STMicroelectronics: Cortex™-M4 Training STM32F4 ARMKE”_
Discovery evaluation board using ARM® Keil™ MDK 5 toolkit [SISEsliielCallelels

featuring Serial Wire Viewer Summer 2014 Version 1.2 Robert Boys, bob.boys@arm.com

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_230.asp
Introduction: For a CAN lab on the STM32F4 Discovery: www.keil.com/appnotes/docs/apnt_236.asp

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M4 processor using the ARM" Keil™ MDK
toolkit featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) and the on-board ST-Link V2 Debug Adapter.
At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK. See www keil.com/st.

Keil MDK supports and has examples for most ST ARM processors. Check the Keil Device Database”™ on www.keil.com/dd
for the complete list which is also included in MDK: in pVision, select Project/Select Device for target. ..

Linux: For ST processors running Linux, Android and bare metal are supported by ARM DS-5"". www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn MDK into a full commercial version.

RTX RTOS: All variants of MDK contain the full version of RTX with source code. See www .keil.com/rl-arm/kernel.asp.

Why Use Keil MDK ? MDK provides these features particularly suited for Cortex-M processor users:

1. pVision IDE with Integrated Debugger, Flash programmer and the
ARM™ Compiler toolchain. MDK is a turn-key product.

2. A full feature Keil RTOS called RTX is included with MDK. RTX
comes with a BSD type license. Source code is provided.

3. Serial Wire Viewer and ETM trace capability is included.
RTX Kernel Awareness window. It is updated in real-time.

5. Keil Technical Support is included for one year and is easily
renewable. This helps you get your project completed faster.

This document details these features:
Serial Wire Viewer (SWV) and ETM trace. Real-time tracing updated while the program is running.

2. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also known as Access Breaks).
4. RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while your program is running.
5. A DSP example program using ARM CMSIS-DSP libraries. www.arm.com/cmsis

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf), CPU
counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into STM32 CPU.
SWYV does not steal any CPU cycles and is completely non-intrusive. (except for the ITM Debug printf Viewer).

CoreSight displays memory contents and variable values in real-time and these can be modified on-the-fly.

Embedded Trace Macrocell (ETM):

ETM records and displays all instructions that were executed. This is very useful for debugging program flow problems such
as “going into the weeds” and “how did I get here?”. Keil uVision uses ETM to provide Code Coverage, Performance
Analysis and code execution times. ETM requires a special debug adapter such as the ULINKpro. The Discovery series do
not have the ETM connector even though the processor has ETM. Most other ST and all Keil boards do have this connector.

Discovery Board Debug Adapter Connections:

The STM32F407 Discovery board lacks the standard ARM debugger connections. This means it is not easy to connect a
ULINK?2, ULINKpro or J-Link to these boards. In order to use features like ETM trace, it is easier to obtain a board such as
the Keil MCBSTM32 series or a STM32xxx-EVAL board. Versions are available with Cortex-M3 and Cortex-M4 processors.
Keil MDK has examples and labs for these boards. This document uses only the on-board ST-LINK. See www.keil.com/st.

1 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

1. Keil Evaluation Software: 3
2. Keil Software Download and Installation: 3
3. On-board ST-Link V2 Debug Adapter: 3
4. Example Programs 3
5. Getting Started MDK 5 Manual: 3
6. uVision Software Packs Download and Install Process: 4
7. Testing the ST-Link V2 Connection: 5
8. Installing the ST-Link USB Drivers: 5
9. Blinky example using the STM32F4 Discovery board: 6
10. Hardware Breakpoints: 6
11. Call Stack & Locals window: 7
12. Watch and Memory windows and how to use them: 8
13. How to view Local Variables in Watch and Memory windows: 9
14. View Variables Graphically with the Logic Analyzer (LA): 10
15. Watchpoints: Conditional Breakpoints (Access Breakpoints) 11
16. RTX Blinky example: Keil RTX RTOS: 12
17. RTX Kernel Awareness using RTX Viewer: 13
18. Logic Analyzer: View variables real-time in a graphical format: 14
19. ITM (Instrumentation Trace Macrocell): 15
20. Serial Wire Viewer (SWV) and how to use it: 16
1) Data Reads and Writes 16
2) Exceptions and Interrupts 17
3) PC Samples (program counter samples) 18
21. Serial Wire Viewer (SWV) Configuration: 19
22. DSP Sine Example using ARM CMSIS-DSP Libraries 20
23. Creating your own project from scratch: 24
24. Creating your own RTX RTOS project from scratch: 27
25. ETM Trace and its benefits: for reference 28
26. Configuring the ST-Link V2: 33
27. Configuring the Keil Flash Programmer: 34
28. Serial Wire Viewer and ETM summary: 35
29. Document Resources: 36
30. Keil Products and contact information: 37

Notes on using this document:

1.

vk v

The latest version of this document and the necessary example source files are available here:
www.keil.com/appnotes/docs/apnt_230.asp

MDK 5.10 was used in the exercises in this document.

To use MDK 4.7x, see www.keil.com/appnotes/docs/apnt_261.asp

The on-board ST-Link V2 is used by default in this document. All you need install is the USB driver to your PC.
The ST-Link V2 interfaces very well with Keil pVision and its performance is quite good including SWV.

2 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

1) Keil Evaluation Software: MDK 4.7x and MDK 5

MDK 5 now uses Software Packs to distribute processor specific software, examples and middleware. MDK 5 is installed and
the Packs you need will be downloaded from the web. They can also be imported manually.

MDK 4.7x is still available. MDK 4.7x contains all the files needed to run projects. The MDK 5 Software Packs are not used.
The older version of this document written for MDK 4 is available here: www.keil.com/appnotes/docs/apnt 261.asp.

MDK 4 projects can be used with MDK 5 by using the Legacy install software available on www.keil.com. Then, MDK 5 can
then run legacy MDK 4 projects without any Software Packs.

We recommend that MDK 5.10 Software packs are used if they are available. New ones are continually being added.
Keil has several labs for various STM32 processors including one using CAN. See www.keil.com/st for details.

This document uses only MDK 5.10 or later.

2) Keil Software Download and Installation:

Download MDK 5.10 or later from the Keil website. www.keil.com/mdk5/install

Install MDK into the default directory. You can install into any directory, but this lab uses the default C:\Keil v5

We recommend you use the default directories for this tutorial. We will use C:\MDK\ for the examples.
If you install MDK into a different directory, you will have to adjust for the directory differences.
The example DSPS is available on the web where you got this document.

You can use the evaluation version (MDK-Lite) for this lab. No license is needed.

[I T o N N T

You do not need any debug adapters: just the Discovery board, a USB cable and MDK 5.10 installed on your PC.

3) The on-board ST-Link V2 Debug Adapter:

The on-board ST-Link V2 is used exclusively in this lab. Instructions on configuring the ST-Link V2 are given. Page 5
contains a test for the ST-Link V2 drivers.

4) Example Programs:

MDK 5 Software Pack contains a Blinky and RTX Blinky example programs. We will use only Blinky. An enhanced
RTX Blinky5 and the DSP example (DSP5) is available on the web where the latest version of this document is stored:
www.keil.com/appnotes/docs/apnt_230.asp.

5) Getting Started MDK 5: Obtain this useful book here: www.keil.com/mdk5/.

STM32F401C-DISCO Discovery Board:

STM32F4-Discovery: This tutorial is written for the STM32F4-Discovery board with a STM32F407VGT6
processor using a CPU speed of 168 MHz. The number MB997B or similar is marked on the board.

STM32F401C-DISCO: This newer board will work but the CPU clock speed must be reduced to 84 MHz.
This board contains a STM32F401VCT6U processor. STM32F401C-DISCO is marked on the board.

Changing the clock speed:
In the file system_stm32f4xx.c near lines 254 and 256 are two #defines: #define PLL_M and #define PLL_Q.
Change these values according to the processor you are using as follows:

You will have to modify the Core Clock: value in the Trace Config window when using the Serial Wire Viewer.
The DSP5 example runs at 57 MHz so no modification is needed.

Note: The Software Pack for STM32F401C-DISCO contains Blinky and RTX Blinky examples at 84 MHz.
STM32F4-Discovery 168 MHz STM32F401C-DISCO 84 MHz

#define PLL M 8 336
#define PLL Q 7 4
3 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

6) uVision Software Packs Download and Install Process:

1) Start puVision and open Pack Installer: (after the first MDK install is complete and if you are connected to the
Internet, pVision and Software Packs will automatically startup. Otherwise, follow Steps 1 and 2 below)

1. Connect your computer to the internet. This is needed to download the Software Packs.
2. Start pVision by clicking on its desktop icon. e

3. Open the Pack Installer by clicking on its icon: @ A Pack Installer Welcome screen will open. Read and close it.

4. This window opens up: Under the Boards tab, Select STM32F4-Discovery as shown below: This will filter the list
under the Packs tab. [FETE

Fle Facs Window belp

2| Baare STMRIF Disssvery RevE)

You can enter Discovery in Search to filter. T o G|

Pack astion [

Note: “ONLINE” is displayed at the bottom & gt e fomerr
right. If “OFFLINE” is displayed, connect (%:—“ et
to the Internet before continuing.

4]
7. If there are no entries shown because you o e Vo]

N
were not connected to the Internet when Pack Installer opened, select Packs/Check for Updates or " to refresh once
you have connected to the Internet.

2) Install The STM32F4 Software Pack:
1. Click on the Packs tab. Initially, the Software Pack ARM::CMSIS is installed by default.

2. Select Keil::STM32F4xx_DFP and click on Install. This Software Pack will download and install to
C:\Keil vS\ARM\Pack\Keil\ST\ by default. This download can take two to four minutes.

3. Its status will be indicated by the “Up to date” icon: 4 Up to date |

TIP: If you click on the Devices tab, you can select the processor you are using and this will be displayed in the Packs tab.

3) Install the Blinky MDK 5.10 Example:

1. Select the Examples tab to display this window: TR e |
2. Select Blinky (STM32F4-Discovery): m:'w e dﬁj :,.WM u o
3. Select Copy 4 <oy las shown here: .

4. The Copy Example window below opens up: Select =

Use Pack Folder Structure: Unselect Launch uVision:

5. Typein C:\MDK. Click OK to copy the Blinky project.
The Blinky example will now copy to C:\MDK\Boards\ST\ STMF32F4-Discovery.
We do not need to copy CMSIS-RTOS Blinky. We will use a special =
version that has 4 threads instead of two to make things interesting. ID\‘;D: o —
TIP: The default directory for copied examples the first time you install ¥ Use Pack Folder Structure ™ Lunch ptision
MDK is C:\Users\<user>\Documents. For simplicity, we will use the default ==

directory of C:\MDKJ\ in this tutorial. You can use any directory you prefer.

8. Close the Packs Installer. You can open it any time by clicking on its icon. g

4) Install the RTX_Blinky5 and DSP5 Examples from Keil.com: N
1. Obtain the example software zip file from www.keil.com/appnotes/docs/apnt 230.asp. Binky
2. Unzip this into the directory C:\MDK\Boards\ST\STMF32F4-Discovery\. DSPS
3. The DSP5 folder will be created with the Blinky and RTX_Blinky folder as shown here:) SRS

TIP: An Update icon means there is an updated Software Pack available for download.

TIP: If you look in the directory C:\Keil v5\ARM\Pack\Kei\STM32F4xx DFP\1.0.6\Boards\ST\STM32F4-Discovery, you
will find another Blinky. This is a read-only version for backup purposes. Use only the projects you copied over from the
Examples tab in the Pack Installer window to the directory you chose. In this tutorial we are using C:\MDK.

4 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

7) Testing the ST-Link V2 Connection:

Start pVision e if it is not already running. Select Project/Open Project.
2. Connect the Discovery board to your PC with a USB cable as shown on the first page of this tutorial.

If the ST-Link USB drivers are installed correctly, you should hear the usual USB connected dual-tone. If not, you
might have to install the drivers manually. See the directions below.

4. Two red LEDs will light:LD1 (COM) and LD2 (PWR)
5. Select the Blinky project C:\MDK\Boards\ST\STMF32F4-Discovery\Blinky.uvprojx.
= - x|

) | Linker Debug |Uti|'rt\es|
Select Target Options &N or ALT-F7 and select the Debug tab: se—) | Use: |STLk Deougoer = |

Click on Settings: and the window below opens up: If an IDCODE and Device name is displayed, ST-Link is
working. You can continue with the tutorial. Click on OK twice to return to the pVision main menu.

6. Select STM32F407 Flash as shown here: >/"32F407 Flash

9. A number in the SN: box means pVision is connected to the ST-Link adapter.

10. If nothing or an error is displayed in this SW Device box, this must be corrected before you can continue. See the
next step: Installing the ST-Link USB Drivers: J Conexcm Tarwet el]

Debug | Trace | Fiash Downioad |

11. If you see a proper display, your ST-Link USB drivers are

Debug Adapter

N

installed properly. Click OK twice to exit the Target Ues: [STUN2 ;(= —— bizze
. . . P ©2BADI477 ARM CoreSight SW-DP i‘
Options windows and continue to the next page. v o]
TIP: To refresh the SW Device box, in the Port: box select JTAG ”""”“"“""::_I% L e] T E
and then select SW again. You can also exit then re-enter this e T 1
window.

TIP: The main difference between ST-Link and ST-Link V2 is the addition of Serial Wire Viewer (SWV) trace capability.

8) Installing ST-Link V2 USB Drivers: (might not be necessary if the test above passes)

Installing the ST-Link USB Drivers: (Only needed if the above test fails)
1. Do not have the Discovery board USB port connected to your PC at this time.

2. The USB drivers must be installed manually by executing stlink winusb_install.bat. This file is found in
C:\Keil vS\ARM\STLink\USBDriver. Find this file and double click on it. The drivers will install.

3. Plug in the Discovery board to USB CN1. The USB drivers will now finish installing in the normal fashion.

Super TIP: The ST-Link V2 firmware updater utility ST-LinkUpgrade.exe is located here: C:\Keil vS\ARM\STLink. If you
want to update the ST-Link firmware, find this file and double click on it. It is easy to use. It will check and report the current
firmware version. It is important you are using firmware V2.J16.S0 or later for proper SWV operation. Do not use
V2.J19.S0. This version is incompatible to the latest drivers.

COM LED LD1 indication:

LED is blinking RED: the start of USB enumeration with the PC is taking place but not yet completed.

