 78 mov.w

w2, W3

Note: Two bytes of padding were inserted so that
aligned to a valid address.

the mov instruction would be

3. Transitions between p-type data directives (.pbyte, . pspace, etc). and normal

data directives (.byte, . space, etc.), in either dir
address.

For example, the following source code:

.text
.byte 0x11
.pbyte 0x22

.pbyte 0x33,0x44
generates implicit alignment as shown:
Disassembly of section .text:
00000000 <.texts>:
0: 11 00 00 nop
2: 22 33 44 .pword 0x4

ection, are aligned to a valid

43322

Note: Two bytes of padding were inserted so that

the transition from normal to

p-type directive would be aligned to a valid address.

6.8.2 Explicit Section Alignment Directives

Directives that explicitly modify section alignment are:
« .align algn|, fill[, max-skip]]

« .palign algn], fill[, max-skip]]

« fill repeat], size[, fill]]

« .pfill repeat], size], fill]]

« .org new-Ic[, fill]

 .porg new-Ic[, fill]

« .skip size], fill] .space size], fill]

« .pskip size], fill] .pspace size][, fill]

« .struct expression

DS51317E-page 62

© 2005 Microchip Technology Inc.

Assembler Directives

align algn[, fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.

algnis the address alignment required. The location counter is advanced until it is a
multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is needed or made. In a code section, an alignment of
2 is required to align to the next instruction word. The requested alignment must be a
power of 2.

£i11 is optional. If not specified:

* In a data section, a value of 0x00 is used to fill the skipped bytes.

* In a code section, the last specified . £illvalue is used to fill the lower two
bytes of program memory and the last specified . £illupper is used to fill the
upper program memory byte.

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

max-skip is optional. If specified, it is the maximum number of bytes that should be
skipped by this directive. If doing the alignment would require skipping more bytes than
the specified maximum, then the alignment is not done at all.

Alignment within a section is required for modulo addressing. It is worth noting that the
overall section alignment reflects the greatest alignment of any . align directives that
are included. Further, the assembler must pad out the section length to match its align-
ment. This is done in order to preserve the requested alignment in case the section is
combined with other sections of the same name during the link. To avoid unneccessary
padding of aligned sections, use the section name *, which identifies a unique section
that will never be combined.

Jpalign algnl[, fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

algnis the address alignment required. The location counter is advanced until it is a
multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is needed. In a code section, an alignment of 2 is
required to align to the next instruction word. The requested alignment must be a power
of 2.

£i11 is optional. If not specified, the last .pfillvalue specified is used to fill the skipped
bytes. All three bytes of the program memory word are filled.

max-skip is optional. If specified, it is the maximum number of bytes (including the
upper byte) that should be skipped by this directive. If doing the alignment would
require skipping more bytes than the specified maximum, then the alignment is not
done at all.

fill repeat[, size], fill]]

Reserve repeat copies of size bytes. repeat may be zero or more. size may be
zero or more, but if itis more than 8, then itis deemed to have the value 8. The content
of each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are
zero. The lowest order 4 bytes are value rendered in the little-endian byte-order. Each
size bytes in a repetition is taken from the lowest order size bytes of this number.

size is optional and defaults to one if omitted.
£i11 is optional. If not specified:

© 2005 Microchip Technology Inc. DS51317E-page 63

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

* In a data section, a value of 0x00 is used to fill the skipped bytes.

« In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . £fillupper is used to fill the
upper program memory byte.

pfill repeat[, size], fill]]

Reserve repeat copies of size bytes including the upper byte. repeat may be zero
or more. size may be zero or more, but if it is more than 8, then it is deemed to have
the value 8. The content of each repeat byte is taken from an 8-byte nhumber. The
highest order 4 bytes are zero. The lowest order 4 bytes are value rendered in the
little-endian byte-order. Each size byte in a repetition is taken from the lowest order
size bytes of this number.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

size is optional and defaults to one if omitted. Size is the number of bytes to reserve
(including the upper byte).

£i11 is optional. If not specified, it defaults to the last .pfillvalue specified. All
three bytes of each instruction word are filled.

.0rg new-IcJ, fill]

Advance the location counter of the current section to new-1c. In program memory,
new-1c is specified in Program Counter units. On the 16-bit device, the Program
Counter increments by 2 for each instruction word. Odd values are not permitted.

The bytes between the current location counter and the new location counter are filled
with £111. new-1c is an absolute expression. You cannot . org backwards. You
cannot use . org to cross sections.

The new location counter is relative to the current module and is not an absolute
address.

£i11 is optional. If not specified:

* In a data section, a value of 0x00 is used to fill the skipped bytes.

« In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . £illupper is used to fill the
upper program memory byte.

.porg new-Ic[, fill]

Advance the location counter of the current section to new-1c. In program memory,
new-1c is specified in Program Counter units. On the 16-bit device, the Program
Counter increments by 2 for each instruction word. Odd values are not permitted.

The bytes between the current location counter and the new location counter are filled
with £111. new-1c is an absolute expression. You cannot .porg backwards. You
cannot use .porg to cross sections.

The new location counter is relative to the current module and is not an absolute
address.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

£i11 is optional. If not specified, it defaults to the last .pfillvalue specified. All
three bytes of each instruction word are filled.

DS51317E-page 64

© 2005 Microchip Technology Inc.

Assembler Directives

Skip sizel[, fill]
.space size], fill]

Reserve size bytes. Each byte is filled with the value £i11.

£i11 is optional. If the value specified for £i11 is larger than a byte, a warning is
displayed and the value is truncated to a byte. If not specified:

* In a data section, a value of 0x00 is used to fill the skipped bytes.

« In a code section, the last specified . fil1lvalue is used to fill the lower two
bytes of program memory and the last specified . £fillupper is used to fill the
upper program memory byte.

pskip size], fill]
.pspace size[, fill]

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

Reserve size bytes (including the upper byte). Each byte is filled with the value £i11.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

The new location counter is relative to the current module and is not an absolute
address.

f£i11 is optional. If the value specified for £i11 is larger than a byte, a warning is
displayed and the value is truncated to a byte. If not specified, it defaults to the last
.pfillvalue specified. All three bytes of each instruction word are filled.

.struct expression

Switch to the absolute section, and set the section offset to expression, which must
be an absolute expression. You might use this as follows:

.struct O
fieldl:

.struct fieldl + 4
field2:

.struct field2 + 4
field3:

This would define the symbol £ield1 to have the value 0, the symbol £ield2 to have
the value 4, and the symbol £ie1d3 to have the value 8. Assembly would be leftin the
absolute section, and you would need to use a . section directive of some sort to
change to some other section before further assembly.

© 2005 Microchip Technology Inc. DS51317E-page 65

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

6.9 DIRECTIVES THAT FORMAT THE OUTPUT LISTING

Output listing format directives are:
* .eject

o list

* .nolist

* .psize lines[, columns]

« .shttl “subheading”

« _title “heading”

.eject

Force a page break at this point when generating assembly listings.

list

Controls (in conjunction with .nol1ist) whether assembly listings are generated. This
directive increments an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.nolist

Controls (in conjunction with .1ist) whether assembly listings are generated. This
directive decrements an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.psize lines[, columns]

Declares the number of lines, and optionally, the number of columns to use for each
page when generating listings.

Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.sbttl “subheading”

Use subheading as a subtitle (third line, immediately after the title line) when generat-
ing assembly listings. This directive affects subsequent pages, as well as the current
page, if it appears within ten lines of the top.

title “heading”

Use heading as the title (second line, immediately after the source file name and page
number) when generating assembly listings.

DS51317E-page 66

© 2005 Microchip Technology Inc.

Assembler Directives

6.10 DIRECTIVES THAT CONTROL CONDITIONAL ASSEMBLY

Conditional assembly directives are:
« .else

« .elseif expr

« .endif

e .err

* .error “string”

« .if expr

« .ifdef symbol

« .ifndef symbol .ifnotdef symbol

.else

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

Used in conjunction with the . if directive to provide an alternative path of assembly
code should the . if evaluate to false.

.elseif expr

Used in conjunction with the . if directive to provide an alternative path of assembly
code should the . if evaluate to false and a second condition exists.

.endif

Marks the end of a block of code that is only assembled conditionally.

err

If the assembler sees an .err directive, it will print an error message, and unless the
- Z option was used, it will not generate an object file. This can be used to signal an
error in conditionally compiled code.

.error “string”

Similar to . err, except that the specified string is printed.

Af expr

Marks the beginning of a section of code that is only considered part of the source
program being assembled if the argument expr is non-zero. The end of the conditional
section of code must be marked by an . endi £; optionally, you may include code for
the alternative condition, flagged by .else.

ifdef symbol

Assembles the following section of code if the specified symbol has been defined.

ifndef symbol
ifnotdef symbol

Assembles the following section of code if the specified symbol has not been defined.

© 2005 Microchip Technology Inc. DS51317E-page 67

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

6.11 DIRECTIVES FOR SUBSTITUTION/EXPANSION

Substitution/expansion directives are:

.exitm

.irp symbol, valuel [, ..., valuen]endr

.rpc symbol, valuel [, ..., valuen]endr

.macro symbol argl[=default] [, ..., argn [=default]]endm
.purgem “name”

.rept countendr

.exitm

Exit early from the current marco definition. See .macro directive.

irp symbol, value,

[, ..., valuey]

.endr

Evaluate a sequence of statements assigning different values to symbol. The
sequence of statements starts at the . irp directive, and is terminated by a . endr
directive. For each value, symbol is set to value, and the sequence of statements
is assembled. If no value is listed, the sequence of statements is assembled once,
with symbol set to the null string. To refer to symbol within the sequence of
statements, use \ symbol.

For example, assembling

.irp reg,0,1,2,3
push w\reg
.endr

is equivalent to assembling

push woO
push wl
push w2
push w3

DS51317E-page 68

© 2005 Microchip Technology Inc.

Assembler Directives

irpc symbol, value;

[, ..., value,]
<
3
.endr >
V9]
o >
Evaluate a sequence of statements assigning different values to symbol. The wn
sequence of statements starts at the . irpc directive and is terminated by a . endr ozo
directive. For each character in value, symbol is set to the character, and the o
sequence of statements is assembled. If no value is listed, the sequence of 5
statements is assembled once, with symbol set to the null string. To refer to symbol %]
within the sequence of statements, use \ symbol. g
For example, assembling =2
irpc reg, 0123 Q
push w\reg
.endr

is equivalent to assembling

push woO
push wl
push w2
push w3

.macro symbol arg,[=default]
[, ..., arg, [=default]]

.endm

Define macros that generate assembly output. A macro accepts optional arguments,
and can call other macros or even itself, recursively.

If a macro definition requires arguments, specify their names after the macro name,
separated by commas or spaces. To refer to arguments within the macro block, use
\argor &arg&. The second form can be used to combine an argument with additional
characters to create a symbol name.

For example, assembling:

.macro display int sym
mov \sym,wO0
rcall display

.endm

display int result

is equivalent to assembling:

mov result, w0
rcall display

© 2005 Microchip Technology Inc. DS51317E-page 69

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

In the next example, a macro is used to define HI- and LO-word constants for a 32-bit
integer.

.macro LCONST name,value

.equ \name, \value

.equ &name&LO, (\value) & OxFFFF

.equ sname&HI, ((\value)>>16) & OXFFFF
.endm

LCONST seconds_per_day 60*60%*24

mov #seconds_per dayLO, w0
mov #seconds_per dayHI,wl

pic30-as maintains a counter of how many macros have been executed in the
psuedo-variable \@. This value can be copied to the assembly output, but only within
a macro definition. In the following example, a recursive macro is used to allocate an
arbitrary number of labeled buffers.

.macro make buffers num,size
BUF\@: .space \size

.if (\num - 1)

make buffers (\num - 1),\size

.endif

.endm

.bss

make buffers 4,16 ; create BUFO0..BUF3, 16 bytes each

.purgem “name”

Undefine the macro name, so that later uses of the string will not be expanded. See
.marco directive.

-rept count

.endr

Repeat the sequence of lines between the . rept directive and the next . endr
directive count times.

For example, assembling

.rept 3
.long 0
.endr

is equivalent to assembling

.long 0
.long 0
.long 0

DS51317E-page 70 © 2005 Microchip Technology Inc.

Assembler Directives

6.12 MISCELLANEOUS DIRECTIVES

Miscellaneous directives are:

e .abort

« .appline line-number .In line-number
e .end

« .fail expression

* .ident “comment”

« .incbin “file"[,skip[,count]]

* .include “file”

* .loc file-number, line-number
« .pincbin "file"[,skip[,count]]

e .print “string”

« .version "string"

.abort

Prints out the message “.abort detected. Abandoning ship.” and exits the program.

.appline line-number
In line-number

Change the logical line number. The next line has that logical line number.

.end

End program

fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as
will print a warning message. If the value is less than 500, as will print an error
message. The message will include the value of expression. This can occasionally

be useful inside complex nested macros or conditional assembly.

ddent “comment”

Appends comment to the section named . comment. This section is created if it does
not exist. MPLAB LINK30 will ignore this section when allocating program and data
memory, but will combine all . comment sections together, in link order.

© 2005 Microchip Technology Inc.

DS51317E-page 71

<
U
-
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

inchbin “file”[,skip[,count]]

The . incbin directive includes £ile verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -1
command-line option (see Chapter 2. “MPLAB ASM30 Command Line Interface”).
Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count
argument indicates the maximum number of bytes to read. Note that the data is not
aligned in any way, so it is the user's responsibility to make sure that proper alignment
is provided both before and after the . incbin directive.

When used in an executable section, . incbin fills only the lower 16 bits of each
program word.

.include “file”

Provides a way to include supporting files at specified points in your source code. The
code is assembled as if it followed the point of the . include. When the end of the
included file is reached, assembly of the original file continues at the statement
following the . include.

loc file-number, line-number

.loc is essentially the same as . 1n. Expects that this directive occurs in the . text
section. file-number is ignored.

pincbin “file”[,skip[,count]]

The .pincbin directive includes £ile verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -1
command-line option (see Chapter 2. “MPLAB ASM30 Command Line Interface”).
Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count
argument indicates the maximum number of bytes to read. Note that the data is not
aligned in any way, so it is the user's responsibility to make sure that proper alignment
is provided both before and after the .pincbin directive.

.pincbinis supported only in executable sections, and fills all 24 bits of each program
word.

print “string”

Prints string on the standard output during assembly.

.version “string”

This directive creates a . note section and places into it an ELF formatted note of type
NT_VERSION. The note's name is set to string. .version is supported when the
output file format is ELF; otherwise, it is ignored.

DS51317E-page 72

© 2005 Microchip Technology Inc.

Assembler Directives

6.13 DIRECTIVES FOR DEBUG INFORMATION

Debug information directives are:

» .def name

o .dim

« .endef

« file “string”

* .line line-number

 .scl class

* .Size expression

 .size name, expression

e .sleb128 exprl |, ..., exprn]
« .tag structname

* .type value

 .type name, description

e .uleb128 exprl],...,exprn]
* .val addr

.def name

Begin defining debugging information for a symbol name; the definition extends until

the . endef directive is encountered.

.dim

Generated by compilers to include auxiliary debugging information in the symbol table.

Only permitted inside .def/.endef pairs.

.endef

Flags the end of a symbol definition begun with. def.

file “string”

Tells the assembler that it is about to start a new logical file. This information is placed

into the object file.

dine line-number

Generated by compilers to include auxiliary symbol information for debugging. Only

permitted inside .def/.endef pairs.

.scl class

Set the storage class value for a symbol. May only be used within . def/.endef pairs.

© 2005 Microchip Technology Inc.

DS51317E-page 73

<
U
=
>
W
>
2]
<
w
o
>
7
»
@
3
=2
@

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

.Size expression

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs.

.Size name, expression

Generated by compilers to include auxilliary information for debugging. This variation
of .size is supported when the output file format is ELF.

.sleb128 exprq [, ..., expryl

Signed little endian base 128. Compact variable length representation of numbers used
by the DWARF symbolic debugging format.

.tag structname

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs. Tags are used to link structure definitions in
the symbol table with instances of those structures.

type value

Records the integer value as the type attribute of a symbol table entry. Only permitted
within . def/.endef pairs.

type name, description

Sets the type of symbol name to be either a function symbol or an object symbol. This
variation of . type is supported when the output file format is ELF. For example,

.text

.type foo,@function
foo:

return

.data
.type dat,@object
dat: .word 0x1234

.uleb128 exprq[,....expryl

Unsigned little endian base 128. Compact variable length representation of numbers
used by the DWARF symbolic debugging format.

.val addr

Records the address addr as the value attribute of a symbol table entry. Only permitted
within .def/.endef pairs.

DS51317E-page 74

© 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 2—MPLAB LINK30 Linker

Chapter 7. LINKEr OVEIVIEWuuuuiiiiieeee e e eeeee ettt s s e e e e e e e e e e e aaaeeaeessnsannnn e e e eaeas 77
Chapter 8. MPLAB LINK30 Command Line Interfaceccccccevvvivvviiiiiiiiiiiieeeeeeeen, 83
Chapter 9. LINKEr SCIiPTS .uuuiiiiii ittt e e e e e e e e e e e e s e e e e e e eeeees 95
Chapter 10. LinKer ProCeSSING ...cccoeeiiiiiiiieeiiiiis i e e e ee et n e e e e e e aaas 129
Chapter 11. Linker EXamPIeS ...coooiiiiiiieieeeeeesrt et e e e e e e e 159

© 2005 Microchip Technology Inc. DS51317E-page 75

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 76 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 7. Linker Overview

7.1 INTRODUCTION

MPLAB LINK30 produces binary code from relocatable object code and archives for
the dsPIC30F/33F DSC and PIC24X MCU family of devices. The linker is a Windows
console application that provides a platform for developing executable code. The linker
is a part of the GNU linker from the Free Software Foundation.

7.2 HIGHLIGHTS

Topics covered in this chapter are:

« MPLAB LINK30 and Other Development Tools
* Feature Set
* Input/Output Files

7.3 MPLAB LINK30 AND OTHER DEVELOPMENT TOOLS

MPLAB LINKS30 translates object files from the 16-bit assembler (MPLAB ASM30) and
archives files from the 16-bit archiver/librarian (MPLAB LIB30) into an executable file.
See Figure 7-1 for an overview of the tools process flow.

FIGURE 7-1: TOOLS PROCESS FLOW

C Source Files
(*.c)
[
v Compiler
Driver
Program

———|

C Compiler

v

Source Files (*.s) J

‘

: N
Assembly Source _(
Files (*.s) Assembler

v

e B :
Object Files
Archiver (Librarian) I (*.0) J

v

Object File Libraries
(*-a)

A

Linker

A 4

T (
v MPLAB® IDE 1

Executable File Debug Tool

(*.exe)

Command Line
Simulator

v

© 2005 Microchip Technology Inc. DS51317E-page 77

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

7.4 FEATURE SET

Notable features of the linker include:

< Automatic or user-defined stack allocation

« Supports 16-bit Program Space Visibility (PSV) window
« Available for Windows

e Command Line Interface

« Linker scripts for all 16-bit devices

* Integrated component of MPLAB IDE

7.5 INPUT/OUTPUT FILES

Linker input and output files are listed below.

TABLE 7-1: LINKER FILES

Input Files:

.0 object file

.a library file
.gld linker script file
Output Files:

.exe, .out binary file
.map map file

Unlike the MPLINK linker, MPLAB LINK30 does not generate absolute listing files.
MPLAB LINK30 is capable of creating a map file and a binary file (that may or may not
contain debugging information).

7.5.1 Object Files

Relocatable code produced from source files. The linker accepts COFF format object
files by default. To specify COFF or ELF object format explicitly, use the -omf
command line option, as shown:

pic30-1d -omf=elf ...

Alternatively, the environment variable PIC30 OMF may be used to specify object file
format for the dsPIC30F language tools.

7.5.2 Library Files

A collection of object files grouped together for convenience.

7.5.3 Linker Script File

Linker scripts, or command files:

« Instruct the linker where to locate sections
» Specify memory ranges for a given part
« Can be customized to locate user-defined sections at specific addresses

For more on linker script files, see Chapter 9. “Linker Scripts”.

DS51317E-page 78 © 2005 Microchip Technology Inc.

Linker Overview

EXAMPLE 7-1: LINKER SCRIPT

OUTPUT_FORMAT ("coff-pic30")
OUTPUT_ARCH ("pic30")

MEMORY

{

data (a!xr) : ORIGIN 0x800, LENGTH = 1024
program (xr) : ORIGIN = 0, LENGTH = (8K * 2)

}

SECTIONS

{

.text

{
* (.vector) ;
* (.handle) ;
* (.text) ;

} sprogram

.bss (NOLOAD) :

{

*(.bss) ;
} >data
.data :
{
* (.data) ;
} >data
} /* SECTIONS */
WREGO = 0x00;
WREG1 = 0x02;

7.5.4 Linker Output File

By default, the name of the linker output binary file is a. out. You can override the
default name by specifying the -o option on the command line. The format of the binary
file is an executable COFF file by default. To specify a COFF or ELF executable file,
use the -omf option as shown in Section 7.5.1 “Object Files”.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

755 Map File

The map files produced by the linker consist of:
» Archive Member Table — lists the name of any members from archive files that are
included in the link.

« Memory Usage Report — shows the starting address and length of all output
sections in program memory, data memory and dynamic memory.

« External Symbol Table — lists all external symbols in data and program memory.
* Memory Configuration — lists all of the memory regions defined for the link.

« Linker Script and Memory Map — shows modules, sections and symbols that are
included in the link as specified in the linker script.

© 2005 Microchip Technology Inc. DS51317E-page 79

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

EXAMPLE 7-2: MAP FILE
Archive member included because of file (symbol)
./libpic30.a(crt0.0) tl.o (_reset)
Program Memory Usage
section address length (PC units) length (bytes) (dec)
.text 0 0x106 0x189 (393)
.libtext 0x106 0x80 0xc0 (192)
.dinit 0x186 0x8 oxc (12)
Total program memory used (bytes): 0x255 (597) 2%
Data Memory Usage
section address alignment gaps total length (dec)
bss 0x800 0 0x100 (256)
Total data memory used (bytes): 0x100 (256) 25%
Dynamic Memory Usage
region address maximum length (dec)
heap 0x900 0 (0)
stack 0x900 0x2f8 (760)
Maximum dynamic memory (bytes) : 0x2f8 (760)
External Symbols in Program Memory (by address):
0x0000fc main
0x000106 _reset
0x000106 _resetPRI
0x00011a _psv_init
0x00012a _data_init
External Symbols in Program Memory (by name) :
0x00012a _data_init
0x00011a _psv_init
0x000106 _reset
0x000106 _resetPRI
0x0000fc main
Memory Configuration
Name Origin Length Attributes
data 0x000800 0x000400 a !xr
program 0x000000 0x004000 Xr

DS51317E-page 80

© 2005 Microchip Technology Inc.

Linker Overview

Linker script and memory map

LOAD tl.o
.text 0x000000 0x106
* (.vector)
.vector 0x000000 O0xfc tl.0
* (.handle)
* (.text)
.text 0x0000fc Oxa tl.o
0x0000fc main
.bss 0x0800 0x100
*(.bss)
.bss 0x0800 0x100 tl.o
.data 0x0900 0x0
* (.data)
0x0000 WREGO0=0x0
0x0002 WREG1=0x2

LOAD ./libpic30.a
OUTPUT (t.exe coff-pic30)
LOAD data init

.libtext 0x000106 0x80
.libtext 0x000106 0x80 ./libpic30.a(crt0.0)
0x000106 _reset
0x000106 _resetPRI
0x00011la _psv_init
0x00012a _data init
.dinit 0x000186 0x8
.dinit 0x000186 0x8 data_init

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

© 2005 Microchip Technology Inc. DS51317E-page 81

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 82 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 8. MPLAB LINK30 Command Line Interface

8.1 INTRODUCTION

MPLAB LINK30 may be used on the command line interface as well as with MPLAB
IDE. For information on using the linker with MPLAB IDE, please refer to “dsPIC®
Language Tools Getting Started” (DS70094).

8.2 HIGHLIGHTS

Topics covered in this chapter are:

¢ Syntax

« Options that Control Output File Creation
» Options that Control Run-time Initialization
« Options that Control Informational Output
» Options that Modify the Link Map Output

8.3 SYNTAX

The linker supports a plethora of command line options, but in actual practice few of
them are used in any particular context.

pic30-1d [options] file...

Note: Command line options are case sensitive. I

For instance, a frequent use of pic30-1d is to link object files and archives to produce
a binary file. To link a file hello.o:

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

pic30-1d -o output hello.o -1lpic30

This tells pic30-14d to produce a file called output as the result of linking the file
hello.o with the archive 1ibpic30.a.

The command line options to pic30-1d may be specified in any order, and may be
repeated at will. Repeating most options with a different argument will either have no
further effect, or override prior occurrences (those further to the left on the command
line) of that option. Options that may be meaningfully specified more than once are
noted in the descriptions below.

Non-option arguments are object files that are to be linked together. They may follow,
precede or be mixed in with command line options, except that an object file argument
may not be placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you can specify other forms
of binary input files using -1 and the script command language. If no binary input files
are specified, the linker does not produce any output, and issues the message ‘No
input files'.

If the linker cannot recognize the format of an object file, it will assume that it is a linker
script. A script specified in this way augments the main linker script used for the link
(either the default linker script or the one specified by using - T). This feature permits
the linker to link against a file that appears to be an object or an archive, but actually
merely defines some symbol values, or uses INPUT or GROUP to load other objects.

© 2005 Microchip Technology Inc. DS51317E-page 83

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

For options whose names are a single letter, option arguments must either follow the
option letter without intervening white space, or be given as separate arguments
immediately following the option that requires them.

For options whose names are multiple letters, either one dash or two can precede the
option name; for example, -trace-symbol and - -trace-symbol are equivalent.
There is one exception to this rule. Multiple-letter options that begin with the letter o can
only be preceded by two dashes.

Arguments to multiple-letter options must either be separated from the option name
by an equals sign, or be given as separate arguments immediately following the
option that requires them. For example, - -trace-symbol srec and
--trace-symbol=srec are equivalent. Unique abbreviations of the names of
multiple-letter options are accepted.

8.4 OPTIONS THAT CONTROL OUTPUT FILE CREATION

Output file creation options are:

e --architecture arch (-A arch)
e - (archives -), --start-group archives, --end-group
e -d, -dc, -dp

¢ --defsym sym=expr

e --discard-all (-x)

e --discard-locals (-X)

e --fill-upper value

e --force-exe-suffix

e --force-link

e --no-force-1link

e —-isr

* --no-isr

e --library libname (-1 libname)
e --library-path <dir> (-L <dirs>)
* --no-keep-memory

* --noinhibit-exec

e -omf=format

e --output file (-o file)

* -p, --processor PROC

e --relocatable (-r, -1, -Ur)

e --retain-symbols-file file

e --script file (-T file)

e --smart-io

* --no-smart-io

e --strip-all (-s)

e --strip-debug (-S)

* -Tbss address

¢ -Tdata address

e -Ttext address

e --undefined symbol (-u symbol)
e --no-undefined

e --wrap symbol

DS51317E-page 84

© 2005 Microchip Technology Inc.

MPLAB LINK30 Command Line Interface

8.4.1 --architecture arch (-A arch)

Set architecture.

The architecture argument identifies the particular architecture in the 16-bit devices,
enabling some safeguards and modifying the archive-library search path.

8.4.2 -(archives -), --start-group archives,
- -end-group

Start and end a group.

The archives should be a list of archive files. They may be either explicit file names, or
-1 options. The specified archives are searched repeatedly until no new undefined
references are created. Normally, an archive is searched only once in the order that it
is specified on the command line. If a symbol in that archive is needed to resolve an
undefined symbol referred to by an object in an archive that appears later on the
command line, the linker would not be able to resolve that reference. By grouping the
archives, they will all be searched repeatedly until all possible references are resolved.
Using this option has a significant performance cost. Itis best to use it only when there
are unavoidable circular references between two or more archives.

8.4.3 -d, -dec, -dp

Force common symbols to be defined.
Assign space to common symbols even if a relocatable output file is specified (with - r).

8.4.4 --defsym sym=expr %
Define a symbol. ;
Create a global symbol in the output file, containing the absolute address given by IC_D
expr. You may use this option as many times as necessary to define multiple symbols >
in the command line. A limited form of arithmetic is supported for the expr in this =
context: you may give a hexadecimal constant or the name of an existing symbol, or 8
use + and - to add or subtract hexadecimal constants or symbols. —
=
Note: There should be no white space between sym, the equals sign (“=") and g
expr. =

8.45 --discard-all (-x)

Discard all local symbols.

8.4.6 --discard-locals (-X)

Discard temporary local symbols.

8.4.7 --fill-upper value

Set fill value for upper byte of data.

Use value as the upper byte (bits 16-23) when encoding data into program memory.
This option affects the encoding of sections created with the psv or eedata attribute,
and also the data initialization template if the - -no-pack-data option is enabled. If
this option is not specified, a default value of 0 will be used.

8.4.8 --force-exe-suffix

Force generation of file with . exe suffix.

© 2005 Microchip Technology Inc. DS51317E-page 85

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

8.4.9 --force-link

Force linking of objects that may not be compatible.

If a target processor has been specified with the -p, - -processor option, the linker
will compare it to information contained in the objects combined during the link. If a pos-
sible conflict is detected, an error (in the case of a possible instruction set incompatibil-
ity) or a warning (in the case of possible register incompatibility) will be reported.
Specify this option to override such errors or warnings.

8.4.10 --no-force-link

Do not force linking of objects that may not be compatible. (This is the default.)

8.4.11 --isr

Create an interrupt function for unused vectors. (This is the default.)

If afunctionnamed DefaultInterrupt is defined by an application, the linker will
insert its address into unused slots in the primary and alternate vector tables. If this
function is not defined, create a function that consists of a single reset instruction and
insert the address of this function.

8.4.12 --no-isr

Don't create an interrupt function for unused vectors.

Do not create a default interrupt function if an application does not provide one. The
value of 0 will be inserted into unused slots in the primary and alternate vector tables.

8.4.13 --library libname (-1 libname)

Search for library 1ibname.

Add archive file 1ibname to the list of files to link. This option may be used any number
of times. pic30-1d will search its path-list for occurrences of 1iblibname.a for
every 1ibname specified. The linker will search an archive only once, at the location
where it is specified on the command line. If the archive defines a symbol that was
undefined in some object that appeared before the archive on the command line, the
linker will include the appropriate file(s) from the archive. However, an undefined
symbol in an object appearing later on the command line will not cause the linker to
search the archive again. See the - (option for a way to force the linker to search
archives multiple times. You may list the same archive multiple times on the command
line.

If the format of the archive file is not recognized, the linker will ignore it. Therefore, a
version mismatch between libraries and the linker may result in “undefined symbol”
errors.

If fle 1iblibname.a is not found, the linker will search for an omf-specific version of
the library with name 1iblibname-coff.a or l1iblibname-elf.a.

8.4.14 --library-path <dir> (-L <dir>)

Add <dirs> to library search path.

Add path <dir> to the list of paths that pic30-1d will search for archive libraries and
pic30-1d control scripts. You may use this option any number of times. The directo-
ries are searched in the order in which they are specified on the command line. All -L
options apply to all -1 options, regardless of the order in which the options appear. The
library paths can also be specified in a link script with the SEARCH_DIR command.
Directories specified this way are searched at the point in which the linker script
appears in the command line.

DS51317E-page 86

© 2005 Microchip Technology Inc.

MPLAB LINK30 Command Line Interface

8.4.15 --no-keep-memory

Use less memory and more disk I/O.

pic30-1d normally optimizes for speed over memory usage by caching the symbol
tables of input files in memory. This option tells pic30-1d to instead optimize for
memory usage, by rereading the symbol tables as necessary. This may be required if
pic30-1d runs out of memory space while linking a large executable.

8.4.16 --noinhibit-exec

Create an output file even if errors occur.

Retain the executable output file whenever it is still usable. Normally, the linker will not
produce an output file if it encounters errors during the link process; it exits without
writing an output file when it issues any error whatsoever.

8.4.17 -omf=format

pic30-1d produces COFF format output binary files by default. Use this option to
specify COFF or ELF format explicitly. Alternatively, the environment variable
PIC30_ OMF may be used to specify object file format for the dsPIC30F language tools.

Note: The inputand output file formats must match. The -om£ option can be used
to specify both input and output file formats.

8.4.18 --output file (-o file)

Set output file name.

Use file as the name for the program produced by pic30-14; if this option is not
specified, the name a . out is used by default.

8.4.19 -p,--processor PROC

Specify the target processor (e.g., 30F2010).

Specify a target processor for the link. This information will be used to detect possible
incompatibility between objects during the link. See - -force-1ink for more informa-
tion.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

8.4.20 --relocatable (-r, -i, -Ur)

Generate relocatable output.

l.e., generate an output file that can in turn serve as input to pic30-1d. This is often
called partial linking. If this option is not specified, an absolute file is produced.

8.4.21 --retain-symbols-file file

Keep only symbols listed in file.

Retain only the symbols listed in the file £ile, discarding all others. fileis simply a
flat file, with one symbol name per line. This option is especially useful in environments
where a large global symbol table is accumulated gradually, to conserve run-time
memory. - -retain-symbols-£file does notdiscard undefined symbols, or symbols
needed for relocations. You may only specify - -retain-symbols-file once inthe
command line. It overrides -s and -S.

© 2005 Microchip Technology Inc. DS51317E-page 87

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

8.4.22 --script file (-T file)

Read linker script.

Read link commands from the file £ile. These commands replace pic30-1d’s
default link script (rather than adding to it), so £1i1e must specify everything necessary
to describe the target format. If £ile does not exist, pic30-1d looks for it in the
directories specified by any preceding -L options. Multiple - T options accumulate.

8.4.23 --smart-io

Merge 1/O library functions when possible. (This is the default.)

Several I/O functions in the standard C library exist in multiple versions. For example,
there are separate output conversion functions for integers, short doubles and long
doubles. If this option is enabled, the linker will merge function calls to reduce memory
usage whenever possible. Library function merging will not result in a loss of
functionality.

8.4.24 --no-smart-io

Don't merge /O library functions
Do not attempt to conserve memory by merging 1/O library function calls. In some
instances the use of this option will increase memory usage.

8.425 --strip-all (-s)

Strip all symbols.
Omit all symbol information from the output file.

8.4.26 --strip-debug (-8S)

Strip debugging symbols.
Omit debugger symbol information (but not all symbols) from the output file.

8.4.27 -Tbss address

Set address of .bss section.

Use address as the starting address for the bss segment of the output file. address
must be a single hexadecimal integer; for compatibility with other linkers, you may omit
the leading ‘Ox’ usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

8.4.28 -Tdata address

Set address of . data section.

Use address as the starting address for the data segment of the output file. address
must be a single hexadecimal integer; for compatibility with other linkers, you may omit
the leading ‘Ox’ usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

8.4.29 -Ttext address

Set address of . text section.

Use address as the starting address for the text segment of the output file. address
must be a single hexadecimal integer; for compatibility with other linkers, you may omit
the leading ‘Ox’ usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

DS51317E-page 88

© 2005 Microchip Technology Inc.

MPLAB LINK30 Command Line Interface

8.4.30 --undefined symbol (-u symbol)

Start with undefined reference to symbol.

Force symbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. -u may be
repeated with different option arguments to enter additional undefined symbols.

8.4.31 --no-undefined

Allow no undefined symbols.

8.4.32 --wrap symbol

Use wrapper functions for symbol

Use a wrapper function for symbol. Any undefined reference to symbol will be resolved
to wrap symbol. Any undefined referenceto real symbol will be resolved to
symbol. This can be used to provide a wrapper for a system function. The wrapper
function should be called wrap symbol. If it wishes to call the system function, it
should call real symbol.

Here is a trivial example:

void *
__wrap malloc (int c)

{

printf ("malloc called with %$1d\n", c);
return _ real malloc (c);

}

If you link other code with this file using - -wrap malloc, then all calls to malloc will
call the function __wrap malloc instead. Thecallto real mallocin
__wrap_malloc will call the real malloc function. You may wish to provide a
__real malloc function as well, so that links without the - -wrap option will succeed.
If you do this, you should not put the definition of real malloc in the same file as
__wrap_malloc;if you do, the assembler may resolve the call before the linker has a
chance to wrap it to malloc.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

8.5 OPTIONS THAT CONTROL RUN-TIME INITIALIZATION

Run-time initialization options are:

e --data-init

e --no-data-init
* --handles

* --no-handles

e --heap size

* --pack-data

* --no-pack-data
e --stack size

8.5.1 --data-init

Support initialized data. (This is the default.)

Create a special output section named .dinit as a template for the run-time initializa-
tion of data. The C start-up module in 1ibpic30. a interprets this template and copies
initial data values into initialized data sections. Other data sections (such as .bss) are
cleared before the main () function is called. Note that the persistent data section
(.pbss) is not affected by this option.

© 2005 Microchip Technology Inc. DS51317E-page 89

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

8.5.2 --no-data-init

Don'’t support initialized data.

Suppress the template which is normally created to support run-time initialization of
data. When this option is specified, the linker will select a shorter form of the C start-up
module in 1ibpic30.a. If the application includes data sections which require
initialization, a warning message will be generated and the initial data values
discarded. Storage for the data sections will be allocated as usual.

8.5.3 --handles

Support far code pointers. (This is the default.)

Create a special output section named . handle as a jump table for accessing far code
pointers. Entries in the jump table are used only when the address of a code pointer
exceeds 16 bits. The jump table must be loaded in the lowest range of program
memory (as defined in the linker scripts).

8.5.4 --no-handles

Don’t support far code pointers.

Suppress the handle jump table which is normally created to access far code pointers.
The programmer is responsible for making certain that all code pointers can be reached
with a 16 bit address. If this option is specified and the address of a code pointer
exceeds 16 bits, an error is reported.

8.5.5 --heap size

Set heap to size bytes.

Allocate a run-time heap of size bytes for use by C programs. The heap is allocated
from unused data memory. If not enough memory is available, an error is reported.

8.5.6 --pack-data

Pack initial data values. (This is the default.)

Fill the upper byte of each instruction word in the data initialization template with data.
This option conserves program memory and causes the template to appear as random
and possibly invalid instructions if viewed in the disassembler.

8.5.7 --no-pack-data

Don’t pack initial data values.

Fill the upper byte of each instruction word in the data initialization template with 0x0 or
another value specified with --£i11-upper. This option consumes additional pro-
gram memory and causes the template to appear as NOP instructions if viewed in the
disassembler (and will be executed as such by the 16-bit device).

8.5.8 --stack size

Set minimum stack to size bytes (default=16).

By default, the linker allocates all unused data memory for the run-time stack.
Alternatively, the programmer may allocate the stack by declaring two global symbols:
__SP initand __ SPLIM init. Use this option to ensure that at least a minimum
sized stack is available. The actual stack size is reported in the link map output file. If
the minimum size is not available, an error is reported.

DS51317E-page 90

© 2005 Microchip Technology Inc.

MPLAB LINK30 Command Line Interface

8.6 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT

Information output options are:
e --check-sections

* --no-check-sections

e --help

* --no-warn-mismatch

* --report-mem

e --trace (-t)

* --trace-symbol symbol (-y symbol)
e -V

* --verbose

e --version (-v)

* --warn-common

* --warn-once

* --warn-section-align

8.6.1 --check-sections

Check section addresses for overlaps. (This is the default.)

8.6.2 --no-check-sections

Do not check section addresses for overlaps.

8.6.3 --help

Print option help.
Print a summary of the command line options on the standard output and exit.

8.6.4 --no-warn-mismatch

Do not warn about mismatched input files.

Normally pic30-1d will give an error if you try to link together input files that are
mismatched for some reason, perhaps because they have been compiled for different
processors or for different endiannesses. This option tells pic30-14d that it should
silently permit such possible errors. This option should only be used with care, in cases
when you have taken some special action that ensures that the linker errors are
inappropriate.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

Note: This option does not apply to library files specified with -1.

