D13-27..

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced short oscilloscope tube (max. 35 cm) with post-de-flection acceleration by means of a helical electrode. The tube is provided with deflection blanking.

QUICK REFERENCE DATA				
Final accelerator voltage	$V_{g_7(\ell)} = 3000 V$			
Display area	8 cm x full scan			
Deflection coefficient, horizontal	M _X = 24 V/cm			
vertical	$M_{V} = 11.5 V/cm$			

SCREEN

	Colour	Persistence
D13-27GH	green	medium short

Useful screen diameter

min. 114 mm

Useful scan at $V_{g_7(\ell)}/V_{g_5} = 2$

norizontai	IUI	i scan	
vertical	min.	80	mm

The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	v_{f}	=	6.3	v
Heater current	If	=	300	mA

---- MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base 14 pin all glass

Dimensions and connections

Overall length (also with socket type 55566)	max.	354	mm
Face diameter	max.	135	mm
Net weight	appro	x. 680	g
Accessories			
Socket (supplied with tube)	type	55566	
Final accelerator contact connector	type	55563	
Mu metal shield	type	55557	

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	=	4.5	pF
x_2 to all other elements except x_1	$C_{x_2(x_1)}$	=	4.5	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	^C y ₁ (y ₂)	Ξ	5	pF
y_2 to all other elements except y_1	c _{y2} (y ₁)	=	5.5	pF
x_1 to x_2	$C_{x_1x_2}$	=	2.5	pF
y_1 to y_2	$c_{y_1y_2}$	=	1.2	pF
Grid No.1 to all other elements	Cg1	=	5.5	pF
Cathode to all other elements	C _k	=	5	pF
Grid No.3 to all other elements	Cg3	=	10	pF

FOCUSING electrostatic

DEFLECTION	double $electrostatic$
x plates	symmetrical
y plates	symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces	$90^{\circ} \pm 1^{\circ}$
------------------------------	----------------------------

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage	$v_{g_7(\ell)}$	=	3000	v
Astigmatism control electrode voltage	v_{g_5}	=	1500	v ²)
First accelerator voltage	v_{g_2}	=	1500	v
Beam current	^I g7(1)	=	10	μA
Line width	l.w.	=	0.25	mm

HELIX

Post deflection accelerator helix resistance	min.	50	MΩ
The helix is connected between $g_7(l)$ and g_6			

2) See page 5

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	Vg7(1)	=	3000	v
Geometry control electrode voltage	v _{g6}	=	1500 ± 75	V ¹)
Astigmatism control electrode voltage	vg ₅	=	1500 ± 75	V ²)
Focusing electrode voltage	v_{g_4}	=	300 to 550	v
Deflection blanking electrode voltage	v _{g3}	=	1500	v
Deflection blanking control voltage	Δv_{g_3}	=	max60	v ³)
First accelerator voltage	v _{g2}	=	1500	v
Control grid voltage for visual extinction of focused spot	v _{g1}	=	-38 to -135	v
Deflection coefficient	01			
horizontal	M _x	=	21 to 27	V/cm
vertical	M _v	=	9.8 to 12.2	V/cm
Deviation of linearity of deflection	,	=	max. 2	% ⁴)
Geometry distortion			See note 5	
Useful scan				
horizontal			full scan	
vertical		=	min. 80	mm

CIRCUIT DESIGN VALUES

Focusing voltage	v_{g_4}	= 200 to	370	V per kV of V _{g5}
Control grid voltage for vis extinction of focused s				V per kV of V _{g2}
Deflection coefficient at				-
$v_{g_7(l)}/v_{g_5}$	= 2			
horizo	ntal M _x	= 14 to	18	V/cm per kV of Vg5
vertica	l M _y	= 6.5 to	8.2	V/cm per kV of V_{g_5}
Control grid circuit resista	nce R _{g1}	= max.	1.5	MΩ
Deflection plate circuit	-			
resista		y = max.		
Focusing electrode current	Ig4	= -15 to	+10	μA ⁶)

Notes see page 5

3300 v max. Final accelerator voltage $V_{g_7(\ell)}$ min. 1800 v Geometry control electrode voltage v_{g6} max. 1700 v --max. 1700 v Astigmatism control electrode voltage Vg5 min. 1200 V v Focusing electrode voltage Vg₄ max. 1200 v Deflection blanking electrode voltage max, 1700 Vga v_{g_2} First accelerator voltage max. 1700 v Control grid voltage $-v_{g_1}$ negative max. 200v positive $-V_{g_1}$ min. 0 v Voltage between astigmatism control electrode and any deflection plate $V_{g_5/x}$ max. 500 v $V_{g_5/y}$ max. 500 v mW/cm² Screen dissipation Wo 3 max. $V_{g_7(\ell)}/V_{g_5}$ Ratio $V_{g_7(\ell)}/V_{g_5}$ max. 2 Cathode current, average I_k max. 300 µA

LIMITING VALUES (Absolute max. rating system)

¹) This tube is designed for optimum performance when operating at the ratio $V_{g7(\ell)}/V_{g5}$ = 2. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.

- 2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 3) For beam blanking of a beam current of $10 \,\mu A$.
- 4) The sensitivity at a deflection of less than 75% of the usefull scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5) A graticule, consisting of concentric rectangles of 100 mm x 60 mm and 97 mm x 58 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
- 6) Values to be taken into account for the calculation of the focus potentiometer.