LED is RED: communication between the PC and ST-LINK/V2 is established (end of enumeration). pVision is not connected
to ST-Link (i.e. in Debug mode).

LED is GREEN: pVision is connected in Debug mode and the last communication was successful.

LED is blinking GREEN/RED: data is actively being exchanged between the target and pVision.

LED is off, except for a brief RED flash while entering Debug mode and a brief flash when clicking on RUN happens when
the SWV trace is enabled in pVision.

No Led: ST-LINK/V2 communication with the target or puVision has failed. Cycle the board power to restart.

5 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

9) Blinky example program using the STM32F4 Discovery board:
We will connect a Keil MDK development system using real target hardware using the built-in ST-Link V2 debug adapter.

. Start pVision by clicking on its desktop icon. .28 Connect your PC to the board with a USB cable to CNI1.
2. Select Project/Open Project. Open the file C:\MDK\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvprojx

By default, the ST-Link is selected. If this is the first time you have run pVision and the Discovery board, you might
have to install the USB drivers. See the configuration instructions on the previous page.

4. Compile the source files by clicking on the Rebuild icon. L . You can also use the Build icon beside it.
LOoAD

5. Program the STM32 flash by clicking on the Load icon: +H Progress will be indicated in the Output Window.

6. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation if it is chosen.

7. Click on the RUN icon. = Note: you stop the program with the STOP icon. Q

The 4 LEDs on the STM32F4 Discovery board will now blink in succession.
Press the blue USER button and they will all come on.

Now you know how to compile a program, program it into the STM32 processor Flash, run it and stop it !
Note: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash until reprogrammed.
TIP: If you are using a STM32F401C-DISCO board and the LEDs do not blink, you might have the clock
frequency set too high. See the instructions on page 3 under STM32F401C-DISCO Discovery Board:

10) Hardware Breakpoints:

The STM32F4 has six hardware breakpoints that can be set or unset on the fly while the program is running.

1. With Blinky running, in the Blinky.c window, click on a darker grey block in the left margin on a line in main() in the
while loop. Between around lines 59 through 74 will suffice.

2. A red circle will appear and the program will stop.
Note the breakpoint is displayed in both the disassembly and source windows as shown below:
4. You can set a breakpoint in either the Disassembly or Source windows as long there is a gray rectangle indicating the

existence of an assembly instruction at that point.

5. Every time you click on the RUN icon = the program will run until the breakpoint is again encountered.

s e W
6. You can also click on Single Step (Step In) £ , Step Over { and Step Out 8 .

000252 2601 MOVS 6, $0x01 -
MOVS T4, $0x00

TIP: If single step (Step In) doesn’t work, click on the

Disassembly window to bring it into focus. If needed, click on a 08000258 2400 i on

disassembly line. This tells pVision you want to single step at the ox08000256 4a20 o4 oV T e (oxos00s3s0)

assembly level rather than at the C source level. N o /= Delay soms
. 0x0E00025E F'?FFE‘FRE BL.W Delay (0x080001AE8)

TIP: A hardware breakpoint does not execute the instruction it is e e OTE () ¢ e

set to. ARM CoreSight breakpoints are no-skid. Your instructions | x50 mooprees =t.v LED_OFE (0x08000378) oome

in Flash are not substituted or modified. These are rather
important features for efficient software development.

11 '; else 1 Llﬂ

) Abstracttit* [£] Blinc | - x

Remove all breakpoints when you are done for the next = I . E
exercise by clicking on them again. =2 /ec e tmamt: 0,1,...,LED NUM-1,LED NUM-1,...,1,0,0,...

64 if (num == lEdﬁDJITJ { dir = -1; num = lEdﬁSJI[*L; }
TIP: You can delete the breakpoints by clicking on them or ol Clem i fmEm <O} ddir T s mam T 0
selecting Debug/Breakpoints (or Ctrl-B) and selecting Kill All. 5 e monpoy Lo
Click on Close to return. 2 bervagetnr s

71 }
TIP: You can view the breakpoints set by selecting B e woms
Debug/Breakpoints or Ctrl-B. e | Delevoor

el 1
6 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

11) Call Stack + Locals Window:
Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Run and Stop Blinky. Click on the Call Stack + Locals tab.

2. Shown is the Call Stack + Locals window. Call Stack + Locals
The contents of the local variables are displayed as well as Mame Location/Value Type
names of active functions. Each function name will be - @ Delay 0x0B000482 void flunsigned int)
displayed as it is called from the function before it or from % diyTicks 0x000000C8 param - unsigned int
an interrupt or exception. W curTicks 0x:0000012C auto - unsigned int
. . . El- % main 0x080004D0 int f{
When a function exits, it is removed from the list. i @ num wutoint
The first called function is at the bottom of this table. ----- @ dir 0x00000001 auto - int
This table is active only when the program is stopped. | ¥ btns 0x00000000 aute - unsigned int
i:;.} ,j Call 5tack + Locals | Memory 1 |

Click on the Step In icon or F11:
4. Note the function different functions displayed as you step through them. If you get trapped in the Delay function,

iy) .
use Step Out or Ctrl-F11 to exit it faster.
Click numerous times on Step In and see other functions.

6. Right click on a function name and try the Show Callee Code and Show Caller Code options as shown here:

. . q . . . AadSnnn A4 I
7. Click on the StepOut icon & to exit all functions to return to main(). ¢ num Show Caller Code E
' main Show Callee Code lini
TIP: If single step (Step In) does not work, click on the Disassembly window to - # num _ _ au
bring it into focus. If needed, click on a disassembly line to step through @ dir V| Hexadecimal Display |
assembly instructions. If a source window is in focus, you will step through the .. & htns [nnnnnnn [au

source lines instead.
TIP: You can modify a variable value in the Call Stack & Locals window when the program is stopped.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your code
are required. Update while the program is running is not possible with local variables because they are usually stored in a
CPU register. They must be converted to global or static variables so they always remain in scope.

If you have a ULINKpro and ETM trace, you can see a record of all the instructions executed. The Disassembly and Source
windows show your code in the order it was written. The ETM trace shows it in the order it was executed. ETM additionally
provides Code Coverage, Performance Analysis and Execution Profiling.

Changing a local variable to a static or global normally means it is moved from a CPU register to RAM. CoreSight can view
RAM but not CPU registers when the program is running.

Call Stack:

The list of stacked functions is displayed when the program is stopped as you have seen. This is useful when you need to
know which functions have been called and what return data is stored on the stack.

TIP: You can modify a local variable value when the program is stopped.

TIP: You can access the Hardware Breakpoint table by clicking on Debug/Breakpoints or Ctrl-B. This is also where
Watchpoints (also called Access Points) are configured. You can temporarily disable entries in this table.

Selecting Debug/Kill All Breakpoints deletes Breakpoints but not Watchpoints.

7 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

12) Watch and Memory Windows and how to use them:

The Watch and Memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variable names into windows or enter them manually.

Watch window:
Add a global variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.

Stop the processor 9 and exit Debug mode. @
In Blinky.c, declare a global variable (I called it value) near line 20 like this: unsigned int value = 0;

1
2
3. Add the statements value++; and if (value > 0x10) value = 0;as shown here near line 71:
4

. . é 69 LED Off (num) ;
Select File/Save All or click =¥, 70 Delay(200);
7l value++;
. . l:} . "-‘“"i 72 if (value > 0x10) value = 0;
5. Click on Rebuild. == . Click on Load to program the Flash. 73 }
74 else {

6. Enter Debug mode. @ Click on RUN Iill Recall you can set Watch and
Memory windows while the program is running.

7. In Blinky.c, right click on the variable value and select Add value to ... and select Watch 1. Watch 1 will open if

needed and value will be displayed as shown here:

8. wvalue will increment until 0x10 in real-time. Mame Value Type
TIP: You can also block value, click and hold and drag it i @ : 0x00000003 unsigned int
into a Watch or Memory window. | 7 <Enter expression |

TIP: Make sure View/Periodic Window Update is selected. g1 Call Stack + Locals | Watch1

9. You can also enter a variable manually by double-clicking under Name or pressing F2 and using copy and paste or
typing the variable. Use the View/Symbols window to enter a variable fully qualified.

Memory 1 |

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

Memory window:

1. Right-click on value and enter into the Memory 1 window or enter it manually. Select View/Memory Windows if
necessary.

2. Note the value of value is displaying its address in Memory 1 as if it is a pointer. This is useful to see what address
a pointer is pointing to but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x2000_0014).
4. Right click in the memory window and select Unsigned/Int.
5. The data contents of value is now displayed as a 32 bit value.
6. Both the Watch and Memory windows are
updated in real-time. e [B ii
7. You can modify value in the Memory window J0x20000000: 00000010 2024F 0R03TA00 00000000 00000000
with a right-click with the mouse cursor over the |0x2 ' T01 09080706 00000000 00000000 00000000
data ﬁeld and Select MOdlfy Memory 0x20000028: 00000000 00000000 OO00QO00000 00000000 OO0O0OOOO0O0
’ 0x2000003C: 00000000 00000000 OO00O0000O0 00000000 00000000
0x20000050: 00000000 00000000 Q0000000 0000QQ000 00000000
0x20000064: 00000000 00000000 Q0000000 00000000 00000000 LI

TIP: No CPU cycles are normally used to perform these
operations. See the next page “How It Works” for an
explanation on how DAP functions.

lMemoryl

-;,,-'J Call 5tack + Locals | Watch 1 |

TIP: To view variables and their location use the Symbol window. Select View/Symbol Window while in Debug mode.

Serial Wire Viewer (SWV) does not need to be configured in order for the Memory and Watch windows to operate as shown.
This mechanism uses a different feature of CoreSight than SWV. These Read and Write accesses are handled by the Serial
Wire Debug (SWD) or JTAG connection via the CoreSight Debug Access Port (DAP), which provides on-the-fly memory
accesses.

8 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

13) How to view Local Variables in the Watch or Memory windows:
1. Make sure Blinky.c is running. We will use the local variables from main(): num, dir and btns.
2. Locate where the three local variables are declared in Blinky.c near line 46, at the start of the main function.

3. Enter each of the three variables into Watch 1 window by right-clicking on them. Note it says < not in scope >
because pVision cannot access the CPU registers while running which is where value is probably located. If pVision
says you are unable to add a variable, stop and start the Blinky program.

4. Set a breakpoint in the Blinky.c while loop. The problem will

‘Watch 1 o x
stop the program and the current variable values will appear. -

Mame Value Type

Remove this breakpoint. unsigned int

Set a breakpoint at if (btns !'= (1UL << 0)) near line 61.

Hold down the blue USER button and start the program. The
program will stop. A btns value of 1 will display. Without
USER pressed, a 0 will be displayed if you click on Run again. ~ $3Gl stack - Locsls | Waten 1 | (2

TIP: Remember: you can set and unset hardware breakpoints on-the-fly in the Cortex-M4 while the program is running !

unsigned int

Memory 1 |

8. uVision is unable to determine the value of these three variables when the program is running because they exist only
when main is running. They disappear in functions and handlers outside of main. They are a local or automatic
variable and this means it is probably stored in a CPU register which uVision is unable to access during run time.

9. Remove the breakpoint and make sure the program is not running ° Exit Debug mode. @
How to view local variables updated in real-time:
All you need to do is to make the local variables num, dir and btns global where it is declared in Blinky.c !

1. Move the declarations for num, dir and btns out of main() and to the top of Blinky.c to make them global variables:
unsigned int value = 0;
int32_t num = -1;
int32_t dir = 1;
uint32_t btns = 0;
TIP: You could also make the them static ! i.e. static int32_t num = -1;
TIP: You can edit files in edit or debug mode. However, you can compile them only in edit mode.

2. Compile the source files by clicking on the Rebuild icon. They will compile with no errors or warnings.
LOAD

3. To program the Flash, click on the Load icon. oA progress bar will be displayed at the bottom left.

Enter Debug mode. @ Click on RUN. Bl

Now the three variables are updated in real-time. Press and release the User button and btns will update to 0 or 1.
This is ARM CoreSight technology working.

6. You can read (and write) global, static variables and structures. Anything that stays around in a variable from
function to function. This includes reads and writes to peripherals.
7. Stop the CPU and exit debug mode for the next step. 0 and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.
How It Works:

pVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M4 is a Harvard architecture.
This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed, there is plenty of
time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

9 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

14) View Variables Graphically with the Logic Analyzer (LA):

We will display the global variable value you created earlier in the Logic Analyzer. No code stubs in the user code will be
used. This uses the Serial Wire Viewer and therefore does not steal CPU cycles.

1.

Stop the processor Q and exit Debug mode. @

Configure Serial Wire Viewer (SWV):

2. Select Target Options &N or ALT-F7 and select the Debug tab. Select Settings: on the right side of this window.
Confirm SW is selected. SW selection is mandatory for SWV. ST-Link uses only SW. Select the Trace tab.
3. Inthe Trace tab, select Trace Enable. Unselect Periodic and EXCTRC. Set Core Clock: to 168 MHz. Everything
Ise is set h here;
CISE 15 Set as SIowi ere [Cortexch Toraet Drwvr setup | ﬂ
4. Click OK once to return to the Debug tab. Debug Trace | Flash Dowroad |
. . (i Core Clock: | 162.000000 MHz W Tracs Enstls
5. Click OK return to the main menu. Enter debug mode. @l R - -
. R Serial Wire Output - UART/NRZ ~ ¥ Enable Prescaler - r les per Instruction
Configure Logic Analyzer: Swolw :m,a,iw - H‘ I B Gt
- SmPIn _|| SLEEP: Skeep Cycles
1. Open View/Analysis Windows and select Logic Analyzer o l%jf:" - Pfﬁ“ﬂ'ﬂ-lﬂ | | - Lot vk e
ok ‘ Periodic Period: | <Disabled> I~ FOLD: Folded Instructions
or select the LA window on the toolbar. E Bl B CE R E
rITM Stimulus Port
TIP: You can configure the LA while the program is running. o il e e L e
2. Click on the Blinky.c tab. Right click on value and select _A:Me‘:: = | 204 08 08 0 E
Add value to... and then select Logic Analyzer. You can ™ Ignare packets with o SYNC
. I~ Overwite CYCCNT
also Drag and Drop or enter it manually.
ok || cancel | pb |
3. Click on the Select box and the LA Setup window appears: 5]
4. With value selected, set Display Range Max: to 0x15 as shown here: W_Uﬂ
Click on Close.
Run Program: Note: The LA can be configured while the program is running.
&N R i
1) Click on Run. = Click on Zoom Out until Grid is about 1 second. :i‘a‘yf:'a'lmg 5 o —

2) The variable value will increment to 0x10 (decimal 16) and then is set to 0. o —] e P
TIP: If you do not see a waveform, exit and re-enter Debug mode to refresh the LA. You ﬁ:z:_m:ﬂi:?;im»Shzm .
might also have to repower the Discovery board. Confirm the Core Clock: value is correct. "Exvm/lmum | ||
Export Signal Defiritions. Import Signal Defiritions

TIP: You can show up to 4 variables in the Logic Analyzer. These variables must be
global, static or raw addresses such as *((unsigned long *)0x20000000).

