TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

## **TA8251AH**

## MAX POWER 30W BTL×4CH AUDIO POWER IC

The TA8251AH is 4ch BTL audio power amplifier for consumer application.

It is designed low distortion ratio for 4ch BTL audio power amplifier, built-in Stand-by Function, Muting Function and Junction Temperature Detection Circuit. Additionally, the AUX. amplifier is built-in, it can make the beep signal etc. output to 2 channels (OUT1 and 4). It contains various kind of protectors for car audio.



High power

: POUT (MAX) = 30W (Typ.)  $(V_{CC} = 13.7V, f = 1kHz, R_L = 4\Omega)$ 

 $: P_{OUT}(1) = 21W (Typ.)$ 

 $(V_{CC} = 14.4V, f = 1kHz, THD = 10\%, R_L = 4\Omega)$ 

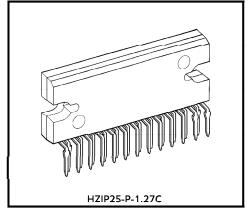
:  $P_{OUT}(2) = 18W (Typ.)$ 

 $(V_{CC} = 13.2V, f = 1kHz, THD = 10\%, R_L = 4\Omega)$ 

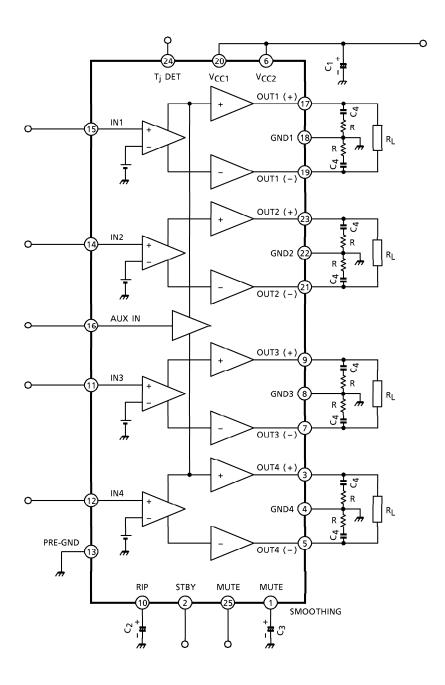
Low distortion ratio

: THD = 0.02% (Typ.)

 $(V_{CC} = 13.2V, f = 1kHz, P_{OUT} = 3W, R_L = 4\Omega)$ 


Low noise

:  $V_{NO} = 0.10 \text{mV}_{rms}$  (Typ.)  $(V_{CC} = 13.2V, R_{Q} = 0\Omega, G_{V} = 34dB, BW = 20\sim20kHz)$ 

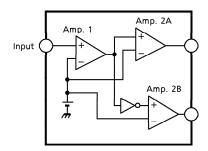

- Built-in stand-by switch function (Pin②)
- Built-in muting function (Pin①, 35)
- Built-in AUX. amplifier from single input to 2 channels output (Pin<sup>®</sup>)
- Built-in junction temperature detection circuit (Pin24)
  - : Pin DC voltage rises at about +10mV/°C in proportion to junction temperature.
- Built-in various protection circuit
  - : Thermal shut down, over voltage, out to GND, out to VCC, out to out short
- Operating supply voltage
  - :  $V_{CC(opr)} = 9 \sim 18V$

961001EBA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
   The products described in this document are subject to foreign exchange and foreign trade control laws.
   The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
   The information contained herein is subject to change without notice.



## **BLOCK DIAGRAM**




#### **CAUTION AND APPLICATION METHOD**

(Description is made only on the single channel.)

#### 1. Voltage gain adjustment

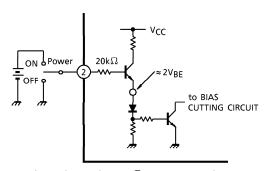
This IC has no NF (negative feedback) terminals. Therefore, the voltage gain can't adjusted, but it makes the device a space and total costs saver.