8.6.5 - -report-mem

Print a memory usage report.

Print a summary of memory usage to standard output during the link. This report also
appeatrs in the link map.

8.6.6 --trace (-t)

Trace file.
Print the names of the input files as pic30-1d processes them.

© 2005 Microchip Technology Inc. DS51317E-page 91

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

8.6.7 --trace-symbol symbol (-y symbol)
Trace mentions of symbol.

Print the name of each linked file in which symbol appears. This option may be given
any number of times. On many systems, it is necessary to prep-end an underscore to
the symbol. This option is useful when you have an undefined symbol in your link but
do not know where the reference is coming from.

8.6.8 -V

Print version and other information.

8.6.9 --verbose

Output lots of information during link.

Display the version number for pic30-1d. Display the input files that can and cannot
be opened. Display the linker script if using a default built-in script.

8.6.10 --version (-v)

Print version information.

8.6.11 - -warn-common

Warn about duplicate common symbols.

Warn when a common symbol is combined with another common symbol or with a
symbol definition. Unix linkers allow this somewhat sloppy practice, but linkers on some
other operating systems do not. This option allows you to find potential problems from
combining global symbols. Unfortunately, some C libraries use this practice, so you
may get some warnings about symbols in the libraries as well as in your programs.

There are three kinds of global symbols, illustrated here by C examples:

int i = 1;

A definition, which goes in the initialized data section of the output file.

extern int 1i;

An undefined reference, which does not allocate space. There must be either a
definition or a common symbol for the variable somewhere.

int 1i;

A common symbol. If there are only (one or more) common symbols for a variable, it
goes in the uninitialized data area of the output file.

The linker merges multiple common symbols for the same variable into a single
symbol. If they are of different sizes, it picks the largest size. The linker turns a common
symbol into a declaration, if there is a definition of the same variable.

The - -warn-common option can produce five kinds of warnings. Each warning
consists of a pair of lines: the first describes the symbol just encountered, and the
second describes the previous symbol encountered with the same name. One or both
of the two symbols will be a common symbol.

Turning a common symbol into a reference, because there is already a definition for the
symbol.

file(section): warning: common of ‘symbol’ overridden by definition
file(section): warning: defined here
Turning a common symbol into a reference, because a later definition for the symbol is

encountered. This is the same as the previous case, except that the symbols are
encountered in a different order.

DS51317E-page 92

© 2005 Microchip Technology Inc.

MPLAB LINK30 Command Line Interface

file(section): warning: definition of ‘symbol’ overriding common
file(section): warning: common is here

Merging a common symbol with a previous same-sized common symbol.

file(section): warning: multiple common of ‘symbol’
file(section): warning: previous common is here

Merging a common symbol with a previous larger common symbol.

file(section): warning: common of ‘symbol’ overridden by larger common
file(section): warning: larger common is here

Merging a common symbol with a previous smaller common symbol. This is the same
as the previous case, except that the symbols are encountered in a different order.
file(section): warning: common of ‘symbol’ overriding smaller common

file(section): warning: smaller common is here

8.6.12 --warn-once

Warn only once per undefined symbol.

Only warn once for each undefined symbol, rather than once per module that refers to
it.

8.6.13 --warn-section-align

Warn if start of section changes due to alignment.

Warn if the address of an output section is changed because of alignment. This means
a gap has been introduced into the (normally sequential) allocation of memory.

Typically, an input section will set the alignment. The address will only be changed if it
is not explicitly specified; that is, if the SECTIONS command does not specify a start
address for the section.

8.7 OPTIONS THAT MODIFY THE LINK MAP OUTPUT

Link map output modifying options are:
e --cref
e --print-map (-M)

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

e -Map file

8.7.1 --cref

Output cross reference table.

If a linker map file is being generated, the cross-reference table is printed to the map
file. Otherwise, it is printed on the standard output. The format of the table is intention-
ally simple, so that a script may easily process it if necessary. The symbols are printed
out, sorted by name. For each symbol, a list of file names is given. If the symbol is
defined, the first file listed is the location of the definition. The remaining files contain
references to the symbol.

© 2005 Microchip Technology Inc. DS51317E-page 93

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

8.7.2 --print-map (-M)

Print map file on standard output.

Print a link map to the standard output. A link map provides information about the link,
including the following:

Where object files and symbols are mapped into memory.
How common symbols are allocated.
All archive members included in the link, with a mention of the symbol which caused

the archive member to be brought in.
8.7.3 -Map file

Write a map file.

Print a link map to the file file. See the description of the --print-map (-M)
option.

DS51317E-page 94

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 9. Linker Scripts

9.1 INTRODUCTION

Linker scripts are used to control MPLAB LINK30 functions. You can customize your
linker script for specialized control of the linker.

9.2 HIGHLIGHTS

Topics covered in this chapter are:

« Overview of Linker Scripts

e Command Line Information

« Contents of a Linker Script
 Creating a Custom Linker Script

« Linker Script Command Language
» Expressions in Linker Scripts

9.3 OVERVIEW OF LINKER SCRIPTS

Linker scripts control all aspects of the link process, including:

« allocation of data memory and program memory

* mapping of sections from input files into the output file

« construction of special data structures (such as interrupt vector tables)

« assignment of absolute SFR addresses for the target device

Linker scripts are text files that contain a series of commands. Each command is either
a keyword, possibly followed by arguments, or an assignment to a symbol. Comments

may be included just as in C, delimited by /* and */. As in C, comments are
syntactically equivalent to white space.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

The 16-bit Language Tools include a set of standard linker scripts: device-specific linker
scripts (e.g., p30£3014 .g1d) and one generic linker script (p30sim.gld). If you will
be using the MPLAB ICE 4000 emulator, you will need to choose the “e” version of the
device linker script (e.g., p30£3014e.g1d) so that XY data will be allocated properly
for this tool.

© 2005 Microchip Technology Inc. DS51317E-page 95

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.4

9.5

COMMAND LINE INFORMATION

Linker scripts are specified on the command line using either the - T option or the
--script option (see Section 8.4 “Options that Control Output File Creation”):

pic30-1d -o output.cof output.o --script ..\support\gld\p30£3014.gld

If the linker is invoked through pic30-gcc, add the -W1, prefix to allow the option to
be passed to the linker:
pic30-gcc -o output.cof output.s -Wl,--script,

.. \support\gld\p30£3014.gld
If no linker script is specified, the linker will use an internal version known as the default
linker script. The default linker script has memory range information and SFR
definitions that are appropriate for sim3 0, the command line simulator. The default
linker script can be examined by invoking the linker with the - -verbose option:

pic30-1d --verbose

Note: The default linker script is functionally equivalent to the generic linker script
p30sim.gld.

CONTENTS OF A LINKER SCRIPT

In the next several sections, a device-specific linker script for the dsPIC30F3014 will be
examined. The linker script contains the following categories of information:

» Processor and Entry Points

* Memory Region Information

« Base Memory Addresses

« Input/Output Section Map

* Interrupt Vector Tables

* SFR Addresses

9.5.1 Processor and Entry Points

The first several lines of a linker script define the processor and entry points:
/*

** Linker Script for p30£3014

*/

OUTPUT ARCH("30£3014")

EXTERN(_ resetPRI)

EXTERN(_ resetALT)

The oUTPUT ARCH command specifies the target processor. The EXTERN commands
force two C run-time start-up modules to be loaded from archives. The linker will select
one and discard the other, based on the --data-init option.

DS51317E-page 96

© 2005 Microchip Technology Inc.

Linker Scripts

9.5.2 Memory Region Information

The next section of a linker script defines the various memory regions for the target
device using the MEMORY command.

For the dsPIC30F3014, several memory regions are defined:

/*

** Memory Regions

*/

MEMORY

{
data : ORIGIN = 0x800, LENGTH = 2048
program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)
reset : ORIGIN = O, LENGTH = (4)
ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)
__FOscC : ORIGIN = 0xF80000, LENGTH = (2)
__FWDT : ORIGIN = 0xF80002, LENGTH = (2)
__FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
__CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
__CONFIG5 : ORIGIN = 0xF80008, LENGTH = (2)
__FGS : ORIGIN = OxF8000A, LENGTH = (2)
eedata : ORIGIN = 0x7FFCO00, LENGTH = (1024)

}

Each memory region is range-checked as sections are added during the link process.
If any region overflows, a link error is reported.

MEMORY regions are:

« Data Region

* Program Region

« Reset, Ivt and Aivt Regions
» Fuse Configuration Regions
* EEDATA Memory Region

9.5.21 DATA REGION

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

data : ORIGIN = 0x800, LENGTH = 2048

The data region corresponds to the RAM memory of the dsPIC30F3014 device, and is
used for both initialized and uninitialized variables. The starting address of region data
is 0x800. This is the first usable location in RAM, after the space reserved for
memory-mapped Special Function Registers (SFRS).

© 2005 Microchip Technology Inc. DS51317E-page 97

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.5.2.2 PROGRAM REGION

program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)

The program region corresponds to the Flash memory of the dsPIC30F3014 device
that is available for user code, library code and constants. The starting address of
region program is 0x100. This is the first location in Flash that is available for general
use. Addresses below 0x100 are reserved for the reset instruction and the two vector
tables.

The length specification of the program region deserves particular emphasis. The
(8K * 2) portion indicates that the dsPIC30F3014 has 8K instruction words of Flash
memory, and that each instruction word is 2 address units wide. The - 0x100 portion
reflects the fact that some of the Flash is reserved for the reset instruction and vector
tables.

Note: Instruction words in the 16-bit devices are 24 bits, or 3 bytes, wide. How-
ever the program counter increments by 2 for each instruction word for
compatibility with data memory. Address and lengths in program memory
are expressed in program counter units.

9.5.2.3 RESET, IVT AND AIVT REGIONS

reset : ORIGIN = 0, LENGTH = (4)

The reset region corresponds to the 16-bit reset instruction at address 0 in program
memory. The reset region is 4 address units, or 2 instruction words, long. This region
always contains a GOTO instruction that is executed upon device reset. The GOTO
instruction is encoded by data commands in the section map (see Section 9.5.4.1
“Output Section .reset”).

ivt : ORIGIN 0x04, LENGTH (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)

The ivt and aivt regions correspond to the interrupt vector table and alternate
interrupt vector table, respectively. Each interrupt vector table contains 62 entries, each
2 address units in length. Each entry represents a word of program memory, which
contains a 24-bit address. The linker initializes the vector tables with appropriate data,
according to standard naming conventions.

Regions reset, ivt and aivt comprise the low address portion of Flash memory that
is not available for user programs.

9.5.24 FUSE CONFIGURATION REGIONS

__FOSC : ORIGIN = 0xF80000, LENGTH = (2)
__FWDT : ORIGIN = 0xF80002, LENGTH = (2)
__FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
__CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
__CONFIG5 : ORIGIN = 0xF80008, LENGTH = (2)

FGS : ORIGIN = 0xF8000A, LENGTH = (2)

These regions correspond to the dsPIC30F3014 configuration registers.

Each fuse configuration region is exactly one instruction word long. If sections are
defined in the application source code with the standard naming convention, the
section contents will be written into the appropriate configuration register(s). Otherwise
the registers are left uninitialized. If more than one value is defined for any configuration
region, a link error will be reported.

DS51317E-page 98

© 2005 Microchip Technology Inc.

Linker Scripts

9.5.25 EEDATA MEMORY REGION

eedata : ORIGIN = 0x7FFC00, LENGTH = (1024)

The eedata region corresponds to non-volatile data flash memory located in high
memory. Although located in program memory space, the data flash is organized like
data memory. The total length is 1024 bytes.

9.5.3 Base Memory Addresses

This portion of the linker script defines the base addresses of several output sections
in the application. Each base address is defined as a symbol with the following syntax:
name = value;

The symbols are used to specify load addresses in the section map. For the
dsPIC30F3014, several base memory addresses are defined:

/*

** Base Memory Addresses - Program Memory

*/

__RESET BASE = 0; /* Reset Instruction */
__IVT BASE = 0x04; /* Interrupt Vector Table */
__AIVT BASE = 0x84; /* Alternate Interrupt Vector Table */
__CODE_BASE = 0x100; /* Handles, User Code, Library Code */
/*

** Base Memory Addresses - Data Memory

*/

__SFR_BASE = 0; /* Memory-mapped SFRs */
__DATA BASE = 0x800; /* X and General Purpose Data Memory */
__YDATA BASE = 0x0C00; /* Y Data Memory for DSP Instructions */

954 Input/Output Section Map

The section map is the heart of the linker script. It defines how input sections are
mapped to output sections. Note that input sections are portions of an application that
are defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

For example, suppose that an application is comprised of five different functions, and
each function is defined in a separate source file. Together, these source files will
produce five input sections. The linker will combine these input sections into a single
output section. Only the output section has an absolute address. Input sections are
always relocatable.

If any input or output sections are empty, there is no penalty or storage cost for the
linked application. Most applications will use only a few of the many sections that
appear in the section map.

< Output Section .reset

« Output Section .text

 Data Initialization Template

« User-Defined Section in Program Memory

« Output Sections in Configuration Memory

» User-Defined Section in Data Flash Memory

« MPLAB ICD 2 Debugger Memory

» User-defined Section in Data Memory

© 2005 Microchip Technology Inc. DS51317E-page 99

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.54.1 OUTPUT SECTION .RESET

Section .reset contains a GOTO instruction, created at link time, from output section data
commands:

/*

** Reset Instruction

*/

.reset _ RESET BASE :

{

SHORT (ABSOLUTE (__reset)) ;
SHORT (0x04) ;
SHORT ((ABSOLUTE (__reset) >> 16) & Ox7F);
SHORT (0) ;
} sreset

Each SHORT () data command causes a 2 byte value to be included. There are two
expressions which include the symbol __reset, which by convention is the first
function invoked after a device reset. Each expression calculates a portion of the
address of the reset function. These declarations encode a 16-bit GOTO instruction,
which is two instruction words long.

The ABSOLUTE () function specifies the final value of a program symbol after linking.
If this function were omitted, a relative (before-linking) value of the program symbol
would be used.

The >reset portion of this definition indicates that this section should be allocated in
the reset memory region.

DS51317E-page 100

© 2005 Microchip Technology Inc.

Linker Scripts

9.5.4.2 OUTPUT SECTION .TEXT

Section . text collects executable code from all of the application’s input files.

/*

** User Code and Library Code

*/

.text _ CODE_BASE :

{

* (.handle) ;
*(.libe) *(.libm) *(.libdsp); /* keep together in this order */
* (.1lib¥) ;
*(.text) ;

} sprogram

Several different input sections are collected into one output section. This was done to
ensure the order in which the input sections are loaded. The input section .handle is
used for function pointers and is loaded first at low addresses. This is followed by the
library sections .1ibc, .1ibm and .1libdsp. These sections must be grouped
together to ensure locality of reference. The wildcard pattern . 1ib* then collects other
libraries such as the peripheral libraries (which are allocated in section .1libperi).
Finally input sections named .text are included.

Note: Input section . text is reserved for application code. MPLAB ASM30 will
automatically locate code in section . text unless instructed otherwise.

9.5.4.3 DATA INITIALIZATION TEMPLATE

<

Section .dinit is created by the linker and contains information about uninitialized E
(.bss) and initialized (. data) sections in data memory. This information is used by the >
C start-up module (crt0.0) in the run-time library 1ibpic30. a to initialize data memory w
before the application’s main entry point is called. —
=z

/* =
** Initialized Data Template W
*/ ©
. .
.dinit: 5
=

@

{
* (.dinit) ;
} >program
For information about data initialization, see Section 10.8.2 “Data Initialization
Template”.

© 2005 Microchip Technology Inc. DS51317E-page 101

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.54.4 USER-DEFINED SECTION IN PROGRAM MEMORY

A stub is included for user-defined output sections in program memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a “custom linker script.” In practice, it is often
simpler to use section attributes in source code to locate user-defined sections in
program memory. See Chapter 11. “Linker Examples” for more information.

/*

** User-Defined Section in Program Memory

* %

** note: can specify an address using

* % the following syntax:
* *

* * usercode 0x1234

* % {

* * * (usercode) ;

* % } >program

*/

usercode :

{
* (usercode) ;
} sprogram

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in program memory can not be

supported.

Note: Each memory region has its own location counter.

9.54.5 OUTPUT SECTIONS IN CONFIGURATION MEMORY

Several sections are defined that match the Fuse Configuration memory regions:

/*
** Configuration Fuses
*/
__FOSC :

{ *(__FoscC.sec) }
__FWDT :

{ *(__FWDT.sec) }
__FBORPOR :

{ *(__FBORPOR.sec) }
__CONFIG4

{ *(__CONFIG4.sec) }
__CONFIGS

{ *(__CONFIGS5.sec) }
_FGS :

{ *(__FGS.sec) }

> _FOSC
> _FWDT

> FBORPOR

> _CONFIG4
> _CONFIG5
> FGS

The Configuration Fuse sections are supported by macros defined in the 16-bit
device-specific include files in support/inc and the C header files in support /h.

DS51317E-page 102

© 2005 Microchip Technology Inc.

Linker Scripts

For example, to disable the Watchdog Timer in assembly language:

.include "p30£f6014.inc"
config _FWDT, WDT_OFF

The equivalent operation in C would be:

#include "p30£f6014.h"
__FWDT (WDT_OFF) ;

Configuration macros have the effect of changing the current section. In C, the macro
should be used outside of any function. In assembly language, the macro should be
followed by a . section directive.

9.5.4.6 USER-DEFINED SECTION IN DATA FLASH MEMORY

A stub is included for user-defined output sections in EEData memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a "custom linker script." In practice, it is often sim-
pler to use section attributes in source code to locate user-defined sections in data flash
memory. See Chapter 11. “Linker Examples” for more information.

/*

** User-Defined Section in Data Flash Memory

* *

** note: can specify an address using

* ok the following syntax:
* %
*k eedata O0x7FF100
* % {
* % * (eedata) ;
* ok } seedata
*/
eedata :
{
* (eedata) ;

} >eedata

An exact, absolute starting address can be specified if necessary. If the address is
greater than the current location counter, the intervening memory will be skipped and
filled with zeros. If the address is less than the current location counter, a section over-
lap will occur. Whenever two output sections occupy the same address range, a link
error will reported. Overlapping sections in eedata memory can not be supported.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

Note: Each memory region has its own location counter.

© 2005 Microchip Technology Inc. DS51317E-page 103

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.54.7 MPLAB ICD 2 DEBUGGER MEMORY

The MPLAB ICD 2 debugger requires a portion of data memory for its variables and
stack. Since the debugger is linked separately and in advance of user applications, the
block of memory must be located at a fixed address and dedicated for use by
MPLAB ICD 2.

/*

** TCD Debug Exec

* %

** This section provides optional storage for
** the ICD2 debugger. Define a global symbol

** named ICD2RAM to enable ICD2. This section
** must be loaded at data address 0x800.

*/

.icd __ DATA BASE (NOLOAD) :

{

. += (DEFINED (__ICD2RAM) ? 0x50 : 0);
} > data

Section . icd is designed to optionally reserve memory for MPLAB ICD 2. If global
symbol __ICD2RaAM is defined at link time, 0x50 bytes of memory at address 0x800
will be reserved. The (NOLOAD) attribute indicates that no initial values need to be
loaded for this section.

9.54.8 USER-DEFINED SECTION IN DATA MEMORY

A stub is included for user-defined output sections in data memory. This stub may be
edited as needed to support the application requirements. Once a standard linker script
has been modified, it is called a “custom linker script.” In practice, it is often simpler to
use section attributes in source code to locate user-defined sections in data memory.
See Chapter 11. “Linker Examples” for more information.

/*

** User-Defined Section in Data Memory

* %

** note: can specify an address using

* % the following syntax:
* %

** userdata 0x1234

* % {

* % * (userdata) ;

* % } >data

*/

userdata :

{
* (userdata) ;
} >data

An exact, absolute starting address can be specified, if necessary. If the address is

greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in data memory cannot be supported.

DS51317E-page 104 © 2005 Microchip Technology Inc.

Linker Scripts

955 Interrupt Vector Tables

The primary and alternate interrupt vector tables are defined in a second section map,
near the end of the standard linker script:

/*

** Section Map for Interrupt Vector Tables

*/

SECTIONS

{
/*

** Primary Interrupt Vector Table
*/
.ivt __ IVT BASE :

{

LONG (DEFINED (__ReservedTrapO) ? ABSOLUTE(_ _ReservedTrapO)
ABSOLUTE (__DefaultInterrupt)) ;

LONG (DEFINED(__OscillatorFail) ? ABSOLUTE(_ _OscillatorFail)
ABSOLUTE (__DefaultInterrupt)) ;

LONG (DEFINED (__AddressError) ? ABSOLUTE (__AddressError)
ABSOLUTE (__DefaultInterrupt)) ;

LONG (DEFINED (__Interrupt53) ? ABSOLUTE(__Interrupt53)
ABSOLUTE (__DefaultInterrupt)) ;
}osivt
The vector table is defined as a series of LONG () data commands. Each vector table
entry is 4 bytes in length (3 bytes for a program memory address plus an unused
phantom byte). The data commands include an expression using the DEFINED ()
function and the ? operator. A typical entry may be interpreted as follows:

If symbol “_OscillatorFail” is defined, insert the absolute address of that symbol.
Otherwise, insert the absolute address of symbol " Defaultinterrupt".

By convention, a function that will be installed as the second interrupt vector should
have the name _ OscillatorFail. If such a function is included in the link, its
address is loaded into the entry. If the function is not included, the address of the default
interrupt handler is loaded instead. If the application has not provided a default interrupt
handler (i.e., a function with the name __DefaultInterrupt), the linker will generate
one automatically. The simplest default interrupt handler is a reset instruction.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

Note: The programmer must insure that functions installed in interrupt vector
tables conform to the architectural requirements of interrupt service
routines.

© 2005 Microchip Technology Inc. DS51317E-page 105

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

The contents of the alternate interrupt vector table are defined as follows:
/*

** Alternate Interrupt Vector Table
*/
.aivt __ AIVT BASE

LONG (DEFINED (__AltReservedTrap0O) ? ABSOLUTE(_ _AltReservedTrapO)
(DEFINED(_ _ReservedTrapO) ? ABSOLUTE (__ReservedTrapO)

ABSOLUTE (__DefaultInterrupt)));
LONG (DEFINED(__AltOscillatorFail) ? ABSOLUTE(__AltOscillatorFail)

(DEFINED(_ OscillatorFail) ? ABSOLUTE(_ _OscillatorFail)

ABSOLUTE (__DefaultInterrupt)));
LONG (DEFINED (__AltAddressError) ? ABSOLUTE(__AltAddressError)

(DEFINED (__AddressError) ? ABSOLUTE (__AddressError)

ABSOLUTE (__DefaultInterrupt)));

LONG (DEFINED (__AltInterrupt53) ? ABSOLUTE (__AltInterrupt53)
(DEFINED(__Interrupt53) ? ABSOLUTE(__Interrupt53)

ABSOLUTE (__DefaultInterrupt)));
} saivt
The syntax of the alternate interrupt vector table is similar to the primary, except for an
additional expression that causes each alternate table entry to default to the
corresponding primary table entry.

9.5.6 SFR Addresses

Absolute addresses for the Special Function Registers (SFRs) are defined as a series
of symbol definitions:

WREGO = 0x0000;
_WREGO = 0x0000;
WREG1 = 0x0002;
_WREG1 = 0x0002;

Note: If identifiers in a C or assembly program are defined with the same names
as SFRs, multiple definition linker errors will result.

Two versions of each SFR address are included, with and without a leading
underscore. This is to enable both C and assembly language programmers to refer to
the SFR using the same name. By convention, the C compiler adds a leading
underscore to every identifier.

DS51317E-page 106 © 2005 Microchip Technology Inc.

Linker Scripts

9.6 CREATING A CUSTOM LINKER SCRIPT

The standard 16-bit linker scripts are general purpose and will satisfy the demands of
most applications. However, occasions may arise where a custom linker script is
required.

To create a custom linker script, start with a copy of the standard linker script that is
appropriate for the target device. For example, to customize a linker script for the
dsPIC30F3014 device, start with a copy of p30£3014 .g1d.

Customizing a standard linker script will usually involve editing sections or commands
that are already present. For example, stubs for user-defined sections in both data
memory and program memory are included. These stubs may be renamed and/or
customized with absolute addresses if required.

It is recommended that unused sections be retained in a custom linker script, since
unused sections will not impact application memory usage. If a section must be
removed for a custom script, C style comments can be used to disable it.

9.7 LINKER SCRIPT COMMAND LANGUAGE

Linker scripts are text files that contain a series of commands. Each command is either
a keyword, possibly followed by arguments, or an assignment to a symbol. Multiple
commands may be separated using semicolons. White space is generally ignored.

Strings such as file or format names can normally be entered directly. If the file name
contains a character such as a comma which would otherwise serve to separate file
names, the file name may be specified in double quotes. There is no way to use a
double quote character in a file name.

Comments may be included just as in C, delimited by /* and */. As in C, comments
are syntactically equivalent to white space.

 Basic Linker Script Concepts

e Commands Dealing with Files

» Assigning Values to Symbols

« MEMORY Command

* SECTIONS Command

» Other Linker Script Commands

13NUIT OEMNIT dVI1dN

9.7.1 Basic Linker Script Concepts

The linker combines input files into a single output file. The output file and each input
file are in a special data format known as an object file format. Each file is called an
object file. Each object file has, among other things, a list of sections. A section in an
input file is called an input section; similarly, a section in the output file is an output
section.

Each section in an object file has a name and a size. Most sections also have an
associated block of data, known as the section contents. A section may be marked as
loadable, which mean that the contents should be loaded into memory when the output
file is run. A section with no contents may be allocatable, which means that an area in
memory should be set aside, but nothing in particular should be loaded there (in some
cases this memory must be zeroed out).

© 2005 Microchip Technology Inc. DS51317E-page 107

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Every loadable or allocatable output section has two addresses. The first is the VMA,
or virtual memory address. This is the address the section will have when the output
file is run. The second is the LMA, or load memory address. This is the address at
which the section will be loaded. In most cases, the two addresses will be the same.
An example of when they might be different is when a section is intended for use in the
Program Space Visibility (PSV) window. In this case, the program memory address
would be the LMA, and the data memory address would be the VMA.

The sections in an object file can be viewed by using the pic30-objdump program
with the -h option.

Every object file also has a list of symbols, known as the symbol table. A symbol may
be defined or undefined. Each symbol has a name, and each defined symbol has an
address, among other information. If a C or C++ program is compiled into an object file,
a defined symbol will be created for every defined function and global or static variable.
Every undefined function or global variable which is referenced in the input file will
become an undefined symbol.

Symbols in an object file can be viewed by using the pic30-nm program, or by using
the pic30-objdump program with the -t option.

9.7.2 Commands Dealing with Files

Several linker script commands deal with files.
INCLUDE filename

Include the linker script filename at this point. The file will be searched for in the current
directory, and in any directory specified with the -L option. Calls to INCLUDE may be
nested up to 10 levels deep.

INPUT (file, file, ...)
INPUT (file file ...)

The INPUT command directs the linker to include the named files in the link, as though
they were named on the command line. The linker will first try to open the file in the
current directory. If it is not found, the linker will search through the archive library
search path. See the description of -L in Section 8.4.14“ --1ibrary-path <dir>
(-L <dir>)”.

If INPUT (-1file) isused, pic30-1d will transform the nameto 1ibfile.a, as
with the command line argument -1.

When the INPUT command appears in an implicit linker script, the files will be included
in the link at the point at which the linker script file is included. This can affect archive
searching.

GROUP (file, file, ...)
GROUP (file file ...)

The GROUP command is like INPUT, except that the named files should all be archives,
and they are searched repeatedly until no new undefined references are created. See
the description of - (in Section 8.4.2"“-(archives -), --start-group
archives, --end-group”.

OUTPUT (filename)

The oUTPUT command names the output file. Using OUTPUT (£ilename) inthe linker
script is exactly like using -o filename on the command line (see Section 8.4.18
“--output file (-o file)”). If both are used, the command line option takes
precedence.

DS51317E-page 108

© 2005 Microchip Technology Inc.

Linker Scripts

SEARCH_DIR (path)

The SEARCH_DIR command adds path to the list of paths where the linker looks for
archive libraries. Using SEARCH_DIR (path) is exactly like using -1 path on the
command line (see Section 8.4.14 “ --1library-path <dir> (-L <dir>)").If
both are used, then the linker will search both paths. Paths specified using the
command line option are searched first.

STARTUP (filename)

The STARTUP command is just like the INPUT command, except that filename will
become the first input file to be linked, as though it were specified first on the command
line.

9.7.3 Assigning Values to Symbols

A value may be assigned to a symbol in a linker script. This will define the symbol as a
global symbol.

« Simple Assignments
« PROVIDE

9.7.3.1 SIMPLE ASSIGNMENTS

A symbol may be assigned using any of the C assignment operators:

symbol = expression ;
symbol += expression ;
symbol -= expression ;

symbol *= expression ;
symbol /= expression ;
symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;
symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol
must already be defined, and the value will be adjusted accordingly.

The special symbol name ‘. indicates the location counter. This symbol may only be
used within a SECTIONS command.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

The semicolon after expression is required.
Expressions are defined in Section 9.8 “Expressions in Linker Scripts”.

Symbol assignments may appear as commands in their own right, or as statements
within a SECTIONS command, or as part of an output section description in a
SECTIONS command.

The section of the symbol will be set from the section of the expression; for more
information, see Section 9.8.6 “The Section of an Expression”.

© 2005 Microchip Technology Inc. DS51317E-page 109

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Here is an example showing the three different places that symbol assignments may
be used:

floating point = 0;
SECTIONS

{

.text
{
* (.text)
_etext = .;
}
_bdata = (. + 3) &
.data : { *(.data)

~ 4;
}

}

In this example, the symbol f1oating point will be defined as zero. The symbol
_etext will be defined as the address following the last . text input section. The
symbol bdata will be defined as the address following the . text output section
aligned upward to a 4-byte boundary.

9.7.3.2 PROVIDE

In some cases, it is desirable for a linker script to define a symbol only if it is referenced
and is not defined by any object included in the link. For example, traditional linkers
defined the symbol etext. However, ANSI C requires that etext may be used as a
function name without encountering an error. The PROVIDE keyword may be used to
define a symbol, such as etext, only if it is referenced but not defined. The syntax is
PROVIDE (symbol = expression).

Here is an example of using PROVIDE to define etext:
SECTIONS

.text

{

*(.text)
_etext = .;
PROVIDE (etext = .);

}
}

In this example, if the program defines _etext (with a leading underscore), the linker
will give a multiple definition error. If, on the other hand, the program defines etext
(with no leading underscore), the linker will silently use the definition in the program. If
the program references etext but does not define it, the linker will use the definition
in the linker script.

9.7.4 MEMORY Command

The linker’s default configuration permits allocation of all available memory. This can
be overridden by using the MEMORY command.

The MEMORY command describes the location and size of blocks of memory in the
target. It can be used to describe which memory regions may be used by the linker and
which memory regions it must avoid. Sections may then be assigned to particular
memory regions. The linker will set section addresses based on the memory regions
and will warn about regions that become too full. The linker will not shuffle sections
around to fit into the available regions.

DS51317E-page 110

© 2005 Microchip Technology Inc.

Linker Scripts

The syntax of the MEMORY command is:
MEMORY

{

name [(attr)] : ORIGIN = origin, LENGTH = len

}

The name is a name used in the linker script to refer to the region. The region name
has no meaning outside of the linker script. Region names are stored in a separate
name space, and will not conflict with symbol names, file names or section names.
Each memory region must have a distinct name.

The attr string is an optional list of attributes that specify whether to use a particular
memory region for an input section which is not explicitly mapped in the linker script.
As described in Section 9.7.5 “SECTIONS Command”, if an output section is not
specified for some input section, the linker will create an output section with the same
name as the input section. If region attributes are defined, the linker will use them to
select the memory region for the output section that it creates.

The attr string must consist only of the following characters:

Read-only section
Read/write section
Executable section
Allocatable section
Initialized section
Same as I

H H P X = ™

! Invert the sense of any of the preceding attributes

If an unmapped section matches any of the listed attributes other than !, it will be
placed in the memory region. The ! attribute reverses this test, so that an unmapped
section will be placed in the memory region only if it does not match any of the listed
attributes.

The origin is an expression for the start address of the memory region. The expression
must evaluate to a constant before memory allocation is performed, which means that
section relative symbols may not be used. The keyword ORIGIN may be abbreviated
to org or o (but not, for example, ORG).

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

The len is an expression for the size in bytes of the memory region. As with the origin
expression, the expression must evaluate to a constant before memory allocation is
performed. The keyword LENGTH may be abbreviated to 1en or 1.

In the following example, we specify that there are two memory regions available for
allocation: one starting at 0 for 48 kilobytes, and the other starting at 0x800 for two
kilobytes. The linker will place into the rom memory region every section which is not
explicitly mapped into a memory region, and is either read-only or executable. The
linker will place other sections which are not explicitly mapped into a memory region
into the ram memory region.

MEMORY

{
rom (rx) : ORIGIN = 0, LENGTH = 48K
ram (!rx) : org = 0x800, 1 = 2K

}

© 2005 Microchip Technology Inc. DS51317E-page 111

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Once a memory region is defined, the linker can be directed to place specific output
sections into that memory region by using the >region output section attribute. For
example, to specify a memory region named mem, use >mem in the output section
definition. If no address was specified for the output section, the linker will set the
address to the next available address within the memory region. If the combined output
sections directed to a memory region are too large for the region, the linker will issue
an error message.

9.7.5 SECTIONS Command

The SECTIONS command tells the linker how to map input sections into output sections
and how to place the output sections in memory.
The format of the SECTIONS command is:

SECTIONS

{

sections-command
sections-command

}

Each SECTIONS command may be one of the following:

e an ENTRY command (see Section 9.7.6 “Other Linker Script Commands”)

» a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols”)

 an output section description

« an overlay description

The ENTRY command and symbol assignments are permitted inside the SECTIONS
command for convenience in using the location counter in those commands. This can

also make the linker script easier to understand because those commands can be used
at meaningful points in the layout of the output file.

Output section descriptions and overlay descriptions are described below.

If a SECTIONS command does not appear in the linker script, the linker will place each
input section into an identically named output section in the order that the sections are
first encountered in the input files. If all input sections are present in the first file, for
example, the order of sections in the output file will match the order in the first input file.
The first section will be at address zero.

« Input Section Description

« Input Section Wildcard Patterns

* Input Section for Common Symbols

« Input Section Example

« Output Section Description

« Output Section Address

« Output Section Data

« Output Section Discarding

« Output Section Attributes

e Output Section LMA

« Output Section Region

» Output Section Fill

« Overlay Description

DS51317E-page 112

© 2005 Microchip Technology Inc.

Linker Scripts

9.7.5.1 INPUT SECTION DESCRIPTION

The most common output section command is an input section description.

The input section description is the most basic linker script operation. Output sections
tell the linker how to lay out the program in memory. Input section descriptions tell the
linker how to map the input files into the memory layout.

An input section description consists of a file name optionally followed by a list of
section names in parentheses.

The file name and the section name may be wildcard patterns, which are described
further below.

The most common input section description is to include all input sections with a
particular name in the output section. For example, to include all input . text sections,
one would write:

* (. text)

Here the * is a wildcard which matches any file name. To exclude a list of files from
matching the file name wildcard, EXCLUDE _FILE may be used to match all files except
the ones specified in the EXCLUDE FILE list. For example:

(* (EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors))

will cause all . ctors sections from all files except crtend.o and otherfile.oto
be included.

There are two ways to include more than one section:

* (.text .rdata)
* (.text) *(.rdata)

The difference between these is the order in which the . text and .rdata input
sections will appear in the output section. In the first example, they will be intermingled.
In the second example, all . text input sections will appear first, followed by all
.rdata input sections.

A file name can be specified to include sections from a particular file. This would be
useful if one of the files contain special data that needs to be at a particular location in
memory. For example:

data.o(.data)

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

If a file name is specified without a list of sections, then all sections in the input file will
be included in the output section. This is not commonly done, but it may be useful on
occasion. For example:

data.o

When a file name is specified which does not contain any wild card characters, the
linker will first see if the file name was also specified on the linker command line or in
an INPUT command. If not, the linker will attempt to open the file as an input file, as
though it appeared on the command line. This differs from an INPUT command
because the linker will not search for the file in the archive search path.

© 2005 Microchip Technology Inc. DS51317E-page 113

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.7.5.2 INPUT SECTION WILDCARD PATTERNS

In an input section description, either the file name or the section name or both may be
wildcard patterns.

The file name of * seen in many examples is a simple wildcard pattern for the file name.
The wildcard patterns are like those used by the UNIX shell.

* matches any number of characters

? matches any single character

[chars] matches a single instance of any of the chars; the - character may be used to
specify a range of characters, as in [a-z] to match any lower case letter

\ quotes the following character

When a file name is matched with a wildcard, the wildcard characters will not match a
/ character (used to separate directory names on UNIX). A pattern consisting of a
single * character is an exception; it will always match any file name, whether it
contains a / or not. In a section name, the wildcard characters will match a / character.

File name wildcard patterns only match files which are explicitly specified on the
command line or in an INPUT command. The linker does not search directories to
expand wild cards.

If a file name matches more than one wildcard pattern, or if a file name appears
explicitly and is also matched by a wildcard pattern, the linker will use the first match in
the linker script. For example, this sequence of input section descriptions is probably
in error, because the data.. o rule will not be used:

.data : { *(.data) }
.datal : { data.o(.data) }

Normally, the linker will place files and sections matched by wild cards in the order in
which they are seen during the link. This can be changed by using the SORT keyword,
which appears before a wildcard pattern in parentheses (e.g., SORT (. text*)). When
the SORT keyword is used, the linker will sort the files or sections into ascending order
by name before placing them in the output file.

To verify where the input sections are going, use the -M linker option to generate a map
file. The map file shows precisely how input sections are mapped to output sections.

This example shows how wildcard patterns might be used to patrtition files. This linker
script directs the linker to place all . text sections in . text and all .bss sections in
.bss. The linker will place the .data section from all files beginning with an upper
case character in . DATA,; for all other files, the linker will place the .data section in
.data.

SECTIONS ({
.text { *(.text) }
.DATA : { [A-Z]*(.data) }
.data : { *(.data) }
(

.bss : { *(.bss) }

DS51317E-page 114

© 2005 Microchip Technology Inc.

Linker Scripts

9.7.5.3 INPUT SECTION FOR COMMON SYMBOLS

A special notation is needed for common symbols, because common symbols do not
have a particular input section. The linker treats common symbols as though they are
in an input section named COMMON.

File names may be used with the COMMON section just as with any other input sections.
This will place common symbols from a particular input file in one section, while
common symbols from other input files are placed in another section.

In most cases, common symbols in input files will be placed in the .bss section in the
output file. For example:

.bss { *(.bss) *(COMMON) }
If not otherwise specified, common symbols will be assigned to section .bss.

9.7.5.4 INPUT SECTION EXAMPLE

The following example is a complete linker script. It tells the linker to read all of the
sections from file a1l .o and place them at the start of output section outputa which
starts at location 0x10000. All of section . input1 from file foo. o follows immedi-
ately, in the same output section. All of section . input2 from foo. o goes into output
section outputb, followed by section . input1 from fool . o. All of the remaining
.inputl and . input2 sections from any files are written to output section outputc.

SECTIONS ({
outputa 0x10000
{
all.o %
foo.o (.inputl) —
} >
outputb : vy
{ T
foo.o (.input2) Z
fool.o (.inputl) oxo
} o
outputc : r
{ >
=
*(.inputl) @
* (.input?2) B
}

}
9.7.5.5 OUTPUT SECTION DESCRIPTION

The full description of an output section looks like this:
name [address] [(type)]l : [AT(Ima)]l

{

output-section-command
output-section-command

} [>region] [AT>lma _region] [=fillexp]

Most output sections do not use most of the optional section attributes.