3)

4)
5)

6)
7)

8)

kAl | oo | Hee |

Enter the static variable btns into the LA and set the Display Range Max: to 0x2. Click on RUN and press the User
button and see the voltages below:

Note the variable value stops incrementing while USER is held down. Also note how easy it is to view this effect.

Select Signal Info, Show Cycles, Amplitude and Cursor to see the measuring capabilities of the LA. You can stop

the LA by clicking
the Stop icon in
on -_ |
p Min Time Max Time Grid Zoom Min/Mae |Update Screen | Transition Jump to [~ Signal Info [~ Amplitude
the Update Screen Save ||| 1159655 | 15751485 | 1s |[n [Dut][AL] [Auto] [Undo] [Stop |[Clear || [Prev]Next] [Code |[Tmea] | Show Cydles I Cursor
box. 21 : : : : : : : : : : : :
—]

—
Stop the CPU. Q |~ i
Click on Setup in
the LA and delete
btns. Youcanuse |®™

the Delete key or 0 I “ “ ’_| |

1561.373 s 1568.373s 1575373 s
this icon: 2% o Lo ll=1]

@lDisassemhly | QLogicAnalyzer
Click on Close.

10 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

15) Watchpoints: Conditional Breakpoints: This does not need or use Serial Wire Viewer:

Recall STM32 processors have 6 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the CPU.
The STM32 also have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses
the same comparators as Watchpoints in its operations and they must be shared. This means in pVision you must have two
variables free in the Logic Analyzer to use Watchpoints. Watchpoints are also referred to as Access Breakpoints.

1. Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in debug mode.
We will use the global variable value you created in Blinky.c to explore Watchpoints.

The SWV Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.
The variable value should be still entered in the Logic Analyzer from the last exercise on the previous page.
Select Debug in the main pVision window and select Breakpoints or press Ctrl-B.

Select both the Read and Write Access. In the Expression box enter: “value == 0x5” without the quotes.

Click on Define and it will be accepted as shown here: Click on Close.

Enter the value to the Watch 1 window if it is not Breakpoints | x|

already listed. Current Breakpoints:
| 00: (A readwrite (x20000014 len=4), ‘value==0x5",

® N v A WN

9. Open Debug/Debug Settings and select the trace tab.
Check “on Data R/W sample” and uncheck EXTRC.

10. Click on OK twice. Open the Trace Records

D@~ -
WindOW. Records 1| | LI
11. Click on RUN. e
' ' _ Expression; | P Read [Wite
12. You will see value change in the Logic Analyzer as o Size: -
. . - - - Bytes
well as in the Watch window. o | | |1 _,:.3 Ot |

13. When value equals 0x5, the Watchpoint will stop
the program. Defne | Kiceeced| kM | [e | Hep |
14. Note the data writes in the Trace Records window
shown below. 0x5 is in the last Data column. Plus the address the data written to and the PC of the write instruction.

This is with the ST-Link. A ULINK?2 will show the same window. A ULINKpro or a J-Link (black case) will show
a slightly different display.

15. There are other types of expressions you TR ——]
can enter and are detailed in the Help button [T Ovi[Mom[dodress [Dgo [PC [ow[Goes [Tl |-l
. . . Data Write H 00000 H 08000292H 672012173 400007246
m the Breakpolnts WlndOW, NOt all are Data Write: 20000000H 00000003H 08000292H 4m2170 425007244
. . .. Data Write: 20000000H 08000292H 76012170 450007244
currently implemented in pVision. Data Wit 20000000 (T 0000000SH) 08000282H 790012170 475007244
16. To repeat this exercise, click on RUN.

17. When you are finished, stop the program, click on Debug and select Breakpoirits (or Ctrl-B) and Kill the Watchpoint.
18. Leave Debug mode.

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another e ™
Watchpoint. You should delete the old one by highlighting it and S T e L T [T e v
click on Kill Selected or try the next TIP: 2 o d

TIP: The checkbox beside the expression allows you to - . i 1
temporarily unselect or disable a Watchpoint without deleting it. s i ©

0 ks

TIP: Raw addresses can also be entered into the Logic Analyzer. | = * ' _w
An example is: *((unsigned long *)0x20000000) e

Shown above right is the Logic Analyzer window displaying the variable value trigger point of 0x5. This is three runs.

11 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

16) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK including source. This example explores the
RTX RTOS project. MDK will work with any RTOS. An RTOS is just a set of C functions that gets compiled with your
project. RTX comes with a BSD type license and source code is provided with all versions of MDK.

NOTE: RTX Blinky supplied with MDK 5 is a two task project that blinks one LED. Supplied with this document is an
RTX Blinky that has fours tasks and lights four LEDs. It is more interesting.

RTX and all its components are located here: C:\Keil vS\ARM\Pack\ARM\CMSIS\3.20.4\CMSIS_RTX.
You must have copied RTX Blinky5 to C:\MDK\Boards\ST\STM32F4-Discovery\ as described on page 4.
With pVision in Edit mode (not in debug mode): Select Project/Open Project.

Open the file C:\MDK\Boards\ST\STM32F4-Discovery\RTX Blinky5\Blinky.uvprojx.

If the Update Configuration Files window opens, select Cancel.

Wb

This project is pre-configured for the ST-Link V2 debug adapter.

o
5. Compile the source files by clicking on the Rebuild icon. Ll . They will compile with no errors or warnings.
LOoAD

6. To program the Flash manually, click on the Load icon. ¥#. A progress bar will be at the bottom left.
7. Enter the Debug mode by clicking on the debug icon @1 and click on the RUN icon. Eu
8. The four LEDs will blink in succession simulating the signals for a stepper motor.
TIP: If you are using a STM32F401C-DISCO board and the LEDs do not blink, you might have the clock
frequency set too high. See the instructions on page 3 under STM32F401C-DISCO Discovery Board:.
9. Click on STOP @,
We will explore the operation of RTX with the Kernel Awareness windows.
The Configuration Wizard for RTX:
Click on the RTX Conf CM.c source file tab as shown below on the left. You can open it with File/Open if needed.
Click on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.
Open up the individual directories to show the various configuration items available.
See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
Changing an attribute in one tab changes it in the other automatically. You should save a modified window.

You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.

N kDb =

This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
See www.keil.com/support/docs/2735.htm for instructions.

/ RTX_Conf_CM.c] v X
: ‘ Blinkyec RTX_Canf_CM.c | - x
081 #ifndef O5_TICK 5|
0g2 #define 05_TICE 10000 Expand All Callapse Al Help
083 #endif
0a4 Option | Yalue
085 // </h> “Task Defiritions
086 // <e>Round-Robin Task switching - Mhmber of mncw_ent running tasks 7
e 1o - Mumber of tasks with user-pravided stack
.o - — - - e _ . . . - Task stack size [bytes] 200
088 <i> Enable Round-Robin Task switching Check For the statk overflom
083 *J.'fndEf 05_ROBIN Runin privileged mode -
030 #define 05_RCBIN 1 J - MNumber of user timers [1}
091 #endif -SysTick Timer Configuration
032 Timer clock value [Hz] 72000000
093 s/ L 1-1 -~ Tirner tick walue [Us] 10000
034 s chi [
0% <1> De t: & 5
096 #ifndef 05 _ROBINTCUT
037 #define O5_ROBINTOUT 5
g fendif _’lj
%, Tet Editor f,_ Comganen ware | TextEditar) Configuration Wizard
Text Editor: Source Code Configuration Wizard
12 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

17) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware w1nd0w for RTX. Other RTOS
companies also provide awareness plug-ins for pVision.

Important TIP: View/Periodic Window Update must be selected !

Run RTX_ Blinky by clicking on the Run icon. =
Open Debug/OS Support and select System and Thread

Viewer and the window on the right opens up. You might
have to grab the window and move it into the center of the

screen. These values are updated in real-time using the
same read write technology as used in the Watch and
Memory windows.

System and Thread Viewer
Property
- System

1000 msec
5000 mSec

200

Yes

Available: 6, Used: &

value

Ttem

Tick Timer:

Round Rabin Timeout:
Default Thread Stack Size:
Thread Stack Overflovs Check:
Thread Usage:

- Threads Priority
55 | os_idle_demon 0

cock

State Delay EventValue EventMask Stack Load

Running 0%
Wait_AND

Normal 0:0100
00001
0:0001
0x0001

00001

40%

phaseD
phaseC
phaseB
phaseA
main

Normal

Normal

Normal

EEIE I

Normal

Normal

3. Open Debug/OS Support and select Event Viewer. There
is probably no data displayed because SWV is not configured.
RTX Viewer: Configuring Serial Wire Viewer (SWV):

We must activate Serial Wire Viewer to get the Event Viewer working.

1.
2.

10.
11.
12.
13.

Stop the CPU and exit debug mode. ° @

Click on the Target Options icon #N next to the target box. Select the Debug tab.

Click the Settings box next to ST-Link Debugger.

In the Debug window, make sure Port: is set to SW and
not JTAG. SWV works only with SW mode.

Click on the Trace tab to open the Trace window.

Set Core Clock: to 168 MHz (84 for STM32F401 board)
and select Trace Enable.

Unselect the Periodic and EXCTRC boxes as shown:

ITM Stimulus Port 31 must be checked. This is the
method the RTX Viewer gets the kernel awareness
information out to be displayed in the Event Viewer.
It is slightly intrusive.

Click on OK twice to return to pVision.

The Serial Wire Viewer is now configured !

Enter Debug mode and click on RUN.
Select “Tasks and System” tab: the display is updated.
Click on the Event Viewer tab.

This window displays task events in a graphical
format as shown in the RTX Kernel window below.
You probably have to change the Range to about 0.1
sec by clicking on the Zoom ALL and + and — icons.

TIP: If Event Viewer doesn’t work, open up the Trace
Records and confirm there are good ITM 31 frames present. Is
Core Clock correct ? This project is running at 168 or 84 MHz
depending on the board you are using.

‘Debug Trace | Flash Download |

Core Clock: | 168.000000 MHz ¥ Trace Enable
r Trace Port Ti Trace Events ———————————
Serial Wire Output - UART/NRZ = I Enable Prescaler:|1 I~ CPI. Cyeles per Instruction
SWO Clock Prescaler: [&2 FCoampling— W B B e
[Autodetest [~ SLEEP: Slesp Cycles
(] ect | +- -
Prescaler (10246 =1 | | 1= |51 Lo St Lt Cycls
Sbizme| AN I Periodic Period: [<Disabled> | | [~ FOLD: Folded Instructions
™ on Data R/W Sample ™ EXCTRC: Exception Tracing
~ITM Stimulus Port
Pot 2423 Pt 1615 Pot 8 7 P 0
Enable: |D<FFFFFFFF |.;|¢| 7 7 17 2 v v e el o v el e o v v o) o el o o o o o)
Priviegs: [0<00000008 Port 31.24 ¥ Port 23 16 [~ Pot 15.8 [~ Pot 7.0 [~
~Advanced seting:
I™ lgnore packets with no SYNC
I~ Overwite CYCCNT

o]

Cancel | Apply |

Min Time: MaxTme Grid | Zoom | UpdateScreen | Jumpto | Tramsiion | Taskinfo | cursor

EU 3160017 ¢ |53 108175 (0.1 |L Mlﬂ\ Stop |[Clear ‘Cude Traoel rev | [Mext| ||- Shnwcydes

| EII I

All Tasks

phaseA 2) | |
ohaseB () | |

phaseC (4)
phaseD (5)

clock (8}

Idie (255)
81.99397 5 ' 82593975 " 83193975
L

[T}
Event Viewer | System and Thread Viewer |

Cortex-M3 Alert: pVision will update all RTX information in real-time on a target board due to its read/write capabilities as
already described. The Event Viewer uses ITM and is slightly intrusive.

The data is updated while the program is running. No instrumentation code needs to be inserted into your source. You will
find this feature very useful ! Remember, RTX with source code is included with all versions of MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro, ST-Link V2 or J-Link for these RTX Kernel Awareness windows.

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

13

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

18) Logic Analyzer Window: View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program 0 and exit debug mode. @

2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

Add 2 lines to each of the four threads phaseA through phaseD in Blinky.c as shown
below: phasea=1; and phasea=0;. The first two lines are shown added near lines 50
and 53 (just after the LED On and LED_Off function calls). For each of the three
remaining threads, add the corresponding statements phaseb, phasec and phased.

4. Select File/Save All or click =¥,

5. Rebuild the project. L—J Program the Flash ##.

6. Enter debug mode @ .

LOAD

You can run the program at this point. El

8. Open View/Analysis Windows and select Logic Analyzer or select the LA

window on the toolbar.

Enter the Variables into the Logic Analyzer (LA):

9. Click on the Blinky.c tab. Right click on phasea, select Add ‘phasea’
0... and finally select Logic Analyzer. Phasea will be added to the LA.

25 #define LED CLK 7

26

27 unsigned int phasea=0;
28 unsigned int phaseb=0;
29 unsigned int phasec=0;
30 unsigned int phased=0;
31 H/+ ===

32%| = Function 'sig

43 [H/*

*HT = Thread 1 'phased': Ph
45 =

46 [FJvoid phasef (volid const *argums
47 for (::) {

48 osSignalWait (0x0001, osWait]
49 LED On (LED A);

50 phasea = 1;

51 signal func(tid phaseB);

52 LED Off (LED R):

53 phazea = (f——

54

10. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as shown.
Now we have to adjust the scaling.

TIP: If you can’t get these variables entered into the LA, make sure the Trace Config is set correctly. The Serial Wire Viewer
must be configured correctly in order to enter variables in the LA.

The Logic Analyzer can display static and global variables, structures and arrays.

It can’t see locals: just make them static or global. To see peripheral registers read or write to them and enter them in the LA.

11. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
12. Click on Close to go back to the LA window.
13. Using the All, OUT and In buttons set the range to 0.2 second or so. Move the scrolling bar to the far right if needed.

W Min Time Max Time Grid | Zoom | Min/Mac |Update Screen Tlansmon Jump to |7 Signal Info ¥ Amplitude
Seve.. ||| 67289925 [72500175 | 0.2s || In \|om|\ Al \||M°|m|| Start || Clear| Frev]| Code|[Trace | I Show Cydes |7 Cursor
3 | \ ‘ , : j
phasea ‘ ‘ . . !
LI r_Lfl—E‘ ‘ ’ LT
3 | : : |
phaseb H H I i I H H |
: : T 4 -1 H H H : H H H : |
prasec il et A e e
lep L 11 T i B
phased I phas‘ed I ‘
: Mouse Pos Reference Point Delta ‘
Time: 7116357 5 71.00017 s 0.1634 s = 6119951 Hz
70.47157 s 71.000] Value: 1 0 1 7347157 s
11839224252 119280] PC 5: /A hA 1234322I425|2 |
Hi=l

O
@leaffembl;' | ﬂLogchnalyzer

14. Select Signal Info and Show Cycles. Click to mark a place move the cursor to get timings. Place the cursor on one
of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

15. Click on Stop in Update Screen to stop (and start) the data collection.

TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

14

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

19) ITM (Instrumentation Trace Macrocell) 1TM uses Serial Wire Viewer.

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done through
ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code. After the
write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display in its
Debug (printf) Viewer window. Note: the global variable value from 12) Watch and Memory Windows ... must be entered
and compiled in Blinky.c in order for this exercise to work.

Stop the program if it is running 0 and exit Debug mode. @1
2. Open the project C:\MDK\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvprojx. (do not use RTX_ Blinky).

Add this code to Blinky.c. A good place is near line 19, just after the #include "LED.h".
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xE0000000+4*n)))

4. In the main function in Blinky.c after the second Delay(200); near line 72, enter these lines:
ITM_Port8(0) = value + 0x30; /* displays value in ASCIIl */
while (1TM_Port8(0) == 0);
ITM_Port8(0) = 0Ox0D;
while (1TM_Port8(0) == 0);
ITM_Port8(0) = OxO0A;

5. Rebuild the source files, program the Flash memory and enter debug mode.

6. Open Select Target Options EAN or ALT-F7 and select the Debug tab, and then the Trace tab.
7. Configure the Serial Wire Viewer as described on page 10. Use 168 MHz for the Core Clock.
8. Unselect On Data R/W Sample, EXCTRC and PC Sample. (this is to help not overload the SWO port)
9. Select ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

10. Click OK twice. Enter Debug mode.

11. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

12. In the Debug (printf) Viewer you will see the ASCII of value appear. Debug (printf) Viewer
13. As value is incremented its ASCII character is displayed, === ¢ [
[5]
Trace Records » —
2 -
1. Open the Trace Records if not already open. Double click on it to clear it. g _»|_I
2. You will see a window such as the one below with ITM and Exception frames. S Build Output | E3Debug fprintf) Viewer

What Is This ?

You can see the ITM writes and Data writes (value being displayed in the LA).
1. ITM O frames (Num column) are our ASCII characters from value with carriage return (0D) and line feed (0A) as
displayed the Data column.

2. All these are timestamped in both CPU cycles and time in seconds.

3. When you are done, stop the processor and exit debug mode.

ITM Conclusion frracerecords | X
X X X . Type [ovi [Num [Address | Data___ | PC [oy| Cycles | Timefs) \i’
The writes to ITM Stimulus Port 0 are intrusive and are usually one] ? B sy e
cycle. It takes no CPU cycles to get the data out the processor and it ' il i i
to your PC via the Serial Wire Output (SWO) pin. i 0 o aesEl 247172
. . . . I™ 0 0DH 33552455'5' 441132455
TIP: It is important to select as few options in the Trace i ; s Vi iairaese
. ™ 0 0DH 375624964 4 47172576
configuration as possible to avoid overloading the SWO pin. Enter m ; v Jssse 4aTiors
only those features that you really need. i ; i ik e
. . . i 0 ioH e
Super TIP: ITM_SendChar is a useful function you can use to send ~ |m 0 e s s
ITM characters. It is found in the header core.CM3.h. ™ ’ ooH Jiene S ol

Super TIP: To see how to use printf in your code, see the DSP example.

15 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

20) Serial Wire Viewer (SWV) and how to use it:
1) Data Reads and Writes: (Note: Data Writes but not Reads are enabled in the current version of pVision).

You have already configured Serial Wire Viewer (SWV) on page 13 under RTX Viewer: Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with pVision and ST-Link V2, ULINK2/ME,
ULINKpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. Your program runs at full
speed and needs no code stubs or instrumentation software added to your source code. Screens are shown using a ST-Link.

1. Use RTX Blinky5 from the previous exercise. Enter Debug mode and Run the program if not already running.

wok v

TIP: Port 0 is used for Debug printf Viewer.
Unselect EXCTRC and Periodic.

Select On Data R/W Sample.

Click on OK twice to return.

TIP: If the SWV trace fails to work properly after this
change, exit Debug mode, cycle the power to the Discovery
board and re-enter Debug mode.

If you are using the STM32F401 board see page 3.
9. Click on the RUN icon.
10. Double-click in Trace Records window to clear it.
11. Only Data Writes will appear now.

TIP: You could have right clicked on the Trace Records
window to filter the ITM frames out. Unselecting a feature
is better as it reduces SWO pin traffic and trace overflows.

What is happening here ? =————————

1. When variables are entered in the Logic Analyzer
(remember phasea ?), the reads and/or writes will
appear in Trace Records.

The Address column shows where the variable is.

The Data column displays the data values written
to phasea.

PC is the address of the instruction causing the
writes. You activated it by selecting On Data R/W
Sample in the Trace configuration window.

The Cycles and Time(s) columns are when these
events happened.

TIP: You can have up to four variables in the Logic
Analyzer and subsequently displayed in the Trace Records
window. You must have all Watchpoints off.

TIP: If you select View/Symbol Window you can see where
the addresses of the variables are located.

Select View/Trace/Records or click on the Trace icon Q

The Trace Records window will open up as shown here:

T and select Records.

= .
Becards

Exceptions

Counkers

The ITM frames are the data from the RTX Kernel Viewer which uses Port 31 as shown under Num. here:
To turn this off, select Debug/Debug Settings and click on the Trace tab. Unselect ITM Stimulus Port 31.

T
Tupe | Owf I Num | Address I Data | PC | Dly | Cycles | Time[s] |;|
ITH 31 05H ® 59219 0.00041202
ITH 31 DEH ® B9219 0.00041202
ITM k]l FFH ® 63219 0.00041202
Diata Wiite 20000018H DOOOOOOTH ® B9219 0.00041202
ITH 31 DEH 13450873 0.08006472
ITM k]| FFH 13451223 0.08006580
ITH 3 02H 840710340 0.50006512
ITH 31 OEH 84011543 050006874
ITM k]| FFH 084011855 0.50007057
ITH 3 OEH 97450873 0.58006472
ITH 31 FFH 97451223 053006680
ITH 3 024 168010340 1.00006512
ITH 3 02H 168011545 1.00006872
Data Wiite 2000001CH 00000O0TH 168011638 1.00006363
ITH k]| 0BH ® 160015963 1.00009502
ITH 3 FFH ® 168075963 1.00009502
ITH 31 OEH 181450873 1.08006472
ITH k]| FFH 181451223 1.08006680
ITH 31 fict] 252011032 1.50006567
ITH 3 0H 2520116850 THO00EEEE 4|

X
Type Jovi[Mum [Addess [Data | PC [oy[Cycles [Timefs] -
Data Wrte 2000001CH ~ DDOOOOOOH 0BODOTCAH 1 0.00000002
Data Write 2000001CH DDODDOOTH 08000754H 11501 0.00020537
Data Wrte 2000001CH 0DDOOOODOH 0B00O78EH 13443866 024017618
Data Write 2000001CH DDODDOOTH 08000754H 84005534 150017733
Data Wrte 2000001CH 0DDOOOODOH 0B00O78EH 97443866 174017618
Data Wrte 2000001CH DDODDOOTH 08000754H 168009934 3.00017739
Data Write 2000001CH ~ DDOODODOH 0S00O7BEH 181443866 324017618
Data Wrte 2000001CH ~ DDOODDOOTH 08000754 252003934 450017739
Data Write 2000001CH DDOODOOOH OSDOO7BEH 265443866 474017618
Data Wrte 2000001CH DDODDOOIH 08000754 336009934 6.00017739
Data Wrte 2000001CH DDOODOOOH OS00O78EH 349449866 624017618
Data Write 2000001CH DDODDOOTH 08000754H 420009334 750017733
Data Wrte 2000001CH ~ 0DDOOOOOOH 0B0OO7BEH 433449866 774017618
Data Write 2000001CH DDODDOOTH 08000754H 504009934 9.00017733
Data Wrte 2000001CH 0DDOOOODOH 0B00O78EH 517443866 924017618
Data Write 2000001CH DDODDOOTH 08000754H 588009934 1050017739
s thian SAnnnnicU ARaANANAL nomanTorL en1asa0ce 10 7an13c10

Symbols X
Madule / Name Location Type
H-“te SRC/CM/E_Time.c Madule]
“§ SRC/CM/rt_Event.c Maodule
“1% SRC/CM/rt_Task.c Maodule
: —=—=
0x20000013 m
0x2000001C unsigned int \
0x20000020 unsigned int j
0x20000024 unsigned int
Q20000028 il
0x2000002C Q5 _TID
020000030 Q5_TID
0x20000034 05 TID LI

Note: You must have Browser Information selected in the Options for Target/Output tab to use the Symbol Browser.

TIP: ULINKpro and Segger J-Link adapters display the trace frames in a slightly different style trace window. The J-Link

currently does not display Data writes.

16

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

www.keil.com/st

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

2) Exceptions and Interrupts:

The STM32 family using the Cortex-M4 processor has many interrupts and it can be difficult to determine when they are
being activated and how often. Serial Wire Viewer (SWV) on the STM32 family makes this task easy.

1. Stop the RTX Blinky example program. Be in Debug mode. Open Debug/Debug Settings and select the Trace tab.

Select EXCTRC as shown here:

Click OK twice.

Double click on Trace Records to clear it.
Click RUN to start the program.

TIP: If the SWV trace fails to work properly after this
change, exit and re-enter Debug mode.

AN

7. You will see a window similar to the one below
with Exceptions frames displayed.

.What Is Happening ?
1. You can see two exceptions happening.
= Entry: when the exception enters.

= EXit: When it exits or returns.

= Return: When all the exceptions have
returned to the main program. This is useful
to detect tail-chaining.

2. Num 11 is SVCall from the RTX calls.
Num 15 is the Systick timer.

In my example you can see one data write from
the Logic Analyzer.

Note everything is timestamped.

6. The “X” in Ovf is an overflow and some data was
lost. The “X” in Dly means the timestamps are
delayed because too much information is being

Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)

zl
Debug Trace I
Core Clock: | 168.000000 pHz ¥ Trace Enable
~Trace Pat————— [~ Timestamp: Trace Evenl
Serial Wire Dutput - UART ANRZ ﬂ ’V ¥ Enable Frescaler: |1 - ™ CPI: Cycles per Instruction
SW0 Clack Prescaler. m PC Sampling—————————————— I EXE: Evceplion overhead
I~ SLEEP: Slesp Cycles
W tutodetsct Prescaler: (102416
I~ LSU: Load Store Linit Cycles
SO Clock: | 2.000000 MHz I~ Peiiodic Peiiod: [<Drsabled> | | [~ FOLD: Folded Instnustions
I™ onData RAW Sample ¥ ExCTRLC: Exception Tracing
i~ ITH Stimulus Port;
A Fort 24 23 Port 16 15 Port a7 Fort 1}
Enable: |0x7FFFFFFE |74 2 72 7 ol 7 7 I U 2 7 T o vl o 2 v v T o
Privilege: | 0x00000008 Port 3124 [Part 2316 [Part15.8 [~ Pat7.0 [
i &dvanced setting
™ lgnore packets with no SYNC
[™ Owervnice CYCONT
oK I Cancel | Apply |
x
Type Ov [Mum | Addess [Data | PC [ob [Cyces [Tme =l
Exception Entry 15 3645281162 65.09430646
Exception Exit 15 3645281243 65.09430970
Exception Retum 0 3645281351 65.09430984
Exception Entry 15 3646561162 65.12430646
Exception Exit 15 3646961336 65.12430957
Exception Retum 0 3646961344 65.12430971
Exception Entry 15 3648641162 65.15430646
Exception Exit 15 3648641520 65.15431286
Exception Retum 3648641528 65.15431300
Data Write 2000001CH 00000D00H X 3648643664 65.15435114
Exception Retum X X 3648643664 6515435114
Exception Entry 15 3650321163 65.18430648
Exception Exit 15 3650321397 65.18431066
Exception Retum o 3650321405 65.18431080
Exception Entry 15 3652001162 6521430646
Exception Exit 15 3652001407 6521431084
Exception Retum 0 3652001415 6521431088
Exception Entry 15 3653681162 £5.24430646
Exception Exit 15 3653681343 £5.24430570
Exception Retum o 3653681351 6524430984 LI

fed out the SWO pin. Always limit the SWV features to only those you really need.

TIP: The SWO pin is one pin on the Cortex-M4 family processors that all SWV information is fed out. There are limitations

on how much information we can feed out this
one pin. These exceptions are happening at a

i B @ [EXCORC ExceptionTracing ¥ Timestamps Enable

Max Time In ‘Mm Time Qut |Maleme Qut | First Time [s]

Last Time [s] |

11786 us [59.524 ns

|93.722 ms

26.46194736 3865088633 ﬂ

2852330453 3862842232

System Service Call via SVC instruction

. . . Num | Name Count T | Total Time Min Time In
very fast rate. puVision easily recovers gracefully = s ssais s 05
from these overflows. Overflows are shown 5 Jorrs = T
: 92 OTG_HS_WKUP 0 0s
when they happen. Using a ULINKpro helps e T =
reduce overruns, especialy if the 4 bit Trace Port = orersmom o o

connection is used rather than the 1 bit SWO pin.

Select View/Trace/Exceptions or click on the Trace icon and select Exceptions.