(Fig.1) Block diagram

The voltage gain of Amp. 1 :  $G_{V1} = 0dB$ The voltage gain of Amp. 2A, B :  $G_{V2} = 28dB$ The voltage gain of BLT Connection :  $G_{V(BTL)} = 6dB$ 

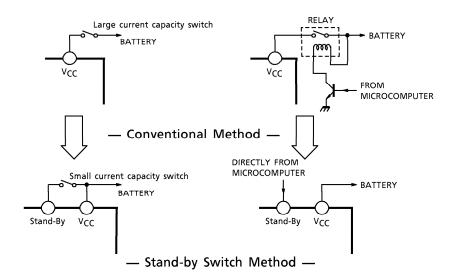
Therefore, the total voltage gain is decided by expression below.


$$G_V = G_{V1} + G_{V2} + G_{V(BTL)} = 0 + 28 + 6 = 34dB$$

## 2. Stand-by SW function

By means of controlling pin2 (Stand-by terminal) to High and Low, the power supply can be set to ON and OFF. The threshold voltage of pin2 is set at about 3V (Typ.), and the Power Supply current is about  $100\mu$ A (Typ.) at the stand-by state.

Control Voltage of pin②: V(SB)


| STAND-BY | POWER | V (SB) (V)        |
|----------|-------|-------------------|
| ON       | OFF   | 0~2               |
| OFF      | ON    | 3∼V <sub>CC</sub> |



(Fig.2) With pin② set to High, Power is turned ON

#### Adjustage of Stand-by SW

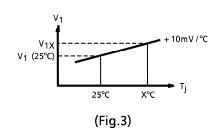
- (1) Since V<sub>CC</sub> can directly be controlled to ON or OFF by the microcomputer, the switching relay can be omitted.
- (2) Since the control current is microscopic, the switching relay of small current capacity is satisfactory for switching



#### 3. Preventive measure against oscillation

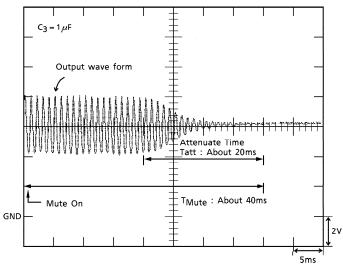
For preventing the oscillation, it is advisable to use C<sub>4</sub>, the condenser of polyester film having small characteristic fluctuation of the temperature and the frequency.

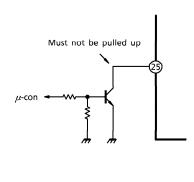
The resistance R to be series applied to C<sub>4</sub> is effective for phase correction of high frequency, and improves the oscillation allowance.


- (1) Capacity value and the kind of condenser
- (2) Layout of printed board

#### 4. Junction temperature detecting pin@

Using temperature characteristic of a band gap circuit and in proportion to junction temperature, pin@ DC voltage:  $V_2$  rises at about  $+10mV/^{\circ}C$  temperature characteristic. So, the relation between  $V_2$  at  $T_j = 25^{\circ}C$  and  $V_{2x}$  at  $T_j = x^{\circ}C$  is decided by the following expression:


T (x°C) = 
$$\frac{V_{2x} - V_2 (25^{\circ}C)}{10 \text{mV} / {^{\circ}C}} + 25 (^{\circ}C)$$


In deciding a heat sink size, a junction temperature can be easily made clear by measuring voltage at this pin while a backside temperature of IC was so far measured using a thermocouple type thermometer.



#### 5. Muting function: pin①, pin®

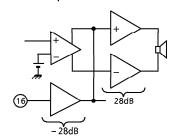
By means of controlling pin® (Mute control terminal) less than about 1.5V, it can make the IC muting condition as below. However, pin® must not be connected to a certain voltage, for example, V<sub>CC</sub>, V<sub>DD</sub>, V<sub>ref</sub>,····etc. In other words, pin® is inhibited to be pulled up, for instance fig.5 application.





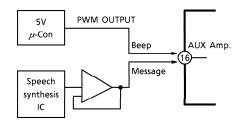
(Fig.4) Output wave form at Muting Condition

(Fig.5) Mute control


The attenuation by the muting function is 70dB (Typ.). This muting is very smooth attenuating by the time constant of pin①: smoothing.

Therefore, this function is suitable to the audio muting. The time for attenuation: Tatt is adjustable by changing the capacitance of C<sub>3</sub>. But the Tatt may influence the popping noise level. So, please decide the time of Tatt by testing on the units.

## 6. AUX. amplifier: pin16


The pin is for input terminal of AUX. amplifier.

The total gain is 0dB by using of AUX. amplifier.



(Fig.6) AUX. amplifier

Therefore, the  $\mu$ -Con can directly drive the AUX. amplifier.



(Fig.7) The application of AUX. amplifier

The amplified signal from pin<sup>®</sup> is out to the OUT1 and 4.

