Features

- Temperature and Supply Voltage Compensated Flashing Frequency
- Frequency Doubling Indicates Lamp Outage
- Two Relay Driver Outputs with High Current-carrying Capacity and Low Saturation Voltage
- Minimum Lamp Load for Flasher Operation: \geq 1 W
- Very Low Susceptibility to EMI
- Protection According to ISO/TR7637/1 Level 4
- Extremly Low Current Consumption < 10 µA (with Switches Open)
- Reverse Polarity Protection
- Three Control Inputs: Left, Right and Hazard Warning

Description

The integrated circuit U2044B is used in relay-controlled automotive flashers. With two output stages, each side of the vehicle is controlled separately. A left and a right direction indicator input with only a small control current makes switch contacts for small loads possible.

The separate hazard warning input simplifies the construction of the hazard switch. Lamp outage is indicated by frequency doubling during direction mode. Thanks to extreme low current consumption the U2044B can be directly connected to the battery.

Dual Output Flasher

U2044B

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning DIP14/SO14

Pin Description

Pin	Symbol	Function
1	OSC	Oscillator
2	SIL	Start input left
3	SIR	Start input right
4	SIHW	Start input hazard warning
5	VS	V _S
6	CR1	Control input relay 1
7	CR2	Control input relay 2
8	LD	Lamp failure detection
9	VS	V _S
10	GND	IC ground
11	OR1	Output relay 1
12	VS	V _S
13	OR2	Output relay 2
14	OSC	Oscillator

Functional Description

Oscillator (Pin 1 and 14)	Flashing frequency, f_1 , is determined by the R_1C_1 components as follows (see Figure 1):			
	$f_1 \approx \frac{1}{R_1 \times C_1 \times 1.5} Hz$			
	where $C_1 \le 47 \ \mu F$ $R_1 = 6.8 \ k\Omega$ to 180 $k\Omega$			
	In the case of a lamp outage, the oscillator frequency is switched to the lamp outage frequency f_2 with $f_2\approx 2.2\times f_1.$			
	Duty cycle in normal flashing mode: 50% Duty cycle in lamp outage mode: 40% (bright phase)			
Start Input Right and Left (Pin 2 and 3)	Flashing is disabled as long as the input comparator is tied to GND (pull-down resistor R_7 or R_5). The high-side flasher switch left or right changes the comparator status and enables the output stage at pin 11 or Pin 13. R_6 and R_4 are protection resistors for the input stage.			
	With an open flasher switch the current consumption is only I < 10 μ A. The IC is kept in stand-by mode until there is a voltage drop of V \approx 6.9 V at the pull-down resistor.			
	Direction mode can only be activated when the ignition switch is in the ON-position as shown in Figure 1.			
Start Input Hazard Warning (Pin 4)	In contrast to the direction switches, the hazard input is a low-side type. The pull-up resistor R_{10} provides the off-state. R_3 is a protection resistor for the input stage. Hazard warning can be activated independent of the ignition switch position.			
Supply Voltage Sense (Pin 5)	This pin supplies the lamp outage comparator at pin 8 and is externally connected to the battery (KI 30).			
Control Input Relay 1 and 2 (Pin 6 and 7)	The feedback detects the bright phase and the dark phase and enables the oscillator.			
Lamp Outage Detection (Pin 8)	The lamp current is monitored via an external shunt resistor, R_{Shunt} and an internal comparator, K1, with its reference voltage of typically 81 mV ($V_S = 12$ V). The outage of one lamp out of two lamps is detected according to the following calculation:			
	Nominal current of 1 lamp: 21 W/(V _S = 12 V): $I_{lamp} = 1.75 A$ Nominal current of 2 lamps: 2 × 21 W / (V _S = 12 V): $I_{lamp} = 3.5 A$			
	We recommend setting the detection threshhold in the middle of the current range: $I_{\text{outage}}\approx 2.7~\text{A}$			
	Thus the shunt resistor is calculated as:			
	$R_{Shunt} = V_T (K1)/I_{outage}$ $R_{Shunt} = 81 mV/2.7 A = 30 m\Omega$			
	Comparator K1's reference voltage is matched to the characteristics of filament lamps (see section "Control Signal Threshold").			