2. The next window opens up and more information about the exceptions is displayed as shown below:

Note the number of times these have happened under Count. This is very useful information in case interrupts come
too fast or slow. Click on Count to bring the most active exceptions to the top of the window.

ExtIRQ are the peripheral interrupts.

You can clear this trace window by double-clicking on it.

6. All this information is displayed in real-time and without stealing any CPU cycles or stubs in your code !

TIP: Num is the exception number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals,
start at Num 16. For example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 =16 — 16 = ExtIRQ 0.

17
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

3) PC Samples:

Serial Wire Viewer can display a sampling of the program counter.

SWV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
4. Close the Exception Trace window o | | — : :I_I
Type Owf | Murn Address Data FC [y Cycles Time(s -
and leave Trace Records open. PC Sample DBON0SEAH 1 000000001
Double-click to clear. PC Sample 08000554H 16385 000009753
PC Sample 03000554H 32783 0.00079505
: : : PC Sample 030005584H 49153 0.00029258
5. Click on RUN and this window P Sample DBIN0S5AH B537 000039010
opens: PC Sample DB00SEAH 81921 000048762
PC Sample 03000554H 98305 0.00058515
6. Most of the PC Samples in the o I
. ample .
PC Sample DB00SEAH 147457 0.00087772
exalmpl.e Shown are 0X0800—055A PC Sample 03000554H 163841 0.00037524
which is a branch to itself in a loop PL Sample 08000554H 180225 0.00107277
. PC Sample DB000SEAH 196609 0.00117023
forever routine. PC Sample DB00SEAH 212993 0,001 26782
. PC Sample 03000554H 229377 0.00136534
Note: the exact address you get PC Sample 02000554H 245761 0.001 46286
PC Sample DB000SEAH 2145 000156039
depequ on the source code and the PC Sample DB00SEAH 278529 000165741
compller settlngs. PC Sample 05000554H 234913 0.00175543
PC Sample 030005584H 1287 0.00185296 LI
7. Stop the program and the
Disassembly window will show this Branch as shown below:
8. Not all the PCs will be captured. Still, PC Samples can give you some idea of where your program is; especially if it
is not caught in a tight loop like in this case.
9. Set a breakpoint in one of the tasks. A _ — _ _
154: /% This function is called when the user timer has expired. Paraweter L
. 155: /% 'info' holds the wvalue, defined when the timer was created. L7
10. Run the program and when the breakpoint 155
. . . 157: /% HERE: include optional user code to be executed on timeout. */
is hit, you might see another address at the oxooaonseo Eroe | moP
. 0x004005E2 E7FFE B 0Ox004005E2
bottom of the Trace Records window. See e s i
the screen below: i B
11. Scroll to the bottom of the Trace Records window and you might (probably not) see the correct PC value displayed.
Usually, it will be a different PC depending on when the sampling took place.
12. To see all the instructions executed, you can use the ETM instruction trace with a ULINKpro.
13. Remove the breakpoint.
14. Stop the program. Dy ‘
p p g 116: ¢
15' Leave Debug mode. 11; = Task 4 'phaseD': Phase D output .y
119: task void phaseD (void) {
DXDDQDDTE 2000 HOVS ro, #0x00
0x004007C4 4978 LDR ri1, [pe,#480] : BOx00400945
0x004007C6 6008 STR ro, [ri,#0x00]
_EIXUEIQUUTCE ETET E 0x00400794
4
(] Abstractot * [2] Blinky.c x | [£] R ConfcM.c | [F] LEDc |
093 os_evt_wait_and (0x0001, Dxffff); [+ wait for an event Flag 0x0001 +/
09| LED_On (LEDB): |
ggg 2:;3_;;‘; tep[Toee [oOv[Mum[Adhess [Deta | PC [Ob| Cycks | Tmel |-l
097 LED_Off (LED E): |FCSample 004005 2H BE348301159 1358.56720561
a8 Phaseh = 0f PC Sampls 004005E2H 86348317543 135856746161
ms | P 2arcle SCOES el |aasrered
100 | PL Samdls 004005E2H 86948366635 1358 56622961
o - PL Sample 0D4005E2H 86343383079 135856948561
102F] 7 # PC Sample 004005E 2H 86348333463 1356.56874161
103 L * PC Sample 004005E2H 86940415847 1358.56899761
104 - PC Sample 004005E 2H BE948432231 1358, 56925361
105(]__task veid phasec | |PCSanpls 004005E2H 86340448615 135056950951
et e oo pmem i
107 os_eve_wait_and |po -.aam;e 004005E2H 96948497767 135857027761
108 LED_On (LED_C}: |PCSample N04005E 2H GEMESIAI5) 135857053361
103 phasec = 1; PC Sample 004005E 2H 86948530535 1358.57078961
110 signal_func (t_p |PCSample 004005 2H BE348546919 1358.57104561
111 LED Off (LED C}; PC Sample 004005E 2H 86948563303 135857130161
.anz phagec = o PC Sample 004005E2H 86948579687 1358.57155761
13 ' PC Sample 004005E2H BE348556071 135657181361
14y PC Sample 00400F72H 86948612455 1356.572065961 j
18 -
11611/
17 * Task 4 'phasel': Phase D output
118 i
18 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

21) Serial Wire Viewer (SWV) Configuration window: (for reference)

The essential place to configure the trace is in the Trace tab as shown below. You cannot set SWV globally for pVision. You
must configure SWV for every project and additionally for every target settings within a project you want to use SWV. This
configuration information will be saved in the project. There are two ways to access this menu:

A.

1)

2)

3)
4)

5)

6)

7)

In Edit mode: Select Target Options #N or ALT-F7 and select the Debug tab. Select Settings: on the right side of
this window and then the Trace tab. Edit mode is selected by default when you start pVision.

In Debug mode: Select Debug/Debug Settings and then select the Trace tab. Debug mode is selected with @1 .

Core Clock: The CPU clock speed for
SWV. The CPU speed can be found in
your startup code or in Abstract.txt. It is
usually called SYSCLK or Main Clock.
This must be set correctly for all
adapters except ULINKpro.

Trace Enable: Enables SWV and ITM.
It can only be changed in Edit mode.
This does not affect the Watch and

Debug Trace | Flash Downloadl

1 EoreEIock:I £4.000000 MHz

~

2

Cortex-M Target Driver Setup _

¥ Trace Enable

x|

& Trace Port

5wl Clack Prescaler:l 55
¥ Autodete

S0 Clock: I 1163636 MHz

v
|Serial wire Dutput - LLRT/NRZ 7 |

{

Trace Events

[CPI: Cycles per Instruction

ct

Timestamp:

¥ Enable Prescaler:l‘l 'l

PC Sampling—————
A Frescaler: I 1024416 = l

[Periodic Period:l «Disabled:

™ onData RAW Sample

[EXLC: Exception overhead
[SLEEF: Sleep Cycles

™ LSL: Load Stare Unit Cycles
[FOLD: Folded Irstructions
[~ EXCTRC: Exception Tracing

Memory window display updates.

6 ITH Stiruius Port a b

Trace Port: This is preset for ST-Link. 31 Pot 2423 Pot 1615 Pat 8 7 Pot O
) . Enable: |0=FFFFFFFF Fiviviviviviv [vivivivivivivly [viviviviviviviy [VIivivivivivivive
Timestamps: Enables timestamps and Privilsge: [3+00000008 Pot3.24 ¥ Pat23.18 [Fort15.8 For 7.0 ™

selects the Prescaler. 1 is the default.

PC Sampling: Samples the program
counter: |

ok ||

Cancel I

a. Prescaler 1024*16 (the default) means every 16,384™ PC is displayed. The rest are not collected.
b. Periodic: Enables PC Sampling.

On Data R/W Sample: Displays the address of the instruction that caused a data read or write of a variable
listed in the Logic Analyzer. This is not connected with PC Sampling but rather with data tracing.

ITM Stimulus Ports: Enables the thirty-two 32 bit registers used to output data in a printf type statement to
wVision. Port 31 (@) is used for the Keil RTX Viewer which is a real-time kernel awareness window. Port 0 (b) is
used for the Debug (printf) Viewer. The rest are currently unused in pVision.

e Enable: Displays a 32 bit hex number indicating which ports are enabled.
e Privilege: Privilege is used by an RTOS to specify which ITM ports can be used by a user program.

Trace Events: Enables various CPU counters. All except EXCTRC are 8 bit counters. Each counter is cumulative
and an event is created when this counter overflows every 256 cycles. These values are displayed in the Counter
window. The event created when a counter wraps around is displayed in the Instruction Trace window.
a. CPI: Cycles per Instruction: The cumulative number of extra cycles used by each instruction beyond the
first, one including any instruction fetch stalls.
b. Fold: Cumulative number of folded instructions. These results from a predicted branch instruction where
unused instructions are removed (flushed) from the pipeline giving a zero cycle execution time.
c. Sleep: Cumulative number of cycles the CPU is in sleep mode. Uses FCLK for timing.

EXC: Cumulative cycles CPU spent in exception overhead not including total time spent processing the
exception code. Includes stack operations and returns.

e. LSU: Cumulative number of cycles spent in load/store operations beyond the first cycle.

EXCTRC: Exception Trace. This is different than the other items in this section. This enables the display
of exceptions in the Instruction Trace and Exception windows. It is not a counter. This is a very useful
feature to display exception events and is often used in debugging.

TIP: Counters will increment while single stepping. This can provide some very useful information. You can read these
counters with your program as they are memory mapped.

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

19

Copyright © 2014 ARM Limited or its affiliates. All rights reserved
www.keil.com/st

22) DSP SINE example using ARM CMSIS-DSP Libraries:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M3 and Cortex-M4 processors. DSP libraries are provided in MDK

in C:\Keil v5\ARM\Pack\ARM\CMSIS. See www.arm.com/cmsis for more information. CMSIS is an acronym for Cortex

Microcontroller Software Interface Standard. CMSIS is an ARM standard.

This example creates a sine wave with noise added, and then the noise is filtered out. The waveform in each step is displayed

in the Logic Analyzer using Serial Wire Viewer.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. RTX source code is provided.

To obtain this example file, go to www.keil.com/appnotes/docs/apnt 230.asp Extract DSP to ...\STM32F4-Discovery\.

1. Open the project file sine: C:\KeilARM\Boards\ST\STM32F4-Discovery\DSP\sine.uvproj

g
2. Build the files. L There will be no errors or warnings.

LoAD

3. Program the STM32 flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.

4. Enter Debug mode by clicking on the Debug icon. @l Select OK if the Evaluation Mode box appears.

5. Click on the RUN icon. E Open the Logic Analyzer window. . =J

Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust
Zoom Out for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

TIP: If one variable shows no waveform, disable the ITM Stimulus Port 31 in the Trace Config window.

7. The project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.

ISetup I Load ... Min Time Max Time Grid Zoom Code Trace | Setup Min/Max Update Screen| Transition I~ Sgnal Info

[save .| [0849623s [E271739s | 02s

-32768
79.20739s

(B)

| Show | | Show |

81.007

| Auto H Undo |

‘ Stop |

I~ Amplitude
™ Show Cycles ™ Cursor

82997795 3?5 |

»

[
@Dlsassembly | ﬂ Logic Analyzer

8. Open the Trace Records window and the Data Writes to the four variables are listed as shown here:

9. You can right click in this window and deselect ITM Events to get only Data Writes displayed.

10. Leave the program running. Tracerecords x|
11. Close the Trace Records window. Type Ovf [Num | Addess | Data [Pc [Di| Cydes | Timefg) ﬁ]
Data Write 200000184 1EBSH 02000306H 34562987868 205.73207064
TIP: The ULIN Kpro trace display is different Data Write 2000001AH EB1DH 0200033EH 4564667781 20574207013
. Data Wit 2000001CH 09D6H 08000374H 34566347646 20575206532
and the program must be stopped to update it. Data Wite 2000001EH E3FFH 080003A2H 34568028095 205.76207199
Data Write 200000184 2222H 02000306H 34569707860 205.77207060
: ; ; Data Write 2000001AH EAD4H 0200033EH 34571387773 20578207008
Th? Watch 1 W_md(?w will fhsplay the four Data Write 2000001CH OCFEH 08000374H 34573067638 20579206927
variables updatmg in real time as shown Data Wiite 2000001EH E784H 080003A4H 34574748087 205.80207195
Data Write 20000018H 2568H 02000306H 34576427852 205.81207055
below: Data Write 2000001AH ECSDH 0200033EH 34578107765 205.82207003
Data Write 2000001CH 1205H 08000374H 34579787630 205.83206923
Data Write 2000001EH EB22H 080003A4H 34581468079 20584207190
Data Write 20000018H 2888H 08000306H 34503147844 205.85207050
_____ Data Write 2000001AH FO4CH 0200033EH 34584827757 205.86206998
- Data Write 2000001CH 1804H 08000374H 34586507622 205.87206918
pote Data Write 2000001EH EEDSH 020003A4H 34588188071 205.88207185
----- @ disturbed Data Write 20000018H 2BTFH 02000306H 34589867836 205.89207045
..... @ filtered Data Write 2000001AH F585H 0800032EH 34591547749 205.90206993
_____ <Enter expressions Data Write 2000001CH 2104H 02000374H 34593227618 20591206915
P Data Write 2000001EH F29AH 020003A4H 34554908067 20592207183 | o
20 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

www.keil.com/st

Signal Timings in Logic Analyzer (LA):

1. Inthe LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

Rl

| Logic Analyzer

Click somewhere in the LA to set a reference cursor line.

Note as you move the cursor various timing information is displayed as shown below:

¥ Signal Info

[¥ Show Cycles

Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.

v Amplitude
¥ Cursor

RTX Tasks and System:

Click on Start in the Update Screen box to resume the collection of data.

ISetup | Load Min Time Maxx Time Grid Zoom Code Trace Setup Min,/Maz Update Screen | Transition
Save | 19.55015s | EI | Shiow | | Show | Auto || Undo | | Start |
20000 1 | 1 .
o 1 . 1
‘m
-20000
o 7000
.
2
-7000
B 32767
=
ki
-32768 71760 _d- 40769
. disturbed
@ 2767 | ; Maouse Pos Reference Point Delta
= | . Time: 14,25515 5 1273011 5 1.525042 s = 0.65572 Hz
= 39768 : Value: -21260 19509 40769
|[5264 PC 5: M/A N/A
11.94515s 1273011 s (14755755, d. 1576047 s] 0993155
_| 1146734372 1222050333 1368494372 _d. 146404035]530734372
4
@Disassembly | QLogicAnalyzer

6. Open Debug/OS Support and select System and Thread Viewer. A window similar to below opens up. You probably
have to click on its header and drag it into the middle of the screen.