## 7. Cross talk

The cross talk characteristics of the IC is not good between OUT1 and 2, OUT3 and 4. So we recommend to use by below method.

| OUT1, 2 | L-ch (or R-ch) |
|---------|----------------|
| OUT3, 4 | R-ch (or L-ch) |

And, please refer to below table in case of applying the AUX. IN because it is out to OUT 1 and 4.

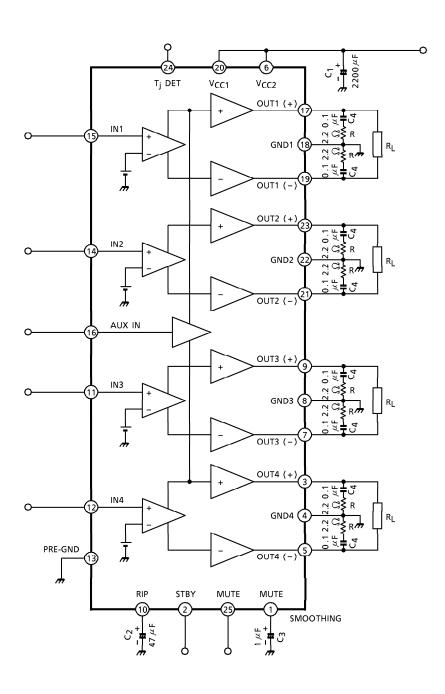
ex)

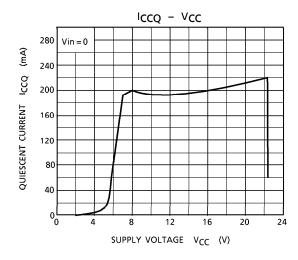
| OUT1 | Front | L-ch (or R-ch)   | AUX. OUT |  |  |
|------|-------|------------------|----------|--|--|
| OUT2 | Rear  | L-CII (OI K-CII) | _        |  |  |
| OUT3 | Rear  | R-ch (or L-ch)   | _        |  |  |
| OUT4 | Front | K-CII (OI L-CII) | AUX. OUT |  |  |

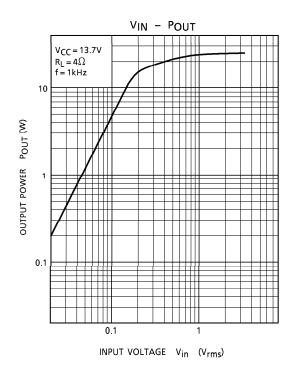
## MAXIMUM RATING (Ta = 25°C)

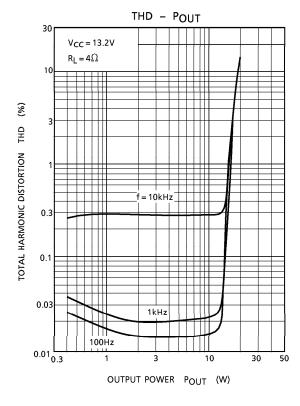
| CHARACTERISTIC             | SYMBOL                | RATING   | UNIT |
|----------------------------|-----------------------|----------|------|
| Peak Supply Voltage (0.2s) | Vcc (surge)           | 50       | ٧    |
| DC Supply Voltage          | V <sub>CC</sub> (DC)  | 25       | V    |
| Operating Supply Voltage   | V <sub>CC</sub> (opr) | 18       | V    |
| Output Current (peak)      | l <sub>o (peak)</sub> | 9        | Α    |
| Power Dissipation          | P <sub>D</sub> (*)    | 83       | W    |
| Operating Temperature      | T <sub>opr</sub>      | - 40~85  | °C   |
| Storage Temperature        | T <sub>stg</sub>      | - 55~150 | °C   |

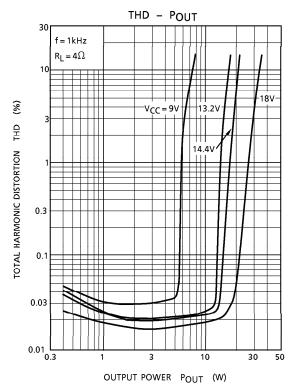
(\*) Package thermal resistance  $\theta_{j-T} = 1.5^{\circ}\text{C/W}$  (Typ.) (Ta = 25°C, with infinite heat sink)