The white space around name and address is required. The colon and the curly
braces are also required. The line breaks and other white space are optional.

A section name may consist of any sequence of characters, but a name which contains
any unusual characters such as commas must be quoted.

© 2005 Microchip Technology Inc. DS51317E-page 115

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Each output-section-command may be one of the following:

» a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols”)
 an input section description (see Section 9.7.5.1 “Input Section Description™)
« data values to include directly (see Section 9.7.5.7 “Output Section Data”)

9.7.5.6 OUTPUT SECTION ADDRESS

The address is an expression for the VMA (the virtual memory address) of the output
section. If address is not provided, the linker will set it based on region if present, or
otherwise based on the current value of the location counter.

If address is provided, the address of the output section will be set to precisely that.
If neither address nor region is provided, then the address of the output section will
be set to the current value of the location counter aligned to the alignment requirements
of the output section. The alignment requirement of the output section is the strictest

alignment of any input section contained within the output section.

For example,

.text . : { *(.text) }
and

.text : { *(.text) }

are subtly different. The first will set the address of the . text output section to the
current value of the location counter. The second will set it to the current value of the
location counter aligned to the strictest alignment of a . text input section.

The address may be an arbitrary expression (see Section 9.8 “Expressions in Linker
Scripts”). For example, to align the section on a 0x10 byte boundary, so that the
lowest four bits of the section address are zero, the command could look like this:

.text ALIGN(0x10) : { *(.text) }

This works because ALIGN returns the current location counter aligned upward to the
specified value.

Specifying address for a section will change the value of the location counter.

9.7.5.7 OUTPUT SECTION DATA

Explicit bytes of data may be inserted into an output section by using BYTE, SHORT,
LONG or QUAD as an output section command. Each keyword is followed by an
expression in parentheses providing the value to store. The value of the expression is
stored at the current value of the location counter.

The BYTE, SHORT, LONG and QUAD commands store one, two, four and eight bytes
(respectively). For example, this command will store the four byte value of the symbol
addr:

LONG (addr)

After storing the bytes, the location counter is incremented by the number of bytes
stored. When using data commands in a program memory section, it is important to
note that the linker considers program memory to be 32-bits wide, even though only 24
bits are physically implemented. Therefore, the most significant 8 bits of a LONG data
value are not loaded into device memory.

Data commands only work inside a section description and not between them, so the
following will produce an error from the linker:

SECTIONS { .text : { *(.text) } LONG(1) .data : { *(.data) } }
whereas this will work:
SECTIONS { .text : { *(.text) ; LONG(1l) } .data : { *(.data) } }

DS51317E-page 116

© 2005 Microchip Technology Inc.

Linker Scripts

The FILL command may be used to set the fill pattern for the current section. It is
followed by an expression in parentheses. Any otherwise unspecified regions of
memory within the section (for example, gaps left due to the required alignment of input
sections) are filled with the two least significant bytes of the expression, repeated as
necessary. A FILL statement covers memory locations after the point at which it occurs
in the section definition; by including more than one FILL statement, different fill
patterns may be used in different parts of an output section.

This example shows how to fill unspecified regions of memory with the value 0x9090:
FILL(0x9090)

The FILL command is similar to the =£i1lexp output section attribute (see

Section 9.7.5.9 “Output Section Attributes”), but it only affects the part of the section

following the FIL.L. command, rather than the entire section. If both are used, the FILL
command takes precedence.

9.7.5.8 OUTPUT SECTION DISCARDING

The linker will not create an output section which does not have any contents. This is
for convenience when referring to input sections that may or may not be present in any
of the input files. For example:

.foo { *(.foo) }
will only create a . foo section in the output file if there is a . foo section in at least one
input file.

If anything other than an input section description is used as an output section
command, such as a symbol assignment, then the output section will always be
created, even if there are no matching input sections.

The special output section name /DISCARD/ may be used to discard input sections.
Any input sections which are assigned to an output section named /DISCARD/ are not
included in the output file.

9.7.5.9 OUTPUT SECTION ATTRIBUTES

To review, the full description of an output section is:
name [address] [(type)]l : [AT(Ima)]l

{

output-section-command
output-section-command

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

} [>region] [AT>lma _region] [:phdr :phdr ...] [=fillexp]

name, address and output -section-command have already been described. In
the following sections, the remaining section attributes will be described.

© 2005 Microchip Technology Inc. DS51317E-page 117

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.7.5.10 OUTPUT SECTION TYPE

Each output section may have a type. The type is a keyword in parentheses. The
following types are defined:

NOLOAD

The section should be marked as not loadable, so that it will not be loaded into memory
when the program is run.

DSECT, COPY, INFO, OVERLAY

These type names are supported for backward compatibility, and are rarely used. They
all have the same effect: the section should be marked as not allocatable, so that no
memory is allocated for the section when the program is run.

The linker normally sets the attributes of an output section based on the input sections
which map into it. This can be overridden by using the section type. For example, in the
script sample below, the ROM section is addressed at memory location 0 and does not
need to be loaded when the program is run. The contents of the ROM section will appear
in the linker output file as usual.

SECTIONS ({
ROM 0 (NOLOAD) : { ... }

}
9.7.5.11 OUTPUT SECTION LMA

Every section has a virtual address (VMA) and a load address (LMA). The address
expression which may appear in an output section description sets the VMA.

The linker will normally set the LMA equal to the VMA. This can be changed by using
the AT keyword. The expression Ima that follows the AT keyword specifies the load
address of the section. Alternatively, with AT>1ma region expression, a memory
region may be specified for the section’s load address. See Section 9.7.4 “MEMORY
Command”.

This feature is designed to make it easy to build a ROM image. For example, the
following linker script creates three output sections: one called . text, which starts at
0x1000, one called .mdata, which is loaded at the end of the . text section even
though its VMA is 0x2000, and one called .bss to hold uninitialized data at address
0x3000. The symbol _data is defined with the value 0x2000, which shows that the
location counter holds the VMA value, not the LMA value.

SECTIONS
.text 0x1000 : { *(.text) _etext = . ; }
.mdata 0x2000 :
AT (ADDR (.text) + SIZEOF (.text))

{ data = . ; *(.data); _edata = . ; }
.bss 0x3000 :
{ bstart = . ; *(.bss) *(COMMON) ; bend = . ;}

}

The run-time initialization code for use with a program generated with this linker script
would include a function to copy the initialized data from the ROM image to its run-time
address. The initialization function could take advantage of the symbols defined by the
linker script.

It would rarely be necessary to write such a function, however. MPLAB LINK30
includes automatic support for the initialization of bss-type and data-type sections.
Instead of mapping a data section into both program memory and data memory (as this
example implies), the linker creates a special template in program memory which
includes all of the relevant information. See Section 10.8 “Initialized Data” for details.

DS51317E-page 118

© 2005 Microchip Technology Inc.

Linker Scripts

9.7.5.12 OUTPUT SECTION REGION

A section can be assigned to a previously defined region of memory by using >region.
See Section 9.7.4 “MEMORY Command”.

Here is a simple example:

MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }
SECTIONS { ROM : { *(.text) } s>rom }

9.7.5.13 OUTPUT SECTION FILL

A fill pattern can be set for an entire section by using =fillexp. fillexp as an
expression. Any otherwise unspecified regions of memory within the output section (for
example, gaps left due to the required alignment of input sections) will be filled with the
two least significant bytes of the value, repeated as necessary.

The fill value can also be changed with a FILL command in the output section
commands; see Section 9.7.5.7 “Output Section Data”.

Here is a simple example:
SECTIONS { .text : { *(.text) } =0x9090 }

9.7.5.14 OVERLAY DESCRIPTION

An overlay description provides an easy way to describe sections which are to be
loaded as part of a single memory image but are to be run at the same memory
address. At run time, some sort of overlay manager will copy the overlaid sections in
and out of the run-time memory address as required, perhaps by simply manipulating
addressing bits.

This approach is not suitable for defining sections that will be used with the Program
Space Visibility (PSV) window, because the OVERLAY command does not permit
individual load addresses to be specified for each section. Instead, MPLAB LINK30
provides automatic support for read-only sections in the PSV window. See

Section 10.9 “Read-only Data” for details.

Overlays are described using the OVERLAY command. The OVERLAY command is
used within a SECTIONS command, like an output section description. The full syntax
of the OVERLAY command is as follows:

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

OVERLAY [start] : [NOCROSSREFS] [AT (ldaddr)]

{

secnamel

{

output-section-command
output-section-command

} [:phdr...] [=fill]
secname?2

{

output-section-command
output-section-command

} [:phdr...] [=£fill]

} [>region] [:phdr...] [=£i11]

Everything is optional except OVERLAY (a keyword), and each section must have a
name (secnamel and secname2 above). The section definitions within the OVERLAY
construct are identical to those within the general SECTIONS construct, except that no
addresses and no memory regions may be defined for sections within an OVERLAY.

© 2005 Microchip Technology Inc. DS51317E-page 119

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

The sections are all defined with the same starting address. The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load
address used for the OVERLAY as a whole (as with normal section definitions, the load
address is optional, and defaults to the start address; the start address is also optional,
and defaults to the current value of the location counter).

If the NOCROSSREFS keyword is used, and there are any references among the
sections, the linker will report an error. Since the sections all run at the same address,
it normally does not make sense for one section to refer directly to another.

For each section within the OVERLAY, the linker automatically defines two symbols. The
symbol load start secname is defined as the starting load address of the
section. The symbol _ load stop_ secname is defined as the final load address of
the section. Any characters within secname which are not legal within C identifiers are
removed. C (or assembler) code may use these symbols to move the overlaid sections
around as necessary.

At the end of the overlay, the value of the location counter is set to the start address of
the overlay plus the size of the largest section.

Here is an example. Remember that this would appear inside a SECTIONS construct.
OVERLAY 0x1000 : AT (0x4000)

{

.text0 { ol/*.o(.text) }
.textl { o2/*.o(.text) }

}

This will define both . text0 and . text1 to start at address 0x1000. . text0 will be
loaded at address 0x4000, and . text1 will be loaded immediately after . text0. The
following symbols will be defined: 1ocad start text0, load stop_ texto,
__load start textl, _load stop textl.

C code to copy overlay . text1 into the overlay area might look like the following:

extern char __load_start_ textl, __load stop_textl;
memcpy ((char *) 0x1000, & _load start_textl,
& load stop textl - & load start textl);

The OVERLAY command is a convenience, since everything it does can be done using
the more basic commands. The above example could have been written identically as
follows.

.text0 0x1000 : AT (0x4000) { ol/*.o(.text) }
__load start text0 = LOADADDR (.textO);
__load stop text0 = LOADADDR (.text0) + SIZEOF (.textO);
.textl 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
__load start textl = LOADADDR (.textl);
~_load stop textl = LOADADDR (.textl) + SIZEOF (.textl);
= 0x1000 + MAX (SIZEOF (.textO), SIZEOF (.textl));

DS51317E-page 120 © 2005 Microchip Technology Inc.

Linker Scripts

9.7.6 Other Linker Script Commands

There are several other linker script commands, which are described briefly:
ASSERT (exp, message)

Ensure that exp is non-zero. If itis zero, then exit the linker with an error code, and print
message.

ENTRY (symbol)

Specify symbol as the first instruction to execute in the program. The linker will record
the address of this symbol in the output object file header. This does not affect the
Reset instruction at address zero, which must be generated in some other way. By
convention, the 16-bit linker scripts construct a GOTO __ reset instruction at address
zero.

EXTERN (symbol symbol ...)

Force symbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. Several
symbols may be listed for each EXTERN, and EXTERN may appear multiple times. This
command has the same effect as the -u command line option.

FORCE_COMMON ALLOCATION

This command has the same effect as the -d command line option: to make MPLAB
LINK30 assign space to common symbols even if a relocatable output file is specified
(-x).

NOCROSSREFS (section section ...)

This command may be used to tell MPLAB LINK30 to issue an error about any
references among certain output sections. In certain types of programs, when one
section is loaded into memory, another section will not be. Any direct references
between the two sections would be errors.

The NOCROSSREFS command takes a list of output section names. If the linker detects
any cross references between the sections, it reports an error and returns a non-zero
exit status. The NOCROSSREFS command uses output section names, not input section
names.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

OUTPUT ARCH (processor name)

Specify a target processor for the link. This command has the same effect as the
-p,--processor command line option. If both are specified, the command line option
takes precedence. The processor name should appear in quotes; for example
"30F6014", "24FJ128GA010", or "33FJ128GP706".

OUTPUT FORMAT (format name)

The OUTPUT_ FORMAT command names the object file format to use for the output file.
TARGET (bfdname)

The TARGET command names the object file format to use when reading input files. It
affects subsequent INPUT and GROUP commands.

© 2005 Microchip Technology Inc. DS51317E-page 121

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.8 EXPRESSIONS IN LINKER SCRIPTS

The syntax for expressions in the linker script language is identical to that of C
expressions. All expressions are evaluated as 32-bit integers.

You can use and set symbol values in expressions.

The linker defines several special purpose built-in functions for use in expressions.
» Constants

* Symbol Names

¢ The Location Counter

¢ Operators

« Evaluation

» The Section of an Expression

* Built-in Functions

9.8.1 Constants

All constants are integers.

As in C, the linker considers an integer beginning with 0 to be octal, and an integer
beginning with 0x or 0X to be hexadecimal. The linker considers other integers to be
decimal.

In addition, you can use the suffixes K and M to scale a constant by 1024 or 1024*1024
respectively. For example, the following all refer to the same quantity:

_fourk 1 = 4K;

_fourk 2 = 4096;

_fourk 3 = 0x1000;

9.8.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or period and may include
letters, digits, underscores, periods and hyphens. Unquoted symbol names must not
conflict with any keywords. You can specify a symbol which contains odd characters or
has the same name as a keyword by surrounding the symbol name in double quotes:
"SECTION" = 9;
"with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit
symbols with spaces. For example, A-B is one symbol, whereas A - Bis an
expression involving subtraction.

DS51317E-page 122

© 2005 Microchip Technology Inc.

Linker Scripts

9.8.3 The Location Counter

The special linker variable dot ‘. always contains the current output location counter.
Since the . always refers to a location in an output section, it may only appear in an
expression within a SECTIONS command. The ‘.’ symbol may appear anywhere that
an ordinary symbol is allowed in an expression.

Assigning a value to ‘" will cause the location counter to be moved. This may be used
to create holes in the output section. The location counter may never be moved
backwards.

SECTIONS

{

output :

{
filel(.text)
.. = . + 1000;
file2 (.text)
. += 1000;
file3 (.text)
} = 0x1234;

}

In the previous example, the . text section from £ilel is located at the beginning of
the output section output. Itis followed by a 1000 byte gap. Then the . text section
from £ile2 appears, also with a 1000 byte gap following before the . text section
from £ile3. The notation = 0x1234 specifies what data to write in the gaps.

‘. actually refers to the byte offset from the start of the current containing object.
Normally this is the SECTIONS statement, whose start address is 0, hence ‘.’ can be
used as an absolute address. If*." is used inside a section description, however, it refers
to the byte offset from the start of that section, not an absolute address. Thus in a script
like this:

SECTIONS
. = 0x100
.text: {
* (.text)
. = 0x200

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

}

. = 0x500
.data: {

* (.data)

. += 0x600

}

The . text section will be assigned a starting address of 0x100 and a size of exactly
0x200 bytes, even if there is not enough data in the . text input sections to fill this
area. (If there is too much data, an error will be produced because this would be an
attempt to move ‘.’ backwards). The .data section will start at 0x500 and it will have
an extra 0x600 bytes worth of space after the end of the values from the .data input
sections and before the end of the . data output section itself.

© 2005 Microchip Technology Inc. DS51317E-page 123

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.8.4

Operators

The linker recognizes the standard C set of arithmetic operators, with the standard
bindings and precedence levels:

TABLE 9-1:

PRECEDENCE OF OPERATORS

Precedence

Associativity

Operators

Notes

highest

left

Prefix operators

left

left

left

left

left

left

left

OO (N|OoO|O|~|W[IN]|PF

left

=
o

right

lowest

11

right

&=

Symbol assignments

9.8.5 Evaluation

The linker evaluates expressions lazily. It only computes the value of an expression
when absolutely necessary.

The linker needs some information, such as the value of the start address of the first
section, and the origins and lengths of memory regions, in order to do any linking at all.
These values are computed as soon as possible when the linker reads in the linker
script.

However, other values (such as symbol values) are not known or needed until after

storage allocation. Such values are evaluated later, when other information (such as
the sizes of output sections) is available for use in the symbol assignment expression.

The sizes of sections cannot be known until after allocation, so assignments dependent
upon these are not performed until after allocation.

Some expressions, such as those depending upon the location counter ‘., must be
evaluated during section allocation.

If the result of an expression is required, but the value is not available, then an error
results. For example, a script like the following:
SECTIONS

{

.text 9+this_isnt constant
{ *(.text) }

will cause the error message “non-constant expression for initial address”.

9.8.6

When the linker evaluates an expression, the result is either absolute or relative to
some section. A relative expression is expressed as a fixed offset from the base of a
section.

The Section of an Expression

The position of the expression within the linker script determines whether it is absolute
or relative. An expression which appears within an output section definition is relative
to the base of the output section. An expression which appears elsewhere will be
absolute.

DS51317E-page 124

© 2005 Microchip Technology Inc.

Linker Scripts

A symbol set to a relative expression will be relocatable if you request relocatable
output using the -r option. That means that a further link operation may change the
value of the symbol. The symbol’s section will be the section of the relative expression.

A symbol set to an absolute expression will retain the same value through any further
link operation. The symbol will be absolute, and will not have any particular associated
section.

You can use the built-in function ABSOLUTE to force an expression to be absolute when
it would otherwise be relative. For example, to create an absolute symbol set to the
address of the end of the output section .data:

SECTIONS

{

.data : { *(.data) _edata = ABSOLUTE(.); }
}

If ABSOLUTE were not used, edata would be relative to the . data section.

9.8.7 Built-in Functions

The linker script language includes a number of built-in functions for use in linker script
expressions.

* ABSOLUTE(exp)

» ADDR(section)

« ALIGN(exp)

« BLOCK(exp)

» DEFINED(symbol)

« LOADADDR(section)
* MAX(expl, exp2)

* MIN(expl, exp2)

* NEXT(exp)

» SIZEOF(section)

9.8.7.1 ABSOLUTE(EXP)

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

Return the absolute (non-relocatable, as opposed to non-negative) value of the
expression exp. Primarily useful to assign an absolute value to a symbol within a
section definition, where symbol values are normally section relative. See
Section 9.8.6 “The Section of an Expression”.

9.8.7.2 ADDR(SECTION)

Return the absolute address (the VMA) of the named section. Your script must
previously have defined the location of that section. In the following example,
symbol 1 and symbol 2 are assigned identical values:

SECTIONS ({
.outputl :

{

start_of output_ 1 = ABSOLUTE(.) ;

.output :
{
symbol 1 = ADDR(.outputl) ;
symbol 2 = start_of output_1;

}

© 2005 Microchip Technology Inc. DS51317E-page 125

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

9.8.7.3 ALIGN(EXP)

Return the location counter (.) aligned to the next exp boundary. exp must be an
expression whose value is a power of two. This is equivalent to

(. + exp - 1) & ~(exp - 1)

ALIGN doesn't change the value of the location counter; it just does arithmetic on it.
Here is an example which aligns the output . data section to the next 0x2000 byte
boundary after the preceding section and sets a variable within the section to the next
0x8000 boundary after the input sections:

SECTIONS ({
.data ALIGN(0x2000): {
* (.data)
variable = ALIGN(0x8000) ;

}

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional address attribute of a section definition (see Section 9.7.5
“SECTIONS Command”). The second use of ALIGN is used to define the value of a
symbol.

The built-in function NEXT is closely related to ALIGN.

9.8.7.4 BLOCK(EXP)

This is a synonym for ALIGN, for compatibility with older linker scripts. It is most often
seen when setting the address of an output section.

9.8.7.5 DEFINED(SYMBOL)

Return 1 if symbol is in the linker global symbol table and is defined; otherwise return
0. You can use this function to provide default values for symbols. For example, the
following script fragment shows how to set a global symbol begin to the first location
in the . text section, but if a symbol called begin already existed, its value is
preserved:

SECTIONS ({
.text : {
begin = DEFINED (begin) ? begin : . ;

}
9.8.7.6 LOADADDR(SECTION)

Return the absolute LMA of the named section. This is normally the same as ADDR, but
it may be different if the AT attribute is used in the output section definition (see
Section 9.7.5 “SECTIONS Command”).

DS51317E-page 126 © 2005 Microchip Technology Inc.

Linker Scripts

9.8.7.7 MAX(EXP1, EXP2)

Returns the maximum of exp1 and exp2.

9.8.7.8 MIN(EXP1, EXP2)

Returns the minimum of exp1 and exp2.

9.8.7.9 NEXT(EXP)

Return the next unallocated address that is a multiple of exp. This function is
equivalent to ALIGN (exp) .

9.8.7.10 SIZEOF(SECTION)

Return the size in bytes of the named section, if that section has been allocated. If the
section has not been allocated when this is evaluated, the linker will report an error. In
the following example, symbol 1 and symbol 2 are assigned identical values:
SECTIONS({

.output {
.start = . ;

.end = . ;

}
symbol 1 .end - .start ;
symbol 2 = SIZEOF (.output) ;

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

© 2005 Microchip Technology Inc. DS51317E-page 127

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 128 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 10. Linker Processing

10.1 INTRODUCTION
How MPLAB LINK30 builds an application from input files is discussed here.

10.2 HIGHLIGHTS

Topics covered in this chapter are:

« Overview of Linker Processing
¢ Memory Addressing

« Linker Allocation

« Global and Weak Symbols

* Handles

« Initialized Data

« Read-only Data

» Stack Allocation

» Heap Allocation

« Interrupt Vector Tables

10.3 OVERVIEW OF LINKER PROCESSING

A linker combines one or more object files, with optional archive files, into a single
executable output file. The object files contain relocatable sections of code and data
which the linker will allocate into target memory. The entire process is controlled by a
linker script, also known as a link command file. A linker script is required for every link.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

The link process may be broken down into 6 steps:

Loading Input Files

Allocating Memory

Resolving Symbols

Creating Special Sections
Computing Absolute Addresses
Building the Output File

o0k wnNPE

10.3.1 Loading Input Files

The initial task of the linker is to interpret link command options and load input files. If
a linker script is specified, that file is opened and interpreted. Otherwise an internal
default linker script is used. In either case, the linker script provides a description of the
target device, including specific memory region information and Special Function
Register (SFR) addresses. See Chapter 9. “Linker Scripts” for more details.

Next the linker opens all of the input object files. Each input file is checked to make sure
the object format is compatible. If the object format is not compatible, an error is
generated. The contents of each input file are then loaded into internal data structures.
Typically each input file will contain multiple sections of code or data. Each section
contains a list of relocation entries which associate locations in a section’s raw data
with relocatable symbols.

© 2005 Microchip Technology Inc. DS51317E-page 129

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.3.2 Allocating Memory

After all of the input files have been loaded, the linker allocates memory. This is
accomplished by assigning each input section to an output section. The relation
between input and output sections is defined by a section map in the linker script. An
output section may or may not have the same name as an input section. Each output
section is then assigned to a memory region in the target device.

Note: Input sections are derived from source code by the compiler or the

assembler. Output sections are created by the linker.

If an input section is not explicitly assigned to an output section, the linker will allocate
the unassigned section according to section attributes. For more information about
linker allocation, see Section 10.5 “Linker Allocation”.

10.3.3 Resolving Symbols

Once memory has been allocated, the linker begins the process of resolving symbols.
Symbols defined in each input section have offsets that are relative to the beginning of
the section. The linker converts these values into output section offsets.

Next, the linker attempts to match all external symbol references with a corresponding
symbol definition. Multiple definitions of the same external symbol result in an error. If
an external symbol is not found, an attempt is made to locate the symbol definition in
an archive file. If the symbol definition is found in an archive, the corresponding archive
module is loaded.

Modules loaded from archives may contain additional symbol references, so the
process continues until all external symbol references have matching definitions.
External symbols that are defined as “weak” receive special processing, as explained
in Section 10.6 “Global and Weak Symbols”. If any external symbol reference
remains undefined, an error is generated.

References to redundant functions in archive files will be merged in order to conserve
memory. For example, both integer and floating-point versions of the standard C for-
matted I/O functions are included in 1ibc.a. The MPLAB C30 compiler will generate
references to the appropriate function, based on a static analysis of format strings.
When multiple object files are combined by the linker, both versions of a particular 1/O
function may be referenced. In such cases the integer functions are redundant, since
they represent a subset of the floating-point functionality. The linker will detect this
situation, and merge the 1/O functions together to conserve memory. This optimization
may be disabled with the - -no-smart-io option.

10.3.4 Creating Special Sections

After the symbols have been resolved, the linker constructs any special input or output
sections that are required. For example, the compiler or assembler may have created
function pointers using the handle () operator. The linker then builds a special input
section named .handle to implement a jump table. For more information about
handles, see Section 10.7 “Handles”.

The linker also constructs a special output section named .dinit to supportinitialized
data. Section.dinit is an initialization template that is interpreted by the C run-time
library. For more information about initialized data, see Section 10.8 “Initialized
Data”.

DS51317E-page 130

© 2005 Microchip Technology Inc.

Linker Processing

10.3.5 Computing Absolute Addresses

After the special sections have been created, the final sizes of all output sections are
known. The linker then computes absolute addresses for all output sections and
external symbols. Each output section is checked to make sure it falls within its
assigned memory regions. If any section falls outside of its memory region, an error is
generated. Any symbols defined in the linker script are also computed.

Boundaries of the stack and heap are calculated, based on the extent of unused data
memory. If insufficient memory is available, an error is generated. For more information
about the stack and heap, see Section 10.10 “Stack Allocation” and

Section 10.11 “Heap Allocation”.

10.3.6 Building the Output File

Finally, the linker builds the output file. Relocation entries in each section are patched
using absolute addresses. If the address computed for a symbol does not fit in the

relocation entry, a link error results. This can occur, for example, if a function pointer is
referenced without the handle () operator and its address is too large to fit in 16 bits.

A link map is also generated if requested with the appropriate option. The link map

includes a memory usage report, which shows the starting address and length of all
sections in data memory and program memory. For more information about the link
map, see Section 9.5.4 “Input/Output Section Map”.

10.4 MEMORY ADDRESSING

The dsPIC30F devices use a modified Harvard architecture with separate data and
program memory spaces. Data memory is both byte-oriented (8 bits wide) and
word-oriented (16 bits wide). Bytes are assigned sequential addresses, starting with 0,
1, 2, 3 and so on. Words are assigned sequential even addresses, starting with 0, 2, 4,
6 and so on.

Program memory is word-oriented, where each instruction word is 24 bits wide.
Instruction words are assigned sequential even addresses, starting with 0, 2, 4, 6 and
so on. The Program Counter (PC) indicates the next instruction to be executed, and
increments by 2 for each instruction word. Individual bytes in a program memory word
are not addressable.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

While a traditional Harvard architecture does not permit access to data stored in
program memory, the 16-bit architecture provides two ways to accomplish this task:
table access instructions and the Program Space Visibility (PSV) window.

* Table Access Instructions
» Program Space Visibility (PSV) Window

© 2005 Microchip Technology Inc. DS51317E-page 131

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.4.1 Table Access Instructions

The table access instructions tblrdl, tblrdh, tblwtl and tblwth can be used to
access data stored in program memory. Data is addressed through a 16-bit data
register pointer in combination with the 8-bit TBLPAG register. The special operators
tbloffset () and tblpage () facilitate table access in assembly language. See
MPLAB ASM30 documentation, Table Read/Write Instructions, for more information.

The linker resolves symbolic references to labels in program memory for use with the
table access instructions. Although data in program memory can be specified one byte
at a time, only the least-significant byte in each instruction word has a unique address.
For example, consider the following assembly source code example:

.section prog, code
Ll: .pbyte 1

L2: .pbyte 2
L3: .pbyte 3
L4: .pbyte 4
.pbyte 5
.pbyte 6

.pbyte 7,8,9

In this example, the code section attribute designates a section to be allocated in
program memory, and the .pbyte directives define individual byte constants. Since
labels must resolve to a valid PC address, the assembler adds padding after each of
the first three constants. Subsequent constants do not require padding. The following
assembly listing excerpt illustrates the organization of these constants in program

memaory:

1 .section prog, code
2 000000 01 00 OO Ll:.pbyte 1

3 000002 02 00 OO L2: .pbyte 2

4 000004 03 00 0O L3:.pbyte 3

5 000006 04 L4: .pbyte 4

6 05 .pbyte 5

7 06 .pbyte 6

8 000008 07 08 09 .pbyte 7,8,9

Constants 1, 2, 3 are padded out to a full instruction word and have unique PC
addresses. Constants 4, 5, 6 are packed into a single instruction word and share the
same address.

10.4.2 Program Space Visibility (PSV) Window

The Program Space Visibility window can be used to access data stored in the least
significant 16 bits of program memory. When PSV is enabled, the upper 32K of data
memory space (0x8000-0xFFFF) functions as a window into program memory. Data is
addressed through a 16-bit data register pointer in combination with the 8-bit PSVPAG
register. The special operators psvoffset () and psvpage () are provided to facili-
tate PSV access in assembly language. Built-in functions __builtin psvoffset ()
and _ builtin psvpage () are provided to facilitate PSV access in C.

The linker supports PSV window operations through the use of read-only data sections.
For a detailed discussion of read-only sections, see Section 10.9 “Read-only Data”.

DS51317E-page 132 © 2005 Microchip Technology Inc.

Linker Processing

10.5 LINKER ALLOCATION

Linker allocation is controlled by the linker script, and proceeds in three steps:

1. Mapping Input Sections to Output Sections
2. Assigning Output Sections to Regions
3. Allocating Unmapped Sections

Steps 1 and 2 are performed by a sequential memory allocator. Input sections which
appear in the linker script are assigned to specific memory regions in the target
devices. Addresses within a memory region are allocated sequentially, beginning with
the lowest address and growing upwards.

Step 3 is performed by a best-fit memory allocator. Input sections which do not appear
in the linker script are assigned to memory regions according to their attributes. The
best-fit allocator makes efficient use of any remaining memory, including gaps between
output sections that may have been left by the sequential allocator.

10.5.1 Mapping Input Sections to Output Sections

Input sections are grouped and mapped into output sections, according to the section
map. When an output section contains several different input sections, the exact
ordering of input sections may be important. For example, consider the following output
section definition:

/ *

** User Code and Library Code

*/

.text _ CODE_BASE :

{

* (.handle) ;
*(.libe) *(.libm) *(.libdsp); /* keep together in this order */
* (.1lib¥*) ;
*(.text) ;

} sprogram
Here the output section named . text is defined. Notice that the contents of this

section are specified within curly braces {}. After the closing brace, sprogram indicates
that this output section should be assigned to memaory region program.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

The contents of output section . text may be interpreted as follows:

* First, all input sections named .handle are collected and mapped into the output
section. This means that . handle sections will occupy the lowest address range,
a requirement for code handles.

e Second, input sections named .1ibc, .1ibmand .1ibdsp are collected and
mapped into the output section. Grouping these sections ensures locality of
reference for the run-time library functions, so that PC-relative instructions can be
used for maximum efficiency.

 Third, input sections which match the wildcard pattern . 1ib* are collected and
mapped into the output section. This includes libraries such as the peripheral
libraries (which are allocated in section . 1libperi).

« Finally, all input sections named . text are collected and mapped into the output
section. These sections contain executable application code, and will occupy the
highest address range.

© 2005 Microchip Technology Inc. DS51317E-page 133

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.5.2 Assigning Output Sections to Regions

Once the sizes of all output sections are known, they are assigned to memory regions.
Normally a region is specified in the output section definition. If a region is not specified,
the first defined memory region will be used.

Memory regions are filled sequentially, from lower to higher addresses, in the same
order that sections appear in the section map. A location counter, unique to each
region, keeps track of the next available memory location. There are two conditions
which may cause gaps in the allocation of memory within a region:

1. The section map specifies an absolute address for an output section, or
2. The output section has a particular alignment requirement.

In either case, any intervening memory between the current location counter and the
absolute (or aligned) address is skipped. Once a range of memory has been skipped,
it is available for use by the best-fit allocator. The exact address of all items allocated
in memory may be determined from the link map file.

Section alignment requirements typically arise in DSP programming. To utilize modulo
addressing, it is necessary to align a block of memory to a particular storage boundary.
This can be accomplished with the aligned attribute in C, or with the .align direc-
tive in assembly language. The section containing an aligned memory block must also
be aligned, to the same (or greater) power of 2. If two or more input sections have
different alignment requirements, the largest alignment is used for the output section.

Another restriction on memory allocation is associated with read-only data sections.
Read-only data sections are identified with the psv section attribute and are dedicated
for use in the Program Space Visibility (PSV) window. The C compiler creates a
read-only data section named . const to store constants when the
--mconst-in-code option is selected.

To allow efficient access of constant tables in the PSV window, the linker ensures that
a read-only section will not cross a PSVPAG boundary. Therefore a single setting of the
PSVPAG register can be used to access the entire section. If necessary, output
sections in program memory will be re-sorted after the sequential allocation pass to
accommodate this restriction. If an absolute address has been specified in the linker
script for a particular section, it will not be moved. In general, fully relocatable sections
provide the most flexibility for efficient memory allocation.

Note: Sections with specific alignment requirements, such as psv sections or
sections intended for modulo addressing, may be allocated most efficiently
by the best-fit allocator. For best-fit allocation, these sections should not
appear in the linker script.

DS51317E-page 134

© 2005 Microchip Technology Inc.

Linker Processing

10.5.3 Allocating Unmapped Sections

After all sections that appear in the section map are allocated, any remaining sections
are considered to be unmapped. Unmapped sections are allocated according to
section attributes. The linker uses a best-fit memory allocator to determine the most
efficient arrangement in memory. The primary emphasis of the best-fit allocator is the
reduction or elimination of memory gaps due to address alignment restrictions.

Since data memory is limited on many 16-bit devices, and several architectural
features imply address alignment restrictions, efficient allocation of data memory is
particularly important. By convention, data memory sections are not explicitly mapped
in linker scripts, thus providing maximum flexibility for the best-fit memory allocator.

Section attributes affect memory allocation as described below. For a general
discussion of section attributes, see Section 6.3 “Directives that Define Sections”.

code

The code attribute specifies that a section should be allocated in program memory, as
defined by region program in the linker script. The following attributes may be used in
conjunction with code and will further specify the allocation:

* address () specifies an absolute address

* align () specifies alignment of the section starting address

data

The data attribute specifies that a section should be allocated as initialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with data and will further specify the allocation:

* address () specifies an absolute address

« near specifies the first 8K of data memory

* xmemory Specifies X address space, which includes all of region data below the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
* * ymemory specifies Y address space, which includes all of region data above the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
e align () specifies alignment of the section starting address

* reverse () specifies alignment of the section ending address + 1

* * dma specifies dma address space, which includes the portion of region data
between addresses DMA_BASE and __ DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

bss

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

The bss attribute specifies that a section should be allocated as uninitialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with bss and will further specify the allocation:

* address () specifies an absolute address

« near specifies the first 8K of data memory

* * xmemory Specifies X address space, which includes all of region data below the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
* ymemory specifies Y address space, which includes all of region data above the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
e align () specifies alignment of the section starting address

» reverse () specifies alignment of the section ending address + 1

© 2005 Microchip Technology Inc. DS51317E-page 135

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

A

NN

* dma specifies dma address space, which includes the portion of region data
between addresses DMA_BASE and __ DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

persist

The persist attribute specifies that a section should be allocated as persistent storage
in data memory, as defined by region data in the linker script. Persistent storage is not
cleared or initialized by the C run-time library. The following attributes may be used in
conjunction with persist and will further specify the allocation:

* address () specifies an absolute address

« near specifies the first 8K of data memory

* xmemory Specifies X address space, which includes all of region data below the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
« ymemory specifies Y address space, which includes all of region data above the
address __ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
e align () specifies alignment of the section starting address

* reverse () specifies alignment of the section ending address + 1

« dma specifies dma address space, which includes the portion of region data
between addresses _ DMA_BASE and __ DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

psv

The psv attribute specifies that a section should be allocated in program memory, as

defined by region program in the linker script. psv sections are intended for use with
the Program Space Visibility window, and will be located so that the entire contents may
be accessed using a single setting of the PSVPAG register. This allocation rule implies
that the total size of a psv section can not exceed 32K. The following attributes may be
used in conjunction with psv and will further specify the allocation:

* address () specifies an absolute address

* align () specifies alignment of the section starting address

* reverse () specifies alignment of the section ending address + 1

eedata — dsPIC30F DSCs only

The eedata attribute specifies that a section should be allocated in data EEPROM
memory, as defined by region eedata in the linker script. The following attributes may
be used in conjunction with eedata and will further specify the allocation:

* address () specifies an absolute address

* align () specifies alignment of the section starting address

» reverse () specifies alignment of the section ending address + 1

10.6 GLOBAL AND WEAK SYMBOLS

When a symbol reference appears in an object file without a corresponding definition,
the symbol is declared external. By default, external symbols have global binding and
are referred to as global symbols. External symbols may be explicitly declared with
weak binding, using the __weak _ attribute in C or the . weak directive in assembly
language.

DS51317E-page 136

© 2005 Microchip Technology Inc.

Linker Processing

As the name implies, global symbols are visible to all input files involved in the link.
There must be one (and only one) definition for every global symbol referenced. If a
global definition is not found among the input files, archives will be searched and the
first archive module found that contains the needed definition will be loaded. If no
definition is found for a global symbol a link error is reported.

Weak symbols share the same name space as global symbols, but are handled differ-
ently. Multiple definitions of a weak symbol are permitted. If a weak definition is not
found among the input files, archives are not searched and a value of 0 is assumed for
all references to the weak symbol. A global symbol definition of the same name will take
precedence over a weak definition (or the lack of one). In essence, weak symbols are
considered optional and may be replaced by global symbols, or ignored entirely.

10.7 HANDLES

The modified Harvard architecture of dsPIC30F devices supports two memory spaces
of unequal size. Data memory space can be fully addressed with 16 bits while program
memory space requires 24 bits. Since the native integer data type (register width) is
only 16 bits, there is an inherent difficulty in the allocation and manipulation of function
pointers that require a full 24 bits. Reserving a pair of 16-bit registers to represent every
function pointer is inefficient in terms of code space and execution speed, since many
programs will fit in 64K words of program space or less. However, the linker must
accommodate function pointers throughout the full 24-bit range of addressable
program memory.

In order to ensure a valid 16-bit pointer for any function in the full program memory

address space, MPLAB ASM30 and MPLAB LINK30 support the handle () operator.
The C compiler uses this operator whenever a function address is taken. Assembly
programmers can use this operator three different ways:

mov #handle (func) ,w0 ; handle() used in an instruction

.word handle (func) ; handle () used with a data word directive

.pword handle (func) ; handle() used with a instruction word directive

The linker searches all input files for handle operators and constructs a jump table in a
section named .handle. For each function that is referenced by one or more handle
operators, a single entry is made in the jump table. Each entry is a GOTO instruction.
Note that GOTO is capable of reaching any function in the full 24- bit address space.
Section .handle is allocated low in program memory, well within the range of a 16-bit
pointer.

13NUIT OEMNIT dVI1dN

When the output file is built, the absolute addresses of all functions are known. Each
handle relocation entry is filled with an absolute address. If the address of the target
function fits in 16 bits, it is inserted directly into the object code. If the absolute address
of the target function exceeds 16 bits, the address of the corresponding entry in the
jump table is used instead. Only functions located beyond the range of 16-bit address-
ing suffer any performance penalty with this technique. However, there is a code space
penalty for each unused entry in the jump table.