7. Note this window does not update: nearly all the processor time is spent in the idle daemon: it shows it is Running.
The processor spends relatively little time in the other threads. You will see this illustrated clearly on the next page.

Set a breakpoint in four of the threads in DirtyFilter.c by clicking in the left margin on a grey area.

9. Click on Run and the program will stop at each thread in turn and the Thread Viewer window will be updated
accordingly. Here, I set a breakpoint in the disturb_gen thread:

10.
11.

TIP: You can set hardware breakpoints
while the program is running.

TIP: Recall this window uses the CoreSight
DAP read and write technology to update this
window. Serial Wire Viewer is not used and
is not required to be activated for this window
to display and be updated.

The Event Viewer does use SWV and this is
demonstrated on the next page.

Ii:|---Th reads

Value
Item
Tick Timer:

Clearly you can see that disturb_gen was running when the breakpoint was activated.
Remove the breakpoints. Click on them or enter Ctrl-B and select Kill All.

System and Thread Viewer
Property
[=1-System

Value
1.000 mSec

Round Robin Timeout:

5,000 m5ec

Default Thread Stack Size:

200

Thread Stack Overflow Check:

Yes

Thread Usage:

Available: 6, Used: &

Name Priority State Drelay Event Value Event Mask Stack Load

255 | os_idle_demon 1] Ready 32%

[sync_tsk Mormal Wait_AND 0x0000 0x0001 40%

5 filter_tsk Maormal Wait_AND |65514 0x0000 0x0001 40%

4 disturb_gen Mormal 85504 0x0000 0x0001

3 noise_gen Mormal

2 sine_gen Maormal Wait_AND (1014 00000 0x0001 40%%

1 main Normal [wait iy | | [32%

21

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

www.keil.com/st

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

Event Viewer:

1.

Stop the program. Click on Setup...

in the Logic Analyzer. Select Kill All to remove all variables. This is necessary

because the SWO pin will likely be overloaded when the Event Viewer is opened up. Inaccuracies might occur. If
you like — you can leave the LA loaded with the four variables to see what the Event Viewer will look like.

Select Debug/Debug Settings.

Click on the Trace tab.

Enable ITM Stimulus Port
31. Event Viewer uses this
to collect its information.

Click OK twice.
Click on RUN.

Open Debug/OS Support
and select Event Viewer.
The window here opens up:

Note the main(1) thread.
This screen is scrolled to the
beginning after RESET.
Main() runs only once.

[oad...]| Min Time

Max Time Grid

Zoom | Update Screen | Jumpto | Transiton |~ TaskInfo I Cursor

All Tasks

main (1)

sine_gen (2)

noise_gen (3)

disturb_gen (4)

filter_tsk (5)

sync_tsk (6)

Idie (255)

al

m‘l 27.13116s |258].3535 \1ms \IIL“C’L“_” Stuu CIEar |Cude Traual rev |[Next

l' Show Cydes

main (1)

27131165

27133165 2714716

»

Event Viewer | System and Thread Viewer |

Important TIP: If SWV trace fails to work after this change, exit Debug, cycle the board power and re-enter Debug mode.

TIP:

If Event Viewer is blank or erratic, or the LA variables are not displaying or blank: this is likely because the Serial Wire

Output pin is overloaded and dropping trace frames. Solutions are to delete some or all of the variables in the Logic Analyzer
to free up some bandwidth.

ULINKpro is much better with SWO bandwidth issues. These have been able to display both the Event and LA windows.
ULINKpro uses the faster Manchester format than the slower UART mode that ST-Link, ULINK2 and J-Link uses.

ULINKQpro can also use the 4 bit Trace Port for faster operation for SWV. The Trace Port is mandatory for ETM trace.

9.

10.
11.
12.
13.

Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what

task is running, when and for how long.

Click Stop in the Update Screen box.

Click on Zoom In so three or four tasks are displayed.

Select Cursor. Position the cursor over one set of bars and click once. A red line is set at the first arrow:

Move your cursor to the right over the
next set (where the second arrow is) and
total time and difference are displayed.

14. Note, since you enabled Show Cycles, the
total cycles and difference is also shown.

The 10 msec shown is the SysTick timer value.

This value is set in RTX Conf CM.c. The next

page describes how to change this.

TIP: ITM Port 31enables sending the Event

Viewer frames out the SWO port. Disabling this

can save bandwidth on the SWO port if you are not
using the Event Viewer.

ml Min Time Max Time Grid | | late Screen Transition | TaskInfo [V Cursor

m“ 27.13116s | 28.813538 b sms || In ||Out” Al \|| Stop J[Clear | mﬁ \PravHNext| I™ Show Cydes

Al Tasks Idle {255) dls (255) >«\dfe (258))@Idle (255))@

man () I

sne_gen 2 i 1]
sine_gen (2): Min Max Average Called

naise_gen (3) [0x080002dd) 17.35491 us 0.254483 ms 17.76414 us 1681
Time: Mouse Pos Reference Paoin Delta

disturb_gen (4) 28.80044 5 2850844 5 1 ms = 1000 Hz

fiter_tsk (5) I : I | I 5 5 I 5 3 I 3

i oo

o259 L - _ - - |

2880768 5 2280844 s (22809445 d. 1ms}B81068s 28814135
1] I ET)

Event Viewer | System and Thread Viewer |

22 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Event Viewer Timing:
1. Click on Zoom In until one set of tasks is visible as shown below:
2. Enable Task Info (as well as Cursor and Show Cycles from the previous exercise).
3. Note one entire sequence is shown. This screen is taken with ST-Link V 2with LA cleared of variables.
4. Click on a task to set the cursor and move it to the end. The time difference is noted. The Task Info box will appear.

TIP: If the Event Viewer does not display correctly, the display of the variables in the Logic Analyzer window might be
overloading the SWO pin. In this case, stop the program and delete all variables (Kill All) and click on Run.

Ml Min Time Max Time Grid ‘ ‘U ate Sareen | Jump to
W“ 27.131165 | 28.81353s |20us H In ||Dut|| Al \H smp |[Clear H|Code HTraoe\

All Tasks (255) ’(. i@ He ><|4) ::fmgr tsk |5; Id\e (255)

lsyne ts Inoise gen @h \2 ;

Transition

¥ TaskInfo [Cursar
|Preu ||Next\

o Shnw Cydes

main (1)

sine_gen (2) E 3
noise_gen (3) : : f

disturs_gen 14) | B

fiter_tsk (5} : : . |
symc. ik (6) : H | : : H H
: filter_tsk (S} Min Max Average Called
1| [0x0800037 d) 10.13765 us 2845952 us 27.93899 us 16381
Idle (255) :
! :| Time: Mouse Pos Reference Point Delta
- 28811415 [28 8114 2881146 5 2851144 5 18.24777 us = 54801223237 Hz SI
a D E

Event Viewer | System and Thread Viewer |

The Event Viewer can give you a good idea if your RTOS is configured correctly and running in the right sequence.

Changing the SysTick Timer Value:

Stop the processor 0 and exit debug mode. @

2. Open the file RTX Conf CM.c from the Project window. You can also select File/Open in
C:\Kei\ARM\Boards\ST\STM32F4-Discovery\DSP.

3. Select the Configuration Wizard tab at the bottom of the window. See page 12 for an explanation on how the Wizard
works.

4. This window opens up. Expand SysTick Timer Configuration. RTX_Conf CM.c | %] DirtyFilter.c |

Bpand Al | Collapse Al | Hep | T s

Option | Value
---Thread Configuration
E|---RT){ Kernel Timer Tick Configuration

~Use Cortex-M SysTick timer as RTX Kernel Timer ol
imer clock value [Hz] 53760000
i -Timer tick value [us] 2000
E---Systern Configuration

Note the Timer tick value is 1000 usec or 1 msec.
Change this value to 2,000.

TIP: The 5,376,000 is the CPU speed. The Discovery board has a 8 MHz
crystal. This program was designed for 168 MHz with a 25 MHZ crystal.
Therefore it runs 8/25 slower than designed for. The PLL is configured in
CMSIS file system_stm32f4xx.c and is easily modified.

7. Rebuild the source files and program the Flash.

Enter debug mode @ and click on RUN =¥,

9. When you check the timing of the tasks in the Event Viewer window as you did on the previous page, they will now
be spaced at 2 msec.

TIP: The SysTick is a dedicated timer on Cortex-M processors that is used to switch tasks in an RTOS. It does this by

generating an exception 15. You can view these exceptions in the Trace Records window by enabling EXCTRC in the Trace
Configuration window.

1. Set the SysTick timer back to 1,000. You will need to recompile the source files and reprogram the Flash.
2. Click on File/Save All or select the Save All icon:

This ends the exercises. Thank you !

Next is how to make a new project from scratch, how ETM trace works and Keil product and contact information.

23 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

23) Creating your own MDK 5 project from scratch:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a template for
your own projects. However, we will start an example project from the beginning to illustrate how easy this process is. Once
you have the new project configured; you can build, load and run a bare Blinky example. It will have an empty main()
function so it does not do much. However, the processor startup sequences are present and you can easily add your own
source code and/or files. You can use this process to create any new project, including one using an RTOS.

Install the STM32 Software Pack for your processor:
1. Start pVision and leave in Edit mode. Do not be in Debug mode.

2. Pack Installer: The Pack for the STM32F4 processor must be installed. This has already been done on page 4.
B

0""‘ ()= [~ LoclDisk(ca) + MDK - Boards ~ Infineon + XMC_26o ~ BiryhEW * [[search pinknew

3. Youdo not need to copy any examples over.

Create a new Directory and a New Project: Crgme N idr =@
. A Favorites 2] ame - | Date modified | rype | se=
1. Click on Project/New pVision Project... ot et e s
4 Libraries
2. In the window that opens, shown below, go to the 1 oo
folder C:\MDK\Boards\ST\STMF32F4-Discovery\ B e
3. Right click in this window and select New and B Computer
create a new folder. I called it BlinkyNEW. S 9 —
4. Double click on BlinkyNew to open it or highlight Fiename: iy =
lt and Select Open. Save as type: [Project Fies (*.uvaraj; %.uvproj) =
“ Hide Folders Cancel

5. In the File name: box, enter Blinky. Click on Save.

A

6. This creates the project Blinky.uvproj in C:\MDK\Boards\ST\STMF32F4-Discovery\BlinkyNEW.

CcPU |

7. Assoon as you click on Save, the next window opens:
Select the Device you are using:

1. Expand STMicroelectronics, then STM32F4 Series, then STM32F407 and then finally ;e"‘_”’f jl:;le;‘v';"'“
Select STM32F407VG — e 4T
TIP: Processor icons in green are from the Software Packs. Grey icons are from MDK 4.7x. Search:
£3 57 B3R)

2. Click OK and the Manage Run Time window shown below bottom right opens.
Select the CMSIS components you want:

1. Expand all the items and select CORE and Startup as shown below. They will be
highlighted in Green indicating there are no other files needed. Click OK.

F#T5 STM32F4 Series
-9 STM32F401
-9 STM32F405
B STM32F407

B STM32FA07IE
- sTm32Fa0TIG
&l STM32FA07VE
Bl sTM32FA07VG

2. Click on File/Save All or select the Save All icon: 'j
The project Blinky.uvproj will now be changed to Blinky.uvprojx.

4. You now have a new project list as shown on the bottom left below: The appropriate CMSIS files you selected have
been automatically entered and configured.

5. Note the Target Selector says Target 1. Highlight Target 1 in the Project window.

6. Click once on it and change its name to CMSIS-DAP and press Enter. The Target selector name will also change.

What has happened to this point:]
Software Component | Sel. | Variant Version | Description
You have created a blank IJ.VISIOH proj ect using MDK 5 Software =4 Board Support STM32F4-Discovery = |1.00 SMicroeledronics STM32F4 Discovery Board -
. & STM32F4-Dis...
Packs. All you need to do now is add your own source files. i cuss Cortex Microconirolr Softwse iferface Compon
@ core [3.200 | CMISIS-CORE for Cortex-M, 5C000. and SC300
e o % @ osp = 141 CMSIS-DSP Library for Cortex-hd, SCO00. and 50300
) -4 RTOS (AP 10 CMSIS-RTOS APl for Cortex-M_5C000. and SC300
T3 5T-Link Flash L@ KellRTX [T 4740 | CMISISRTOS RTX implementation for Cortex-h. SCO
-4 Device Startup, System Setup
{27 Source Group 1 @ DMA (o] 100 DMA driver used by RTE Drivers for STM32F4 Series
SIS @ B r 100 EXTI driver used by RTE Drivers for STM32F4 Series
@ Fsmc [100 FSMC driver used by RITE Drivers for STM32F4 Series
. ¥ GPIO r 1.00 GPIO driver used by RTE Drivers for STM32F4 Series
RTE Device.h (Startup) @ Startup [130 System Startup for STMicroelectronics STM32F4 Ser
tartup_stm32f40_41wex.s (Startup) 4 stdPeriph Dr... =l
ystem_stm32f4x. ¢ (Startup) il I L
| vaiidation output | Description
ic] Project | €% Books | {3 Fundti... | (0 Templa...| Resolve Detals Cancel Help

24
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved
www.keil.com/st

Create a blank C Source File:

1. Right click on Source Group 1 in the Project window and select | Add New Item to Group ‘Source Files..
2. This window opens up: [e Item to Group sowrceGrowpr |]
3. Highlight the upper left icon: C file (.c): : Clehete CrosicapenComees e anl aliila e pakct
4. In the Name: field, enter Blinky. G o Fie tem)
5. Click on Add to close this window. %:sm:'e:}_h
6. Click on File/Save All or i \%m me.ml;)
7. Expand Source Group 1 in the Project window # mge Fie ()
and Blinky.c will now display. @ User Code Tempiate
8. It will also open in the Source window.
Add Some Code to Blinky.c: :me @
9. In the blank Blinky.c, add the C code below: Location: [WDRIposrds nfneononc_zco ey]

10. Click on File/Save All or

g
11. Build the files. 2 There will be no errors or warnings if all was entered correctly.