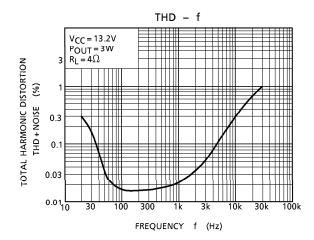

## **ELECTRICAL CHARACTERISTICS** (Unless otherwise specified $V_{CC} = 13.2V$ , f = 1kHz, $R_L = 4\Omega$ , $Ta = 25^{\circ}C$ )

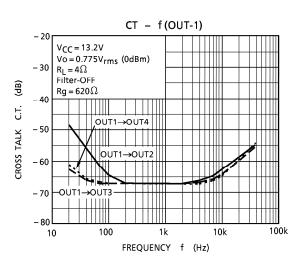

| SYMBOL                 | TEST<br>CIR-<br>CUIT                                                                                            | TEST CONDITION                                                                                                                                                         | MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TYP.                                                   | MAX.                                                  | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>I</sup> ccQ       | _                                                                                                               | V <sub>IN</sub> = 0                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                    | 400                                                   | mΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P <sub>OUT</sub> (MAX) | _                                                                                                               | V <sub>CC</sub> = 13.7V, MAX power                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                     | _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| P <sub>OUT</sub> (1)   | _                                                                                                               | V <sub>CC</sub> = 14.4V, THD = 10%                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                                                     | _                                                     | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P <sub>OUT</sub> (2)   | _                                                                                                               | THD = 10%                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| THD                    | _                                                                                                               | P <sub>OUT</sub> = 3W                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                   | 0.2                                                   | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GV                     | _                                                                                                               | $V_{OUT} = 0.775V_{rms}$ (0dBm)                                                                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                                     | 36                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ∆G∨                    | _                                                                                                               | $V_{OUT} = 0.775V_{rms}$ (0dBm)                                                                                                                                        | - 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                      | 1.0                                                   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>NO</sub> (1)    | _                                                                                                               | $R_g = 0\Omega$ , DIN45405                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12                                                   |                                                       | $mV_{rms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V <sub>NO</sub> (2)    | _                                                                                                               | $R_g = 0\Omega$ , BW = 20Hz~20kHz                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10                                                   | 0.35                                                  | $mV_{rms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R.R.                   |                                                                                                                 | $f_{rip} = 100 \text{Hz}, R_g = 620 \Omega$<br>$V_{rip} = 0.775 V_{rms}$ (0dBm)                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55                                                     | _                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C.T.                   | _                                                                                                               | $R_g = 620\Omega$ ,<br>$V_{OUT} = 0.775V_{rms}$ (0dBm)                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75                                                     | _                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VOFFSET                | _                                                                                                               | _                                                                                                                                                                      | - 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                      | + 300                                                 | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R <sub>IN</sub>        | _                                                                                                               | _                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                     | _                                                     | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I <sub>SB</sub>        | _                                                                                                               | Stand-by condition                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                    | 150                                                   | μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>SB</sub> H      | _                                                                                                               | Power : on                                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                      | Vcc                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V <sub>SB</sub> L      | _                                                                                                               | Power : off                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 1.5                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V <sub>M</sub> H       | _                                                                                                               | Mute: off                                                                                                                                                              | OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | ٧                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V <sub>M</sub> L       | _                                                                                                               | Mute : on                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 1.5                                                   | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ATT M                  | _                                                                                                               | Mute : on                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                     | _                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | ICCQ POUT (MAX) POUT (1) POUT (2) THD GV  ΔGV VNO (1) VNO (2) R.R.  C.T.  VOFFSET RIN ISB VSB H VSB L VM H VM L | SYMBOL CIR-CUIT  ICCQ — POUT (MAX) — POUT (1) — POUT (2) —  THD —  Gy — ΔGy — VNO (1) — VNO (2) —  R.R. —  C.T. —  VOFFSET — RIN — ISB — VSB H — VSB L — VM H — VM L — | TEST CONDITION         ICCQ       VIN = 0         POUT (MAX)       VCC = 13.7V, MAX power         POUT (1)       VCC = 14.4V, THD = 10%         POUT (2)       THD = 10%         THD       POUT = 3W         GV       VOUT = 0.775V <sub>rms</sub> (0dBm)         ΔGV       VOUT = 0.775V <sub>rms</sub> (0dBm)         VNO (1)       Rg = 0Ω, DIN45405         VNO (2)       Rg = 0Ω, BW = 20Hz~20kHz         R.R.       frip = 100Hz, Rg = 620Ω         Vrip = 0.775V <sub>rms</sub> (0dBm)         C.T.       Rg = 620Ω, VOUT = 0.775V <sub>rms</sub> (0dBm)         VOFFSET       —         RIN       —         ISB       — Stand-by condition         VSB H       — Power : on         VSB L       — Power : off         VM H       — Mute : off         VM L       — Mute : on | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | SYMBOL         CIR-CUIT         TEST CONDITION         MIN.         TYP.         MAX.           ICCQ         — VIN = 0         — 200         400           POUT (MAX)         — VCC = 13.7V, MAX power         — 30         —           POUT (1)         — VCC = 14.4V, THD = 10%         — 21         —           POUT (2)         — THD = 10%         — 16         18         —           THD         — POUT = 3W         — 0.02         0.2           GV         — VOUT = 0.775Vrms (0dBm)         32         34         36           ΔGV         — VOUT = 0.775Vrms (0dBm)         — 1.0         0         1.0           VNO (1)         — Rg = 0Ω, DIN45405         — 0.12         —           VNO (2)         — Rg = 0Ω, BW = 20Hz~20kHz         — 0.10         0.35           R.R.         — frip = 100Hz, Rg = 620Ω         40         55         —           C.T.         — Rg = 620Ω, VOUT = 0.775Vrms (0dBm)         — 75         —           VOFFSET         — — — 300         — 4300         — 300           RIN         — Stand-by condition         — 100         150           VSB H         — Power : on         3.0         — VCC           VSB L         — Power : off         0 |