	The combination of the shunt resistor and the resistance of the wire harness prevents pin 8 from a too high voltage in the case of shorted lamps.
Supply Voltage (Pin 9)	This pin supplies the oscillator, the comparators and the logic parts of the IC.
GND (Pin 10)	The integrated circuit is protected against transients according to ISO-TR 7637-3 level 3 via resistor R_2 to ground (-31). An integrated protection circuit together with external resistors R_2 , R_3 , R_4 , R_6 , R_8 and R_9 limits the current pulses in the IC. The IC is also protected against reversed battery.
Control Output Relay 1 and 2 (Pin 11 and 13)	The relay control outputs are high-side drivers with a low saturation voltage and capable of driving a typical automotive relay with a coil resistance of 60 Ω .
Supply Voltage Power (Pin 12)	This pin supplies the relay drivers connected directly to the battery (KI 30). It is internally clamped by a 27-V Z-diode.

Absolute Maximum Ratings

Reference point pin 1

Parameters	Symbol	Value	Unit	
Supply voltage, 1 min, pins 5, 9 and 12	V _S	24	V	
Junction temperature	Tj	150	°C	
Ambient temperature range	T _{amb}	-40 to +100	°C	
Storage temperature range	T _{stg}	-55 to +150	°C	

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient, DIP14	R _{thJA}	90	K/W
Junction ambient, SO14	R _{thJA}	120	K/W

Electrical Characteristics

Typical values under normal operation in application circuit Figure 1, V_S (+30) = 12 V. Reference point ground (-31), $T_{amb} = 25^{\circ}C$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Supply voltage range	Pins 5, 9, 12	Vs	8		18	V
Supply current, switches open	Pins 5, 9, 12	ا _s			10	μA
Output current for relay driver	Pins 11, 13	Ι _ο			300	mA
Saturation voltage	$\begin{array}{l} R_{L} = 82 \ \Omega \\ V_{S} = 8 \ V \\ V_{S} = 12 \ V \end{array}$	Vo			1.0 1.2	V V
Relay output reverse current	Pin 11, 13	Ι _ο			0.1	mA
Relay coil resistance		RL	60			Ω
Start delay	First bright phase	t _{on}			10	ms

Electrical Characteristics (Continued)

Typical values under normal operation in application circuit Figure 1, V_S (+30) = 12 V. Reference point ground (-31), $T_{amb} = 25^{\circ}$ C, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Control signal threshold	$V_{S} = 9 V$ $V_{S} = 13.5 V$ $V_{S} = 16 V$	V _S V _S V _S		70.6 85.0 93.0		mV mV mV
Tolerance of control signal threshold	$V_{S} = 9 V \text{ to } 16 V, \text{ pin } 8,$ $T_{amb} = -140^{\circ}\text{C} \text{ to } 100^{\circ}\text{C}$		-6		+6	%
Temperature coefficient of control signal threshold	V _S = 13.5 V, pin 8	Τ _κ		10		μV/K
Clamping voltage	$T_{amb} = -40^{\circ}C$ to $100^{\circ}C$	V ₁₂	25.0	27.5	30.0	V
Relay output overvoltage detection (relay disabled)	$T_{amb} = -40^{\circ}C$ to $100^{\circ}C$	V ₁₂	18	20	22	V

Tolerances

Typical values under normal operation in application circuit Figure 1, V_S (+30) = 12 V. Reference point ground (-31), T_{amb} = 25°C, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Frequency determining resistor		R ₁	6.8		510	kΩ
Frequency determining capacitor		C ₁			47	μF
Frequency tolerance	Normal flashing, basic frequency f_1 not including the tolerance of the external components R_1 and C_1	Δf_1	-5		+5	%
Dricht paried	Basic frequency f ₁	Δf_1	47		53	%
Bright period	Control frequency f ₂	Δf_2	37		45	%
Frequency increase	Lamp failure	f ₂	2.15 × f ₁		$2.3 \times f_1$	Hz
Lamp load		PL	1			W

6

Ordering Information

Extended Type Number	Package	Remarks
U2044B	DIP14	-
U2044B-FP	SO14	_

Package Information

Dimensions in mm

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel[®] is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