© 2005 Microchip Technology Inc. DS51317E-page 137

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.8

In order to conserve program memory, the handle jump table can be suppressed for
certain devices, or whenever the application programmer is sure that all function
pointers will fitin 16 bits. One way is to specify the - -no-handles link option on the
command line or in the IDE. Another way is to define a symbol named
__NO_HANDLES in the linker script:

__NO_HANDLES = 1;

Linker scripts for 16-bit devices with 32K instruction words or less all contain the
__NO_HANDLES definition to suppress the handle jump table.

Note: Ifthe handle jump table is suppressed, and the target address of a function
pointer does not fit in 16 bits, a “relocation truncated” link error will be
generated.

INITIALIZED DATA

The linker provides automatic support for initialized variables in data memory. Variables
are allocated in sections. Each data section is declared with a flag that indicates
whether it is initialized, or not initialized.

To control the initialization of the various data sections, the linker constructs a data
initialization template. The template is allocated in program memory, and is processed
at start-up by the run-time library. When the application main program takes control, all
variables in data memory have been initialized.

« Standard Data Section Names

 Data Initialization Template

* Run-Time Library Support

10.8.1 Standard Data Section Names

Traditionally, linkers based on the GNU technology support three sections in the linked
binary file:

TABLE 10-1: TRADITIONAL SECTION NAMES

Section Name Description Attribute
.text executable code code
.data data memory that receives initial values data
.bss data memory that is not initialized bss

The name “bss” dates back several decades, and means memory “Block Started by
Symbol”. By convention, bss memory is filled with zeros during program start-up.

The traditional section names are considered to have implied attributes as listed in
Table 10-1. The code attribute indicates that the section contains executable code and
should be loaded in program memory. The bss attribute indicates that the section
contains data storage that is not initialized, but will be filled with zeros at program
start-up. The data attribute indicates that the section contains data storage that
receives initial values at start-up.

Assembly applications may define additional sections with explicit attributes using the
section directive described in Section 6.3 “Directives that Define Sections”. For C
applications, MPLAB C30 will automatically define sections to contain variables and

DS51317E-page 138

© 2005 Microchip Technology Inc.

Linker Processing

functions as needed. For more information on the attributes of variables and functions
that may result in automatic section definition, see the “MPLAB C30 C Compiler User's
Guide” (DS51284).

Note: Whenever a section directive is used, all declarations that follow are
assembled into the named section. This continues until another section
directive appears, or the end of file. For more information on defining
sections and section attributes, see Section 6.3 “Directives that Define
Sections”.

10.8.2 Data Initialization Template

As noted in Section 10.8.1 “ Standard Data Section Names”, the 16-bit Language
Tools support bss-type sections (memory that is not initialized) as well as data-type
sections (memory that receives initial values). The data-type sections receive initial
values at start-up, and the bss-type sections are filled with zeros.

A generic data initialization template is used that supports any number of arbitrary
bss-type sections or data-type sections. The data initialization template is created by
the linker and is loaded into an output section named .dinit in program memory.
Start-up code in the run-time library interprets the template and initializes data memory
accordingly.

The data initialization template contains one record for each output section in data
memory. The template is terminated by a null instruction word. The format of a data
initialization record is:

/* data init record */

struct data_record {
char *dst; /* destination address */
int 1len; /* length in bytes */
int format; /* format code */
char dat[0]; /* variable length data */

}i

The first element of the record is a pointer to the section in data memory. The next two
elements are the section length and format code, respectively. The fourth element is an
optional array of data bytes. For bss-type sections, no data bytes are required.

13NUIT OEMNIT dVI1dN

The format code has three possible values.

TABLE 10-2: FORMAT CODE VALUES

Format Code Description
0 Fill the output section with zeros
1 Copy 2 bytes of data from each instruction word in the data array
2 Copy 3 bytes of data from each instruction word in the data array

By default, data records are created using format 2. Format 2 conserves program
memory by using the entire 24-bit instruction word to store initial values. Note that this
format causes the encoded instruction words to appear as random and possibly invalid
instructions if viewed in the disassembler.

Format 1 data records may be created by specifying the - -no-pack-data option.
Format 1 uses only the lower 16 bits of each 24-bit instruction word to store initial
values. The upper byte of each instruction word is filled with Ox0 by default and causes
the template to appear as NOP instructions if viewed in the disassembler (and will be
executed as such by the 16-bit device). A different value may be specified for the upper
byte of the data template with the --£i11-data option.

© 2005 Microchip Technology Inc. DS51317E-page 139

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.8.3 Run-Time Library Support

In order to initialize variables in data memory, the data initialization template must be
processed at start-up, before the proper application takes control. For C programs, this
function is performed by the start-up modules in 1ibpic30.a. Assembly language
programs can utilize these modules directly by linking with the file crt0.oorcrtil.o.
The source code for the start-up modules is provided in file crto.s and crti.s.

To utilize a start-up module, the application must allow the run-time library to take con-
trol at device reset. This happens automatically for C programs. The application’s
main () function is invoked after the start-up module has completed its work. Assembly
language programs should use the following naming conventions to specify which
routine takes control at device reset.

TABLE 10-3: MAIN ENTRY POINTS

Main Entry Name Description
__reset Takes control immediately after device reset
_main Takes control after the start-up module completes its work

Note that the first entry name (__reset) includes two leading underscore characters.
The second entry name (_main) includes only one leading underscore character. The
linker scripts construct a GOTO __reset instruction at location O in program memory,
which transfers control upon device reset.

The primary start-up module (crt0. o) is linked by default and performs the following:

1. The stack pointer (W15) and stack pointer limit register (SPLIM) are initialized,
using values provided by the linker or a custom linker script. For more information,
see Section 10.10 “Stack Allocation”.

2. Ifa .const section is defined, it is mapped into the Program Space Visibility
(PSV) window by initializing the PSVPAG and CORCON registers. Note that a
. const section is defined when the “Constants in code space” option is selected
in MPLAB IDE, or the -mconst -in-code option is specified on the MPLAB C30
command line.

3. The data initialization template in section .dinit is read, causing all uninitial-
ized sections to be cleared, and all initialized sections to be initialized with values
read from program memory.

4. The function main is called with no parameters.
5. If main returns, the processor will reset.

The alternate start-up module (crt1.o0) is linked when the - -no-data-init
optionis specified. It performs the same operations, except for step (3), which is omit-
ted. The alternate start-up module is much smaller than the primary module, and can
be selected to conserve program memory if data initialization is not required.

Source code (in 16-bit assembly language) for both modules is provided in the
c¢:\Program Files\Microchip\MPLAB C30\src directory. The start-up modules
may be modified if necessary. For example, if an application requires main to be called
with parameters, a conditional assembly directive may be switched to provide this
support.

DS51317E-page 140 © 2005 Microchip Technology Inc.

Linker Processing

10.9 READ-ONLY DATA

Read-only data sections are located in program memory, but are defined and accessed
just like data memory. They are useful for storing constant tables that are too large for
available data memory. The C compiler creates a read-only section named . const
when the -mconst - in-code option is specified.

The psv section attribute is used to designate read-only data sections. The contents of
read-only data sections may be specified with data directives, as shown in the following
assembly source example:

.section rdonly,psv
Ll: .byte 1
L2: .byte 2

In this example, section rdonly will be allocated in program memory. Both byte
constants will be located in the same program memory word, followed by a pad byte.
Unlike other sections in program memory, read-only sections are byte addressable.
Each label is resolved to a unique address that lies with the PSV address range.

The linker allocates read-only sections such that they do not cross a PSV page
boundary. Therefore, a single setting of the PSVPAG register will access the entire
section. A maximum length restriction is implied; the linker will issue an error message
if any read-only data section exceeds 32 Kbytes. Only the least significant 16 bits of
each instruction word are available for data storage (bits 16-23). The upper byte of
each program word is filled with 0x0 or another value specified with the
--fill-upper option. None of the p-variant assembler directives (including . pbyte

and .pword) are permitted in read-only data sections. =
The following examples illustrate how bytes in read-only sections may be accessed: E
>
; example 1 w
mov #psvoffset (L1l) ,w0 ; PSVPAG already set —
mov #psvoffset (L2) ,wl 2
mov.b [wO] ,w2 ; load the byte at L1 ~
mov.b [wl],w3 ; load the byte at L2 8
—
; example 2 5
mov #L1,wO0 ; PSVPAG already set ~
mov HL2,wl EE
mov.b [wO] ,w2 ; load the byte at L1l
mov.b [wl],w3 ; load the byte at L2

Use of the psvoffset () operator is optional in this example. This is possible because
read-only sections are dedicated for use in the PSV window. The generic form of
example 2 will work whether 1.1 or 1.2 are defined in a read-only section or in an
ordinary data section.

© 2005 Microchip Technology Inc. DS51317E-page 141

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

User-defined read-only sections do not require a custom linker script. Based on the
psv section attribute, the linker will locate the section in program memory and map its
labels into the PSV window. If the programmer wishes to declare a read-only section in
a custom linker script, the same syntax may be used as for other sections in program
memory:

/*

** User-Defined Constants in Program Memory

* %

** This section is identified as a read-only section
** by use of the psv section attribute. It will be
** Jloaded into program memory and mapped into data
** memory using the PSV window.

*/

userconstants ADDR : AT (LOADADDR)

{

* (userconstants) ;
} sprogram
In this example, ADDR specifies a data memory address in the range 0x8000 to
OxFFFE. LOADADDR specifies the corresponding address in program memory. The
least significant 15 bits of each address should be the same.

Any number of read-only sections may share the PSV window. By default, only one
read-only section is ensured to be visible for any one setting of the PSVPAG register.
To make a read-only section visible, the following assembly code can be used:

mov #psvpage (L1) ,w0 ; Ll is a label in the desired section
mov w0, PSVPAG

If an application requires multiple read-only sections to be visible at the same time, the
following linker script syntax will create a single output section from multiple input
sections:

/*

** Multiple read-only sections may be joined into a single

** output section. In this case all of the input sections

**x will be visible in the PSV window at the same time.
* %

** Total size of the output section is limited to 32K bytes.
*/
psv_set

{

* (rdonlyl) ;

* (rdonly2) ;
} >program
In this example, any label from rdonly1 or rdonly2 may be used to determine the
correct PSVPAG setting so that both sections are visible at the same time.

DS51317E-page 142

© 2005 Microchip Technology Inc.

Linker Processing

10.10 STACK ALLOCATION

The 16-bit device dedicates register W15 for use as a software stack pointer. All
processor stack operations, including function calls, interrupts and exceptions, use the
software stack. Upon power-on or reset, register W15 is initialized to point to a region
of memory reserved for the stack. The stack grows upward, towards higher memory
addresses.

The 16-bit device also supports stack overflow detection. If the stack limit register
SPLIM is initialized, the device will test for overflow on all stack operations. If an over-
flow should occur, the processor will initiate a stack error exception. By default, this will
result in a processor reset. Applications may also install a stack error exception handler
by defining an interrupt function named __ StackError. See Section 10.12 “Interrupt
Vector Tables” for details.

By default, MPLAB LINK30 allocates the largest stack possible from unused data
memory. The location and size of the stack is reported in the link map output file, under
the heading Dynamic Memory Usage. Applications can ensure that at least a minimum
sized stack is available by using the - -stack command option. For example:

pic30-1d -o t.exe tl.o --stack=0x100
Alternatively, the minimum stack size can be specified in assembly source code:

.global STACKSIZE
.equiv STACKSIZE, 0x100

While performing automatic stack allocation, MPLAB LINK30 increases the minimum
required size by a small amount to accomodate the processing of stack overflow excep-

tions. The stack limit register SPLIM is initialized to point just below this extra space, %
which acts as a stack overflow guardband. If not enough memory is available for the ;
minimum size stack plus guardband, the linker will report an error. ¥s)
As an alternative to automatic stack allocation, the stack may be allocated directly with —
a user-defined section in a custom linker script. In the following example, 0x100 bytes %
of data memory are reserved for the stack: w
o
.stack : —
{ =
___SP_init = .; g
. += 0x100; =

__SPLIM init = .;

} > data

In the user-defined section, two symbols are declared __SP init and

__SPLIM init foruse by the start-up module. SP init defines the initial value for
the stack pointer (w15) and __SPLIM init defines the initial value for the stack
pointer limit register (SPLIM). Note the use of the special symbol *." in this example.
This so-called “dot variable” always contains the current location counter for a given
section. For more information, see Section 9.7.5 “SECTIONS Command”.

The start-up module uses these symbols to initialize the stack pointer and stack pointer
limit register. Normally the start-up module is provided by 1ibpic30.a (for C

programs) or crt0 . o (for assembly programs). In special cases, the application may
provide its own start-up code. The following stack initialization sequence may be used:

mov # _SP init,wl5 ; initialize wils
mov #_ _SPLIM init,w0 ;
mov w0, SPLIM ; initialize SPLIM

© 2005 Microchip Technology Inc. DS51317E-page 143

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.11 HEAP ALLOCATION

The MPLAB C30 standard C library, 1ibc. a, supports dynamic memory allocation
functions such as malloc () and free (). Applications which utilize these functions
must instruct the linker to reserve a portion of 16-bit data memory for this purpose. The
reserved memory is called a heap.

Applications can specify the heap size by using the - -heap command option. For
example:

pic30-1d -o t.exe tl.o --heap=0x100
Alternatively, the heap size can be specified in assembly source code:

.global HEAPSIZE
.equiv HEAPSIZE, 0x100

The linker allocates the heap from unused data memory. The heap size is always
specified by the programmer. In contrast, the linker sets the stack size to a maximum
value, utilizing all remaining data memory.

The location and size of the heap are reported in the link map output file, under the
heading Dynamic Memory Usage. If the requested size is not available, the linker
reports an error.

10.12 INTERRUPT VECTOR TABLES

dsPIC30F/33F DSC and PIC24F/H MCU devices have two interrupt vector tables - a
primary and an alternate table, each containing exception vectors, as well as a RESET
instruction at location zero. By convention, the linker initializes the RESET instruction
and interrupt vector tables automatically, using information provided in the standard
linker scripts.

MPLAB C30 provides a special syntax for writing interrupt handlers. See the “MPLAB®
C30 C Compiler User’s Guide” (DS51284) for more information.

Assembly language programmers can install interrupt handlers simply by following the
standard naming conventions. Interrupt handlers declared with the standard names are
automatically installed into the vector tables.

By convention, the entry point named __reset takes control at device reset. All
applications written in assembly language must include a reset function with this name.
For C programs, the reset function is provided in 1ibpic30, which initializes the C
run-time environment.

Applications may provide a default interrupt handler, which will be installed into any
unused vector table entries. In assembly language, the name of the default interrupt
handleris DefaultInterrupt.InCthenameis DefaultInterrupt. Note that
C requires only one leading underscore for any of the interrupt handler names.

If the application does not provide a default interrupt handler, the linker will create one
in section . isr that contains a reset instruction. Creation of a default interrupt han-
dler by the linker may be suppressed with the - -no-1isr option. In that case unused
slots in the interrupt vector tables will be filled with zeros.

DS51317E-page 144 © 2005 Microchip Technology Inc.

Linker Processing

The following example provides a reset function and a default interrupt handler in
assembly language. The default interrupt handler uses persistent data storage to keep
a count of unexpected interrupts and/or error traps.

.include "p30£f6014.inc"
.text

.global _ reset

___reset:
;; takes control at device reset/power-on
mov # SP init,wl5 ; initialize stack pointer
mov # SPLIM init,wO ; and stack limit register

mov w0, SPLIM ;

btst RCON, #POR ; was this a power-on reset?
bra z,start ; branch if not
clr FaultCount ; else clear fault counter
bclr RCON, #POR ; and power-on bit
start:
goto main ; start application
.global = TlInterrupt
__TlInterrupt:
;; services timer 1 interrupts
bclr IFSO,#T1IF ; clear the interrupt flag
retfie ; and return from interrupt =
3
.global _ DefaultInterrupt —
__DefaultInterrupt: ;
;; services all other interrupts & traps —
inc FaultCount ; increment the fault counter -
reset ; and reset the device %
w
.section .pbss,persist ; persistent data storage ©
.global FaultCount ; 1s not affected by reset g
FaultCount: =
.space 2 ; count of unexpected interrupts EE

The standard naming convention for interrupt handlers are described in the tables
below.

« Table 10-4 Interrupt Vectors — dsPIC30F DSCs (non-SMPS)

» Table 10-5 Interrupt Vectors — dsPIC30F DSCs (SMPS)

« Table 10-6 Interrupt Vectors — PIC24F MCUs

 Table 10-7 Interrupt Vectors — dsPIC33F DSCs/PIC24H MCUs

TABLE 10-4: INTERRUPT VECTORS — dsPIC30F DSCs (NON-SMPS)

IRQ# Primary Name Alternate Name Vector Function

N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

© 2005 Microchip Technology Inc. DS51317E-page 145

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 10-4: INTERRUPT VECTORS — dsPIC30F DSCs (NON-SMPS)
IRQ# Primary Name Alternate Name Vector Function

0 _INTOInterrupt _AltINTOInterrupt INTO External interrupt O

1 _IClinterrupt _AltIC1Interrupt IC1 Input capture 1

2 _OCllInterrupt _AltOClInterrupt OC1 Output compare 1

3 _T1linterrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _IC2Interrupt _AltIC2Interrupt IC2 Input capture 2

5 _OC2Interrupt _AltOC2Interrupt OC2 Output compare 2

6 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

7 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

8 _SPIlinterrupt _AltSPIlinterrupt SPI1 Serial peripheral interface 1
9 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver
10 _U1TXInterrupt _Altu1TXInterrupt UARTI1TX Uart 1 Transmitter
11 _ADClnterrupt _AltADClInterrupt ADC convert completed

12 _NVMinterrupt _AltNVMInterrupt NMM NVM write completed
13 _Sl2Clinterrupt _AltSI2Cinterrupt Slave 12C™ interrupt

14 _MI2Clinterrupt _AltMI2ClInterrupt Master 12C interrupt

15 _CNInterrupt _AltCNInterrupt CN Input change interrupt
16 _INT1Interrupt _AltINT Linterrupt INT1 External interrupt O

17 _IC7Interrupt _AltIC7Interrupt IC7 Input capture 7

18 _IC8Interrupt _AltIC8Interrupt IC8 Input capture 8

19 _OC3iInterrupt _AltOC3Interrupt OC3 Output compare 3

20 _OCd4Interrupt _AltOCdInterrupt OC4 Output compare 4

21 _T4lInterrupt _AltT4Interrupt TMRA4 Timer 4 expired

22 _T5Interrupt _AltTSInterrupt TMRS5 Timer 5 expired

23 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

24 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver
25 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter
26 _SPI2Interrupt _AltSPI2Interrupt SPI2 Serial peripheral interface 2
27 _Clinterrupt _AltClinterrupt CAN1 combined IRQ

28 _IC3Interrupt _AltIC3Interrupt IC3 Input capture 3

29 _IC4Interrupt _AltIC4Interrupt IC4 Input capture 4

30 _IC5Interrupt _AltIC5Interrupt IC5 Input capture 5

31 _IC6Interrupt _AltIC6Interrupt IC6 Input capture 6

32 _OCS5Interrupt _AltOCS5lInterrupt OC5 Output compare 5

33 _OCe6lInterrupt _AltOC6Interrupt OC6 Output compare 6

34 _OCTYInterrupt _AltOC7Interrupt OC7 Output compare 7

35 _OC8Interrupt _AltOCS8Interrupt OC8 Output compare 8

36 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3

37 _INTA4lInterrupt _AltINT4Interrupt INT4 External interrupt 4

38 _C2Interrupt _AltC2Interrupt CAN2 combined IRQ

39 _PWMinterrupt _AltPWMiInterrupt PWM period match

40 _QElInterrupt _AltQElInterrupt QEI position counter compare
41 _DClinterrupt _AltDClInterrupt DCI CODEC transfer completed
42 _LVDiInterrupt _AltLVDInterrupt PLVD low voltage detected
43 _FLTAInterrupt _AltFLTAInterrupt FLTA MCPWM fault A

44 _FLTBInterrupt _AltFLTBInterrupt FLTB MCPWM fault B

DS51317E-page 146

© 2005 Microchip Technology Inc.

Linker Processing

TABLE 10-4: INTERRUPT VECTORS — dsPIC30F DSCs (NON-SMPS)
IRQ# Primary Name Alternate Name Vector Function

45 _Interrupt45 _Altinterrupt45 Reserved

46 _Interrupt46 _Altinterrupt46 Reserved

a7 _Interrupt47 _Altinterrupt47 Reserved

48 _Interrupt48 _Altinterrupt48 Reserved

49 _Interrupt49 _Altinterrupt49 Reserved

50 _Interrupt50 _Altinterrupt50 Reserved

51 _Interrupt51 _Altinterrupt51 Reserved

52 _Interrupt52 _Altinterrupt52 Reserved

53 _Interrupt53 _Altinterrupt53 Reserved
TABLE 10-5: INTERRUPT VECTORS - dsPIC30F DSCs (SMPS)

IRQ# Primary Nam Alternate Name Vector Function

N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INTOInterrupt _AltINTOInterrupt INTO External interrupt O
1 _IClinterrupt _AltIC1Interrupt IC1 Input capture 1

2 _OCllInterrupt _AltOClInterrupt OC1 Output compare 1

3 _T1linterrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _Interrupt4 _Altinterrupt4 Reserved

5 _OC2Interrupt _AltOC2Interrupt OC2 Output compare 2

6 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

7 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

8 _SPIlinterrupt _AltSPIlinterrupt SPI1 Serial peripheral interface 1
9 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver
10 _U1TXInterrupt _AltU1TXInterrupt UARTI1TX Uart 1 Transmitter
11 _ADClnterrupt _AltADClInterrupt ADC Convert completed
12 _NVMinterrupt _AltNVMInterrupt NVM write completed

13 _l2ClInterrupt _AltI2CInterrupt [2cm™ interrupt

14 _I2CErrinterrupt _AltI2CErrinterrupt 12C error interrupt

15 _Interrupt15 _Altinterrupt15 Reserved

16 _INT1Interrupt _AltINT Linterrupt INT1 External interrupt 1
17 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2
18 _PWMSpEvent _AltPWMSpEvent PWM special event interrupt

Matchlinterrupt Matchlinterrupt

19 _PWM1lInterrupt _AltPWM1lInterrupt PWM period match 1

20 _PWM2Interrupt _AltPWM2Interrupt PWM period match 2

21 _PWMa3lInterrupt _AltPWM3Interrupt PWM period match 3

22 _PWMdlnterrupt _AltPWMdlInterrupt PWM period match 4

23 _Interrupt23 _Altinterrupt23 Reserved

© 2005 Microchip Technology Inc.

DS51317E-page 147

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 10-5: INTERRUPT VECTORS - dsPIC30F DSCs (SMPS) (CONTINUED)
IRQ# Primary Nam Alternate Name Vector Function

24 _Interrupt24 _Altinterrupt24 Reserved

25 _Interrupt25 _Altinterrupt25 Reserved

26 _Interrupt26 _Altinterrupt26 Reserved

27 _Interrupt27 _Altinterrupt27 Reserved

28 _Interrupt28 _Altinterrupt28 Reserved

29 _CMP1lInterrupt _AltCMP1Interrupt Analog comparator interrupt 1
30 _CMP2Interrupt _AltCMP2Interrupt Analog comparator interrupt 2
31 _CMP3Interrupt _AltCMP3lInterrupt Analog comparator interrupt 3
32 _CMP4Interrupt _AltCMP4Interrupt Analog comparator interrupt 4
33 _Interrupt33 _Altinterrupt33 Reserved

34 _Interrupt34 _Altinterrupt34 Reserved

35 _Interrupt35 _Altinterrupt35 Reserved

36 _Interrupt36 _Altinterrupt36 Reserved

37 _Interrupt37 _Altinterrupt37 Reserved

38 _Interrupt38 _Altinterrupt38 Reserved

39 _Interrupt39 _Altinterrupt39 Reserved

40 _Interrupt40 _Altinterrupt40 Reserved

41 _Interrupt41 _Altinterrupt41 Reserved

42 _Interrupt42 _Altinterrupt42 Reserved

43 _Interrupt43 _Altinterrupt43 Reserved

44 _Interrupt44 _Altinterrupt44 Reserved

45 _Interrupt45 _Altinterrupt45 Reserved

46 _Interrupt46 _Altinterrupt46 Reserved

a7 _Interrupt47 _Altinterrupt47 Reserved

48 _Interrupt48 _Altinterrupt48 Reserved

49 _Interrupt49 _Altinterrupt49 Reserved

50 _Interrupt50 _Altinterrupt50 Reserved

51 _Interrupt51 _Altinterrupt51 Reserved

52 _Interrupt52 _Altinterrupt52 Reserved

53 _Interrupt53 _Altinterrupt53 Reserved
TABLE 10-6: INTERRUPT VECTORS - PIC24F MCUs

IRQ# Primary Name Alternate Name Vector Function

N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INTOInterrupt _AltINTOInterrupt INTO External interrupt O

1 _IClinterrupt _AltIC1Interrupt IC1 Input capture 1

2 _OCllInterrupt _AltOClInterrupt OC1 Output compare 1

3 _T1linterrupt _AltT1Interrupt TMR1 Timer 1 expired

DS51317E-page 148

© 2005 Microchip Technology Inc.

Linker Processing

TABLE 10-6: INTERRUPT VECTORS - PIC24F MCUs (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function

4 _Interrupt4 _Altinterrupt4 Reserved

5 _IC2Interrupt _AltIC2Interrupt IC2 Input capture 2

6 _OC2Interrupt _AltOC2Interrupt OC2 Output compare 2

7 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

8 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

9 _SPI1Errinterrupt _AltSPI1Errinterrupt SPI1 error interrupt

10 _SPIlinterrupt _AltSPIlInterrupt SPI1 tranfer completed interrupt
11 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver
12 __U1TXInterrupt _AltU1TXInterrupt UARTI1TX Uart 1 Transmitter
13 _ADCllInterrupt _AltADClInterrupt ADC 1 convert completed
14 _Interrupt14 _Altinterrupt14 Reserved

15 _Interruptl5 _Altinterrupt15 Reserved

16 _SlI2Clinterrupt _AltSI2C1lInterrupt Slave 12C interrupt 1

17 _MI2C1lInterrupt _AltMI2C1Interrupt Slave 12C interrupt 1

18 _Complnterrupt _AltComplnterrupt Comparator interrupt

19 _CNInterrupt _AltCNInterrupt CN Input change interrupt
20 _INT1Interrupt _AltINT Linterrupt INT1 External interrupt 1

21 _Interrupt21 _Altinterrupt21 Reserved

22 _Interrupt22 _Altinterrupt22 Reserved

23 _Interrupt23 _Altinterrupt23 Reserved

24 _Interrupt24 _Altinterrupt24 Reserved

25 _OCa3iInterrupt _AltOC3Interrupt OC3 Output compare 3

26 _OCd4Interrupt _AltOCAInterrupt OC4 Output compare 4

27 _T4lInterrupt _AltT4Interrupt TMR4 Timer 4 expired

28 _T5Interrupt _AltTSInterrupt TMRS5 Timer 5 expired

29 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

30 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver
31 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter
32 _SPI2Errinterrupt _AltSPI2Errinterrupt SPI2 error interrupt

33 _SPI2Interrupt _AltSPI2Interrupt SPI2 tranfer completed interrupt
34 _Interrupt34 _Altinterrupt34 Reserved

35 _Interrupt35 _Altinterrupt35 Reserved

36 _Interrupt36 _Altinterrupt36 Reserved

37 _IC3Interrupt _AltIC3Interrupt IC3 Input capture 3

38 _IC4Interrupt _AltiIC4Interrupt IC4 Input capture 4

39 _IC5Interrupt _AltIC5Interrupt IC5 Input capture 5

40 _Interrupt40 _Altinterrupt40 Reserved

41 _OCS5Interrupt _AltOCS5lInterrupt OC5 Output compare 5

42 _Interrupt42 _Altinterrupt42 Reserved

43 _Interrupt43 _Altinterrupt43 Reserved

44 _Interrupt44 _Altinterrupt44 Reserved

45 _PMPInterrupt _AltPMPInterrupt Parallel master port interrupt
46 _Interrupt46 _Altinterrupt46 Reserved

a7 _Interrupt47 _Altinterrupt47 Reserved

48 _Interrupt48 _Altinterrupt48 Reserved

© 2005 Microchip Technology Inc.

DS51317E-page 149

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 10-6: INTERRUPT VECTORS - PIC24F MCUs (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function

49 _SlI2C2Interrupt _AltSI2C2Interrupt Slave I°C™ interrupt 2

50 _MI2C2Interrupt _AltMI2C2Interrupt Slave 12C interrupt 2

51 _Interrupt51 _Altinterrupt51 Reserved

52 _Interrupt52 _Altinterrupt52 Reserved

53 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3

54 _INT4lInterrupt _AltINT4Interrupt INT4 External interrupt 4

55 _Interrupt55 _Altinterrupt55 Reserved

56 _Interrupt56 _Altinterrupt56 Reserved

57 _Interrupt57 _Altinterrupt57 Reserved

58 _Interrupt58 _Altinterrupt58 Reserved

59 _Interrupt59 _Altinterrupt59 Reserved

60 _Interrupt60 _Altinterrupt60 Reserved

61 _Interrupt61 _Altinterrupt61 Reserved

62 _RTCClnterrupt _AItRTCClInterrupt Real-time clock and calender

63 _Interrupt63 _Altinterrupt63 Reserved

64 _Interrupt64 _Altinterrupt64 Reserved

65 _U1EInterrupt _AltU1EInterrupt UART1 error interrupt

66 _UZ2ElInterrupt _AltU2EInterrupt UART2 error interrupt

67 _CRClnterrupt _AltCRClinterrupt Cyclic Redundancy Check

68 _Interrupt68 _Altinterrupt68 Reserved

69 _Interrupt69 _Altinterrupt69 Reserved

70 _Interrupt70 _Altinterrupt70 Reserved

71 _Interrupt71 _Altinterrupt71 Reserved

72 _Interrupt72 _Altinterrupt72 Reserved

73 _Interrupt73 _Altinterrupt73 Reserved

74 _Interrupt74 _Altinterrupt74 Reserved

75 _Interrupt75 _Altinterrupt75 Reserved

76 _Interrupt76 _Altinterrupt76 Reserved

77 _Interrupt77 _Altinterrupt77 Reserved

78 _Interrupt78 _Altinterrupt78 Reserved

79 _Interrupt79 _Altinterrupt79 Reserved

80 _Interrupt80 _Altinterrupt80 Reserved

81 _Interrupt81 _Altinterrupt81 Reserved

82 _Interrupt82 _Altinterrupt82 Reserved

83 _Interrupt83 _Altinterrupt83 Reserved

84 _Interrupt84 _Altinterrupt84 Reserved

85 _Interrupt85 _Altinterrupt85 Reserved

86 _Interrupt86 _Altinterrupt86 Reserved

87 _Interrupt87 _Altinterrupt87 Reserved

88 _Interrupt88 _Altinterrupt88 Reserved

89 _Interrupt89 _Altinterrupt89 Reserved

90 _Interrupt90 _Altinterrupt90 Reserved

91 _Interrupt91 _Altinterrupt91 Reserved

92 _Interrupt92 _Altinterrupt92 Reserved

93 _Interrupt93 _Altinterrupt93 Reserved

DS51317E-page 150

© 2005 Microchip Technology Inc.

Linker Processing

TABLE 10-6: INTERRUPT VECTORS — PIC24F MCUs (CONTINUED)

IRQ# Primary Name Alternate Name Vector Function
94 _Interrupt94 _Altinterrupt94 Reserved
95 _Interrupt95 _Altinterrupt95 Reserved
96 _Interrupt96 _Altinterrupt96 Reserved
97 _Interrupt97 _Altinterrupt97 Reserved
98 _Interrupt98 _Altinterrupt98 Reserved
99 _Interrupt99 _Altinterrupt99 Reserved
100 _Interrupt100 _Altinterrupt100 Reserved
101 _Interrupt101 _Altinterrupt101 Reserved
102 _Interrupt102 _Altinterrupt102 Reserved
103 _Interrupt103 _Altinterrupt103 Reserved
104 _Interrupt104 _Altinterrupt104 Reserved
105 _Interrupt105 _Altinterrupt105 Reserved
106 _Interrupt106 _Altinterrupt106 Reserved
107 _Interrupt107 _Altinterrupt107 Reserved
108 _Interrupt108 _Altinterrupt108 Reserved
109 _Interrupt109 _Altinterrupt109 Reserved
110 _Interrupt110 _Altinterrupt110 Reserved
111 _Interrupt111 _Altinterrupt111 Reserved
112 _Interrupt112 _Altinterrupt112 Reserved =
113 _Interrupt113 _Altinterrupt113 Reserved E
114 _Interruptl114 _Altinterrupt114 Reserved >
115 _Interrupt115 _Altinterrupt115 Reserved E
116 _Interrupt116 _Altinterrupt116 Reserved =
117 _Interrupt117 _Altinterrupt117 Reserved 07§
o
.
TABLE 10-7: INTERRUPT VECTORS - dsPIC33F DSCs/PIC24H MCUs %
IRQ# Primary Name Alternate Name Vector Function @
N/A _ReservedTrap0 _AltReservedTrap0 Reserved
N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap
N/A _AddressError _AltAddressError Address error trap
N/A _StackError _AltStackError Stack error trap
N/A _MathError _AltMathError Math error trap
N/A _DMACEtrror _AItDMACError DMA conflict error trap
N/A _ReservedTrap6 _AltReservedTrap6 Reserved
N/A _ReservedTrap7 _AltReservedTrap7 Reserved
0 _INTOInterrupt _AltINTOInterrupt INTO External interrupt O
1 _IClinterrupt _AltIC1Interrupt IC1 Input capture 1
2 _OCllInterrupt _AltOCllInterrupt OC1 Output compare 1
3 _T1linterrupt _AltT1Interrupt TMR1 Timer 1 expired
4 _DMAOInterrupt _AltDMAOInterrupt DMA 0 interrupt
5 _IC2Interrupt _AltIC2Interrupt IC2 Input capture 2
6 _OC2Interrupt _AltOC2Interrupt OC2 Output compare 2
7 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired
8 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired
9 _SPI1Errinterrupt _AltSPI1Errinterrupt SPI1 error interrupt

© 2005 Microchip Technology Inc. DS51317E-page 151

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 10-7: INTERRUPT VECTORS - dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function

10 _SPIlinterrupt _AltSPIlinterrupt SPI1 tranfer completed interrupt
11 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver
12 _U1TXInterrupt _AltU1TXInterrupt UARTI1TX Uart 1 Transmitter
13 _ADCllInterrupt _AltADClInterrupt ADC 1 convert completed
14 _DMAlInterrupt _AltDMAlInterrupt DMA 1 interrupt

15 _Interruptl5 _Altinterrupt15 Reserved

16 _SlI2ClInterrupt _AltSI2C1lInterrupt Slave 12C interrupt 1

17 _MI2C1lInterrupt _AltMI2Cl1Interrupt Master 12C interrupt 1

18 _Interrupt18 _Altinterrupt18 Reserved

19 _CNInterrupt _AltCNInterrupt CN Input change interrupt
20 _INT1Interrupt _AltINT Linterrupt INT1 External interrupt 1
21 _ADC2Interrupt _AltADC2Interrupt ADC 2 convert completed
22 _IC7Interrupt _AltIC7Interrupt IC7 Input capture 7

23 _IC8Interrupt _AltIC8Interrupt IC8 Input capture 8

24 _DMA2Interrupt _AltDMA2Interrupt DMA 2 interrupt

25 _OC3iInterrupt _AltOC3Interrupt OC3 Output compare 3

26 _OCd4Interrupt _AltOCAInterrupt OC4 Output compare 4

27 _T4lInterrupt _AltT4Interrupt TMR4 Timer 4 expired

28 _T5Interrupt _AltTSInterrupt TMRS5 Timer 5 expired

29 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2
30 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver
31 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter
32 _SPI2Errinterrupt _AltSPI2Errinterrupt SPI2 error interrupt

33 _SPI2Interrupt _AltSPI2Interrupt SPI2 tranfer completed interrupt
34 _C1RxRdyinterrupt | _AltC1RxRdylinterrupt CANL1 receive data ready
35 _Clinterrupt _AltClinterrupt CAN1 completed interrupt
36 _DMAS3Interrupt _AltDMA3Interrupt DMA 3 interrupt

37 _IC3iInterrupt _AltIC3Interrupt IC3 Input capture 3

38 _IC4Interrupt _AltiIC4Interrupt IC4 Input capture 4

39 _IC5Interrupt _AltIC5Interrupt IC5 Input capture 5

40 _IC6Interrupt _AltIC6Interrupt IC6 Input capture 6

41 _OCS5Interrupt _AltOCS5lInterrupt OC5 Output compare 5

42 _OCe6lInterrupt _AltOC6Interrupt OC6 Output compare 6

43 _OCTYInterrupt _AltOC7Interrupt OC7 Output compare 7

44 _OCS8iInterrupt _AltOCS8Interrupt OCS8 Output compare 8

45 _Interrupt45 _Altinterrupt45 Reserved

46 _DMAdInterrupt _AltDMA4Interrupt DMA 4 interrupt

a7 _T6Interrupt _AltT6Interrupt TMR6 Timer 6 expired

48 _T7Interrupt _AltT7Interrupt TMRY Timer 7 expired

49 _SlI2C2Interrupt _AltSI2C2Interrupt Slave 12C™ interrupt 1

50 _MI2C2Interrupt _AltMI2C2Interrupt Master 12C interrupt 2

51 _T8Interrupt _AltT8Interrupt TMR8 Timer 8 expired

52 _T9Interrupt _AltT9Interrupt TMR9 Timer 9 expired

53 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3
54 _INT4lInterrupt _AltINT4Interrupt INT4 External interrupt 4

DS51317E-page 152

© 2005 Microchip Technology Inc.

Linker Processing

TABLE 10-7: INTERRUPT VECTORS - dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function

55 _C2RxRdylinterrupt | _AltC2RxRdyInterrupt CAN2 receive data ready

56 _C2Interrupt _AltC2Interrupt CAN2 completed interrupt

57 _PWMinterrupt _AltPWMinterrupt PWM period match

58 _QElInterrupt _AltQElInterrupt QEI position counter compare

59 _DCIErrinterrupt _AltDCIErrinterrupt DCI CODEC error interrupt

60 _DClinterrupt _AltDClInterrupt DCI CODEC tranfer done

61 _DMASInterrupt _AltDMASInterrupt DMA channel 5 interrupt

62 _Interrupt62 _Altinterrupt62 Reserved

63 _FLTAInterrupt _AltFLTAInterrupt FLTA MCPWM fault A

64 _FLTBInterrupt _AItFLTBInterrupt FLTB MCPWM fault B

65 _U1Errinterrupt _AltU1Errinterrupt UART1 error interrupt

66 _U2Errinterrupt _AltU2ErrInterrupt UART2 error interrupt

67 _Interrupt67 _Altinterrupt67 Reserved

68 _DMAGInterrupt _AltDMASGInterrupt DMA channel 6 interrupt

69 _DMA7Interrupt _AltDMA7Interrupt DMA channel 7 interrupt

70 _C1TxReqInterrupt | _AltC1TxReqInterrupt CAN1 transmit data request

71 _C2TxReqInterrupt | _AltC2TxReqlInterrupt CAN2 transmit data request

72 _Interrupt72 _Altinterrupt72 Reserved

73 _Interrupt73 _Altinterrupt73 Reserved

74 _Interrupt74 _Altinterrupt74 Reserved

75 _Interrupt75 _Altinterrupt75 Reserved

76 _Interrupt76 _Altinterrupt76 Reserved

77 _Interrupt77 _Altinterrupt77 Reserved

78 _Interrupt78 _Altinterrupt78 Reserved

79 _Interrupt79 _Altinterrupt79 Reserved

80 _Interrupt80 _Altinterrupt80 Reserved

81 _Interrupt81 _Altinterrupt81 Reserved

82 _Interrupt82 _Altinterrupt82 Reserved

83 _Interrupt83 _Altinterrupt83 Reserved

84 _Interrupt84 _Altinterrupt84 Reserved

85 _Interrupt85 _Altinterrupt85 Reserved

86 _Interrupt86 _Altinterrupt86 Reserved

87 _Interrupt87 _Altinterrupt87 Reserved

88 _Interrupt88 _Altinterrupt88 Reserved

89 _Interrupt89 _Altinterrupt89 Reserved

920 _Interrupt90 _Altinterrupt90 Reserved

91 _Interrupt91 _Altinterrupt91 Reserved

92 _Interrupt92 _Altinterrupt92 Reserved

93 _Interrupt93 _Altinterrupt93 Reserved

94 _Interrupt94 _Altinterrupt94 Reserved

95 _Interrupt95 _Altinterrupt95 Reserved

96 _Interrupt96 _Altinterrupt96 Reserved

97 _Interrupt97 _Altinterrupt97 Reserved

98 _Interrupt98 _Altinterrupt98 Reserved

99 _Interrupt99 _Altinterrupt99 Reserved

© 2005 Microchip Technology Inc.