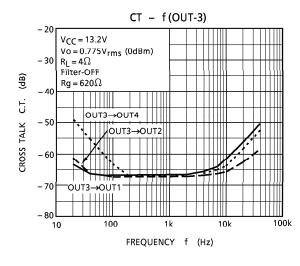

(\*) Muting function must be controlled by open and Low Logic.


This means that the mute control terminal: pin® must not be pulled up.

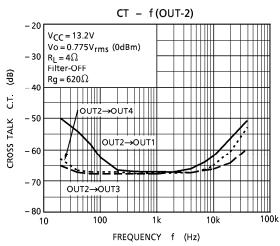

# TEST CIRCUIT (G<sub>V</sub> = 34dB)

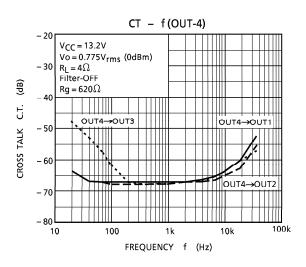


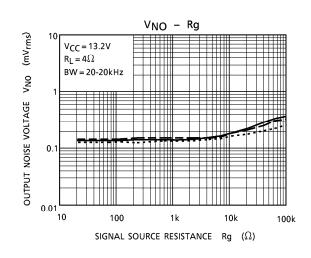



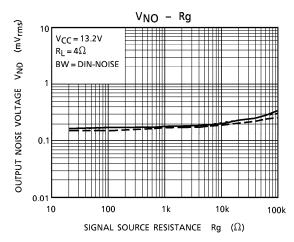


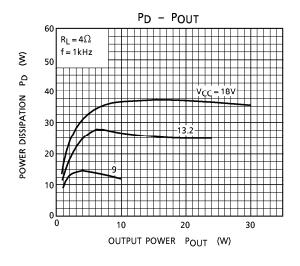



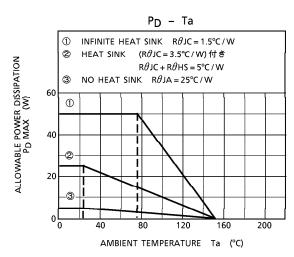





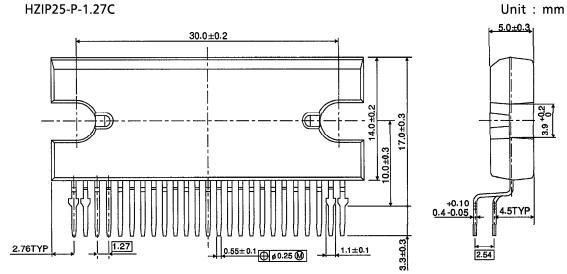



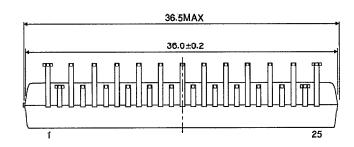










## **OUTLINE DRAWING**





Weight: 9.8g (Typ.)