#include "stm32f4xx.h"
unsigned int counter = 0;

int main (void) {

while(D) {
counter++;

}

3

if (counter > OxOF) counter = 0O;

TIP: You can also add existing source files:
Configure the Target CMSIS-DAP: Plegse complete these
1.

Add Existing Files to Group 'Source Files'...

No need to at this time.

instructions carefully to prevent unusual problems...

Select the Target Options icon EA . Select the Target tab.

2. Enter 8 in Xtal (MHz). This is used for timing calculations. Select Use MicroLIB to optimize for smaller code size.
3. Select the Output tab. Click on Select Folder for Objects...:
4. In the Browse for Folder window that opens: right click and create a new folder called | Select Folderfor Objects...
Flash.
5. Double click on Flash to enter this folder and click OK. Compilation files will now be stored in this Flash folder.
6. Click on the Listings tab. Click on Select Folder for Objects...: Double click on Flash and click OK to close.
o : Li - i
Click on the Debug tab. Select St-Link Debugger in the Use: box: Use: | STk Debugger [ﬂl
Select the Settings: icon. Port:
. [sw =] . . .
9. Select SW as shown here in the Port: box: JTAG here will not work with SWV. If your board is
connected to your PC, you must now see a valid IDCODE and Device Name in the SW Device box.
10. Click on OK once to go back to the Target Configuration window. Otherwise, fix the connection problem.
11. Click on the Utilities tab. Select Settings and Add the correct Flash algorithm: Shown is the correct one for the
STM32Fx series processors: — P ing Algorthm
12. Click on OK twice to return to the main menu. Mé’;—:gzﬁ;% — ' feviee Sz ' e ' o Renge_ '
13. Click on File/Save All or ﬂ
14. Build the files. =3 There will be no errors or warnings if all was entered correctly. If there are, please fix them !

The Next Step ? Let us run your program and see what happens ! Please turn the page....

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

25

Copyright © 2014 ARM Limited or its affiliates. All rights reserved
www.keil.com/st

Running Your Program:
LoAD

1. Program the ST Flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.
2. Enter Debug mode by clicking on the Debug icon @

Click on the RUN icon. E] Note: you stop the program with the STOP icon. 0

3.
4. No LEDs will blink since there is no source to accomplish this task. You could add such code yourself.
5. Right click on counter in Blinky.c and select Add counter to ... and select Watch 1.
6. counter should be updating as shown here: = —)
7. You can also set a breakpoint in Blinky.c and the program should stop at | Name S e
. . cpt, . . . - ¥ counter 000000005 unsigned int =~
this point if it is running properly. If you do this, remove the breakpoint. ;_____qEntmxpan_ — e
8. You should now be able to add your own source code to create a al| | _.|j
meaningful project. & Call Stack + Locals | Watch1 | [E Memory 1 |

TIP: The Watch 1 is updated periodically, not when a variable value changes. Since Blinky is running very fast without any
time delays inserted, the values in Watch 1 will appear to jump and skip sequential values you know must exist.

Clock Frequency: The CPU clock speed is 53.76 MHz. To change it to 168 MHz:
1. Open the file system_stm32f4xx.c.
2. Locate the line #define PLL._M 25 as shown below:
3. Change the value to 8.
4

Click on File/Save All or

i
Build the files. =
6. The CPU speed is now 168 MHz.

hd

252 FRERRER AR AR AR AR AR AR R A A A& PLL Parameters **#&¥*xddddddrriias
253 /% PLL_VCO = (HSE_NALUF or HSI VALUE / FLL M) * PLL N */
254 #define PLL M
255 J* USE OTG FS5, SDID=n
2568 Fdefine PLL 7
257 -

ENG Clock = PLL VCO / PLLQ */

TIP: If PLL M =336 and PLL_Q =4, then the clock speed is 84 MHz.

Cleaning up your Project: (you only need to do this once: this is not a critical step)
We modified the folder where the output and listings files are stored. This was in Steps 3 through 7 on the preceding page. If

you did a Build before this was done, there will be files in your project root directory. Now we want them —
only in .\Flash. | Frach
1. Exit uVision. Otherwise, you can’t delete files that it still has open. :ITEk
|| Blinky.c
2. Open Microsoft Explorer and navigate to: [Binky.uvoptx
C:\MDK\Boards\ST\STMF32F4-Discovery\BlinkyNEW\. (5] Blinky.uvprax

| Blinky_uvoptx.bak

3. Delete all files and folders except these: (you can delete Flash — a Build will recreate it.)) [ik wprojbak
4. You can also leave any backup or pVision files that identify your computer to retain your settings.
Restart pVision. Having all compilation files stored in the .\Flash folder makes it cleaner.

TIP: If you want to save or send the project files to someone, you can delete the folder Flash to reduce file size. This folder
and its contents are easily reconstructed with a Build.

26 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

24) Creating your own RTX MDK 5 project from scratch:

The MDK Software Packs makes it easy to configure an RTX project. There are two versions of RTX: The first comes with
MDK 4.7x and earlier. The second comes with MDK 5.10 and later. This second one is CMSIS-RTOS compliant.

Configuring RTX is easy in MDK 5.10 and later. These steps use the same configuration as in the preceding Blinky example.

1. Using the same example from the preceding pages, Stop the program @ and Exit Debug mode. @

2. Select ST-Link Flagh: ST-ink Flash -
3. In Blinky.c, at the top, add this line: #include "cmsis_os.h" ;‘?_ﬁ“'"a;;’s’"""”e”t och | Variant | Vet
4. Open the Manage Run-Time Environment window: & :: ;Sf - ,': iic
5. Expand all the elements as shown here: e ———————— <*"='¢ RO 10

— @ Keil RTX] 4,74
6. Select Keil RTX as shown and click OK. =4 Device =

L@ Startup r 1.00

7. Appropriate RTX files will be added to your project. See the Project window. «
8. Click on File/Save All or = Validation Output

Configure RTX:

1. In the Project window, expand the CMSIS group. Resse | _Doste | x|

2. Double click on RTX Conf CM.c to open it.
3. Select the Configuration Wizard tab: Select Expand All. IR (TR GG | 2 vinkyc | [sartop w2
. L. Epand Al | Collapss All | Hep | T ShowGd
4. The window is displayed here: — m———————)
QOption Value
5. Set Timer clock value: to 168000000 as shown: (168 MHz) Bl Threzd Configuration
~—Number of concurrent running threads [
6. Unselect User Timers. Use defaults for the other settings. -~ Default Thread stack size [oytes] 20
--Main Thread stack size [bytes] 200
Bu”d and Run Your RTX Prog ram: - Number of threads with user-provided stack size]
— Al ---Total stack size [bytes] for threads with user-provided stack size 0
. TN . Check for stack overflow o
1' Bulld the ﬁles' I_I Program the Fla’Sh' ‘a’ . Processor mode for thread execution Privileged mode
[=1-RT¥ Kernel Timer Tick Configuration
2 Enter Debug Il’lOde @ Click on the RUN icon ~-Use Cortex-M SysTick timer as RTX Kernel Timer o]
: : : - Timer clock value [Hz] 168000000
Select Debug/OS Support/System and Thread Viewer. The Timer ick value [ug] 1000
. [=-System Configuration
window below opens up. [=-Round-Robin Thread switching i
. . ‘- Round-Robin Timeout [ticks] 5
4. You can see two threads: the main thread is the only one {5 User Timers r
running. As you add more threads to create a real RTX ISR FIFO Queue size 16 entries
. . . . Thread Col ratiol
program, these will automatically be added to this window. s Contrtion

‘ Text Editor_}}, Configuration Wizard

What you have to do now:

1. You must add the RTX framework into your code and create your threads to make this into a real RTX project
configured to your needs.

2. See the DSP5 and RTX Blinky5 examples to use as templates and hints.
If you copy Blinky.c from the RTX Blinky project, it will blink the LEDs. It has the RTX code incorporated into it.

4. Getting Started MDK 5: Obtain this useful book here: www.keil.com/mdk5/. It has very useful information on
implementing and maintaining

System and Thread Viewer
RTX. Property Value
E| System Item Value _ 1
Tick Timer: 1.000 mSec
H H Round Robin Timeout: 5.000 mSec
This completes the exercise of Dttt Trond Stork Sinc o
Creating your own RTX project Thread Stack Overflow Check: Yes
Thread Usage:
from scratch.
é--Threads D Name Priority State Delay Event Value Event Mask Stack Load
255 o acgemen 0| I I R
27 Copyright © 2014 ARM Limited or its affiliates. Al rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

25) ETM Trace Examples: For reference only..Note: MDK 5 has enhanced windows and triggers:

These examples were run on the STM3240G-EVAL evaluation board. These are applicable for the Keil MCBSTM32F400
board. These examples are included for reference. A ULINKpro debug adapter is required for ETM operation.

ETM provides serious debugging power as shown on the next few pages. It is worth the small added cost.

Most STM32 processors are ETM equipped.

1. Connect the ULINKpro to the STM3240G board using the 20 pin CN13 Trace connector.
2. Start pVision by clicking on its desktop icon. =
Select Project/Open Project. Open C:\Keil\ARM\Boards\ST\STM3240G-EVAL\ Blinky Ulp\Blinky.uvproj.
. . . TracePort Instruction Tra: =
4. Select TracePort Instruction Trace in the Target Options box as shown here: bbbl
5. Compile the source files by clicking on the Rebuild icon. == . You can also use the Build icon beside it.
LOAD
6. Program the STM32 flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.
7. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
DO NOT CLICK ON RUN YET ! S
Open the Data Trace window by clicking on the small arrow beside the Trace Windows icon. ==> Exceptions
Counters
10. Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until pVision halted the program at the start of main() since Run To main is selected in pVision.
11. In this case, 086 444 s shows the last instruction to be executed. (BX r0). In the Register window the PC will display
. e
the value of the next instruction to be executed (0x0800 0188 in my case). Click on Single Step once. ”
Display: Al v =) * in Al v] = T
Time Address / Port Instruction / Data Sre Code / Trigger Addr Function
¥ 1 0x030014FC CMP r2, #0x00 __scatterload_zeroinit ﬂ
0.000 026 056 5| % Ox020014FE *BNE Ox020014F2 __scatterload_zerainit
0.000 086 111 5| X : 0x02001500 BX Ir __scatterload_zeroinit
¥ 0 0x030014 48 ADDS rd,r4, #0x10 _ scatterload
¥ 1 0x0230014AC CMP r4,rs _ scatterload
0.000 086 167 5| X : Ox080014AE *BCC Ox0200149E __scatterload
¥ 1 Ox020014B0 BLW __rmain_after_scatterload (... _ scatterload
¥ 1 0x02000138 LDR. r0,[pc, #0] ; @Ox0800013C 77
0.000 086 444 5| ¥ : 008000134 B ro 7
TRACE RUM
0.000 086 522 5| X : 0x02000152 PUSH {r1-r3,Ir} int main {void) { main -
12. The instruction PUSH will display as shown on the last line in the trace window. Note the function column diplsyas
the function where the assembly isnstructions are located with the start highlighted in orange.
13. Scroll to the top of the Instruction Trace window to frame # 1. This is the first
instruction executed after RESET.
TIP: You can set Trace Triggers to start and stop the Trace collection. This allows you

to save only the frames you are interested in.

A STM3240G-EVAL board connected to a ULINKpro using the A
special CoreSight 20 pin ETM connector: - uy,
28 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

3) Code Coverage: For reference only...

14. Click on the RUN icon. Bl After a second or so stop the program with the STOP icon. °

15. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

16. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Disassembly

Colour blocks indicate which assembly instructions have been executed.

5.
this point.
6.
7.

i
&

Green: this assembly instruction was executed.
Gray: this assembly instruction was not executed.
Orange: a Branch is always not taken.

Cyan: a Branch is always taken.

Light Gray: there is no assembly instruction at

RED: Breakpoint is set here.
Next instruction to be executed.

In the window on the right you can easily see examples of each type of
Code Coverage block and if they were executed or not and if branches

were taken (or not).

Ox08001042 F1BOTF80 CMP
0x08001046 D300 BCC
0x08001048 EOQIC B

1141: =

SysTick->LORD

Ox0800104A FO20417F BIC
Ox0800104E 1E49 SUES
Ox08001050 FO4F22E0 MOV
0x08001054 6151 STR

=1

ysTick IR{m,

1142: NVIC SetPriority (S5y
0x08001056 BFOO HOP

1014: if (IRQn < Q)
0x08001058 1751 ASES
0x0800105a 2900 CMP
0x0800105C DROS BGE

1015: SCB->SHP[((uint32_

1016: else {
0x0800105E 210F MCVS
0x08001060 0109 LSLS

r0, #0x1000000
0x08001044

0x08001084

cks & SysTick]
ri1,r0,#0xFFO00L
rl,rl,#1

r2, #0xEQOQOEOQQD
rl, [x2,#0x14]
(1

rl,r2,#23
rl,#0x00
0x0800106R

t) (IRgm) & O=xF,

rl,#0x0F
rl, rl, #4

@Disassembly Q Logic Analyzer | ﬂ Instruction Trace |

Why was the branch BCC always taken resulting in 0x0800 1048 never being executed ? Or why the branch BGE at
0x800 105C was never taken ? You should devise tests to execute these instructions so you can test them.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies such
as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.

Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. Note
your display may look different due to different compiler options.

e T |

Update || Clear ‘ Module: I <Al Modules> j
Modules/Functions | Execution percentage I;|
- Blinky

- ADC_init 100 of 65 instructions, 2 condjump(s) not fulty executed

100% of 95 instructions

100% of 13 instructions

= IRQ

o SysTick_Handler
- Calefverage

- gendchar
- getkey

_Sys_exit

100% of 13 instructions
100% of 17 instructions

54% of 108 instructions, 2 condjump(s) not fulty executed

1007 of 48 instructions, 1 condjump(s) not fulty executed

100% of 25 instructions

100% of 17 instructions, 1 condjump(s) not fulty executed

100% of 47 instructions

687 of 22instructions, 3 condjumpis) not fully executed

0% of 8 instructions

100% of & instructions
0% of 4 instructions
0% of 3 instructions
0% of 5 instructions
0% of 2 instructions

@Disas

semb

ly | ﬂ Logic Analyzer

CS}E Code Coverage ﬂ Instruction Trace

29

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

4) Performance Analysis (PA): For reference only...

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the pVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before. Or select the Reset icon in the PA window to clear it. Run the program for a short time.