DS51317E-page 153

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

10.13 OPTIMIZING MEMORY USAGE

TABLE 10-7: INTERRUPT VECTORS - dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function
100 _Interrupt100 _Altinterrupt100 Reserved
101 _Interrupt101 _Altinterrupt101 Reserved
102 _Interrupt102 _Altinterrupt102 Reserved
103 _Interrupt103 _Altinterrupt103 Reserved
104 _Interrupt104 _Altinterrupt104 Reserved
105 _Interrupt105 _Altinterrupt105 Reserved
106 _Interrupt106 _Altinterrupt106 Reserved
107 _Interrupt107 _Altinterrupt107 Reserved
108 _Interrupt108 _Altinterrupt108 Reserved
109 _Interrupt109 _Altinterrupt109 Reserved
110 _Interrupt110 _Altinterrupt110 Reserved
111 _Interrupt111 _Altinterrupt111 Reserved
112 _Interrupt112 _Altinterrupt112 Reserved
113 _Interrupt113 _Altinterrupt113 Reserved
114 _Interruptl114 _Altinterrupt114 Reserved
115 _Interrupt115 _Altinterrupt115 Reserved
116 _Interrupt116 _Altinterrupt116 Reserved
117 _Interrupt117 _Altinterrupt117 Reserved

For memory intensive applications, it is often necessary to optimize memory usage by
reducing or eliminating any unused gaps. The linker will optimize memory allocation
automatically in most cases. However, certain constructs in source code and/or linker

scripts may introduce gaps and should be avoided.
Memory gaps generally fall into four categories:
« Gaps Between Variables of Different Types

« Gaps Between Aligned Variables
* Gaps Between Input Sections
« Gaps Between Output Sections

10.13.1 Gaps Between Variables of Different Types

Gaps may be inserted between variables of different types to satisfy address alignment
requirements. For example, the following sequence of C statements will result in a gap:

char c1;

int i;

char c2;

int j;

Because the processor requires integers to be aligned on a 16-bit boundary, a padding
byte was inserted after variables c1 and c2. To eliminate this padding, variables of the

same type should be defined together, as shown:

char cl,c2;
int 1i,73;

Gaps between variables are not visible to the linker, and are not reported in the link
map. To detect these gaps, an assembly listing file must be created. The following
procedure can be used:

DS51317E-page 154

© 2005 Microchip Technology Inc.

Linker Processing

1. |Ifthe source file is written in C, specify the -save-temps command line option
to the compiler. This will cause an assembly version of the source file to be saved
in filename.s.

pic30-gcc test.c -save-temps

2. Specify the -a1i listing option to the assembler. This will cause a table of section
information to be generated.

pic30-as test.s -ai

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
text 0 0 (0)
TOTAL PROGRAM MEMORY USED (bytes): 0 (0)

Section Alignment Gaps Length (bytes) (dec)
data 0 0 (0)
bss 0 o (0)
nbss 0x2 0x8 (8)
TOTAL DATA MEMORY USED (bytes): 0x8 (8)

In this example, 2 bytes of unused memory were inserted into section .nbss. Gaps
between ordinary C variables will not exceed 1 byte per variable.

10.13.2 Gaps Between Aligned Variables

Variables may be defined in C with the aligned attribute in order to specify special
alignment requirements for modulo addressing or other purposes. Use of the aligned
attribute will cause the variable to be allocated in a unique section. Since a unique sec-
tion is never combined with other input sections, no alignment padding is necessary
and the linker will allocate memory for the aligned variable in the most efficient way
possible.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

For example, the following sequence of C statements will not result in an alignment
gap, because variable buf is allocated in a unique section automatically:

char c1,c2;

int 1,5;

int _ attribute_ ((aligned(256))) buf[128];

When allocating space for aligned variables in assembly language, the source code
must also specify a section name. Unless the aligned variable is defined in a unique
section, alignment padding may be inserted. For example, the following sequence of
assembly statements would result in a large alignment gap, and should be avoided:

.section my vars,bss
.global varl, var2, buf

_varl: .space 2
_var2: .space 2
; location counter is now 4
.align 256
buf: .space 256

; location counter is now 512

© 2005 Microchip Technology Inc. DS51317E-page 155

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Re-ordering the statements so that _buf is defined first will not eliminate the gap. A
named input section will be padded so that its length is a multiple of the requested
alignment. This is necessary in order to guarantee correct alignment when multiple
input sections with the same name are combined by the linker. Therefore reordering
statements would cause the gap to move, but would not eliminate the gap.

Aligned variables in assembly must be defined in a unique section in order to avoid
alignment padding. It is not sufficient to specify a section name that is used only once,
because the assembler does not know if that section will be combined with others by
the linker. Instead, the special section name * should be used. As explained in
Section 6.3 “Directives that Define Sections” the section name * instructs the
assembler to create a unique section that will not be combined with other sections.

To avoid alignment gaps, the previous example could be written as:

.section my vars,bss
.global varl, var2
_varl: .space 2
_var2: .space 2

.section *,bss
.global buf

.align 256
_buf: .space 256
The alignment requirement for _buf could also be specified in the . section directive,

as shown:

.section *,bss,align(256)
.global buf
buf: .space 256

10.13.3 Gaps Between Input Sections

Gaps between input sections are similar to gaps between aligned variables, except that
the padding is inserted by the linker, not the assembler. This type of gap can occur
when variables with different alignment requirements are defined in separate source
files.

A necessary condition for the insertion of alignment gaps by the linker is explicit map-
ping of input sections in the linker script. For example, older versions of MPLAB C30
(prior to version 1.30) included the following definition:

/*

** Tnitialized Data and Constants

*/

.data :

{

* (.data) ;
* (.dconst) ;
} >data

This example maps all input sections named .data, and all input sections named
.dconst, into a single output section. The various input sections will be combined
sequentially. If the alignment requirement of any section exceeds that of the previous
section, the linker will insert padding as needed and report an alignment gap in the link
map:

DS51317E-page 156 © 2005 Microchip Technology Inc.

Linker Processing

Data Memory Usage

section address alignment gaps total length (dec)
data 0x800 0x10 0x90 (144)
Total data memory used (bytes): 0x90 (144) <1%

The remedy for this type of gap is to simply eliminate the mapping of input sections in
linker scripts. Unmapped sections are allocated individually by the linker, so that no
special alignment padding is necessary. Newer versions of MPLAB C30 (version 1.30
and later) do not explicitly map any input sections in data memory for this reason.

10.13.4 Gaps Between Output Sections

Gaps between output sections can occur when the alignment requirements differ and
multiple sections are allocated sequentially into the same memory region.

A necessary condition for the insertion of alignment gaps between output sections is
explicit mapping of output sections in the linker script. For example, older versions of
MPLAB C30 (prior to version 1.30) included the following definitions:

/*

** Persistent Data

*/

.pbss (NOLOAD) :

{
* (.pbss) ;
} >data

/*
** Static Data
*/
.bss (NOLOAD) :

{
*(.bss);
} >data

This example creates two output sections (.pbss and .bss) and maps them into
memory region data. Because the output sections are allocated sequentially, any
difference in alignment requirements will result in gap.

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

In some instances the linker will make use of this gap, depending on the availability,
size, and alignment requirements of any unmapped sections. In general it is preferable
to eliminate the explicit mapping of output sections in linker scripts. When all output
sections are unmapped, the linker is free to perform a best-fit allocation based on
section attributes.

Explicit mapping of output sections in linker scripts is recommended only when the
proximity or relative ordering of sections is important, and can't be satisfied using the
section attributes described in Section 6.3 “Directives that Define Sections”.

© 2005 Microchip Technology Inc. DS51317E-page 157

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 158 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 11. Linker Examples

11.1 INTRODUCTION

The 16-bit devices include many architectural features that require special handling by
the linker. MPLAB C30 and MPLAB ASM30 each provide a syntax than can be used to
designate certain elements of an application for special handling. In C, a rich set of
attributes are available to modify variable and function definitions (see the “MPLAB
C30 C Compiler User’s Guide” DS51284). In assembly language, variables and func-
tions are abstracted into memory sections, which become inputs to the linker. The
assembler provides another set of attributes that are available to modify section defini-
tions (see Section 6.8 “ Directives that Modify Section Alignment”).

This chapter includes a number of 16-bit specific linker examples and shows the equiv-
alent syntax in C and assembly language.

11.2 HIGHLIGHTS

Topics covered in this chapter are:

* Memory Addresses and Relocatable Code

« Locating a Variable at a Specific Address

 Locating a Function at a Specific Address

» Saving and Restoring the PSVPAG Register

 Locating a Constant at a Specific Address in Program Memory
 Locating and Accessing Data in EEPROM Memory

« Creating an Incrementing Modulo Buffer in X Memory
 Creating a Decrementing Modulo Buffer in Y Memory
 Locating the Stack at a Specific Address

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

© 2005 Microchip Technology Inc. DS51317E-page 159

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

11.3 MEMORY ADDRESSES AND RELOCATABLE CODE

For most applications it is preferable to write fully relocatable source code, thus
allowing the linker to determine the exact addresses in memory where functions and
variables are placed. The final address of external symbols in data memory and
program memory can be determined from the link map output, as shown in this excerpt:

External Symbols in Data Memory (by address):

0x0802 __curbrk
0x0804 _Stdin
0x082c _Stdout
0x0854 _Stderr
0x087c _Files
0x088c _Aldata
0x0890 _Size block

External Symbols in Data Memory (by name) :

0x0802 __curbrk
0x088c _Aldata
0x087c _Files
0x0890 _Size block
0x0854 _Stderr
0x0804 _Stdin
0x082c _Stdout

In some cases it is necessary for the programmer to specify the address where a
certain variable or function should be located. Traditionally this is done by creating a
user-defined section and writing a custom linker script. MPLAB ASM30 and MPLAB
C30 provide a set of attributes that can be used to specify absolute addresses and
memory spaces directly in source code. When these attributes are used, custom linker
scripts are not required.

Note: By specifying an absolute address, the programmer assumes the respon-
sibilty to ensure the specified address is reasonable and available. If the
specified address is out of range, or conflicts with a statically allocated
resource such as section . text in program memory, a link error will occur.
Often it is useful to first build an application without specifying an absolute
address, so that the resulting memory map can be examined. A summary
of memory usage by the linker appears in the link map, and may also be
written to the console with the - -report -mem option.

DS51317E-page 160 © 2005 Microchip Technology Inc.

Linker Examples

11.4 LOCATING A VARIABLE AT A SPECIFIC ADDRESS

In this example, array buf1 is located at a specific address in data memory. The
address of buf1 can be confirmed by executing the program in the simulator, or by
examining the link map.

#include "stdio.h"
int _ attribute_ ((address(0x900))) bufl[128];
void main ()

{

printf ("0x900 = 0x%x\n", &bufl);
}
The equivalent array definition in assembly language appears below. The .align
directive is optional and represents the default alignment in data memory. Use of * as
a section name causes the assembler to generate a unique name based on the source
file name.

.section *,address (0x900),bss,near
.global _bufl
.align 2

_bufl: .space 256

11.5 LOCATING A FUNCTION AT A SPECIFIC ADDRESS

In this example, function func is located at a specific address. Two built-in compiler
functions are used to calculate the program memory address, which is not otherwise
available in C.

#include "stdio.h"

void _ attribute ((address(0x2000))) func()
{1

void main ()

{

long addr;

addr = ((long) _ builtin tblpage(func) << 16)
+ __builtin tbloffset (func) ;
printf ("0x2000 = 0x%1x\n", addr);

}

The equivalent function definition in assembly language appears below. The .align
directive is optional and represents the default alignment in program memory. Use of *
as a section name causes the assembler to generate a unique name based on the
source file name.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

.section *,address (0x2000),code
.global _func
.align 2

_func: return

© 2005 Microchip Technology Inc. DS51317E-page 161

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

11.6 SAVING AND RESTORING THE PSVPAG REGISTER

In this example, the constant status_string is located in the compiler-managed
PSV section, while the constant gamma_factor is located in a separate PSV section.
You are required to place a constant in a separate PSV section if the compiler-managed
PSV section is full or if you want to locate the constant at a specific address. A PSV
section has a capacity of 32 Kbytes.

The compiler will initialize the PSV bit in the CORCON register and the PSVPAG reg-
ister only for the compiler-managed PSV section (auto_psv) on start-up (in crto0. s).
To properly access gamma_factor, you must manually manage the PSVPAG register.
Namely, save the PSVPAG register before accessing gamma_factor, set the
PSVPAG to access gamma_factor and restore the original PSVPAG after accessing
gamma_factor. To determine the PSVPAG of a constant stored in program memory,
one canusethe builtin psvpage () helper function.

When the PSVPAG is modified to access gamma_factor, be careful not to access
constants stored in the compiler-managed PSV section, such as string constants used
with printf (). Any attempts to access constants stored in the compiler-managed
PSV section with an incorrect PSVPAG will fail.

Note: Ondevices with less than 16K instruction words, there is only one PSVPAG
and manual mangement of the PSVPAG register is not required.

#include "stdio.h"
#include "p30fxxxx.h"

const char _ attribute ((space(auto psv))) status_string[2] [10] =
{"System OK", "Key Made"};
const int __ attribute _ ((space(psv))) gamma_factor[3] = {13, 23, 7};

int main(void)

{

unsigned psv_shadow;
unsigned key, seed = 17231;

/* print the first status string */

)

printf ("$s\n", status_string[0]);

/* save the PSVPAG */
psv_shadow = PSVPAG;

/* set the PSVPAG for accessing gamma_ factor[] */
PSVPAG = __ builtin psvpage (gamma_factor) ;

/* build the key from gamma_ factor */
key = (seed + gamma_factor[0] + gamma factor[l]) / gamma_ factor[2];

/* restore the PSVPAG for the compiler-managed PSVPAG */
PSVPAG = psv_shadow;

/* print the second status message */
printf ("%s \n", status_string[1]);

DS51317E-page 162

© 2005 Microchip Technology Inc.

Linker Examples

11.7 LOCATING A CONSTANT AT A SPECIFIC ADDRESS IN PROGRAM MEMORY

In this example, the constant table is located at a specific address in program
memory. When a constant is specifically placed at an address in program memory, it
must be placed in its own PSV section using the space (psv) attribute. If a device has
only one PSV page (16K instruction words or less), the (psv) section and (auto_psv)
section will share the same PSV page by default.

Note: Itis not possible to place a constant at a specific address in Program
Memory using the space (auto_psv) attribute. Only the space (psv)
attribute may be used to perform this task.

The builtin tblpage() and builtin tbloffset () helper functions can
be used to find the address of a constant stored in program memory. As with the
example in the previous section, if you want to access table, you must manually
manage PSVPAG and restore its original value. The builtin psvpag () helper
function may be used to assist with this task.

#include "stdio.h"
#include "p30fxxxx.h"

const unsigned __attribute ((space(psv), address (0x2000)))
table[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int main (void)

{

unsigned psv_shadow;
unsigned sum=0, u;
long addr;

/* compute the address of table and print it */
addr = ((long) _ builtin tblpage(table) << 16) +
__builtin tbloffset (table);

/* print the address of table */
printf ("table[] is stored at address 0x%1lx\n", addr);

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

/* save the PSVPAG */
psv_shadow = PSVPAG;

/* set the PSVPAG for accessing tablel[] */
PSVPAG = _ builtin psvpage (table);

/* sum the values in table[] */
for (u=0; u<l0; u++) {
sum += table[u];

}

/* restore the PSVPAG for the compiler-managed PSVPAG */
PSVPAG = psv_shadow;

/* print the sum */
printf ("sum is %d\n", sum);

© 2005 Microchip Technology Inc. DS51317E-page 163

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

The equivalent constant definition for the array table in assembly language appears
below. The .align directive is optional and represents the default alignment in
program memory. Use of * as a section name causes the assembler to generate a
unigue name based on the source file name.

.section *,address (0x2000),psv

.global table

.align 2
_table:

.word 0,1,2,3,4,5,6,7,8,9
In order to allocate table in data memory, the space (psv) attribute could be
changedto space (data) . Inthis case, the specified address would be a data memory
address. In the absence of a space attribute, the keyword const directs the C com-
piler to allocate the variable in the same space as other compiler constants. Constants
are allocated in program memory by default, or in data memory if the constants-in-data
memory model is selected.

11.8 LOCATING AND ACCESSING DATA IN EEPROM MEMORY

In this example, two arrays are defined in data EEPROM. Tablel is aligned to a 32-bit
address, so it will be eligible for erasing or programming using the row programming
algorithm. Table2 is defined with standard alignment, so it must be erased or pro-
grammed one word at a time. The macro EEDATA is used to place a variable in the
Data EEPROM section of memory and align the variable to the specified byte bound-
ary. This macro is defined in the processor header files for devices which contain data
flash. This example is targeted for the dsPIC30F6014 processor, and includes the
processor header file p30£6014 . h.

The compiler and linker treat Data EEPROM like any other custom-defined (psv) sec-
tion. The compiler will not set the PSV bit in the CORCON register or set the PSVPAG
to access Data EEPROM; you must perform these tasks manually. Once the PSV bit
and PSVPAG are set for Data EEPROM, the compiler can freely access any variables
stored there. As this example shows, you can use the builtin psvpage () and
__builtin psvoffset () helper functions for variables stored in Data EEPROM.

If an application stores constants in the compiler-managed PSV section of program
memory (auto psv) and Data EEPROM, the compiler will set the PSV bit in the
CORCON register and set PSVPAG for the compiler-managed PSV section on start-up
(in crt0.s). You must manually modify PSVPAG to access Data EEPROM using the
technique shown in Section 11.6 “Saving and Restoring the PSVPAG Register”.
Namely, the original PSVPAG must be saved before the access, and then restored after
the access.

Note 1: When placing variables in Data EEPROM, the const qualifier is optional.

2: The address () attribute can be used to locate variables in Data
EEPROM to a specific address.

DS51317E-page 164 © 2005 Microchip Technology Inc.

Linker Examples

/* load SFR definitions and macros */
#include "p30£f6014.h"

/* load standard I/O definitions */
#include "stdio.h"

unsigned int EEDATA(32) Tablel[16]={0};

unsigned int EEDATA (2) Table2[4]=
{0x1234, 0x5678, O0x9ABC, OxDEFO0};

unsigned int i, *ee rd ptr;
unsigned int temp datal4];

int main(void)
/* enable the PSV window since no program constants stored
in program memory */
CORCONbits.PSV = 1;

/* set the PSV page using a built-in function */
PSVPAG = __builtin psvpage (&Table2) ;

/* initialize EEPROM read pointer using a built-in function */
ee rd ptr = (unsigned int *) _ builtin psvoffset (&Table2) ;

/* read integer data from EEPROM */
temp data[0] = *ee rd ptr++;

temp datal(l] *ee rd ptr++;
temp_data[2] *ee rd ptr++;

temp data([3] *ee rd ptr;

}

The equivalent array definitions for Tablel and Table2 in assembly language appear
below. Use of * as a section name causes the assembler to generate a unique name
based on the source file name.

.global Tablel
.section *,eedata
.align 32

<
T
—
>
w
C
Z
x
w
o
C
>
=
o

_Tablel:

.space 32

.global Table2
.section *,eedata
.align 2
_Table2:

.word 0x1234
.word 0x5678
.word 0x9ABC
.word 0xDEFO0

© 2005 Microchip Technology Inc. DS51317E-page 165

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

11.9 CREATING AN INCREMENTING MODULO BUFFER IN X MEMORY

An incrementing modulo buffer for use in assembly language can be easily defined in
C. In this example, the macro _XBSS is used to define an array whose memory
alignment is the smallest power of two that is greater than or equal to its size. XBSS
is defined in the processor header file, which in this example is p30£6014 . h.

#include "p30£f6014.h"
#include "stdio.h"

int XBSS(128) xbuf [50];

void main ()

{

printf ("Should be zero: %$x\n", (int) &xbuf % 128);

}

The equivalent definition in assembly language appears below. The section alignment
could have specified with a separate .align directive. By using * as a section name,
the linker is afforded maximum flexibility to allocate memory.

.global xbuf

.section *,xmemory,bss,align(128)
_xbuf: .space 100

11.10 CREATING A DECREMENTING MODULO BUFFER IN' Y MEMORY

A decrementing modulo buffer for use in assembly language can be easily defined in
C. In this case, the ending address +1 of the array must be aligned. There is not a
suitable predefined macro in the processor header files for this purpose, so variable
attributes are specified directly. The far attribute is recommended because Y memory
does not fall within the near space on all devices, and the compiler uses a small-data
memory model by default.

#include "stdio.h"

int __ attribute_ ((space(ymemory), far, reverse(128))) ybuf[50];

void main ()

{

printf ("Should be zero: %x\n",
((int) &ybuf + sizeof (ybuf)) % 128);

Note 1: The reverse () attribute can be used with constants stored in
program memory only if they are located in a psv section, not the
compiler-managed auto_psv section.

2: The reverse () attribute can be used with constants stored in Data
EEPROM memory.

The equivalent definition in assembly language appears below. Reverse section
alignment can only be specified as an argument to the . section directive.
.global _ybuf

.section *,ymemory,reverse (128)
_ybuf: .space 100

DS51317E-page 166 © 2005 Microchip Technology Inc.

Linker Examples

11.11 LOCATING THE STACK AT A SPECIFIC ADDRESS

By default, the linker allocates a maximum-size stack using the largest unused block of
data memory. In cases where it is necessary for the programmer to specify the location
and size of the stack explicitly, a custom linker script can be used to allocate the stack
from a user-defined section.

The following text could be added to a custom linker script to allocate the stack. In this
example, 0x100 bytes of memory are reserved for the stack, to be allocated at adress
0x1800. Two symbols are declared, SP init and SPLIM init, for use by the
C run-time start-up module. The programmer is responsible to specify an address that
does not conflict with other statically allocated resources, such as the MPLAB ICD 2
RAM buffer at 0x800.

.stack 0x1800 :

{
__SP init = .;
. += 0x100;
__SPLIM init = .;
. += 8;

} >data

__SP_init defines the initial value for the stack pointer (W15) and SPLIM init
defines the initial value for the stack pointer limit register (SPLIM). Assembly program-
mers can use these symbols to initialize W15 and SPLIM at the beginning of the
__reset function.

Notice that 8 additional bytes are reserved after the defintion of _SPLIM init. This
allocates additional space for stack error processing. This value should be increased
further to account for stack usage by the interrupt handler itself, if a stack error interrupt
handler is installed. The default interrupt handler does not require additional stack
usage.

<
=
S
>
w
C
Z
x
w
o
C
>
=
o

© 2005 Microchip Technology Inc. DS51317E-page 167

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 168 © 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 3—MPLAB LIB30 Archiver/Librarian

Chapter 12. MPLAB LIB30 Archiver/Librarianccccccoiiiiiiiiiiiicccieeee e 171

>
=
o 3
=.
<
D
=
~
.
O
=
job)
=
= 4
QD
>

© 2005 Microchip Technology Inc. DS51317E-page 169

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 170 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 12. MPLAB L1B30 Archiver/Librarian

12.1 INTRODUCTION

MPLAB LIB30 (pic30-ar) creates, modifies and extracts files from archives. An
“archive” is a single file holding a collection of other files in a structure that makes it
possible to retrieve the original individual files (called “members” of the archive).

The original files’ contents, mode (permissions), timestamp, owner and group are
preserved in the archive, and can be restored on extraction.

MPLAB LIB30 can maintain archives whose members have names of any length;
however, if an £ modifier is used, the file names will be truncated to 15 characters.

The archiver is considered a binary utility because archives of this sort are most often
used as “libraries” holding commonly needed subroutines.

The archiver creates an index to the symbols defined in relocatable object modules in
the archive when you specify the modifier s. Once created, this index is updated in the
archive whenever the archiver makes a change to its contents (save for the g update
operation). An archive with such an index speeds up linking to the library and allows

routines in the library to call each other without regard to their placement in the archive.

You may use nm -s Or nm --print-armap to list this index table. If an archive lacks
the table, another form of MPLAB LIB30 called ranlib can be used to add only the
table.

MPLAB LIB30 is designed to be compatible with two different facilities. You can control
its activity using command line options or, if you specify the single command line option
-M, you can control it with a script supplied via standard input.

12.2 HIGHLIGHTS

Topics covered in this chapter are:

« MPLAB LIB30 and Other Development Tools
* Feature Set

* Input/Output Files

¢ Syntax

* Options

 Scripts

>
=
O 3
=)
<
@D
=
~
C.
o
-
Q
=
Q
=

© 2005 Microchip Technology Inc. DS51317E-page 171

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

12.3 MPLAB LIB30 AND OTHER DEVELOPMENT TOOLS

MPLAB LIB30 creates an archive file from object files created by the 16-bit assembler
(MPLAB ASM30). Archive files may then be linked by the 16-bit linker (MPLAB LINK30)
with other relocatable object files to create an executable file. See Figure 12-1 for an
overview of the tools process flow.

FIGURE 12-1: TOOLS PROCESS FLOW

C Source Files
(*.c)
[

v Compiler
Driver
Program

C Compiler

v

Source Files (*.s) H

v

Assembler

v

Archiver (Librarian) Obje(f_to'):”es H

! |

= N
Object File Librari
jec (ig) Ioraries | { Linker

Assembly Source
Files (*.s)

vy

v

T e ®
v MPLAB™ IDE J

Executable File Debug Tool

(*.exe) e -
Command Line J

4

Simulator

12.4 FEATURE SET

Notable features of the assembler include:

* Available for Windows
« Command Line Interface

12.5 INPUT/OUTPUT FILES

MPLAB LIB30 generates archive files (. a). An archive file is a single file holding a
collection of other files in a structure that makes it possible to retrieve the original
individual files.

By default, object files are processed in the COFF format. To specify COFF or ELF
format explicitly, use the -omf option on the command line, as shown:

pic30-ar -omf=coff [options...]

pic30-ar -omf=elf [options...]

Alternatively, the environment variable PIC30 OMF may be used to specify object file
format for the dsPIC30F language tools.

DS51317E-page 172 © 2005 Microchip Technology Inc.

MPLAB LIB30 Archiver/Librarian

12.6 SYNTAX

pic30-ar [-]P[MOD [RELPOS] [COUNT]] ARCHIVE [MEMBER...]
pic30-ar -M [<mri-script 1]

12.7 OPTIONS

When you use MPLAB LIB30 with command line options, the archiver insists on at
least two arguments to execute: one key letter specifying the operation (optionally
accompanied by other key letters specifying modifiers), and the archive name.

pic30-ar [-]1P[MOD [RELPOS] [COUNT]] ARCHIVE [MEMBER...]

Note:

Command line options are case sensitive. I

Most operations can also accept further MEMBER arguments, specifying archive
members. Without specifying members, the entire archive is used.

MPLAB LIB30 allows you to mix the operation code P and modifier flags MoD in any
order, within the first command line argument. If you wish, you may begin the first
command line argument with a dash.

The P keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them.

TABLE 12-1: OPERATION TO EXECUTE

Option

Function

d

Delete modules from the archive. Specify the names of modules to be deleted as
MEMBER. . .; the archive is untouched if you specify no files to delete.
If you specify the v modifier, MPLAB® LIB30 lists each module as it is deleted.

Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs are
linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the MEMBER arguments
are moved to the end of the archive; you can use the a, b or i modifiers to move
them to a specified place instead.

Print the specified members of the archive, to the standard output file. If the v
modifier is specified, show the member name before copying its contents to
standard output. If you specify no MEMBER arguments, all the files in the archive are
printed.

Append the files MEMBER. . . into ARCHIVE .

Insert the files MEMBER. . . into ARCHIVE (with replacement).

If one of the files named in MEMBER. . . does not exist, the archiver displays an
error message, and leaves undisturbed any existing members of the archive
matching that name. By default, new members are added at the end of the file; but
you may use one of the modifiers a, b or i to request placement relative to some
existing member. The modifier v used with this operation elicits a line of output for
each file inserted, along with one of the letters a or r to indicate whether the file was
appended (no old member deleted) or replaced.

Display a table listing the contents of ARCHIVE, or those of the files listed in
MEMBER. .., thatare presentin the archive. Normally only the member name is
shown; if you also want to see the modes (permissions), timestamp, owner, group
and size, you can request that by also specifying the v modifier. If you do not
specify a MEMBER, all files in the archive are listed.

For example, if there is more than one file with the same name (£ie) in an archive
(b.a),thenpic30-ar t b.a fie lists only the first instance; to see them all, you
must ask for a complete listing in pic30-ar t b.a.

Extract members (named MEMBER) from the archive. You can use the v modifier
with this operation, to request that the archiver list each name as it extracts it.
If you do not specify a MEMBER, all files in the archive are extracted.

© 2005 Microchip Technology Inc.

DS51317E-page 173

>
=
o 3
=.
<
D
=
~
.
O
=
job)
=
QD
>

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

A number of modifiers (MOD) may immediately follow the P keyletter to specify
variations on an operation’s behavior.

TABLE 12-2: MODIFIERS

Option

Function

Add new files after an existing member of the archive. If you use the modifier a,
the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification.

Add new files before an existing member of the archive. If you use the modifier
b, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as 1.)

Create the archive. The specified ARCHIVE is always created if it did not exist,
when you requested an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

Truncate names in the archive. MPLAB® LIB30 will normally permit file names of
any length. This will cause it to create archives that are not compatible with the
native archiver program on some systems. If this is a concern, the £ modifier
may be used to truncate file names when putting them in the archive.

Insert new files before an existing member of the archive. If you use the modifier
i, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as b.)

This modifier is accepted but not used.

Uses the COUNT parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance COUNT of the given
name from the archive.

Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time of
extraction.

Use the full path name when matching names in the archive. MPLAB LIB30
cannot create an archive with a full path name (such archives are not POSIX
compliant), but other archive creators can. This option will cause the archiver to
match file names using a complete path name, which can be convenient when
extracting a single file from an archive created by another tool.

Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running pic30-ar s on an archive is equivalent to
running ranlib onit.

Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive cannot be used with the linker. In
order to build a symbol table, you must omit the s modifier on the last execution
of the archiver, or you must run ranlib on the archive.

Normally, pic30-ar r... inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members of
the same names, use this modifier. The u modifier is allowed only for the
operation r (replace). In particular, the combination qu is not allowed, since
checking the timestamps would lose any speed advantage from the operation qg.

This modifier requests the verbose version of an operation. Many operations
display additional information, such as, file names processed when the modifier
v is appended.

This modifier shows the version number of MPLAB LIB30.

DS51317E-page 174

© 2005 Microchip Technology Inc.

MPLAB LIB30 Archiver/Librarian

12.8 SCRIPTS

If you use the single command line option -M with the archiver, you can control its
operation with a rudimentary command language.

pic30-ar -M [<SCRIPT]

Note: Command line options are case sensitive. I

This form of MPLAB LIB30 operates interactively if standard input is coming directly
from a terminal. During interactive use, the archiver prompts for input (the promptis AR
>), and continues executing even after errors. If you redirect standard input to a script
file, no prompts are issued, and MPLAB LIB30 abandons execution (with a nonzero exit
code) on any error.

The archiver command language is not designed to be equivalent to the command line
options; in fact, it provides somewhat less control over archives. The only purpose of
the command language is to ease the transition to MPLAB LIB30 for developers who
already have scripts written for the MRI “librarian” program.

The syntax for the MPLAB LIB30 command language is straightforward:

* commands are recognized in upper or lower case; for example, LIST is the same
as list. In the following descriptions, commands are shown in upper case for
clarity.

 asingle command may appear on each line; it is the first word on the line.

< empty lines are allowed, and have no effect.

« comments are allowed; text after either of the characters “*” or “;” is ignored.

« Whenever you use a list of names as part of the argument to an pic30-ar
command, you can separate the individual names with either commas or blanks.
Commas are shown in the explanations below, for clarity.

* “+"is used as a line continuation character; if “+” appears at the end of a line, the
text on the following line is considered part of the current command.

Table 12-3 shows the commands you can use in archiver scripts, or when using the
archiver interactively. Three of them have special significance.

TABLE 12-3: ARCHIVER SCRIPTS COMMANDS

Option Function
OPEN Or CREATE Specify a “current archive”, which is a temporary file
required for most of the other commands.
SAVE Commits the changes so far specified by the script.

Prior to SAVE, commands affect only the temporary
copy of the current archive.

ADDLIB ARCHIVE Add all the contents of ARCHIVE (or, if specified,
ADDLIB ARCHIVE (MODULE, each named MODULE from ARCHIVE) to the current
MODULE, . . .MODULE) archive.

Requires prior use of OPEN or CREATE.
ADDMOD MEMBER, MEMBER, ... Add each named MEMBER as a module in the current
MEMBER archive.

Requires prior use of OPEN or CREATE.
CLEAR Discard the contents of the current archive, canceling

the effect of any operations since the last SAVE. May
be executed (with no effect) even if no current
archive is specified.

>
=
o 3
=.
<
D
=
~
.
O
=
job)
=
QD
>

© 2005 Microchip Technology Inc. DS51317E-page 175

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 12-3:

ARCHIVER SCRIPTS COMMANDS (CONTINUED)

Option

Function

CREATE ARCHIVE

Creates an archive, and makes it the current archive
(required for many other commands). The new
archive is created with a temporary name; it is not
actually saved as ARCHIVE until you use SAVE. You
can overwrite existing archives; similarly, the
contents of any existing file named ARCHIVE will not
be destroyed until SAVE.

DELETE MODULE, MODULE,
MODULE

Delete each listed MODULE from the current archive;
equivalent to pic30-ar -d ARCHIVE MODULE ...
MODULE.

Requires prior use of OPEN or CREATE.

DIRECTORY ARCHIVE (MODULE,
MODULE) [OUTPUTFILE]

List each named MODULE present in ARCHIVE. The
separate command VERBOSE specifies the form of
the output: when verbose output is off, output is like
that of pic30-ar -t ARCHIVE MODULE.... When
verbose output is on, the listing is like pic30-ar
-tv ARCHIVE MODULE....

Output normally goes to the standard output stream;
however, if you specify OUTPUTFILE as a final
argument, MPLAB® LIB30 directs the output to that
file.

END

Exit from the archiver with a 0 exit code to indicate
successful completion. This command does not save
the output file; if you have changed the current
archive since the last SAVE command, those
changes are lost.

EXTRACT MODULE, MODULE,
MODULE

Extract each named MODULE from the current
archive, writing them into the current directory as
separate files. Equivalentto pic30-ar -x
ARCHIVE MODULE....

Requires prior use of OPEN or CREATE.

LIST

Display full contents of the current archive, in
“verbose” style regardless of the state of VERBOSE.
The effectis like pic30-ar tv ARCHIVE. (This
single command is an MPLAB LIB30 enhancement,
rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN ARCHIVE

Opens an existing archive for use as the current
archive (required for many other commands). Any
changes as the result of subsequent commands will
not actually affect ARCHIVE until you next use SAVE.

REPLACE MODULE, MODULE,
MODULE

In the current archive, replace each existing MODULE
(named in the REPLACE arguments) from files in the
current working directory. To execute this command
without errors, both the file, and the module in the
current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from
DIRECTORY. When the flag is on, DIRECTORY
output matches output from pic30-ar -tv....

SAVE Commits your changes to the current archive and

actually saves it as a file with the name specified in
the last CREATE or OPEN command.
Requires prior use of OPEN or CREATE.

DS51317E-page 176

© 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 4 — Utilities

Chapter 13.
Chapter 14.
Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.
Chapter 19.
Chapter 20.

UIITIES OVEIVIEW ooiiiiiiiiiiii ettt 179
PIC30-DIN2NEX ULIITY .oovviiiiiiiii i 181
PIC30-NM ULHITY oo e e e e e e e e e e e e eeeeannnes 183
PIC30-0DJAUMP ULIHILY .ooveeiiiiie e 187
PIC30-raniib ULtyoovveeiiiiiii i e e 191
PIC30-StringsS ULHITY .oovvuiiiiiiiii i 193
PIC30-StriP ULHITY oreeeeriiiiiiiiiie e e e e e 195
PIC30-IM ULHITY oo e e e e e e e e e e e aeeannes 197

© 2005 Microchip Technology Inc. DS51317E-page 177

C
=
=
®
)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 178 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 13. Utilities Overview

13.1 INTRODUCTION

This chapter discusses general information about the utilities.

C
=
=
®
)

13.2 HIGHLIGHTS

Topics covered in this chapter are:
* What are Utilities

13.3 WHAT ARE UTILITIES

Utilities are tools available for use with MPLAB ASM30 and/or MPLAB LINK30. The
archiver/librarian utility, MPLAB LIB30, was discussed in a previous chapter.

TABLE 13-1: AVAILABLE UTILITIES

Utility Description

pic30-ar Creates, modifies and extracts files from archives/libraries
(MPLAB® LIB30).

pic30-bin2hex Converts a linked object file into an Intel® hex file.

pic30-nm Lists symbols from an object file.

pic30-objdump Displays information about object files.

pic30-ranlib Generates an index from the contents of an archive and
stores it in the archive.

pic30-strings Prints the printable character sequences.

pic30-strip Discards all symbols from an object file.

pic30-1m Displays information about the MPLAB C30 license.

© 2005 Microchip Technology Inc. DS51317E-page 179

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 180 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 14. pic30-binzhex Utility

14.1 INTRODUCTION

The binary-to-hexadecimal (pic30-bin2hex) utility converts binary files (from
MPLAB LINK30) to Intel hex format files, suitable for loading into device programmers.

C
=
=
®
)

14.2 HIGHLIGHTS

Topics covered in this chapter are:

* Input/Output Files
¢ Syntax
* Options

14.3 INPUT/OUTPUT FILES

 Input: COFF or ELF formatted binary object files
e Output: Intel hex files

By default, object files are processed in the COFF format. To specify COFF or ELF
format explicitly, use the -omf option on the command line, as shown:

pic30-bin2hex -omf=coff filel.out
pic30-bin2hex -omf=elf file2.out

Alternatively, the environment variable PIC30 OMF may be used to specify object file
format for the dsPIC30F language tools.

Because the Intel hex file format is byte-oriented, and the 16-bit program counter is not,
program memory sections require special treatment. Each 24-bit program word is
extended to 32 bits by inserting a so-called “phantom byte”. Each program memory
address is multiplied by 2 to yield a byte address.

For example, a section that is located at 0x100 in program memory will be represented
in the hex file as 0x200. Consider the following assembly language source:
; file test.s

.section foo,code,address (0x100)
.pword 0x112233

The following commands will assemble the source file and create an Intel hex file:

pic30-as -o test.o test.s
pic30-bin2hex test.o

The file “test.hex” will be produced, with the following contents:

:020000040000fa
:040200003322110096
:00000001FF

Notice that the data record (line 2) has a load address of 0200, while the source code
specified address 0x100. Note also that the data is represented in “little-endian” format,
meaning the least significant byte appears first. The phantom byte appears last, just
before the checksum.

© 2005 Microchip Technology Inc. DS51317E-page 181

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

14.4 SYNTAX

Command line syntax is:
pic30-bin2hex

[-omf=format] [-v] file

Example 14.1: hello.cof

Convert the absolute COFF executable file hello.cof to hello.hex

pic30-bin2hex hello.cof

14.5 OPTIONS

The following options are supported.

TABLE 14-1:

pic30-bin2hex OPTIONS

Option

Function

-omf=format

Specify object file format. The following formats are
supported: COFF, ELF. Format names are case-insensitive.
COFF in the default.

Print a table of diagnostic information to standard output in the
format shown in Example 14-2.

EXAMPLE 14-2: -v OPTION OUTPUT

writing hello.hex

section PC address byte address

reset 0
.text 0x100
.dinit 0x3614
.const 0x3ceb
.ivt 0x4
.aivt 0x84

Total program memory used

0x200
0x6c28
0x79cc
0x8
0x108

(bytes) :

length (w/pad) actual length (dec)

0x8 0x6 (6)
0x6a28 0x4f9e (20382)
0xda4 0xa3b (2619)
0x40 0x30 (48)
0xf8 Oxba (186)
0xf8 Oxba (186)

0x5b83 (23427)

DS51317E-page 182

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30

MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 15. pic30-nm Utility

15.1

15.2

15.3

15.4

INTRODUCTION

The pic30-nm utility produces a list of symbols from object files. Each item in the list
consists of the symbol value, symbol type and symbol name.

HIGHLIGHTS

Topics covered in this chapter are:

* Input/Output Files
¢ Syntax

* Options

¢ Output Formats

INPUT/OUTPUT FILES

« Input: Object archive files

« Output: Object archive files. If no object files are listed as arguments, pic30-nm
assumes the file a. out.

SYNTAX

Command line syntax is:

pic30-nm [-A | -o | --print-file-name]
[-a | --debug-syms] [-B]
[--defined-only] [-u | --undefined-only]
[-f format | --format=format] [-g | --extern-only]
[--help] [-1 | --line-numbers]
[-n | -v | --numeric-sort] [-omf=format]
[-p | --no-sort]
[-P | --portability] [-r | --reverse-sort]
[-s --print-armap] [--size-sort]
[-t radix | --radix=radix] [-V | --version]
[OBJFILE...]

© 2005 Microchip Technology Inc. DS51317E-page 183

C
=
=
®
)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

15,5 OPTIONS

The long and short forms of options, shown in Table 15-1 as alternatives, are

--print-file-name

equivalent.
TABLE 15-1: pic30-nm OPTIONS
Option Function
-A Precede each symbol by the name of the input file (or archive
-0 member) in which it was found, rather than identifying the

input file once only, before all of its symbols.

-a Display all symbols, even debugger-only symbols; normally
- -debug-syms these are not listed.
-B The same as --format=bsd.

--defined-only

Display only defined symbols for each object file.

-u
--undefined-only

Display only undefined symbols (those external to each object
file).

-f format
- -format=format

Use the output format format, which can be bsd, sysvor
posix. The default is bsd. Only the first character of format
is significant; it can be either upper or lower case.

-g Display only external symbols.

--extern-only

--help Show a summary of the options to pic30-nm and exit.

-1 For each symbol, use debugging information to try to find a

--line-numbers

filename and line number. For a defined symbol, look for the
line number of the address of the symbol. For an undefined
symbol, look for the line number of a relocation entry that
refers to the symbol. If line number information can be found,
print it after the other symbol information.

-n
-v
--numeric-sort

Sort symbols numerically by their addresses, rather than
alphabetically by their names.

-omf=format

Specify object file format. The following formats are sup-
ported: COFF, ELF. Format names are case-insensitive.
COFF in the default.

-p Do not bother to sort the symbols in any order; print them in
--no-sort the order encountered.

-P Use the POSIX.2 standard output format instead of the default
--portability format. Equivalentto -f posix.

-r Reverse the order of the sort (whether numeric or alphabetic);

--reverse-sort

let the last come first.

-s
--print-armap

When listing symbols from archive members, include the
index: a mapping (stored in the archive by pic30-ar or

pic30-ranlib) of which modules contain definitions for
which names.

--size-sort

Sort symbols by size. The size is computed as the difference
between the value of the symbol and the value of the symbol
with the next higher value. The size of the symbol is printed,
rather than the value.

-t radix Use radix as the radix for printing the symbol values. It must
- -radix=radix be 4 for decimal, o for octal or x for hexadecimal.

-V Show the version number of pic30-nm and exit.

--version

DS51317E-page 184

© 2005 Microchip Technology Inc.

pic30-nm Utility

15.6 OUTPUT FORMATS

The symbol value is in the radix selected by the options, or hexadecimal by default.

If the symbol type is lowercase, the symbol is local; if uppercase, the symbol is global
(external). Table 15-2 shows the symbol types:

TABLE 15-2: SYMBOL TYPES

Symbol

Description

A

The symbol’s value is absolute, and will not be changed by further linking.

B

The symbol is in the uninitialized data section (known as BSS).

C

The symbol is common. Common symbols are uninitialized data. When linking,
multiple common symbols may appear with the same name. If the symbol is
defined anywhere, the common symbols are treated as undefined references.

The symbol is in the initialized data section.

The symbol is a debugging symbol.

The symbol is in a read only data section.

The symbol is in the text (code) section.

The symbol is undefined.

<|[C|H|xm|Z2|0

The symbol is a weak object. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a weak
undefined symbol is linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.

The symbol is a weak symbol that has not been specifically tagged as a weak
object symbol. When a weak defined symbol is linked with a normal defined
symbol, the normal defined symbol is used with no error. When a weak undefined
symbol is linked and the symbol is not defined, the value of the weak symbol
becomes zero with no error.

The symbol type is unknown, or object file format specific.

© 2005 Microchip Technology Inc.

DS51317E-page 185

C
=
=
®
)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 186 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30

MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 16. pic30-objdump Utility

16.1

16.2

16.3

16.4

INTRODUCTION

The pic30-objdump utility displays information about one or more object files. The
options control what particular information to display.

HIGHLIGHTS

Topics covered in this chapter are:
* Input/Output Files

¢ Syntax

* Options

INPUT/OUTPUT FILES

« Input: Object archive files

» Output: Object archive files. If no object files are listed as arguments, pic30-nm
assumes the file a. out.

SYNTAX
Command line syntax is:
pic30-objdump [-a | --archive-headers]
[-d | --disassemble]
-D | --disassemble-all]
-EB | -EL | --endian={big | little } 1
-f | --file-headers]

--file-start-context]

-g | --debugging]

-h | --section-headers | --headers]

-H | --help]

-j name | --section=name]

-1 | --line-numbers]

-M options | --disassembler-options=options]

[
[
[
[
[
[
[
[
[
[
[-omf=format]
[--prefix-addresses]
[
[
[
[
[
[
[
[
[
[
[

-r | --reloc]
-s | --full-contents]
-S | --source]

--[no-]show-raw-insn]
--start-address=address]
--stop-address=address]

-t | --syms]

-V | --version]

-w | --wide]

-x | --all-headers]

-z | --disassemble-zeroes]

OBJFILE. ..

© 2005 Microchip Technology Inc. DS51317E-page 187

C
=
=
®
)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

16.5 OPTIONS

OBJFILE... are the object files to be examined. When you specify archives,
pic30-objdump shows information on each of the member object files.

The long and short forms of options, shown in Table 16-1, as alternatives, are
equivalent. At least one of the following options -a, -4, -D, -f, -g, -G, -h,

_HI _pl -r, _RI _SI

TABLE 16-1:

-T, -V or-xmustbe given.

pic30-objdump OPTIONS

Option

Function

-a
--archive-header

If any of the OBJFILE files are archives, display the archive
header information (in a format similar to 1s -1). Besides
the information you could list with pic30-ar tv,
pic30-objdump -a shows the object file format of each
archive member.

--endian={big|little}

-d Display the assembler mnemonics for the machine

--disassemble instructions from OBJFILE. This option only disassembles
those sections that are expected to contain instructions.

-D Like -4, but disassemble the contents of all sections, not

--disassemble-all just those expected to contain instructions.

-EB Specify the endianness of the object files. This only affects

-EL disassembly. This can be useful when disassembling a file

format that does not describe endianness information, such
as S-records.

-f
--file-header

Display summary information from the overall header of
each of the OBJFILE files.

--file-start-context

Specify that when displaying inter-listed source
code/disassembly (assumes ' -s’) from a file that has not
yet been displayed, extend the context to the start of the file.

-9
- -debugging

Display debugging information. This attempts to parse
debugging information stored in the file and print it out using
a C like syntax. Only certain types of debugging information
have been implemented.

-h
--section-header
--header

Display summary information from the section headers of
the object file.

File segments may be relocated to nonstandard addresses,
for example by using the -Ttext, -Tdata or-Tbss
options to 1d. However, some object file formats, such as
a.out, do not store the starting address of the file
segments. In those situations, although 1d relocates the
sections correctly, using pic30-objdump -h to list the file
section headers cannot show the correct addresses.
Instead, it shows the usual addresses, which are implicit for
the target.

-H
--help

Print a summary of the options to pic30-objdump and
exit.

-j name
--section=name

Display information only for section name.

-1
--line-numbers

Label the display (using debugging information) with the
filename and source line numbers corresponding to the
object code or relocs shown. Only useful with -4, -Dor
-r.

-M options
--disassembler-
options=options

Pass target specific information to the disassembler. The
dsPIC30F device supports the following target specific
options:

symbolic - Will perform symbolic disassembly.

DS51317E-page 188

© 2005 Microchip Technology Inc.

pic30-objdump Utility

TABLE 16-1: pic30-objdump OPTIONS (CONTINUED)

Option Function

-omf=format Specify object file format. The following formats are sup-
ported: COFF, ELF. Format names are case-insensitive.
COFF in the default.

--prefix-addresses When disassembling, print the complete address on each
line. This is the older disassembly format. -
-r Print the relocation entries of the file. If used with -d or -D, =
--reloc the relocations are printed interspersed with the =
disassembly. 8
-8 Display the full contents of any sections requested.
--full-contents
-S Display source code intermixed with disassembly, if
--source possible. Implies -d.
--show-raw-insn When disassembling instructions, print the instruction in

hex, as well as in symbolic form. This is the default except
when - -prefix-addresses is used.
--no-show-raw-insn When disassembling instructions, do not print the
instruction bytes. This is the default when
--prefix-addresses is used.
--start-address=address Start displaying data at the specified address. This affects
the output of the -d, -r and -s options.

--stop-address=address Stop displaying data at the specified address. This affects
the output of the -d, -r and -s options.

-t Print the symbol table entries of the file. This is similar to the

- -syms information provided by the pic30-nm program.

-V Print the version number of pic30-objdump and exit.

--version

-w Format some lines for output devices that have more than

--wide 80 columns.

-X Display all available header information, including the

--all-header symbol table and relocation entries. Using -x is equivalent
to specifying allof -a -f -h -r -t.

-z Normally the disassembly output will skip blocks of zeroes.

--disassemble-zeroes This option directs the disassembler to disassemble those

blocks, just like any other data.

© 2005 Microchip Technology Inc. DS51317E-page 189

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 190 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 17. pic30-ranlib Utility

17.1 INTRODUCTION

The pic30-ranlib utility generates anindex to the contents of an archive and stores
it in the archive. The index lists each symbol defined by a member of an archive that is
arelocatable object file. You may use pic30-nm -sOrpic30-nm --print-armap
to list this index. An archive with such an index speeds up linking to the library and
allows routines in the library to call each other without regard to their placement in the
archive.

C
=
=
®
)

Running pic30-ranlib is completely equivalent to executing pic30-ar -s
(i.e., MPLAB LIB30 with the -s option).

17.2 HIGHLIGHTS

Topics covered in this chapter are:
* Input/Output Files

¢ Syntax
* Options
17.3 INPUT/OUTPUT FILES

« Input: Archive files
« Output: Archive files

17.4 SYNTAX

Command line syntax is:
pic30-ranlib [-omf=format] [-v | -V | --version] ARCHIVE

17.5 OPTIONS
The long and short forms of options, shown here as alternatives, are equivalent.

TABLE 17-1: pic30-ranlib OPTIONS

Option Function

-omf=format Specify object file format. The following formats are
supported: COFF, ELF. Format names are case-insensitive.
COFF in the default.

-v Show the version number of pic30-ranlib
Y
--version

© 2005 Microchip Technology Inc. DS51317E-page 191

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 192 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 18. pic30-strings Utility

18.1 INTRODUCTION

For each file given, the pic30-strings utility prints the printable character
sequences that are at least 4 characters long (or the number given in the options) and
are followed by an unprintable character. By default, it only prints the strings from the
initialized and loaded sections of object files; for other types of files, it prints the strings
from the whole file.

C
=
=
®
)

pic30-strings is mainly useful for determining the contents of non-text files.

18.2 HIGHLIGHTS

Topics covered in this chapter are:

* Input/Output Files
¢ Syntax
* Options

18.3 INPUT/OUTPUT FILES

« Input: Any files
« Output: Standard output

18.4 SYNTAX
Command line syntax is:
pic30-strings [-a | --all | -] [-f | --print-file-name]
[--help] [-min-len | -n min-len | --bytes=min-Ilen]
[-omf=format] [-t radix | --radix=radix]
[-v | --version] FILE...

© 2005 Microchip Technology Inc. DS51317E-page 193

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

18.5 OPTIONS

The long and short forms of options, shown in Table 18-1 as alternatives, are
equivalent.

TABLE 18-1: pic30-strings OPTIONS

Option Function

-a Do not scan only the initialized and loaded sections of object files;

--all scan the whole files.

-f Print the name of the file before each string.

--print-file-name

--help Print a summary of the program usage on the standard output and
exit.

-min-len Print sequences of characters that are at least -min-len

-n min-len characters long, instead of the default 4.

--bytes=min-len

-omf=format Specify object file format. The following formats are supported:
COFF, ELF. Format names are case-insensitive. COFF in the
default.

-t radix Print the offset within the file before each string. The single

- -radix=radix character argument specifies the radix of the offset - o for octal, x
for hexadecimal or 4 for decimal.

-v Print the program version number on the standard output and exit.

--version

DS51317E-page 194 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 19. pic30-strip Utility

19.1 INTRODUCTION

The pic30-strip utility discards all symbols from the object and archive files
specified. At least one file must be given. pic30-strip modifies the files named in its
argument, rather than writing modified copies under different names.

C
=
=
®
)

19.2 HIGHLIGHTS

Topics covered in this chapter are:

* Input/Output Files
¢ Syntax
* Options

19.3 INPUT/OUTPUT FILES

« Input: Object or archive files

« Output: Object or archive files. If no object or archive files are listed as arguments,
pic30-size assumes the file a.out.

19.4 SYNTAX

Command line syntax is:

pic30-strip [-g | -S | --strip-debug] [--help]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[~-o file] [-omf=format]
[-p | --preserve-dates]
[-R sectionname | --remove-section=sectionname]
[-s | --strip-all] [--strip-unneeded]
[-v | --verbose] [-V | --version]
[-x | --discard-all] [-X | --discard-locals]
OBJFILE. ..

© 2005 Microchip Technology Inc. DS51317E-page 195

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

19.5 OPTIONS

The long and short forms of options, shown in Table 19-1 as alternatives, are equivalent.

TABLE 19-1: pic30-strip OPTIONS
Option Function
-g Remove debugging symbols only.
-S
--strip-debug
--help Show a summary of the options to pic30-strip

and exit.

-K symbolname
- -keep-symbol=symbolname

Keep only symbol symbolname from the source file.
This option may be given more than once.

-N symbolname
--strip-symbol=symbolname

Remove symbol symbolname from the source file.
This option may be given more than once, and may
be combined with strip options other than -K.

-o file

Put the stripped output in £11e, rather than replacing
the existing file. When this argument is used, only
one OBJFILE argument may be specified.

-omf=format

Specify object file format. The following formats are
supported: COFF, ELF. Format names are
case-insensitive. COFF in the default.

-p
--preserve-dates

Preserve the access and modification dates of the
file.

-R sectionname
- -remove-section=Ssectionname

Remove any section named sectionname from the
output file. This option may be given more than once.
Note that using this option inappropriately may make
the output file unusable.

-s
--strip-all

Remove all symbols.

--strip-unneeded

Remove all symbols that are not needed for
relocation processing.

-v Verbose output: list all object files modified. In the

--verbose case of archives, pic30-strip -v lists all mem-
bers of the archive.

-V Show the version number for pic30-strip.

--version

-X Remove non-global symbols.

--discard-all

-X Remove compiler-generated local symbols.

--discard-locals

(These usually start with L or “.".)

DS51317E-page 196

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 20. pic30-Im Utility

20.1 INTRODUCTION

The pic30-1m utility displays information about the MPLAB C30 license. For

full-product versions, pic30-1m displays the license number. For demo-product
versions, pic30-1m displays the number of days remaining on the license. The
pic30-1m utility may also be used to upgrade a demo product to a full product.

20.2 HIGHLIGHTS

Topics covered in this chapter are:

¢ Syntax
* Options

20.3 SYNTAX

The pic30-Im command-line syntax is:
pic30-1m [-?] [-u licensel]
If pic30-1mis invoked without options, it does one of the following things:

1. Ifthe installed MPLAB C30 product is a full product, then the license number of
the product is displayed. You should have this license number available when
you contact Microchip for technical support.

2. Ifthe installed MPLAB C30 product is a demo product, then the number of days
remaining on the license is displayed.

No more than one option may be specified at any one time. If more than one option is
specified, or if the syntax of the option is incorrect, pic30-1m will not perform any
action other than reporting the fact that it has been misused.

20.4 OPTIONS

The pic30-1m options are shown below.

TABLE 20-1: pic30-Im OPTIONS

Option Function
-? Displays usage information for pic30-1m. A brief description of the -? and
-u options is displayed
-u license Upgrade a demo version to a full version. Spaces between -u and license

are optional. The license parameter should be the license key that is printed
on the bottom of the MPLAB® C30 box. Type the license key exactly as it
appears on the box, including the correct case for any letters that appear in

the license key.

© 2005 Microchip Technology Inc. DS51317E-page 197

C
=
=
®
)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 198 © 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 5— Command-Line Simulator

Chapter 21. SIM30 Command-Line Simulatorcccccceeiviiiiiiiiiiiicicee e 201

Q)
o
=
3
)
5
o
.
5
@
2}
3
=3
=
=)

© 2005 Microchip Technology Inc. DS51317E-page 199

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 200 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Chapter 21. SIM 30 Command-L ine Simulator

21.1 INTRODUCTION

A basic command-line simulator (sim30.exe) may be used to test and debug
dsPIC30F/33F DSC and PIC24F/H MCU programs.

21.2 HIGHLIGHTS

¢ Syntax
» Options

21.3 SYNTAX

The simulator is invoked from the Windows command prompt as follows:
sim30 [command-file-name]

where the optional parameter command-file-name names a text file containing
simulator commands, one per line. If the command file is specified, the simulator reads
commands from the file before reading commands from the keyboard.

EXAMPLE 21-1: HELLO.COF

To run the file hello. cof using the simulator, first load the COFF file. Next, reset the
processor. Then, enable the C library I/O. Finally, run the program and quit the
simulator. Check Uartout . txt for output. (If using the hello. c file included in the
examples directory of the installation disk to create the hello. cof file, the output file
UartOut. txt would contain “Hello, world!”)

sim30

dsPIC30> lc hello.cof ; load the COFF file

dsPIC30> rp reset the processor

dsPIC30> io nul enable C library I/0 (stdin is nul)
dsPIC30> e execute (run) the program

dsPIC30> g quit the simulation session

© 2005 Microchip Technology Inc. DS51317E-page 201

Q)
o
=
3
)
5
o
.
5
@
2}
3
=3
=
=)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

21.4 OPTIONS

Table 21-1 summarizes the commands supported by the simulator. Each command
should be terminated by pressing the <enter> key.

Simple editing of the command line is available using the <backspace> key.

Note:

The commands are NOT case sensitive.

TABLE 21-1: SUPPORTED SIMULATOR COMMANDS

Option Description
AF AF [<frequency>]
Alter or display the oscillator frequency. If the frequency parameter is omitted,
the current oscillator frequency is displayed.
BC BC <location> ... [locations]
Breakpoint Clear.
BS BS <location> ... [locations]
Breakpoint Set.
DA DA
Display the accumulators.
DB DB
Display the breakpoints.
DC DC
Display PC disassembled.
DF DF [start] [end]
Display File Registers between specified addresses.
DH DH
Display Help on all.
DM DM [start] [end]
Display Program Memory between specified addresses.
DP DP
Display Profile. If the simulator is running in verbose mode (see the VO
command), instruction execution statistics are displayed.
DS DS
Display Status register fields.
DW DW
Display the W Registers.
E E
Execute.
FC FC <location> [locations]
File register Clear.
FS FS <location> <location/ value> [valuel]
File register Set.
H H
Halt.
HE HE [ON | OFF]
Halt on Error. Enables or disables halt on error. Specifying ON enables halt on
error; specifying OFF disables halt on error. Omitting the parameter causes the
current halt on error status to be displayed.
HW HW [ON | OFF]

Halt on Warning. Enables or disables halt on warning. Specifying ON enables
halt on warning; specifying OFF disables halt on warning. Omitting the parameter
causes the current halt on warning status to be displayed.

DS51317E-page 202

© 2005 Microchip Technology Inc.

SIM30 Command-Line Simulator

TABLE 21-1: SUPPORTED SIMULATOR COMMANDS (CONTINUED)

Option Description

10 IO [stdin [stdout]]
Enable simulated file 1/0.

IF IF
Disable simulated file 1/0.
The simulator supports the C compiler’s standard library 1/O functions. This
allows standard C programs to be written and tested on the simulator.
Support for the standard I/O functions of the C compiler is enabled using the 10
simulator command. Once enabled, it can be disabled using the IF command. If
enabled, stdin, stdout and stderr use the UARTL1 peripheral. By default, a
stimulus file named UartIn.txt (for stdin) and a response file named
Uartout.txt (for both stdout and stderr) are attached to the UART. Both
files are opened in eight-bit binary format. The simulator looks for UartIn.txt
in the current working directory. If no such file exists, no attachment is made to
the UART1 receive register, and an error message is displayed. Similarly, the
simulator creates (or over-writes) the file Uartout . txt in the current working
directory. The default filenames UartIn. txt and UartOut.txt may be
overridden by explicitly naming the files with the IO command’s stdin and
stdout parameters, respectively. The special name nul may be used to
indicate that nothing is to be attached to the corresponding stream.
The UART1 peripheral is used in polled mode; interrupts are not used. All other
file /0 is directed to the host file system. When C standard I/O is enabled, any
other stimulus or response files connected to the UART1 peripheral will be
detached, and the above file names will be attached. When C standard I/O is
disabled, the on-demand files are detached and the UART1 is left with no
attached stimulus or response files.

LC LC <filename>
Load Program Memory from a COFF file.

LD LD <devicename>
Load parameters for a device, including memory configuration and peripheral
set. See the on-line file “Readme for MPLAB SIM.txt" for a list of supported
devices.

LF LF <filename> [displacement]
Load File Registers from an Intel hex file starting at offset displacement.

LP LP <filename> [displacement]
Load Program Memory from an Intel hex file starting at the offset
displacement.

LS LS [<filename>]
Load a Stimulus Control Language (SCL) file. If the £i1lename parameter is
specified, the named file is analyzed by the SCL compiler, and a stimulus
schedule is created and attached to the simulation session. If the £ilename
parameter is omitted, any previously loaded SCL file is detached from the
simulation session.

MC MC <location> [locations]
Program Memory Clear.

MS MS <location> <location/ value> [value]
Program Memory Set.

PS PS <value>
PC Set.

Q Q
Quit.

RC RC
Reset the simulation clock to cycle zero.

RP RP
Reset processor.

© 2005 Microchip Technology Inc.

DS51317E-page 203

Q)
o
=
3
)
5
o
.
5
@
2}
3
=3
=
=)

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE 21-1: SUPPORTED SIMULATOR COMMANDS (CONTINUED)
Option Description

S S
Step.

VF VF
Verbose off.

VO VO
Verbose on.

DS51317E-page 204

© 2005 Microchip Technology Inc.

@ MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Part 6 — Appendices

Appendix A. Assembler Errors/Warnings/MeSSAQESuuceiriiieieeeeeeeeeeeeeeennennnnnns 207
Appendix B. Linker Errors/WarnNingsS ...ccoooiieeoeeeeeieeeeeeeeetiiies s e e e e e e e e eaaeeeaeessnnnnnnes 221
Appendix C. Deprecated FEAtUIESccciiiiii it e e e e e e e e e e e eaaeaannnes 229
Appendix D. MPASM™ Assembler Compatibilityccccoovviiiiiiiiiii e, 231
Appendix E. MPLINK™ Linker Compatibilityccccoiiiiiiiiiiiii s 241
Appendix F. MPLIB™ Librarian Compatibilityouvuviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeieiinns 243
Appendix G. Useful TabIEScooeeeeice e 245
Appendix H. GNU Free Documentation LICENSEuuvvvvveiiiiiiiiieeeeeeeeeeeeeeeeannnnanns 247

© 2005 Microchip Technology Inc. DS51317E-page 205

Par
6

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 206 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix A. Assembler ErrorsWarnings/M essages

A.1 INTRODUCTION

MPLAB ASM30 generates errors, warnings and messages. A descriptive list of these
outputs is shown here.

A.2 HIGHLIGHTS

Topics covered in this appendix are:

* Fatal Errors
e Errors

* Warnings

* Messages

A.3 FATAL ERRORS

The following errors indicate that an internal error has occurred in the assembler.
Please contact Microchip Technology for support if any of the following errors are
generated:

¢ A dummy instruction cannot be used!

* bad floating-point constant: exponent overflow, probably assembling junk

« bad floating-point constant: unknown error code=error_code

* C_EFCN symbol out of scope

e Can't continue

e Can't extend frag num. chars

» Can't open a bfd on stdout name

» Case value val unexpected at line _line_ of file “_file__
< emulations not handled in this configuration

* error constructing pop_table_name pseudo-op table: err_txt

» expr.c(operand): bad atof_generic return val val

« failed sanity check.
y

« filename:line_num: bad return from bfd_install_relocation: val 6
« filename:line_num: bad return from bfd_install_relocation

« Inserting “name” into symbol table failed: error_string

« Internal error: pic30_get g _or_h_mode_value called with an invalid operand type
« Internal error: pic30_get p_or_g_mode_value called with an invalid operand type
« Internal error: pic30_insert_dsp_writeback called with an invalid operand type

« Internal error: pic30_insert_dsp_x_prefetch_operation called with an invalid offset

« Internal error: pic30_insert_dsp_x_prefetch_operation called with an invalid
operand type

« Internal error: pic30_insert_dsp_y_ prefetch_operation called with an invalid offset

« Internal error: pic30_insert_dsp_y_prefetch_operation called with an invalid
operand type

« invalid segment “name”; segment “name” assumed

© 2005 Microchip Technology Inc. DS51317E-page 207

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

A.4 ERRORS

* label “temp$” redefined

* macros nested too deeply

* missing emulation mode name

« multiple emulation names specified

« Relocation type not supported by object file format
« reloc type not supported by object file format

* rva not supported

* rva without symbol

* unrecognized emulation name ‘em’

» Unsupported BFD relocation size in bytes

Symbol

.abort detected. Abandoning ship.

User error invoked with the .abort directive.

.else without matching .if - ignored.

A .else directive was seen without a preceding .if directive.
“.elseif” after “.else” -ignored

A .elseif directive specified after a . else directive. Modify your code so that the
.elseif directive comes before the .else directive.

“.elseif” without matching “.if” - ignored.

A .elseif directive was seen without a preceding . 1if directive.
“.endif” without “.if"

A .endif directive was seen without a preceding . if directive.
.err encountered.

User error invoked with the . err directive.

sign not valid in data allocation directive.

The # sign cannot be used within a data allocation directive (.byte, .word, .pword,
.long, etc.)

warnings, treating warnings as errors.
The --fatal-warnings command line option was specified on the command line
and warnings existed.

A

absolute address can not be specified for section '.const'

Section .const is a C compiler resource. Although it is permissible for an application to
allocate constants in section .const explicitly, it is not permissible to assign an absolute
address for this section.

Absolute address must be greater than or equal to 0.

A negative absolute address was specified as the target for the DO or BRA instruction.
The assembler does not know anything about negative addresses.

Alignment in CODE section must be at least 2 units.

The alignment value for the . align directive must be at least 2 units. Either no
alignment was specified or an alignment less than 2 was specified. Modify the .align
directive to have an alignment of at least 2.

DS51317E-page 208

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Attributes for section 'name’ conflict with implied attributes

Certain section names have implied attributes. In this case, the attributes specified in
a .section directive conflict with its implied attributes. See Section 6.3 “Directives
that Define Sections” for more information.

B

backw. ref to unknown label “#:”, 0 assumed.

A backwards reference was made to a local label that was not seen. See
Section 5.4 “Reserved Names” for more information on local labels.

bad defsym; format is --defsym name=value.

The format for the command line option - -defsym is incorrect. Most likely, you are
missing the = between the name and the value.

Bad expression.

The assembler did not recognize the expression. See Chapter 3. “Assembler
Syntax”, Chapter 4. “Assembler Expression Syntax and Operation” and
Chapter 5. “Assembler Symbols”, for more details on assembler syntax.

bignum invalid; zero assumed.
The big number specified in the expression is not valid.
Byte operations expect an offset between -512 and 511.

The offset specified in [Wn+offset] or [Wn-offset] exceeded the maximum or minimum
value allowed for byte instructions.

C

Cannot call a symbol (name) that is not located in an executable section.
Attempted to CALL a symbol that is not located in a CODE section.
Cannot create floating-point number.

Could not create a floating-point number because of exponent overflow or because of
a floating-point exception that prohibits the assembler from encoding the floating-point
number.

Cannot redefine executable symbol ‘s’

A statement label or an executable section cannot be redefined with a .set or .equ
directive.

Cannot reference executable symbol (name) in a data context.

An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset () or
tbloffset () operator is required.

Cannot use operator on a symbol (name) that is not located in a code, psv or
eedata section.

You cannot use one of the special operators (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) on a symbol thatis notlocated in a code, psv or eedata
section.

Cannot use operator with this directive.

An attempt was made to use a special operator (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) with a data allocation directive that does not allocate
enough bytes to store the requested data.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 209

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Cannot write to output file.

For some reason, the output file could not be written to. Check to ensure that you have
write permission to the file and that there is enough disk space.

Can’t open file_name for reading.

The specified input source file could not be opened. Ensure that the file exists and that
you have permission to access the file.

D

directive directive not supported in pic30 target.

The pic30 target does not support this directive. This directive is available in other
versions of the assembler, but the pic30 target does not support it for one reason or
another. Please check Chapter 6. “Assembler Directives” for a complete list of
supported directives.

duplicate “else” -ignored.
Two . else directives were specified for the same . if directive.

E

end of file inside conditional.
The file ends without terminating the current conditional. Add a .endif to your code.
end of macro inside conditional.

A conditional is unterminated inside a macro. The .endif directive to end the current
conditional was not specified before seeing the . endm directive.

Expected comma after symbol-name: rest of line ignored.
Missing comma from the . comm directive after the symbol name.
Expected constant expression for fill argument.

The fill argument for the . £i11, .p£fill, .skip, .pskip, . space Or .pspace
directive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.

Expected constant expression for new-Ic argument.

The new location counter argument for the . org directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.

Expected constant expression for repeat argument.

The repeat argument for the . £i11, .p£fill, .skip, .pskip, .space Or .pspace
directive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.

Expected constant expression for size argument.

The size argument for the . £i11 or .p£1i11 directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.

Expression too complex.
An expression is too complex for the assembler to process.

F

floating point number invalid; zero assumed.
The floating-point number specified in the expression is not valid.

DS51317E-page 210

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Ignoring attempt to re-define symbol ‘symbol’.

The symbol that you are attempting to define with . comm or . 1comm has already been
defined and is not a common symbol.

Invalid expression (expr) contained inside of the brackets.
Assembler did not recognize the expression between the brackets.
invalid identifier for “.ifdef”

The identifier specified after the . ifdef must be a symbol. See Section 5.3 “What
are Symbols” and Section 6.10 “Directives that Control Conditional Assembly”
for more details.

Invalid mnemonic: ‘token’

The token being parsed is not a valid mnemonic for the instruction set.

invalid listing option ‘optarg’

The sub-option specified is not valid. Acceptable sub-options are ¢, 4, h, 1, m, n, v and

Invalid operands specified (‘insn’). Check operand #n.

The operands specified were invalid. The assembler was able to match n-1 operands
successfully. Although there is no assurance that operand #n is the culprit, it is a
general idea of where you should begin looking.

Invalid operand syntax (‘insn’).

This message usually comes hand-in-hand with one of the previous operand syntax
errors.

Invalid post increment value. Must be +/- 2, 4 or 6.

Assembler saw [Wn]+=value, where value is expected to be a +/- 2, 4 or 6. value was
not correct. Specify a value of +/- 2, 4 or 6.

Invalid post decrement value. Must be +/- 2, 4 or 6.

Assembler saw [Wn]-=value, where value is expected to be a +/- 2, 4 or 6. value was
not correct. Specify a value of +/- 2, 4 or 6.

Invalid register in operand expression.

Assembler was attempting to find either pre- or post-increment or decrement. The
operand did not contain a register. Specify one of the registers w0-w16 or WO-W16.

Invalid register in expression reg.

Assembler saw [junk] or [junk]+=n or [junk]-=n. Was expecting a register between the
brackets. Specify one of the registers w0-w16 or W0-W16 between the brackets. 6
Invalid use of ++ in operand expression.

Assembler was attempting to find either pre- or post-increment. The operand specified
was neither pre-increment [++Wn] nor post-increment [Wn++]. Make sure that you are
not using the old syntax of [Wn]++.

Invalid use of -- in operand expression.

Assembler was attempting to find either pre- or post-decrement. The operand specified
was neither pre-decrement [--Wn] nor post-decrement [Wn--]. Make sure that you are
not using the old syntax of [Wn]--.

>
©
°
®
S
o
o
@
7

Invalid value (#) for relocation name.

The final value of the relocation is not a valid value for the operand associated with the
given relocation.

© 2005 Microchip Technology Inc. DS51317E-page 211

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

‘name’ is not a valid attribute name.
While processing a . section directive, the assembler found an identifier that is not a
valid section attribute.

L

Length of .comm “sym” is already #. Not changed to #.
An attempt was made to redefine the length of a common symbol.

M

misplaced)

Missing parenthesis when expanding a macro. The syntax \(...) will literally substitute
the text between the parenthesis into the macro. The trailing parenthesis was missing
from this syntax.

Missing model parameter.

Missing symbol in the .irp or .irpc directive.

Missing right bracket.

The assembler did not see the terminating bracket 7.

Missing size expression.

The . 1comm directive is missing the length expression.

Missing ‘)’ after formals.

Missing trailing parenthesis when listing the macro formals inside of parenthesis.
Missing ‘)’ assumed.

Expected a terminating parenthesis ‘)’ while parsing the expression. Did not see one
where expected so assumes where you wanted the trailing parenthesis.

Missing ‘]’ assumed.

Expected a terminating brace ‘' while parsing the expression. Did not see one where
expected so assumes where you wanted the trailing brace.

Mnemonic not found.
The assembler was expecting to parse an instruction and could not find a mnemonic.

N

Negative of non-absolute symbol name.

Attempted to take the negative of a symbol name that is non-absolute. For example,
.word -sym, where sym is external.

New line in title.
The .title heading is missing a terminating quote.
non-constant expression in “.elseif” statement.

The argument of the .elseif directive must be a constant value able to be resolved
on the first pass of the directive. Ensure that any . equ of a symbol used in this
argument is located before the directive. See Section 6.10 “Directives that Control
Conditional Assembly” for more details.

non-constant expression in “.if” statement.

The argument of the . i f directive must be a constant value able to be resolved on the
first pass of the directive. Ensure that any . equ of a symbol used in this argument is
located before the directive. See Section 6.10 “ Directives that Control Conditional
Assembly” for more details.

DS51317E-page 212

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Number of operands exceeds maximum number of 8.
Too many operands were specified in the instruction. The largest number of operands
accepted by any of the dsPIC30F instructions is 8.

O

Only support plus register displacement (i.e., [Wb+Wn]).
Assembler found [Wb-Wn]. The syntax only supports a plus register displacement.
Operands share encoding bits. The operands must encode identically.

Two operands are register with displacement addressing mode [Wb+Wn]. The two
operands share encoding bits so the Wn portion must match or be able to be switched
to match the Wb of the other operand.

operation combines symbols in different segments.

The left-hand side of the expression and the right-hand side of the expression are
located in two different sections. The assembler does not know how to handle this
expression.

operator modifier must be preceded by a #.

The modifier (tbloffset, tblpage, psvoffset, psvpage, handle) was specified
inside of an instruction, but was not preceded by a #. Include the # to represent that
this is a literal.

P

paddr modifier not allowed in instruction.

The paddr operator was specified in an instruction. This operator can only be specified
in a .pword or .long directive as those are the only two locations that are wide
enough to store all 24 bits of the program address.

PC relative expression is not a valid GOTO target
The assembler does not support expressions which modify the program counter of a
GOTO destination such as “. + 4” or “sym + 100".

R

Register expected as first operand of expression expr.

Assembler found [junk+anything] or [junk-anything]. The only valid expression
contained in brackets with a + or a - requires that the first operand be a register.

Register or constant literal expected as second operand of expression expr.

Assembler found [Wn+junk] or [Wn-junk]. The only valid operand for this format is
register with plus or minus literal offset or register with displacement.

Requested alignment 'n' is greater than alignment of absolute section 'name’

When the address () attribute is used to specify an absolute address for a section, it
constrains the ability of the assembler to align objects within the section. The alignment
specified ina .align or .palign directive must not be greater than the alignment
implied by the section address.

S

section alignment must be a power of two
The argumentto an align () or reverse () section attribute was invalid.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 213

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

section address Oxnnnn exceeds near data range
section address must be even
section address must be in range [0..0x 7ffffe]

The argument to an address () section attribute was invalid.
Symbol ‘name’ can not be both weak and common.

Both the . weak directive and . comm directive were used on the same symbol within
the same source file.

syntax error in .startof. or .sizeof.

The assembler found either . startof. or .sizeof ., but did not find the beginning
parenthesis ‘(" or ending parenthesis ‘). See Section 4.5.5 “Obtaining the Size of a
Specific Section” and Section 4.5.6 “Obtaining the Starting Address of a Specific
Section” for details on the .startof. and .sizeof. operators.

T

This expression is not a valid GOTO target

The assembler does not support expressions that include unresolved symbols as a
GOTO destination.

Too few operands (‘insn’).

Too few operands were specified for this instruction.
Too many operands (‘insn’).

Too many operands were specified for this instruction.

U

unexpected end of filein irp or irpc

The end of the file was seen before the terminating . endr directive.
unexpected end of file in macro definition.

The end of the file was seen before the terminating . endm directive.
Unknown pseudo-op: ‘directive’.

The assembler does not recognize the specified directive. Check to see that you have
spelled the directive correctly. Note: the assembler expects that anything that is
preceded by a dot (.) is a directive.

w

WAR hazard detected.

The assembler found a Write After Read hazard in the instruction. A WAR hazard
occurs when a common W register is used for both the source and destination given
that the source register uses pre/post-increment/decrement.

Word operations expect even offset.

An attempt was made to specify [Wn+offset] or [Wn-offset] where offset is even with a
word instruction.

Word operations expect an even offset between -1024 and 1022.

The offset specified in [Wn+offset] or [Wn-offset] was even, but exceeded the
maximum or minimum value allowed for word instructions.

DS51317E-page 214

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

A5 WARNINGS

The assembler generates warnings when an assumption is made so that the
assembler could continue assembling a flawed program. Warnings should not be
ignored. Each warning should be specifically looked at and corrected to ensure that the
assembler understands what was intended. Warning messages can sometimes point
out bugs in your program.

Symbol

.def pseudo-op used inside of .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef directives are
used for specifying debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, note that:

1. you want to use the .line directive to specify the line number information for the
symbol, and
2. you cannot nest .def/.endef directives.

.dim pseudo-op used outside of .def/.endef: ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

.endef pseudo-op used outside of .def/.endef: ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

fill size clamped to 8.

The size argument (second argument) of the fill directive specified was greater then
eight. The maximum size allowed is eight.

fillupper expects a constant positive byte value. OxXX assumed.

The fillupper directive was specified with an argument that is not a constant positive
byte value. The last .fillupper value that was specified will be used.

fillupper not specified in a code section. .fillupper ignored.
6

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

fillvalue expects a constant positive byte value. 0xXX assumed.

The .fillvalue directive was specified with an argument that is not a constant positive
byte value. The last .fillvalue value that was specified will be used.

fillvalue not specified in a code section. .fillvalue ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 215

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

.In pseudo-op inside .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef directives are
used for specifying debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, note that:

1. you want to use the .line directive to specify the line number information for the
symbol, and

2. you cannot nest .def/.endef directives.
Jloc outside of .text.

The .loc directive must be specified in a .text section. The assembler has seen this
directive in a non-.text section. The directive has no effect.

.loc pseudo-op inside .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef directives are
used for specifying debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, note that:

1. you want to use the .line directive to specify the line number information for the
symbol, and

2. you cannot nest .def/.endef directives.
.palign not specified in a code section. .palign ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pbyte not specified in a code section. .pbyte ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pfill not specified in a code section. .pfill ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pfill size clamped to 8.

The size argument (second argument) of the fill directive specified was greater then
eight. The maximum size allowed is eight.

.pfillvalue expects a constant positive byte value. OxXX assumed.

The .pfillvalue directive was specified with an argument that is not a constant positive
byte value. The last .pfillvalue value that was specified will be used as if this directive
did not exist.

.pfillvalue not specified in a code section. .pfillvalue ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pword not specified in a code section. .pword ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

DS51317E-page 216

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

.size pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

.scl pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

.tag pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the
compiler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

.type pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly lan-
guage program, you must first specify a .def directive before specifying this directive.

.val pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives are
used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly lan-
guage program, you must first specify a .def directive before specifying this directive.

A

Alignment too large: 2*15 assumed.

An alignment greater than 215 was requested. 2715 is the largest alignment request
that can be made.

B

badly formed .dim directive ignored Par
The arguments for the .dim directive were unable to be parsed. This directive is used 6

to specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
the arguments for the .dim directive are constant integers separated by a comma.

D

Directive not specified in a code section. Directive ignored.

The directive on the indicated line must be specified in a code section. The assembler
has seen this directive in a data section. This warning probably indicates that you forgot
to change sections to a code section.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 217

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

E

error setting flags for “section_name”: error_message.

If this warning is displayed, then the GNU code has changed as the if statement always
evaluates false.

Expecting even address. Address will be rounded.

The absolute address specified for a CALL or GOTO instruction was odd. The address
is rounded up. You will want to ensure that this is the intended result.

Expecting even offset. Offset will be rounded.

The PC-relative instruction at this line contained an odd offset. The offset is rounded
up to ensure that the PC-relative instruction is working with even addresses.

Ignoring changed section attributes for section_name.

This section’s attributes have already been set, and the new attributes do not match
those previously set.

Ignoring fill value in absolute section.

Afill argument cannot be specified for either the .org or .porg directive when the current
section is absolute.

Implied attributes for section ‘name' are deprecated

Certain section names have implied attributes. In this case, a section was defined with-
out listing its implied attributes. For clarity and future compatibility, section attributes
should be listed explicitly. See Section 6.3 “Directives that Define Sections” for
more information.

L

Line numbers must be positive integers

The line number argument of the .In or .loc directive was less than or equal to zero after
specifying debugging information for a function. These directives are used to specify
debugging information and normally are only generated by the compiler. If you are
attempting to specify debugging information for your assembly language program, note
that function symbols can only exist on positive line numbers.

M

Macro ‘name’ has a previous definition

A macro has been redefined without removing the previous definition with the .purgem
directive.

mismatched .eb

The assembler has seen a .eb directive without first seeing a matching .bb directive.
The .bb and .eb directives are the begin block and end block directives and must
always be specified in pairs.

O

Overflow/underflow for .long may lose significant bits

A constant value specified in a .long directive is too large and will lose significant bits
when encoded.

DS51317E-page 218

© 2005 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Q

Quoted section flags are deprecated, use attributes instead

Previous version of the assembler recommended the use of single character section
flags. For clarity and future compatibility, attribute names should be used instead.

R

Repeat argument < 0. .fill ignored

The repeat argument (first argument) of the .fill directive specified was less than zero.
The repeat argument must be an integer that is greater than or equal to zero.

Repeat argument < 0. .pfill ignored

The repeat argument (first argument) of the .pfill directive specified was less than zero.
The repeat argument must be an integer that is greater than or equal to zero.

S

Size argument < 0. .fill ignored

The size argument (second argument) of the .fill directive specified was less than zero.
The size argument must be an integer that is between zero and eight, inclusive. If the
size argument is greater than eight, it is deemed to have a value of eight.

Size argument < 0. .pfill ignored

The size argument (second argument) of the .pfill directive specified was less than
zero. The size argument must be an integer that is between zero and eight, inclusive.
If the size argument is greater than eight, it is deemed to have a value of eight.

‘symbol_name’ symbol without preceding function

A .bf directive was seen without the preceding debugging information for the function
symbol. This directive is used to specify debugging information and normally is only
generated by the compiler. If you are attempting to specify debugging information for
your assembly language program, you must first .def the function symbol and give it a
.type of function (C_FCN = 101).

T

tag not found for .tag symbol_name

This warning should not be seen unless the assembler was unable to create the given
symbol name. You may want to follow up on this warning with the GNU folks. It looks
like the code used to generate this warning if the symbol name was not in its tag hash.
Code was added that will ensure to create the symbol if it is not in the tag hash. This
means that the only way this warning can be reached is if the symbol could not be
created.

U

unexpected storage class sclass

The assembler is processing the .endef directive and has either seen a storage class
that it does not recognize or has not seen a storage class. This directive is used to
specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
you must specify a storage class using the .scl directive, and that storage class cannot
be one of the following:

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 219

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Undefined static (C_USTATIC = 14)

External definition (C_EXTDEF =5)

Undefined label (C_ULABEL =7)

Dummy entry (end of block) (C_LASTENT = 20)

Line # reformatted as symbol table entry (C_LINE = 104)
Duplicate tag (C_ALIAS = 105)

External symbol in dmert public library (C_HIDDEN = 106)
Weak symbol - GNU extension to COFF (C_WEAKEXT = 127)

unknown section attribute ‘flag’

© No ok wbdhE

The .section directive does not recognize the specified section flag. Please see
Section 6.3 “Directives that Define Sections”, for the supported section flags.

unsupported section attribute ‘I’

The .section directive does not support the “i” section flag for COFF. Please see
Section 6.3 “Directives that Define Sections”, for the supported section flags.

unsupported section attribute ‘I’

The .section directive does not support the “I” section flag for COFF. Please see
Section 6.3 “Directives that Define Sections”, for the supported section flags.

unsupported section attribute ‘0’

The .section directive does not support the “0” section flag for COFF. Please see
Section 6.3 “Directives that Define Sections”, for the supported section flags.

V

Value get truncated to use.

The fill value specified for either the .skip, .pskip, .space, .pspace, .org or .porg directive

was larger than a single byte. The value has been truncated to a byte.

A.6 MESSAGES

The assembler generates messages when a non-critical assumption is made so that

the assembler could continue assembling a flawed program. Messages may be
ignored. However, messages can sometimes point out bugs in your program.

DS51317E-page 220

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix B. Linker ErrorsWarnings

B.1 INTRODUCTION

MPLAB ASM30 generates errors and warnings. A descriptive list of these outputs is
shown here.

B.2 HIGHLIGHTS

Topics covered in this appendix are:

* Errors
* Warnings

B.3 ERRORS
Symbols

% by zero

Modulo by zero is not computable.
/ by zero

Division by zero is not computable.

A

A heap is required, but has not been specified.
A heap must be specified when using Standard C input/output functions.
Address 0x8 of filename section .reset is not within region reset

This error indicates a problem with the linker script. Normally section .reset is created
by the linker script and includes a single GOTO instruction. If a linker script is included
in the link as an input file, it will augment the built-in script instead of replacing it. Then
section .reset will be created twice, resulting in an overflow. To correct this error, specify

--script or -T on the link command before the linker script file name.
Address addr of filename section secname is not within region region. P(élr

Section secname has overflowed the memory region to which it was assigned.

C

Cannot access symbol (hame) with file register addressing. Value must be less
than 8192.

name is not located in near address space. A read or write of name could not be
resolved with the small data memory model.

Cannot access symbol (hame) at an odd address.

Instructions that operate on word-sized data require operands to be allocated at even
addresses.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 221

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

cannot move location counter backwards (from addressl to address?2).

The location counter can be advanced but it cannot be moved backwards. An operation
is attempting to move it from address1 backwards to address?2.

cannot open linker script file name

Unable to open the specified linker script file. Check the file name and/or the path.
cannot open name:

Cannot open the input file name. Check for correct spelling, extension or path.
cannot PROVIDE assignment to location counter

The PROVIDE keyword may not be used to make an assignment to the location
counter.

Can not use dmaoffset on a symbol (name) that is not located in a dma section.
The dmaoffset() operator can only be used on symbols that are located in dma memory.

Cannot use operator on a symbol (name) that is not located in an executable or
read-only section.

The following operators can be applied to symbols in executable or read-only sections
only: tbloffset (), psvoffset (), tblpage (), psvpage (), handle (),
paddr ().

Cannot use relocation type reloc on a symbol (name) that is located in an
executable section.

An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset () or
tbloffset () operator is required.

Could not allocate data memory

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘data’.

Could not allocate program memory

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘progranm’.

Could not allocate eedata memory

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘eedata’.

Could not allocate section ‘name’, because ‘ymemory,near’ is not a valid
combination on this device

The linker could not alllocate section name because the combination of section
attributes [ymemory,near] is not valid on the current device.

Could not allocate section secname at address addr.
An address has been specified for secname that conflicts with another section or the
limit of memory.

D

Data region overlaps PSV window (%d bytes).

The data region address range must be less than the start address for the PSV window.
This error occurs when the C compiler’s “constants in code” option is selected and
more than 32K of data memory is required for program variables.

DS51317E-page 222

© 2005 Microchip Technology Inc.

Linker Errors/Warnings

--data-init and --no-data-init options can not be used together.

--data-init creates a special output section named .dinit as a template for the
run-time initialization of data, - -no-data-init does not. Only one option can be
used.

__DMA _BASE is needed, but not defined (check linker script?)
__DMA_END is needed, but not defined (check linker script?)

The symbols _ DMA_BASE and __ DMA_END must be defined in order to allocate
variables or sections in dma memory. By convention these symbols are defined in the
linker script for a particular device, if that device supports dma memory.

E

EOF in comment.
An end-of-file marker (EOF) was found in a comment.

F

op forward reference of section secname.
The section name being used in the operation has not been defined yet.

G

--gc-sections and -r may not be used together.
Do not use - -gc-sections option which enables garbage collection of unused input
sections with the -r option which generates relocatable output.

H

--handles and --no-handles options cannot be used together
--handles supports far code pointers; - -no-handles does not. Only one option can
be used.

includes nested too deeply.

include statements should be nested no deeper than 10 levels.
Illegal value for DO instruction offset (-2, -1 or 0).

These values are not permitted.

invalid assignment to location counter.

The operation is not a valid assignment to the location counter.
invalid hex number ‘num.’

A hexadecimal number can only use the digits 0-9 and A-F (or a-f). The number is
identified as a hex value by using Ox as the prefix.

invalid syntax in flags.

The region attribute flags must be w, x, a, r, 1 and/or 1. (‘!’ is used to invert the sense >
of any following attributes.) Any other letters or symbols will produce the invalid syntax g
error. D)
S
Q
M o
o)
n

macros nested too deeply.
Macros should be nested no deeper than 10 levels.

© 2005 Microchip Technology Inc. DS51317E-page 223

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

missing argument to -m.
The emulation option (-m) requires a name for the emulation linker.

N

Near data space has overflowed by num bytes.

Near data space must fit within the lowest 8K address range. It includes the sections
.nbss for static or non-initialized variables, and .ndata for initialized variables.

no input files.

MPLAB LINK30 requires at least one object file.

non constant address expression for section secname.

The address for the specified section must be a constant expression.
nonconstant expression for name.

name must be a constant expression.

Not enough contiguous memory for section secname.

The linker attempted to reallocate program memory to prevent a read-only section from
crossing a PSV page boundary, but a memory solution could not be found.

Not enough memory for heap (num bytes available).

There was not enough memory free to allocate the heap.

Not enough memory for stack (num bytes available).

There was not enough memory free to allocate the minimum-sized stack.

O

object name was created for the processor which is not instruction set
compatible with the target processor.

An object file to be linked was created for a different processor family than the link
target, and the instruction sets are not compatible.

Odd values are not permitted for a new location counter.

When a .org or .porg directive is used in a code section, the new location counter
must be even. This error also occurs if an odd value is assigned to the special DOT
variable.

P

--pack-data and --no-pack-data options cannot be used together.

- -pack-data fills the upper byte of each instruction word in the data initialization
template with data. - -no-pack-data does not. Only one option can be used.

PSV section secname exceeds 32 Kbytes (actual size = num).

The constant data table may not exceed the program memory page size that is implied
by the PSVPAG register which is 32 Kbytes.

R

region region is full (filename section secname).
The memory region region is full, but section secname has been assigned to it.
--relax and -r may not be used together.

The option - -relax which turns relaxation on may not be used with the -r option
which generates relocatable output.

DS51317E-page 224

© 2005 Microchip Technology Inc.

Linker Errors/Warnings

relocation truncated to fit: PC RELATIVE BRANCH name.

The relative displacement to function name is greater than 32K instruction words. A
function call to name could not be resolved with the small code memory model.

relocation truncated to fit: relocation_type name.
The relocated value of name is too large for its intended use.

S

section .handle must be allocated low in program memory.

A custom linker script has organized memory such that section .handle is not located
within the first 32K words of program memory.

section secnamel [startaddrl—startaddr2] overlaps section secname?2
[startaddrl—startaddr2]\n”),

There is not enough region memory to place both of the specified sections or they have
been assigned to addresses that result in an overlap.

-shared not supported.

The option -shared is not supported by MPLAB LINK30.

Symbol (name) is not located in an executable section.

An attempt was made to call or branch to a symbol in a bss, data or readonly section.
syntax error.

An incorrectly formed expression or other syntax error was encountered in a linker
script.

U

undefined symbol *__reset’ referenced in expression.

The library -1pic30 is required, or some other input file that contains a start-up
function. This error may result from a version or architecture mismatch between the
linker and library files.

undefined symbol ‘symbol’ referenced in expression.
The specified symbol has not been defined.

undefined reference to *_Ctype’

undefined reference to ‘_Tolotab’

undefined reference to *_Touptab’

These errors indicate a version mismatch between include files and library files, or
between library files and precompiled object files. Make sure that all object files to be
linked have been compiled with the same version of MPLAB C30. If you are using a
precompiled object or library file from another vendor, request an update that is
compatible with the latest version of MPLAB C30.

undefined reference to ‘symbol.’

The specified symbol has not been defined. Either an input file has been omitted, a
library file is incomplete or a circular reference exists between libraries. Circular
references can be resolved with the - -start-group, - -end-group options.

unrecognized emulation mode: target
Supported emulations:

>
©
°
®
S
o
o
@
7

The specified target is not an emulation mode supported by MPLAB LINK30. The list
of supported emulations follows the error message.

© 2005 Microchip Technology Inc. DS51317E-page 225

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

unrecognized -a option ‘argument.’

The -a option is not supported by 16-bit devices; so it is ignored.
unrecognized -assert option ‘option.’

The -assert option is not supported by 16-bit devices; so it is ignored.
unrecognized option ‘option’.

The specified option is not a recognized linker option. Check the option and its usage
information with the - -help option.

op uses undefined section secname.
The section referred to in the operation is not defined.

X

X data space has overflowed by num bytes.
The address range for X data space must be less than the start of Y data space. The
start of Y data space is determined by the processor used.

Y

__YDATA_BASE is needed, but not defined.

By convention, the starting address of Y data memory for a particular device is defined
in linker scripts using this name. The linker needed this information to allocate a section
with xmemory or ymemory attribute, but could not find it.

B.4 WARNINGS

A

Addresses specified for READONLY section name are not valid for PSV window.

The application has specified absolute addresses for a read-only section that are not
consistent with the PSV window. If two addresses have been specified, the least-
significant 15 bits should be identical. Also, the most significant bit of the virtual address
should be set.

C

cannot find entry symbol symbol defaulting to value.

The linker can't find the entry symbol, so it will use the first address in the text section.
This message may occur if the -e option incorrectly contains an equal sign (‘=") in the
option (i.e., -e=0x200) .

common of ‘name’ overridden by definition

defined here.

The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.

common of ‘name’ overridden by larger common
larger common is here.

The specified variable name has been declared in more than one file with different
values. The smaller value will be overridden with the larger value.

common of ‘name’ overriding smaller common
smaller common is here.

The specified variable name has been declared in more than one file with different
values. The first one encountered was smaller and will be overridden with the larger
value.

DS51317E-page 226

© 2005 Microchip Technology Inc.

Linker Errors/Warnings

D

data initialization has been turned off, therefore section secname will not be
initialized.

The specified section requires initialization but data initialization has been turned off so
the initial data values are discarded. Storage for the data sections will be allocated as
usual.

data memory region not specified. Using default upper limit of addr.

The linker has allocated a maximum-size stack. Since the data memory region was not
specified, a default upper limit was used.

definition of ‘name’ overriding common
common is here.

The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.

H

--heap option overrides HEAPSIZE symbol.

The --heap option has been specified and the HEAPSIZE symbol has been defined
but they have different values so the --heap value will be used.

initial values were specified for a non-loadable data section (name). These
values will be ignored.

By definition, a persistent data section implies data that is not initialized; therefore the
values are discarded. Storage for the section will be allocated as usual.

M

multiple common of ‘name’
previous common is here.

The specified variable name has been declared in more than one file.

N

no memory region specified for section ‘secname’

Section secname has been assigned to a default memory region, but other non-default
regions are also defined.

O

object name was created for the processor and references register name

An object file to be linked was created for a different processor family than the link
target, and references a Special Function Register (SFR) that may not be compatible.

P

program memory region not specified. Using default upper limit of addr.

The linker has reallocated program memory to prevent a read-only section from
crossing a PSV page boundary. Since the program memory region was not specified,
a default upper limit was used.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 227

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

R

READONLY section secname at addr crosses a PSVPAG boundary.

Address addr has been specified for a read-only section, causing it to cross a PSV
page boundary. To allow efficient access of constant tables in the PSV window, it is
recommended that the section should not cross a PSVPAG boundary.

‘-retain-symbols-file’ overrides ‘-s’ and *-S’

If the strip all symbols option (-s) or the strip debug symbols option (-S) is used with
--retain-symbols-file FILE only the symbols specified in the file will be kept.

S

--stack option overrides STACKSIZE symbol.

The - - stack option has been specified and the STACKSIZE symbol has been defined
but they have different values so the - -stack value will be used.

T

target processor ‘name’ does not match linker script

The link target processor specified on the command line does not match the linker
script OUTPUT _ARCH command. The processor name specified on the command line
takes precedence.

DS51317E-page 228

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix C. Deprecated Features

C.1 INTRODUCTION

The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated
feature will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependancy on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

C.2 HIGHLIGHTS

Topics covered in this appendix are:

* MPLAB ASM30 Directives that Define Sections
* Reserved Section Names with Implied Attributes

C.3 MPLAB ASM30 DIRECTIVES THAT DEFINE SECTIONS

The following . section directive format was deprecated in v1.30. The new directive
format may be found in Section 6.3 “Directives that Define Sections”.

.section name [, “flags”]

Definition

Assembles the following code into a section named name. If the optional argument is
quoted, it is taken as flags to use for the section. Each flag is a single character. The
following flags are recognized:

b bss section (uninitialized data)

n Section is not loaded

d Data section (initialized data)

r Read-only data section (PSV window)

x Executable section

If the n flag is used by itself, the section defaults to uninitialized data.

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to be loadable data.

The following section names are recognized:

© 2005 Microchip Technology Inc. DS51317E-page 229

Par
6

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

C4

TABLE C-1: SECTION NAMES
Section Name Default Flag
.text b4
.data d
.bss b
Note: Ensure that double quotes are used around flags. If the optional argument
to the .section directive is not quoted, it is taken as a sub-section number.
Remember, a single character in single quotes (i.e., ‘b’) is converted by the
preprocessor to a number.
Example
.section .const, "r"

; The following symbols
; in the named section ".const".
Cl: .word 0x1234
C2: .word 0x5678

(C1 and C2)

will be placed

RESERVED SECTION NAMES WITH IMPLIED ATTRIBUTES

Implied attributes for the section names in the table below were deprecated in v1.30.

Reserved Name

Implied Attribute(s)

.xbss bss, xmemory
.xdata data, xmemory
.nbss bss, near
.ndata data, near
.ndconst data, near
.pbss bss, persist
.dconst data

.ybss bss, ymemory
.ydata data, ymemory
.const psv

.eedata eedata

See Section 6.3 “Directives that Define Sections” for more information.

DS51317E-page 230

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix D. MPASM ™ Assembler Compatibility

D.1 INTRODUCTION

This information is provided for users of the MPASM assembler, Microchip Technol-
ogy’s PICmicro MCU device assembler. MPLAB ASM30 (16-bit assembler) is not
compatible with the MPASM assembler. Details on the compatibility issues, as well as
examples and suggestions for migrating to the 16-bit assembler, are shown here.

For the lastest information on the MPASM assembler, see on-line help for this tool in
MPLAB IDE.

D.2 HIGHLIGHTS

Topics covered in this appendix are:

« Compatibility

« Examples

» Converting PIC18FXXX Assembly Code to dsPIC30FXXXX Assembly Code

D.3 COMPATIBILITY
Users migrating from MPASM assembler will face the following compatibility issues:

« Differences in Assembly Language
« Differences in Command Line Options
« Differences in Directives

D.3.1 Differences in Assembly Language

The instruction set for 16-bit devices has been expanded to support the new function-
ality of the architecture. Please refer to individual 16-bit device data sheets and
“dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for more details.

In addition, the following syntactical differences exist:

« A colon "’ must precede label definitions suffix.
« Directives must be preceded by a dot *.".

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 231

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

D.3.2 Differences in Command Line Options

The MPLAB ASM30 command line is incompatible with the MPASM assembler

command line. Table D-1 summarizes the command line incompatibilities.

TABLE D-1: COMMAND LINE INCOMPATIBILITIES
MPASM MPLAB ASM30 Description
Assembler
/?, /h --help Display help
/a Not supported® Set hex file format
/c Not supported@ Enable/Disable case sensitivity
/dSYM --defsym SYM=VAL Define symbol
/e Not supported®) Enable/Disable/Set Path for error file
/1 -a[sub-option...] Enable/Disable/Set Path for listing file
/m -am Enable/Disable macro expansion
/o -0 OBJFILE Enable/Disable/Set Path for object file
/P -A ARCH Set the processor type
/a --verbose Enable/Disable quiet mode (suppress
screen output)
/T Not Supported(4) Defines default radix
/t Not Supported®) List file tab size
/w0 All messages
/wl -W, --no-warn Errors and warnings
/w2 Errors only
/x Not Supported(ﬁ) Enable/Disable/Set Path for cross
reference file
Note 1: MPLAB® ASM30 does not generate hex files. It is only capable of producing
relocatable object files.

2: Assembler mnemonics and directives are not case sensitive; however, labels and
symbols are. See Chapter 5. “Assembler Symbols” and Chapter 6. “Assembler
Directives”, for more details.

3: Diagnostic messages are sent to standard error. It is possible to redirect standard
error to a file using operating system commands.

4: The default radix in MPLAB ASM30 is decimal. See Section 3.5.1.1 “Integers”,
for a complete description.

5. MPLAB ASM30 listing files utilize the tab settings of the operating system.

6: MPLAB ASM30 does not generate cross-reference files. See the MPLAB LINK30

section of this manual for information on creating cross-referenced files.

DS51317E-page 232

© 2005 Microchip Technology Inc.

MPASM™ Assembler Compatibility

D.3.3

Differences in Directives

Directives are assembler commands that appear in the source code but are not
translated directly into opcodes. They are used to control the assembler: its input,
output and data allocation. The dsPIC30 assembler does not support several MPASM
directives or supports the directives differently. Table D-2 summarizes the assembler
directive incompatibilities:

TABLE D-2: ASSEMBLER DIRECTIVE INCOMPATIBILITIES
MPASM™ Assembler MPLAB® ASM30 Description
__BADRAM Not supported Specify invalid RAM locations
BANKISEL Not supported Generate RAM bank selecting code for
indirect addressing

BANKSEL Not supported Generate RAM bank selecting code
CBLOCK Not supported Define a block of constants

CODE text Begins executable code section
__CONFIG Not supported Specify configuration bits

CONSTANT .equ (syntax) Declare symbol constant

DA .ascii (syntax) Store strings in program memory
DATA Not supported Create numeric and text data

DB .byte Declare data of one byte

DE Not supported Define EEPROM data

#DEFINE .macro (syntax) Define a text substitution label

DT Not supported Define table

DW .word Declare data of one word

ELSE .else Begin alternative assembly block to IF
END .end End program block

ENDC Not supported End an automatic constant block
ENDIF .endif End conditional assembly block

ENDM .endm (not equivalent) | End a macro definition

ENDW Not supported End a while loop

EQU .equ (syntax) Define an assembly constant

ERROR .error Issue an error message

ERRORLEVEL Not supported Set error level

EXITM Not supported Exit from a macro

EXPAND Not supported Expand a macro listing

EXTERN .extern Declares an external label

FILL fill (syntax) Fill memory

GLOBAL .global Exports a defined label

IDATA .data Begins initialized data section
__IDLOCS Not supported Specify ID locations

IF if Begin conditionally assembled code block
IFDEF .ifdef Execute if symbol has been defined
IFNDEF .ifndef Execute if symbol has not been defined
#INCLUDE .include (syntax) Include additional source file

© 2005 Microchip Technology Inc.

DS51317E-page 233

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE D-2: ASSEMBLER DIRECTIVE INCOMPATIBILITIES (CONTINUED)
MPASM™ Assembler MPLAB® ASM30 Description
LIST .psize (not equivalent) | Listing options
LOCAL Not supported Declare local macro variable
MACRO .macro (not equivalent) | Declare macro definition
__MAXRAM Not supported Specify maximum RAM address
MESSG Not supported Create user defined message
NOEXPAND Not supported Turn off macro expansion
NOLIST .nolist Turn off listing output
ORG .org (not equivalent) Set program origin
PAGE .eject Insert listing page eject
PAGESEL Not supported Generate ROM page selecting code
PROCESSOR Not supported Set processor type
RADIX Not supported Specify default radix
RES .skip Reserve memory
SET .set (syntax) Define an assembler variable
SPACE Not supported Insert blank listing lines
SUBTITLE .shttl Specify program subtitle
TITLE title Specify program title
UDATA .bss Begins uninitialized data section
UDATA ACS Not supported Begins access uninitialized data section
UDATA OVR Not supported Begins overlayed uninitialized data section
UDATA SHR Not supported Begins shared uninitialized data section
#UNDEFINE Not supported Delete a substitution label
VARIABLE .set (not equivalent) Declare symbol variable
WHILE Not supported Perform loop while condition is true
D.4 EXAMPLES
EXAMPLE D-1: EQU VS .EQU

In MPASM assembler, the EQU directive is used to define an assembler constant.
CORCONH EQU 0x45
In MPLAB ASM30, the . equ directive is used to define an assembler constant.

.equ CORCONH, 0x45

EXAMPLE D-2: UDATA VS .BSS

In MPASM assembler, the UDATA directive is used to begin an uninitialized data
section.

UDATA

In MPLAB ASM30, the .bss directive is used to begin an uninitialized data section.

.bss

DS51317E-page 234 © 2005 Microchip Technology Inc.

MPASM™ Assembler Compatibility

D.5 CONVERTING PIC18FXXX ASSEMBLY CODE TO dsPIC30FXXXX
ASSEMBLY CODE

In order to convert your PIC18FXXX code to code that can be used with a
dsPIC30FXXXX device, you must understand the following:

» Direct Translations
¢ Emulation Model

D.5.1

Direct Translations

Table D-3 lists all PIC18FXXX instructions and their corresponding replacements in the
dsPIC30FXXXX instruction set. The assumption is made that all of the dsPIC30FXXXX
instructions that use file registers as an operand can address at least 0x2000 bytes.
Accessing file registers beyond this limit requires the use of indirection, and is not taken
into consideration in this table. Also, the access RAM concept is not implemented on
the dsPIC30FXXXX parts as all directly addressable memory, including special
function registers, falls into the 0x0000-0Ox1FFF range.

TABLE D-3:

PIC18FXXX INSTRUCTIONS

PIC18CXXX Legend

dsPIC30FXXXX Legend

k = literal value

Slit10 = 10-bit signed literal

lit10 = 10-bit unsigned literal

f = file register address

Slit16 = 16-bit signed literal

a = access memory bit

lit23 = 23-bit unsigned literal

n = relative branch displacement

WREG = W0

b = bit position f = file register
bit3 = bit position (0...7)
PROD =W2
TABLE D-4: INSTRUCTION SET COMPARISON
PIC18FXXX dsP|C30F>_(XXX Description Result Location
Instruction Instruction
ADDLW k ADD.b #1itl10,WO0 Add literal to WREG WREG
ADDWF f£,0,a |ADD.b f,WREG Add file register contents to WREG WREG
ADDWF f,1,a |ADD.b £ Add WREG to file register contents file register (f)
ADDWFC f,0,a |ADDC.b f,WREG Add with carry file register contents to WREG WREG
ADDWFC f£,1,a |ADDC.b £ Add with carry WREG to file register contents file register (f)
ANDLW k AND.b #1itl10,WO0 Bit-wise AND literal with WREG WREG
ANDWF £,0,a |AND.b f,WREG Bit-wise AND file register contents with WREG WREG
ANDWF f,1,a |AND.b £ Bit-wise AND WREG with file register contents file register (f)
BC n BRA C,Slitleé Branch to relative location if Carry bit is set N/A
BCF f,b,a BCLR.b f,#bit3 Clear single bit in file register file register (f)
BN n BRA N,Slitle Branch to relative location if Negative bit is set N/A
BNC n BRA NC,Slitleé Branch to relative location if Carry bit is clear N/A
BNN n BRA NN,Slitlé Branch to relative location if Negative bit is clear N/A
BNOV n BRA NOV,Slitl6 Branch to relative location if Overflow bit is clear N/A
BNZ n BRA NZ,Slitle Branch to relative location if Zero bit is clear N/A
BRA n BRA Slitlé Branch to relative location N/A
BSF f,b,a BSET.b f,#bit3 Set single bit in file register file register (f)
BTFSC f,b,a |BTSC.b f,#bit3 Test single bit, skip next instruction if clear N/A
Note 1: No direct translation.

2: No direct translation. See Section D.5.2 “Emulation Model”.

© 2005 Microchip Technology Inc.

DS51317E-page 235

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

TABLE D-4: INSTRUCTION SET COMPARISON (CONTINUED)
PIC18FXXX dsPIC30FXXXX . .
) . Description Result Location
Instruction Instruction

BTFSS f,b,a

BTSS.b f,#bit3

Test single bit, skip next instruction if set

N/A

BTG f,b,a BTG.b f,#bit3 Toggle single bit file register (f)
BOV n BRA OV,Slitleé Branch to relative location if Overflow bit is set N/A
BZ n BRA Z,S1itlé Branch to relative location if Zero bit is set N/A
CALL k,0 CALL 1it23 Call subroutine N/A
CALL k,1 (Note 1) Call subroutine using shadow registers N/A
CLRF f,a CLR.b f Clear file register file register (f)
CLRWDT CLRWDT Clear watchdog timer WDT
COMF f,0,a COM.b f,WREG Complement file register WREG
COMF f£,1,a COM.b £ Complement file register file register (f)
CPFSEQ f,a (Note 1) Compare f with WREG, skip next instruction if equal | N/A
CPFSGT f,a (Note 1) Compare f with WREG, skip next instruction if f > N/A

WREG
CPFSLT f,a (Note 1) Compare f with WREG, skip next instruction if f < N/A

WREG
DAW DAW.b WO Decimal adjust WREG WREG
DECF £,0,a DEC.b f,WREG Decrement f into WREG WREG
DECF f,1,a DEC.b £ Decrement f file register (f)
DECFSZ f,0,a |(Note 1) Decrement f into WREG, skip next instruction if zero | WREG
DECFSZ f£,1,a |(Note 1) Decrement f, skip next instruction if zero file register (f)
DECFSNZ (Note 1) Decrement f into WREG, skip next instruction if not |WREG
£,0,a zero
DECFSNZ (Note 1) Decrement f, skip next instruction if not zero file register (f)
f,1,a
GOTO k GOTO 1it23 Branch to absolute address N/A
INCF £,0,a INC.b f,WREG Increment f into WREG WREG
INCF £,1,a INC.b £ Increment f file register (f)
INCFSZ £,0,a |(Note 1) Increment f into WREG, skip next instruction if zero |WREG
INCFSZ f£,1,a |(Note 1) Increment f, skip next instruction if zero file register (f)
INCFSNZ (Note 1) Increment f into WREG, skip next instruction if not WREG
£,0,a zero
INCFSNZ (Note 1) Increment f, skip next instruction if not zero file register (f)
f,1,a
IORLW k IOR.b #1itl10,WO Bit-wise inclusive-or literal with WREG WREG
IORWF £,0,a |IOR.b f,WREG Bit-wise inclusive-or file register contents with WREG | WREG

IORWF f£,1,a |IOR.b £ Bit-wise inclusive-or WREG with file register contents | file register (f)
LFSR £,k (Note 2) Load literal value into file select register FSRx

MOVF £,0,a MOV.b f,WREG Move file register contents into WREG WREG

MOVF f£,1,a MOV.b £ Set status flags based on file register contents N/A

MOVFF fs,fd |(Note 2) Move file register contents to file register file register (fd)
MOVLB k N/A - no banking |Set current bank BSR

MOVLW k MOV.b #1itl10,WO0 Load literal value into WREG WREG
MOVWF f,a MOV.b WREG, Move WREG contents to file select register file register (f)
MULLW k (Note 2) Multiply WREG by literal PROD
MULWF £, a MUL.b £ Multiply WREG by file register contents PROD

NEGF f,a NEG.b £ Negate file register contents file register (f)
NOP NOP No operation N/A

Note 1: No direct translation.

2: No direct translation. See Section D.5.2 “Emulation Model”.

DS51317E-page 236

© 2005 Microchip Technology Inc.

MPASM™ Assembler Compatibility

TABLE D-4: INSTRUCTION SET COMPARISON (CONTINUED)
PIClSFXXX dsPIC30FXXXX Description Result Location
Instruction Instruction

POP SUB W15, #4,W15 Discard the top-of-stack N/A

PUSH RCALL .+2 Push current program counter onto stack N/A

RCALL n RCALL Slitle Call subroutine at relative offset N/A

RESET RESET Reset processor N/A

RETFIE 0 RETFIE Return from interrupt N/A

RETFIE 1 POP.s Return from interrupt, restoring context from shadow | N/A

RETFIE regs

RETLW k RETLW.b #1it10,W0 |Returnfrom subroutine with a literal value in WREG |WREG
RETURN 0 RETURN Return from subroutine N/A

RETURN 1 POP.s Return from subroutine, restoring context from N/A

RETURN shadow regs

RLCF f,0,a RLC.b f,WREG Rotate contents of file register left through carry WREG

RLCF £,1,a RLC.b f Rotate contents of file register left through carry file register (f)
RLNCF f,0,a |RLNC.b f,WREG Rotate contents of file register left (without carry) WREG
RLNCF f,1,a |RLNC.b £ Rotate contents of file register left (without carry) file register (f)
RRCF £,0,a RRC.b f,WREG Rotate contents of file register right through carry WREG

RRCF f£,1,a RRC.b £ Rotate contents of file register right through carry file register (f)
RRNCF f,0,a |RRNC.b f,WREG Rotate contents of file register right (without carry) WREG
RRNCF f,1,a |RRNC.b f Rotate contents of file register right (without carry) file register (f)
SETF f,a SETM.b £ Set all bits in file register file register (f)
SLEEP (Note 2) Put processor into sleep mode N/A

SUBFWB f,0,a |SUBBR.b f,WREG Subtract file register contents from WREG with WREG

borrow

SUBFWB f,1,a |SUBBR.b f Subtract file register contents from WREG with file register (f)
borrow

SUBLW k (Note 2) Subtract WREG from literal WREG

SUBWF f£,0,a |SUB.b f,WREG Subtract WREG from file register contents WREG

SUBWF f,1,a |[SUB.b £ Subtract WREG from file register contents file register (f)

SUBWFB f,0,a |SUBB.b f,WREG Subtract WREG from file register contents with WREG

borrow

SUBWFB f,1,a |SUBB.b f Subtract WREG from file register contents with file register (f)
borrow

SWAPF f£,0,a |(Note?2) Swap nibbles of file register contents WREG

SWAPF £,1,a |(Note?2) Swap nibbles of file register contents file register (f)

TBLRD (Note 2) Read value from program memory TABLAT

TBLWT (Note 2) Write value to program memory N/A

TSTFSZ f,a (Note 2) Skip next instruction if file register contents are zero | N/A

XORLW k XOR.b #1it10,WO Bit-wise exclusive-or WREG with literal WREG

XORWF f£,0,a |XOR.b f,WREG Bit-wise exclusive-or WREG with contents of file WREG

register

XORWF £,1,a

XOR.b £

Bit-wise exclusive-or WREG with contents of file
register

file register (f)

Note 1:

No direct translation.

2: No direct translation. See Section D.5.2 “Emulation Model”.

© 2005 Microchip Technology Inc.

DS51317E-page 237

>
©
°
®
S
o
o
@
7

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

D.5.2

The PIC18FXXX parts can be modeled on a dsPIC30FXXXX by dedicating working
registers to emulate PIC18FXXX special function registers.

Emulation Model

TABLE D-5: REGISTERS TO EMULATE PIC18FXXX
Working Register PIC18FXXX Equivalent
wo WREG
w1 Scratch register
w2 PROD
w3 N/A — reserved for high-order 16-bits of multiplication
w4 TABLAT
w5 TBLPTR
w6 FSRO
w7 FSR1
w8 FSR2

Using these assignments, it is possible to emulate the remainder of the PIC18FXXX
instructions that could not be represented by a single dsPIC30FXXXX instruction.

D.5.2.1
If k=0:
MOV #f,W6
If k=1:
MOV #£,W7
If k=2:
MOV #f,Ws

LFSR F,K

D.5.2.2 MOVFF FS,FD

This is equivalent to the following sequence of instructions:
MOV fs, W1
MOV W1, fd

D.5.2.3 MULLWK

If k <= Ox1f:
MUL.UU WO, #k, W2
If k > Ox1f:

MOV #k, W1
MUL.UU WO, W1, W2

D.5.2.4
Ifd=0:
MOV £,WO
SWAP.b WO
If d=1:

MOV f,W1
SWAP.b W1
MOV W1, £

SWAPF F,D,A

DS51317E-page 238

© 2005 Microchip Technology Inc.

MPASM™ Assembler Compatibility

D.5.25 TBLRD

This instruction assumes that on the dsPIC30FXXXX part, only the lower two bytes of
each instruction word are used.

TBLRD *:

TBLRDL [W5], W4
TBLRD *+:

TBLRDL [W5++],W4
TBLRD *-:

TBLRDL [W5--],W4
TBLRD +*:

TBLRDL [++W5],W4

D.5.2.6 TBLWT

This instruction assumes that on the dsPIC30FXXXX part, only the lower two bytes of
each instruction word is used.

TBLWT *;

TBLWT W4, [W5]
TBLWT *+:

TBLWT W4, [W5++]
TBLWT *-:

TBLWT W4, [W5--]
TBLWT +*:

TBLWT W4, [++W5]

D.5.2.7 TSTFSZF,A

This instruction can be emulated using a two-instruction sequence:
MOV f
BRA Z,.+2

D.5.2.8 FSR ACCESSES

Use of the PIC18FXXX FSR complex addressing modes can be emulated by using the
complex addressing modes of the dsPIC30FXXXX working registers. For example:

PIC18FXXX instruction: ADDWF POSTINC1,1,0 Par
Effect:

1. Add the contents of the file register pointed to by FSR1 to WREG
2. Store the results in WREG
3. Post-increment FSR1

dsPIC30FXXXX sequence: ADD.b WO, [W7], [W7++]

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 239

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 240 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix E. MPLINK™ Linker Compatibility

E.1 INTRODUCTION

This information is provided for users of the MPLINK object linker, Microchip
Technology’s PICmicro MCU device linker. MPLAB LINK30 (16-bit linker) is not
compatible with the MPLINK linker. Details on the compatibility issues, as well as
examples and suggestions for migrating to the 16-bit linker, are shown here.

For the lastest information on the MPLINK linker, see on-line help for this tool in MPLAB
IDE.

E.2 HIGHLIGHTS

Topics covered in this appendix are:
« Compatibility
« Migration to MPLAB LINK30

E.3 COMPATIBILITY

The MPLAB LINK30 command line is incompatible with the MPLINK command line.
The following table summarizes the command line incompatibilities.

TABLE E-1: COMMAND LINE INCOMPATIBILITIES

ME:;}'::';TM MPLAB® LINK30 Description
/?, /h --help Display help
/o -0, --output Specify output file. Default is a.out in both.
/m -Map Create map file
/1 -L, Add directory to library search path
--library-path
/k -L1 Add directories to linker script search path
/n Not supported(l) Specify number of lines per listing page Par
/a Not supported Specify format of hex output file 6
/q Not supported Quiet mode
/d Not supported(l) Do not create an absolute listing file.

Note 1. The GNU linker does not create listing files. You can generate listing files for each
object file using the GNU assembler.

E.4 MIGRATION TO MPLAB LINK30

MPLAB LINK30 uses a sequential allocation algorithm and does not automatically fill
in gaps that may appear due to alignment restrictions. In contrast, MPLINK linker uses
a best-fit algorithm to fill available memory.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 241

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 242 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix F. MPLIB™ Librarian Compatibility

F1 INTRODUCTION

This information is provided for users of the MPLIB object librarian, Microchip
Technology’s PICmicro MCU device librarian. MPLAB LIB30 (16-bit librarian) is not
compatible with the MPLIB librarian. Details on the compatibility issues, as well as
examples and suggestions for migrating to the 16-bit librarian, are shown here.

For the lastest information on the MPLIB librarian, see on-line help for MPLINK linker
in MPLAB IDE.

F.2 HIGHLIGHTS

Topics covered in this appendix are:
« Compatibility
« Examples

F3 COMPATIBILITY

The MPLAB LIB30 command line is incompatible with the MPLIB librarian command
line. The following table summarizes the command line incompatibilities.

TABLE F-1: COMMAND LINE INCOMPATIBILITIES

[/I'E:‘;E;: MPLAB® LIB30 Description
/q Default mode Quiet mode
/c Default mode Create library
/t -t List library
/d -d Delete member
/r -r Add or replace
/x -x Extract

/?, /h --help Display help
6

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 243

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

F4 EXAMPLES

To create a library named dsp from three object modules named fft .o, fir.o and
iir.o, use the following command line:

For MPLIB librarian to create dsp.1ib:

MPLIB /c dsp.lib fft.o fir.o iir.o
For MPLAB LIB30 to create dsp. a:
pic30-ar -r dsp.a fft.o fir.o iir.o

To display the names of the object modules contained in a library file named dsp, use
the following command line:

For MPLIB librarian:
MPLIB /t dsp.lib
For MPLAB LIB30:
pic30-ar -t dsp.a

DS51317E-page 244

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix G. Useful Tables

G1 INTRODUCTION

Some useful tables are included for reference here.

G2 HIGHLIGHTS

The tables are:

* ASCII Character Set
+ Hexadecimal to Decimal Conversion

G3 ASCII CHARACTER SET

Most Significant Character
Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
_ 3 ETX DC3 # 3 C S c S
% 4 EOT DC4 $ 4 D T d t
g 5 ENQ NAK % 5 E U e u
= 6 ACK | SYN & 6 F Vv f v
% 7 Bell ETB ' 7 G W g w
'E”; 8 BS | CAN (8 H X h X
§ 9 HT EM) 9 [Y [y
A LF SUB * : J 4 i z 6
B VT ESC + : K [k {
C FF FS , < L \ [|
D CR GS - = M] m }
E SO RS . > N n n ~
F Sl us / ? o} B o DEL

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 245

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

G4 HEXADECIMAL TO DECIMAL CONVERSION

This appendix describes how to convert hexadecimal to decimal. For each hex digit,
find the associated decimal value. Add the numbers together.

High Byte Low Byte
Hex 1000 Dec Hex 100 Dec Hex 10 Dec Hex 1 Dec
0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15
For example, hex A38F converts to 41871 as follows:
Hex 1000’s Digit Hex 100’s Digit Hex 10’s Digit Hex 1's Digit Result
40960 768 128 15 41871 Decimal

DS51317E-page 246 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Appendix H. GNU Free Documentation License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

H.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially or
non commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

H.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice

placed by the copyright holder saying it can be distributed under the terms of this Par
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, 6
to use that work under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
“you”. You accept the license if you copy, modify, or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 247

http://www.gnu.org/copyleft/

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

mathematics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section “Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

DS51317E-page 248 © 2005 Microchip Technology Inc.

GNU Free Documentation License

H.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

H.4 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 249

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

H.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

a) Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

b) Liston the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

c) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

d) Preserve all the copyright notices of the Document.

e) Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

f) Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

h) Include an unaltered copy of this License.

i) Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

i) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

k) Forany section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

I) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

m) Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

n) Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

0) Preserve any Warranty Disclaimers.

DS51317E-page 250

© 2005 Microchip Technology Inc.

GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

H.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unigue by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

H.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

>
©
°
®
S
o
o
@
7

© 2005 Microchip Technology Inc. DS51317E-page 251

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

H.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-
ment's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

H.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

H.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

H.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

DS51317E-page 252

© 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30
MICROCHIP AND UTILITIES USER'S GUIDE

Glossary

Access Memory (PIC18 Only)

Special registers on PIC18 devices that allow access regardless of the setting of the
bank select register (BSR).

Address
Value that identifies a location in memory.
Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a,b, ..., 2z, A/B, ..., 2).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
0,1, ...,9).

Anonymous Structure
An unnamed structure.
ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Archive

A collection of relocatable object modules. It is created by assembling multiple source
files to object files, and then using the archiver to combine the object files into one
library file. A library can be linked with object modules and other libraries to create
executable code.

Archiver
A tool that creates and manipulates libraries.
ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case let-
ters, digits, symbols and control characters.

Assembler

A language tool that translates assembly language source code into machine code.
Assembly Language

A programming language that describes binary machine code in a symbolic form.
Attribute

Characteristics of variables or functions in a C program which are used to describe
machine-specific properties.

C

A general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators.

© 2005 Microchip Technology Inc. DS51317E-page 253

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of general pur-
pose registers (GPRs) and special function registers (SFRs). Some devices also have
EEPROM data memory.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A microcontroller device with digital signal processing capability, i.e., Microchip
dsPIC30F/33F DSC devices.

Digital Signal Processing

The computer manipulation of digital signals, commonly analog signals (sound or
image) which have been converted to digital form (sampled).

Digital Signal Processor

A microprocessor that is designed for use in digital signal processing.
Directives

Statements in source code that provide control of the language tool’s operation.
DSC

See Digital Signal Controller.

DSP

See Digital Signal Processor.

DWARF

Debug With Arbitrary Record Format. DWARF is a debug information format for ELF
files.

ELF

Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.

Endianess
Describes order of bytes in a multi-byte object.
Epilogue

A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the run-time model. This code executes after any user code for a given function,
immediately prior to the function return.

Errors

Errors report problems that make it impossible to continue processing your program.
When possible, errors identify the source file name and line number where the problem
is apparent.

DS51317E-page 254

© 2005 Microchip Technology Inc.

Glossary

Executable Code
Software that is ready to be loaded for execution.
Expressions

Combinations of constants and/or symbols separated by arithmetic or logical
operators.

File Registers

On-chip data memory, including general purpose registers (GPRs) and special function
registers (SFRs).

Frame Pointer

A pointer that references the location on the stack that separates the stack-based argu-
ments from the stack-based local variables. Provides a convenient base from which to
access local variables and other values for the current function.

Free-Standing

A C compiler implementation that accepts any strictly conforming program that does
not use complex types and in which the use of the features specified in the ISO library
clause is confined to the contents of the standard headers <float .h>, <iso0646.h>,
<limits.h>, <stddef.h> and <stdint.h>.

GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

Heap

An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at run-time.

Hex Code

Executable instructions stored in a hexadecimal format code. Hex code is contained in
a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code) suitable for
programming a device.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

IDE

Integrated Development Environment. MPLAB IDE is Microchip’s integrated
development environment.

Identifier

A function or variable name.

IEEE

Institute of Electrical and Electronics Engineers.
Initialized Data

Data which is defined with an initial value. In C,
int myVar=5;

defines a variable which will reside in an initialized data section.

© 2005 Microchip Technology Inc. DS51317E-page 255

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed.

Interrupt Handler
A routine that processes special code when an interrupt occurs.
Interrupt Request

An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine

A function that is invoked when an interrupt occurs.
IRQ

See Interrupt Request.

ISO

See International Organization for Standardization.
ISR

See Interrupt Service Routine.

L-value

An expression that refers to an object that can be examined and/or modified. An |-value
expression is used on the left-hand side of an assignment.

Latency

The time between an event and its response.
Librarian

See Archiver.

Library

See Archive.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Little Endianess

A data ordering scheme for multibyte data whereby the least significant byte is stored
at the lower addresses.

DS51317E-page 256

© 2005 Microchip Technology Inc.

Glossary

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macroinstruction. An instruction that represents a sequence of instructions in
abbreviated form.

Memory Models
A representation of the memory available to the application.
Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, 1/O ports and
timers.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
Opcodes.

MPLAB ASM30
Microchip’s relocatable macro assembler for dsPIC30F digital signal controller devices.
MPLAB C1X

Refers to both the MPLAB C17 and MPLAB C18 C compilers from Microchip. MPLAB
C17 is the C compiler for PIC17 devices and MPLAB C18 is the C compiler for PIC18
devices.

MPLAB C30

Microchip’s C compiler for dsPIC30F digital signal controller devices.
MPLAB IDE

Microchip’s Integrated Development Environment.

MPLAB LIB30

MPLAB LIB30 archiver/librarian is an object librarian for use with COFF object modules
created using either MPLAB ASM30 or MPLAB C30 C compiler.

MPLAB LINK30

MPLAB LINK30 is an object linker for the Microchip MPLAB ASM30 assembler and the
Microchip MPLAB C30 C compiler.

Object File

A file containing machine code and possibly debug information. It may be immediately
executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Opcodes
Operational Codes. See Mnemonics.
Operators

Symbols, like the plus sign ‘+' and the minus sign ‘-, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

© 2005 Microchip Technology Inc. DS51317E-page 257

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

PICmicro MCUs
PICmicro microcontrollers (MCUSs) refers to all Microchip microcontroller families.
Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.

Precedence

Rules that define the order of evaluation in expressions.

Program Counter

The location that contains the address of the instruction that is currently executing.
Program Memory

The memory area in a device where instructions are stored.

Prologue

A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the run-time model. This code executes before any user code for a given function.

RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

Recursive Calls

A function that calls itself, either directly or indirectly.

Relocatable

An object file whose sections have not been assigned to a fixed location in memory.
Relocation

A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.
Run-Time Model

Describes the use of target architecture resources.
Section

A named sequence of code or data.

SFR

See Special Function Registers.

Simulator

A software program that models the operation of devices.
Source Code

The form in which a computer program is written by the programmer. Source code is
written in some formal programming language which can be translated into or machine
code or executed by an interpreter.

Source File
An ASCII text file containing source code.

DS51317E-page 258

© 2005 Microchip Technology Inc.

Glossary

Special Function Registers

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, 1/O status, timers or other modes or peripherals.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.

Storage Class

Determines the lifetime of an object.

Storage Qualifier

Indicates special properties of an object (e.g., volatile).
Trigraphs

Three-character sequences, all starting with ??, that are defined by ISO C as
replacements for single characters.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.
Vector

The memory locations from which an application starts execution when a specific event
occurs, such as a reset or interrupt.

Warning

Warnings report conditions that may indicate a problem, but do not halt processing. In
MPLAB C30, warning messages report the source file name and line number, but
include the text ‘warning:’ to distinguish them from error messages.

© 2005 Microchip Technology Inc. DS51317E-page 259

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

NOTES:

DS51317E-page 260 © 2005 Microchip Technology Inc.

MPLAB® ASM30, MPLAB® LINK30

MICROCHIP

AND UTILITIES USER’S GUIDE

| ndex

Symbols 10 1= SR 67
et 78,172 NAEE 67
B et 47 NOAEF e 67
O OO 85 INCDIN. oot 72
.. 47 inClude ..o 30, 31, 72
A0 e 71 1L 58
_a“gn ... 63,134 I 68
APPIING oo 71 ITPC e 69
BISCi et eveee et ettt ettt ettt 56 COMML.ciiii e, 60
ASCIZ oo 56 liD* SECHION ...ttt 101
0SS oo 50, 59 liDC SECLION ...t 101
DSS SECHON oo 88,101, 115, 138 .I!bdsp SECHON «.ovvrvre 101
BYLE .ot 57 NIBM SECHON .o 101
COMIM ettt ettt ee et ee et et eee s e enen 59 libperi SeCtion ... 101
.COMM SYMDBOL, IENGHN ..o 59 N 73
const SECtON v 134, 140, 141 LISt e ———— 66
1o 1= 1 2 WEUUUTUUUTUU TR U T T U T 50 [PR 71
ata SECHON oo 88,101, 138 | (oY o R RTR 72
BT eoveee et 73 IONG oo 58
M e 73 MACTD oo 69
dinit SECHION e 101, 139, 140 (1011 T 66
AOUBIE ..o 57 OFG vttt 64
EIECE 1ottt en s 66 PANIGN. oo 63
BISE ettt 67 PDSS SECHON .o 89
IS oo 67 POYEE e 57,132, 141
BN ettt 71 Pl 64
LA Le L= TSR 73 PAIVAIUE oo 55
NI v ee e 67 PINCDIN 72
ONAM oo 69 POTQ ot 64
ENAN .o 68, 69, 70 PINL oo 72
BU oot 45, 60 PSIZE oovveiiiiiiiniiin 66
EOUIV <o 45,60 PSKID oo 65
L ST 67 PSPACE. ...ttt 65
BITON oo eee e e e s e e s eeseseeanenesenens 67 PUIMGEM Lo 70
OXIINY oo 68 .pword .. 59, 141
OX O Y e 60 rept......... R TIPSR R PR 70
BBl oo 71 reSEt SECHON ..o 100
Bl oo 73 £ o | T 66
Fll oo 63 Sl 73
FHUPPET e 54 SECHON NAME ... 51,229
BNVAIUE oo 55 [1= T POTSTR 45, 47, 60
RO oo 57 SNOI .. 59
FLOBL ..o 58 SINGIE oo 58
GIODAI ..o 60 SIZE oo 4
GIODT <o 60 SIZEOF. oo 43
DNANGIE e 90 SKID .o 65
NaNAIE SECHON ..o 130, 137 SIEDL28. ..o 74
PIWOIT <.ttt e e ee e eneeen, 58 SPACE. ..ot 65
JCA SECHON ... 104 STAMOT. o 44
HOEN vttt ettt ee et ee et enen 71 SHING covii 59
o 67 SSEUCE Lo e 65

© 2005 Microchip Technology Inc.

DS51317E-page 261

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Accessing Data
Accumulator Select

aligNMmENt gapScvvvieeeiiiiiee e
Allocatable Section
Allocating Memory........

Allocating Unmapped Sections

ar utilityccoeeeeeienne,
--architecture
Y 1V U RRTUN

ASSERT .ttt e
Assigning Output Sections to Regions................... 134
ASSIgNING ValUES.........cccovviiiiiiieiiiiiiieee e 109
Attributes

Modify Section TYPES.......cccceevvvvvieeeeiiiiiieee e

Represent Section Types
Reserved Section Names
AUEO_PSV ..t ree e

B

Base Memory AddreSsSesccoovvueeeeeeeeniiieeeeeneins 929
bin2hex utility

Binary Filec.evviiiiiiiiee e
BLOCK ...ttt 126
Building the Output Fileooeiiiiiieiee e 131

C

Character Constants
Characters.......ccccvveeeeeeeeeeeeeeeennn,
--Check-SECtioNScovvveviiieiii s
Command-Line Information
LinKer SCrPLS .vvvvveiiiiieei e 96
Command-Line Interface
MPLAB ASM30
MPLAB LIB30.............ceune.
MPLAB LINK30
Simulator.........cccccvvvvvveeneee..
COMMENEScoiiieeiice e
Computing Absolute Addresses.........ccccoevueeeeeeens 131
Condition COUESuuuiiiiiieiieieeeceee e 33
Conditional Assembly Directives

Configuration REQION.........cccuuiiiiiiiiiieee e
Constant Datacccevevieieiiiiiiii e
COoNStantscceveveereeeeiiienies
Fixed-Point Numbers
Floating-Point Numbers
[0 C=T o = PRSP TR UPRR
Locating in Program Memory
Numeric

Custom Linker Script...........c.......
Customer Notification Service
CUSLOMEr SUPPOIt ..ceviiiieeeeieiiie i

Data Initialization Templatec.ccccvvve... 101, 139
Data MEMOIYcoo e 41,131
Data ReQIONcouieiiieiieiiiee e 97
--data-init

DS51317E-page 262

© 2005 Microchip Technology Inc.

Debug Information Directives

type

Destination Selectooevvuviieiieeiieeeeeeiiee s
DIFECLIVE ..o
Directives
AlIGNMENT.....oviiiiiiiiee e 61
Conditional.........ccoovviiiiiiiiiiiiee e 67
Debug Informationccocveeiiiiiiinieniieen. 73
Declare Symbols
Define SymboIS..........cooviiiiii e
Fll e
Initializationcc....
Miscellaneous...................
MPLAB ASM30.................
OUtPUL LIStING.....eveieeeeiiiiiee e
SECHONoeeieeiee et
Substitution/Expansion
--discard-allcccoevvveeeieinnennn.
--discard-loCals.............cceeeeee v
Documentation
Conventions
Layout............
DOT Symbol
Dot Variable

EEDATA Memory RegioNnccceeveeviiiieeeeeiiiieeeee 929
EEPROM, Locating and Accessing.........cccceceuvveee.. 164
Empty Expressions
--end-group

ENtry POINt ..oooeiiiee e
Escape Characters
Evaluationoccooeviiiiiie e

EXCLUDE_FILE.....cciiiiiiiiiiiiiee e
Executable Section
Expression Syntax and Operation

MPLAB ASM30
EXPreSSIONS.....ceeiiiaiiiiii et
Expressions, Empty
Expressions, Integer
EXTERN...ooiiiiiiiet e

=

-fatal-warningsccccc i 28
File Commands, Linker Scripts

SEARCH_DIR
STARTUP e
File Extensions

File Registers
Files
LIDrary ..o
Linker Output
Linker Script.................
Listing....cvveeeeeiiiiieeeens

Fill Directives
JHUPPEL e 54
JIIVAIUE . 55
PAVAIUE ..o 55
-fill-upper
Fixed-Point NUMDErScccccvviviiiiiiiiieceee e,
Floating-Point Numbersccoooiiiiiiie
FORCE_COMMON_ALLOCATION....
--force-exe-suffix
--force-linkccccooeeiiiinins
Functions, LOCatingcccvuvvieeeiiiiiiiie et

G

gaps, alignment.........ccoccivieeiiiiiee e 154
Getting a Grip.....ccveeeeeennee.
Global Symbols

handle()eeeee v
Handles............
--handles.

--help
Hexadecimal to Decimal Conversion 246
High-level Source..........c.ccoccvveviiiicieec i, 14, 22

© 2005 Microchip Technology Inc.

DS51317E-page 263

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

ICD Memory
INCLUDEooiviiiiiieeeciieeeec e,

Informational Output Options, Assembler
--fatal-warnings

Informational Output Options, Linker
--CheCK-SECHIONSevveeiiieeeie e

== WarN-COMMONveevvreieeereesieeeeeeseessneeseeessaeans
--warn-once
--warn-section-align..........ccccvveeeeiiiiee e

Input Section
Common Symbols........c.cccocvvevieiiiiiiiee e,
EXample ...
Wildcard Patterns.....................

Input/Output Section Map

INnteger EXPreSSiONS.......cvuvveeeiiiiiie e eciiieeee e eeiieeeee s
INtegers ...
Internal Preprocessor
Internet Address, Microchip..........ccccoeeiiiiiieiiiiiieenne 6
Interrupt
Handlers........coovevveiiiiieiee e
Request....ccccccvveiiiiiiiiins
Vector Tables...

LENGTH ..ottt
LIDrarian ...
-libraryc.coeene.

Library Files
--library-path
license manager utilityccccoocerieiiiiii e, 197
Link Map Options, Linker

Linker Examples
Linker OUtpUt Fileoovveiieiiiie e
Linker ProCesSingcccvveieeiiiiiiie e eiiieieeeeesieeeeen
Linker Script File.......oooioiiiiiiiec e
LIiNKEr SCHPLS..ciiiiiiiiiii et
Command Language
Command-Line Information...............cccccceeeeee 96
CONCEPLS ..ottt
Contents..........
Custom.............
Expressions
File Commandscccoeiiiiiiiiiiiiee e, 108
Other Commands.........cc.uuveeeiiiiiieeee e 121
LiSting FIleS ...oooieieieee e 14

DS51317E-page 264

© 2005 Microchip Technology Inc.

--listing-cont-liNes............coiiiiiiii e
--listing-lhs-width................

--listing-lhs-width2
--listing-rhs-width

--listing-cont-liNeS........ccccovviiiiiie e,
--listing-lhs-width ..o
--listing-lhs-width2
--listing-rhs-width............ccoooii s
LItEralS ..o.vveeeeiie e

Load Memory Address
LOADADDRcocoveiiieeeiienns

Loading INpUt FileS..........uuiiiiiii e
Local SYmbOIS........oooiiiiiiiieeie e
Location COUNLEN.......ceeevieeeiiiee e
Location Counter Directives

pfill

.skip

SSPACE et 65

Memory Addressingeeeeevevviieeeeeiiiieeeee s
MEMORY Commandccocueveimreeeniniinnieeeninen

Miscellaneous Directives

.end

MPLAB ASM30
Command-Line Interfaceccoeevvvvvvvvvveneennns 17
DIFECHIVES ..uvvviiiiiiiieeeiiiiieee e 49
Expression Syntax and Operation 39
Overview

SCIPLS et
MPLAB LINK30

Command-Line Interfacecccccooeeivniiinnen. 83

Linker Examples

Linker Processing

LiNKer SCHPLS ..ueeeieeieeeieee e

OVEIVIEW ..ceeiiiieeeeee e ae e e e e

© 2005 Microchip Technology Inc.

DS51317E-page 265

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

N Options, pic30-nm

NM ULTIEY Lo s SIS
--no-check-sections

NOCROSSREFS.......... --debug-syms
--no-data-init................. --defined-only

--no-keep-memory
NOLOAD......cccuvvvvrrenns

--NO-PACK-AAtA ...
B (O (=11) PR
--no-undefined
B [0V Ut [P U U RN
--NO-Warn-mMiSMatChccccvvuviiririeiiiiee e 91
Numeric CoNStaANtS......ccoeeeeeeiiiiieiiee e 35

--portability
objdumMp ULIlItY ..o 187 --print-armap
ODbJECt FleS ..eeieiiieieee e --print-file-nameccoooooii
-OMf s
Operands
Operators

INFIX e

OPLIMIZE ..
Options, Archiver/Librarian

--debugging ...
Output File Creation...........cccccvveeeeivireee e 29 --disassemble..............c.......

Options, Linker --disassemble-all.................
Informational OQUEPULccoeviiiiieeeiiiiiiie e 91 --disassembler-options=
LINK Map OULPUL.......coeiiiiieae e 93 --disassemble-zeroes.........ccoccveeeeeiiiiiieeenens
Output File Creationcccceeeeiiiiieneeeniienenn 84
Run-time Initialization............coccooiiiiiiiinneens 89

Options, pic30-bin2hex
SOMF Lo 182
SV e 182

Options, pic30-Im
2 et et a e ae e e e 197
RS STS. 197

DS51317E-page 266 © 2005 Microchip Technology Inc.

“=SOUICE....vvvveeeeiiirrrreeeseenns
--start-address=................
--StOP-addreSS=.......ccccovviiviieeiiiiiiee e

V=1 11 (0] o USSR 194
Options, pic30-strip

——discard-all.......cccoovvvviviiiiieiiie e,

--discard-locals

==SHAP-AUl ..
--strip-debug
--strip-symbol=

EXTERN
FORCE_COMMON_ALLOCATION............... 121
NOCROSSREFSccoiiiiieiiee e
OUTPUT_ARCH ...
OUTPUT_FORMAT
TARGET ..o
Other Options, Assembler
--defsym

“PFOCESSON ...ciieeiieeaee e e e ee e 30
OUTPUT e 108

© 2005 Microchip Technology Inc.

DS51317E-page 267

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Output File Creation Options, Assembler
--keep-locals

Output File FOrmatcceveiiiiiiiiie e 96
Output File Options, Linker

--defsym

~il-UPPEI e
--force-exe-suffix ...

--library
--library-path..........
--no-force-link
--NOINNIDIE-EXEC ..cvvvveeieeiiieeeieeceee e,
--no-isr
--NO-KEEP-MEMOIY......uiiiiiiiiiiiiea e
--NO-UNAEfiNEd....ccceviiiiiiii s

==SCHPt e
--start-group
--strip-all
--strip-debug

Output Formats, pic30-nm
2

NOLOAD ..o 118
OVERLAY ..ot 118

Output Sections in
Configuration Memory
OUTPUT_ARCHoceeeiiiiiii.
OUTPUT_FORMAT ..o
OVERLAY ..ottt e e
Overlay DeSCrIPtioNcccovuiiieeeiiiiiiee e esiiiie e
Overview
MPLAB ASMS30 ...coviiiiiiiiiiiiieeeises i
MPLAB LINK3O ... ee e

--pack-data...............
7= 1o [o 1 () PR
Page SiZE ...vviiii it

PIC30-ar ULIlItYooeeeeeee e
pic30-bin2heX Utilityccoeeiiiiii e
pic30-Im utility.........coeveeeiiiineenn.

pic30-nm utility
pic30-objdump utility
pic30-ranlib Utility..........cccocvveriieiiii e,
PIC30-StriNgS ULlooeeiiiiieiieiee e
PIC30-Strip ULteeeeeeeeeeee e

DS51317E-page 268

© 2005 Microchip Technology Inc.

POINTET ...
Precedence...............
Prefix Operators
Preprocessor, Internal..........cocceeeeeiiiiiieeeniiiieeeee 31
S=PINEMAP e 94
Process Flow
Assembler
LiNKerovveiiiiiiiieiie e
MPLAB LIB30 ...ceieiiiee e
S PIOCESSON ..eeeetieeeeeeeeeneeeeseeeeasneeeeaeeeesnneeeennees
Program Address...........cccceeee...
Program Memory
Program ReQiONcocvvuviiiiiiiiiiiie e
Program Space Visibility Window 42,119, 132, 134,
140

PROVIDE ...t e e 110
PSV Windowccccuveeeeens 42,119, 132, 134, 140, 229
PSVOTFSEL() cvvvveeeeeiiiiiiie e

PSVPAG Register, Saving and Restoring...
0153V 0= To [T) I PSR

ranlib utilityccccooeeeeiiiinnn.
Read/Write Section
Reading, Recommended
Read-Only Datacoccveveeeiiiiiiiee e
Read-Only Section........cccccveeeviiiiiie e
RegiSters......ccccviievieiiiieeeen

Relative Branches...................

=] 010] £ 210111 o o TR
Reserved Names......................

Reset Regioncccceevvvennnn.
Resolving Symbolsccccceoviiiiieciciee e
--retain-symbols-file..........cccoooiiii s
Run-time Initialization Options, Linker
--data-init
--handles
=sNBAP oo
=-NO-dAta-initocvviiiiiiiiee e
--no-handles.............cc.......
--no-pack-data
--pack-data...........ccceeenne
S=SEACK Lo

B To (]) PSPPI 88
Scripts
MPLAB LIB30 ..cueiiiieiieeiiee e 175

Scripts, Archiver/Librarian

DELETE ...
DIRECTORYccc0eeunes

SEARCH_DIR ..ot
Section Directives

Simple Assignments
Simulator Command-Line Interfacecccc....... 201
5] 74 =@ TR

Source Code
Source Files.....
Special Function Registers .
Special OPeratorscccvuveeeiiiiiiee et sriveee e
SIZEOF . i
.startof
[0 [4F= 10] 1 £7=] (R
handle ...

Stack Pointer Limit Register.............cccceeee..
Stack, Locating..........ccccvveveeeiiiiinnaenn.
Standard Data Section Names
=-StArt-group ...eoeveveerieeeiiee e

Starting AddressS........coociviiiee e
STARTUP .ot
Start-up Code
Start-up Module...........oooiiiii
Statement FOrmatcceveeiiiiiee e
SHNGS .oeei e

strings utility
strip utility

==SHAP-AUL e
-=StHP-debUg ..o

© 2005 Microchip Technology Inc.

DS51317E-page 269

MPLAB® ASM30/LINK30 and Utilities User’'s Guide

Substitution/Expansion Directives

.endm
endr......cccccevennnnnns
exitm
ITPC s
macro
purgem
[1570] SRUURRRRTRR
1 o TP
SUDBLIIE oo
supported
Symbol Names.............
Symbol Table
SYMDBOIS ..o
MPLAB ASM30eeiieieiiieeiieeeiieeeeee e
Syntax
Archiver/Librarian.........ccccccccceiiiiiiiiiiiciininnns
ASSEMDBIET ...
Linkercoceevineenne
pic30-bin2hex
pic30-nm
PIC30-0bjAUMP oo
PIC30-ranlibcccooiiiiiiiiii e
pic30-strings
pic30-strip
SIMUIALOT ...
T
L I PP O TP PPN
L PP
Table Access Instructions
TARGET ..cciiiieee e
—target-NelP ...
tBIOFFSEL() vovveeiieie e
tblpage()
STDSS i ———

User-Defined Section in Data Memory................... 104
User-Defined Section in Program Memory............. 102
UIITIES .o 177
\

SV

SV et et raenraeenre s

Variables, Locating
=sVEIDOSE e
SSVEISION et e e e e e e e e e

VMA L

--warn-common
==WAIM-ONCE ..t
--warn-section-align.....................
Watchdog Timer, Disabling
Weak Symbolsccoooiiiieeiiiiiiie e
Web Site, Microchip

White Space

DS51317E-page 270

© 2005 Microchip Technology Inc.

Index

NOTES:

© 2005 Microchip Technology Inc. DS51317E-page 271

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose

Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

DS51317E-page 272

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/31/05

© 2005 Microchip Technology Inc.

	Preface
	Part 1 – MPLAB ASM30 Assembler
	Chapter 1. Assembler Overview
	1.1 Introduction
	1.2 Highlights
	1.3 MPLAB ASM30 and Other Development Tools
	1.4 Feature Set
	1.5 Input/Output Files

	Chapter 2. MPLAB ASM30 Command Line Interface
	2.1 Introduction
	2.2 Highlights
	2.3 Syntax
	2.4 Options that Modify the Listing Output
	2.5 Options that Control Informational Output
	2.6 Options that Control Output File Creation
	2.7 Other Options

	Chapter 3. Assembler �Syntax
	3.1 Introduction
	3.2 Highlights
	3.3 Internal Preprocessor
	3.4 Source Code Format
	3.5 Constants
	3.6 Summary

	Chapter 4. Assembler Expression Syntax and Operation
	4.1 Introduction
	4.2 Highlights
	4.3 Expressions
	4.4 Operators
	4.5 Special Operators

	Chapter 5. Assembler Symbols
	5.1 Introduction
	5.2 Highlights
	5.3 What are Symbols
	5.4 Reserved Names
	5.5 Local Symbols
	5.6 Giving Symbols Other Values
	5.7 The Special DOT Symbol
	5.8 Using Executable Symbols in a Data Context

	Chapter 6. Assembler Directives
	6.1 Introduction
	6.2 Highlights
	6.3 Directives that Define Sections
	6.4 Directives that Fill Program Memory
	6.5 Directives that Initialize Constants
	6.6 Directives that Declare Symbols
	6.7 Directives that Define Symbols
	6.8 Directives that Modify Section Alignment
	6.9 Directives that Format the Output Listing
	6.10 Directives that Control Conditional Assembly
	6.11 Directives for Substitution/Expansion
	6.12 Miscellaneous Directives
	6.13 Directives for Debug Information

	Part 2 – MPLAB LINK30 Linker
	Chapter 7. Linker Overview
	7.1 Introduction
	7.2 Highlights
	7.3 MPLAB LINK30 and Other Development Tools
	7.4 Feature Set
	7.5 Input/Output Files

	Chapter 8. MPLAB LINK30 Command Line Interface
	8.1 Introduction
	8.2 Highlights
	8.3 Syntax
	8.4 Options that Control Output File Creation
	8.5 Options that Control Run-time Initialization
	8.6 Options that Control Informational Output
	8.7 Options that Modify the Link Map Output

	Chapter 9. Linker Scripts
	9.1 Introduction
	9.2 Highlights
	9.3 Overview of Linker Scripts
	9.4 Command Line Information
	9.5 Contents of a Linker Script
	9.6 Creating a Custom Linker Script
	9.7 Linker Script Command Language
	9.8 Expressions in Linker Scripts

	Chapter 10. Linker Processing
	10.1 Introduction
	10.2 Highlights
	10.3 Overview of Linker Processing
	10.4 Memory Addressing
	10.5 Linker Allocation
	10.6 Global and Weak Symbols
	10.7 Handles
	10.8 Initialized Data
	10.9 Read-only Data
	10.10 Stack Allocation
	10.11 Heap Allocation
	10.12 Interrupt Vector Tables
	10.13 Optimizing Memory Usage

	Chapter 11. Linker Examples
	11.1 Introduction
	11.2 Highlights
	11.3 Memory Addresses and Relocatable Code
	11.4 Locating a Variable at a Specific Address
	11.5 Locating a Function at a Specific Address
	11.6 Saving and Restoring the PSVPAG Register
	11.7 Locating a Constant at a Specific Address in Program Memory
	11.8 Locating and Accessing Data in EEPROM Memory
	11.9 Creating an Incrementing Modulo Buffer in X Memory
	11.10 Creating a Decrementing Modulo Buffer in Y Memory
	11.11 Locating the Stack at a Specific Address

	Part 3 – MPLAB LIB30 Archiver/Librarian
	Chapter 12. MPLAB LIB30 Archiver/Librarian
	12.1 Introduction
	12.2 Highlights
	12.3 MPLAB LIB30 and Other Development Tools
	12.4 Feature Set
	12.5 Input/Output Files
	12.6 Syntax
	12.7 Options
	12.8 Scripts

	Part 4 – Utilities
	Chapter 13. Utilities Overview
	13.1 Introduction
	13.2 Highlights
	13.3 What are Utilities

	Chapter 14. pic30-bin2hex Utility
	14.1 Introduction
	14.2 Highlights
	14.3 Input/Output Files
	14.4 Syntax
	14.5 Options

	Chapter 15. pic30-nm Utility
	15.1 Introduction
	15.2 Highlights
	15.3 Input/Output Files
	15.4 Syntax
	15.5 Options
	15.6 Output Formats

	Chapter 16. pic30-objdump Utility
	16.1 Introduction
	16.2 Highlights
	16.3 Input/Output Files
	16.4 Syntax
	16.5 Options

	Chapter 17. pic30-ranlib Utility
	17.1 Introduction
	17.2 Highlights
	17.3 Input/Output Files
	17.4 Syntax
	17.5 Options

	Chapter 18. pic30-strings Utility
	18.1 Introduction
	18.2 Highlights
	18.3 Input/Output Files
	18.4 Syntax
	18.5 Options

	Chapter 19. pic30-strip Utility
	19.1 Introduction
	19.2 Highlights
	19.3 Input/Output Files
	19.4 Syntax
	19.5 Options

	Chapter 20. pic30-lm Utility
	20.1 Introduction
	20.2 Highlights
	20.3 Syntax
	20.4 Options

	Part 5 – Command-Line Simulator
	Chapter 21. SIM30 Command-Line Simulator
	21.1 Introduction
	21.2 Highlights
	21.3 Syntax
	21.4 Options

	Part 6 – Appendices
	Appendix A. Assembler Errors/Warnings/Messages
	A.1 Introduction
	A.2 Highlights
	A.3 Fatal Errors
	A.4 Errors
	A.5 Warnings
	A.6 Messages

	Appendix B. Linker Errors/Warnings
	B.1 Introduction
	B.2 Highlights
	B.3 Errors
	B.4 Warnings

	Appendix C. Deprecated Features
	C.1 Introduction
	C.2 Highlights
	C.3 MPLAB ASM30 Directives that Define Sections
	C.4 Reserved Section Names with Implied Attributes

	Appendix D. MPASM™ Assembler Compatibility
	D.1 Introduction
	D.2 Highlights
	D.3 Compatibility
	D.4 Examples
	D.5 Converting PIC18FXXX Assembly Code to dsPIC30FXXXX Assembly Code

	Appendix E. MPLINK™ Linker Compatibility
	E.1 Introduction
	E.2 Highlights
	E.3 Compatibility
	E.4 Migration to MPLAB LINK30

	Appendix F. MPLIB™ Librarian Compatibility
	F.1 Introduction
	F.2 Highlights
	F.3 Compatibility
	F.4 Examples

	Appendix G. Useful Tables
	G.1 Introduction
	G.2 Highlights
	G.3 ASCII Character Set
	G.4 Hexadecimal to Decimal Conversion

	Appendix H. GNU Free Documentation License
	H.1 Preamble
	H.2 Applicability and Definitions
	H.3 Verbatim Copying
	H.4 Copying In Quantity
	H.5 Modifications
	H.6 Combining Documents
	H.7 Collections of Documents
	H.8 Aggregation with Independent Works
	H.9 Translation
	H.10 Termination
	H.11 Future Revisions of this License

	Glossary
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