4. Expand some of the module names as shown below.

5. Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the GLCD routines.

[retomancepoatree X

Resst ‘ Show: IModuIes j

Module/Function Calls Time(Sec) Time(%) | =

= By T67s 1007 [E— |

Bl GLCD_16bitlF_STM32F2ac.c 1.1658 100 B

------- delay 5 £95.090 ms e I |
"""" rd_regq 1 0.600us 0% |
"""" GLCD_lnit 1 13.767 us 0% |
"""" GLCD_SetWindow 455 321200 us 0% |
"""" GLCD_WindowMax 5 2067 us 0% |
"""" GLCD_PutPixel 0 lus 0% |
"""" GLCD_Set TextColor 748 60.383 us 0% |
"""" GLCD_SetBackCalor 2 0.367 us A |
"""" GLCD_Clear 1 8.000 ms 1% I
------- GLCD_DrawChar_US 0 Ous 0% | i
"""" GLCD_DrawChar_L16 77 10.004 ms 1% |
"""" GLCD_DisplayChar 77 58.000 us P |
"""" GLCD _DisplayString 4 16.067 us 0% |
"""" GLCD_Clearln 0 Dus 0% |
"""" GLCD_Bargraph 373 250.735 ms 21 I
"""" GLCD_Bitmap 0 Dus 0% |
....... GLCD_Bmp o Dus 0% I
"""" GLCD_ScrollVertical 0 lus 1|
"""" wr_cmd 3233 510.700 us 0|
"""" wr_dat 2781 220,367 us 0% |
------- wr_dat_only 1417418 154.013 ms 17 I
"""" Wr_reg 271 1.545ms 0% | e

@Disassemhly | E Performance Analyzer ﬂ Logic Analyzer |C3E Code Coverage | ﬂTl'ace Drata |

Click on the RUN icon. =

Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

9. Select Functions from the pull down box as shown here and notice the difference.

10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

11. When you are done, exit Debug mode.

TIP: You can also click on the RESET icon = %1 but the processor will stay at the initial PC and will not run to main(). You
can type g, main in the Command window to accomplish this.

When you click on the RESET icon, the Initialization File .ini will no longer be in effect and this can cause SWV and/or ETM
to stop working. Exiting and re-entering Debug mode executes the .ini script again.

30 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

5) Execution Profiling: For reference only...

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called. This
information is provided by the ETM trace. It is possible to group source lines (called collapse) to get combined times and
number of calls. This is called Outlining. The pVision simulator also provides Execution Profiling.

1. Enter Debug mode. Execution Profiling » Disabled
2. Select Debug/Execution Profiling/Show Time. 7| Show Time
. . Memaory Map...
3. In the left margin of the disassembly and C source T Show Calls
windows will display various time values. T
. Function Editor (Open Ini File)... Reset Information

4. Click on RUN.

5. The times will start to fill up as shown below right:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and ands more information appears as in the yellow box here:
Time: Calls: Average:
19.599 139910257 * 0.140 s

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
margin.

Abstract.tx‘t/ Blinky.c r core_cm3.h I

207 0.050 ps GLCD SetTextColor (Blue):
208 fendif // USE LCD
209
210 0,033 ps while (1) {
211 14793 | AD value = AD last;
212 2157 = if (AD value != AD last)
213 0,033 ps AD walue = AD last;
214
215 14145 if (AD value != AD print) {
216 $ifdef _ USE_LCED
217 7967 ps GLCD_SetTextColor (Red);
28 10817 ps GLCD Bargraph (9 * _ FONT W
219 E117 ps GLCD SetTextColor (White):
220 #endif // USE LCD
221
222 3175 ps AD print = AD wvalue;
223 E.380 ps AD dbg = AD walue;
224 H
225
226 FA* Printf message with AD wal
227 2297 = if (clock 1s) {
228 0.500 ps clock 1s = 0;
229 0.EEY pz sprintf (text, "AD wvalue = C
230
231 Time: Calls: Average:
232 00667 ps B * 0.074 ps e);
233 0875 ps GLCD DisplayString(5, 0, _
234 #endif // USE LCD
235 0.483 ps printf ("%=\r\n", text):
236 H
"‘\"\-r
31 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

6) In-the-Weeds Example: For reference only... A ULINKpro is needed for Instruction Trace:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Hard Fault occurs, the CPU will end up at the address specified in the Hard Fault vector located at 0x00 000C. This
address points to the Hard Fault handler. This is usually a branch to itself and this Branch instruction will run forever. The
trace buffer will save millions of the same branch instructions. This is not useful. We need to stop the CPU at this point.

This exception vector is found in the file startup_stm32f4xx.s. If we set a breakpoint by double-clicking on the Hard Fault
handler and run the program: at the next Hard Fault event the CPU will jump to the Hard Fault handler (in this case located at

0x0800 01BO0 as shown to the right) and stop. Disassembly
. . 193: B . -
The CPU and also the trace collection will stop. The trace 194: _ Emoe
buffer will be visible and extremely useful to investigate and P
determine the cause of the crash. -ﬂoxogzc;c:)mo ETFE B I Idenﬁ:;;:ﬁi:j;;ler :0xosodgi;§i
1. Open the Blinky Ulp example, rebuild, program the sae: S—_—
Flash and enter Debug mode. Open the Data Trace . _,,j
WindOW. [Zh Disassembly | B Logic Anzlyzer |

2. Locate the Hard fault vector near line 207 in the disassembly window or in startup_stm32f4xx.s.
Set a breakpoint at this point. A red block will appear as shown above.
4. Run the Blinky example for a few seconds and click on STOP.

N
Click on the Step Out icon 0 to go back to the main() program as shown in the Call Stack + Locals window:

6. In the Disassembly window, scroll down until you find a POP instruction. I found one at 0x0800 1256 as shown

below in the third window:
CaliStack +tocals [X]

7. Right click on the POP instruction (or at the MOV at | Neme |Locationvalue | Type
0x0800 124E as shown below) and select Set Program E R gmmm %0 int10

. . . . ¥ A | to - d short

Counter. This will be the next instruction executed. v AD::H:: 0:038D ::|: ::::::a ot

8. Click on RUN and immediately the program will stop on frrr T | R —
the Hard Fault exception branch instruction. =

9. Examine the Data Trace window and you find this POP plus everything else that was previously executed. In the
bottom screen are the 4 MOV instructions plus the offending POP.

TIP: The addresses you get will be different than these ones.

0x08001248 F1A40401 5SUB r4,r4,$0x01
. . 0x0800124C DCDF BGT 0x0800120E
10. Note the Branch at the Hard Fault does not show in the trace window cn0800124F 4048 Hov 5 =5
because a hardware breakpoint does execute the instruction it is set to o eoaloss soar v i
therefore it is not recorded in the trace buffer. 0208001254 4643 Hov r3,z8
0x08001256 ESBDSFFO POP {r4-rl2,pc}
0x08001252& 0000 MOVS r0,x0

__scatterload:

e g

Display: Al v = = v in Al v [£
Time Address [/ Port Instruction / Data Src Code [/ Trigger Addr Function

¥ 1 Ox08000EAR B Ox0S000ECC GLCD_Bargraph d
¥ 1 Ox0B000ECC ADDS r5,rS,#1 for (j =0;j<=w-1; j++) { GLCD_Bargraph
¥ Ox0S000ECE SUBS rO,rd, #1 GLCD_Bargraph
3 Ox0B000EDO P rO,r5 GLCD_Bargraph

1,352 392 514 = ¥ : Ox0S000ED2 *BCS Ox08000ESC GLCD_Bargraph
¥ 1 Ox0B000ED4 ADD r8,rB8, #0x01 for (i =0; 0 <h; i++) { GLCD_Bargraph
¥ 1 Ox02000EDE CMP ra,rG GLCD_Bargraph

1.352 392 569 5| X : Ox0S000EDA *BCC Ox08000E98 GLCD_Bargraph
¥ 1 Ox02000EDC NOP wi_dat_stop); GLCD_Bargraph
¥ : Dx02000EDE MNOP } GLCD_Bargraph

1,252 292 792 5| X : OxO2000EED POP {r4-r10,pct 1 GLCD_Bargraph -

The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

32 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

26) Configuring the ST-Link Debug Connection to the target: The following steps are already done

by default in the example programs. These instructions are provided for reference.

1. Connect your PC to the Discovery board with a USB cable. Start pVision. It must be in Edit mode (as it is when
first started — the alternative to Debug mode) and you have selected a valid project. Blinky will do fine.

2. Select Target Options EAN or ALT-F7 and select the Debug tab. In the drop-down menu box select ST-Link
e ————

Debugger as shown here:
TIP: Do NOT select ST-Link (Deprecated Version).

3. Select Settings and the next window below opens up. This is the control

panel for the ULINKSs and ST-Link. (they are the same).

| Linker Debug | Liiies |

* Lse: IST—Link Debugger

4. InPort: select SW. JTAG is not a valid option for ST-Link and this board. SW is also known as SWD.

In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the target
processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the target

power supply. Cycle the power to the board.

TIP: To refresh this screen select Port: and change it or click OK
once to leave and then click on Settings again.

TIP: You can do everything with SW (SWD) as you can with
JTAG except for boundary scan.

Next page: configure the Keil Flash programming tool:

Debug Adapters:

j Settings |

Conexch Target versetwp |
Debug |T|ace | Fash Downioad |
~Debug Adapter SW Device
Unit: [STUINKAVZ -] IDCODE | Device Name | ble
SWDIO| (x2BAD1477 ARM CoreSight SW-DP]
Serial Number [N/A == _"I
HW Version: [v2 DUW”l
e e | & Automatic Detection b oonE: |
Part € banual Configuration Dievice Name I—
Max Clock: [1MHz = Add Delete | Iprdate IR [en I

—Debug

Connect: [Normal

Connect & Reset Optior:
’7l7 Reset after Connact

x| Ressi: [Autodstect

Cache Options Download Options
| | | P Cache Code ¥ Vefy Code Do
¥ Cache Memory | | [~ Downloadto A

wriload

=]

X

o]

Cancel

Apply

It is easy to select a USB debugging adapter in pVision. You must configure the connection to both the target and to Flash
programming in two separate windows as described below. They are each selected using the Debug and Ultilities tabs.

Using other Debug Adapters: This document uses the on-board ST-Link. You can use a ULINK?2 or a ULINKpro with
suitable adjustments. You would need a suitable adapter to connect a different adapter to the SWD connector on the

Discovery board. Some step(s) to turn off the on-board ST-Link adapter might also be necessary to avoid conflicts. It is
reported that shorting solder bridge SB10 will hold the ST-Link processor in RESET allowing external adapter operation.

If your debugging sessions are unreliable, please check for additional conflicts or loading on the SWD pins. The SWD
connector provides the ability to use the Discovery board as a debug adapter on another board. Its main purpose is not to
connect an external tool such as a Keil ULINK2. Some adaptation is required but not difficult to do.

It is possible to use a Segger J-Link with uVision. Serial Wire Viewer is supported.

The ST-Link is selected as the default debug adapter for the Keil examples for this Discovery board.
Serial Wire Viewer (SWV) is completely supported by ST-LINK Version 2. Firmware V2.16.S0 or later except V2.19.S0.

33
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

27) Configure the Keil Flash Programmer:
6. Click on OK once and select the Utilities tab.
7. Select the ST-Ling Debugger similar to Step 2 above.
8. Click Settings to select the programming algorithm if it is not visible or is the wrong one.

9. Select STM32F4xx Flash as shown here or the one for your processor:

10. Click on OK once. Coctor M Tamet DriverSetap e x|
. Debug | Trace Flash Download |
TIP: To program the Flash every time you enter Debug mode, S —— e e
check Update target before Debugging. 3 E :a;%? E . o iy
TIP: If you select Use Debug Driver, the debugger you selected = m: e
in the Debug tab will be used. Denvos Type || Devics S AddessRorge |
STM32F4cc Flash On-chip Flash ™ 108000000H - DBOFFFFFH
11. Click on OK to return to the pVision main screen.
12. Select File/Save Al
13. You have successfully connected to the STM32 target o000 001000
processor and configured the uVision Flash M| menowe |
programmer.
oK Cancel
TIP: The Trace tab is where you configure the Serial Wire B e

Viewer (SWV). You will learn to do this later.

COM led LD1 indication:

LED is blinking RED: the first USB enumeration with the PC is taking place.

LED is RED: communication between the PC and ST-LINK/V?2 is established (end of enumeration). pVision is not connected
to ST-Link (i.e. in Debug mode).

LED is GREEN: pVision is connected in Debug mode and the last communication was successful.

LED is blinking GREEN/RED: data is actively being exchanged between the target and pVision.

No Led: ST-LINK/V2 communication with the target or pVision has failed. Cycle the board power to restart.

Running programs in the internal STM32 RAM:

It is possible to run your program in the processor RAM rather than Flash. In this case, the Flash programming tool is not

used nor is the Load icon. After successfully compiling the source files, click on Debug icon @l An .ini file configures the
processor and loads your executable into RAM.

The Discovery Blinky project has a RAM setting. Select STM32F407 RAM as shown Project Flash Debug Peripherals 1
here if you want to try this mode. e ————— A ™
39 STM32F407 RAM v iR

Loading and Running your program into RAM:

1. Select STM32F407 RAM as shown above. I x|

2. Select Target Options ®~ or ALT-F7 and select the Debug tab. | Lker Debug | Uttes |

3. The ini file is located in the Initialization File: box as shown here: £ s ST-Lrk Debugoer -l 4";

4. Click on Edit... to view its contents.

])) " Load Application at Statup I~ Run toman()
5. Click on the Target tab. Note the RAM at 0x2000_0000 is split Initizlization Fle:
between the R/O and R/W memory areas. I_-\Dbg_mu_,, J Edt.. |

Click on OK to return to the main pVision window.
Return to the STM32F407 Flash setting.

34 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

28) Serial Wire Viewer and ETM Trace Summary:

Serial Wire Viewer can see:
= Global variables.
= Static variables.
= Structures.
= Peripheral registers — just read or write to them.
= Can’t see local variables. (just make them global or static).
= Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:
= PC Samples.
= Data reads and writes.
= Exception and interrupt events.
= CPU counters.

= Timestamps.

ETM Trace is good for:
= Trace adds significant power to debugging efforts. Tells where the program has been.
» A recorded history of the program execution in the order it happened.
= Trace can often find nasty problems very quickly. Weeks or months can be replaced by minutes.
= Especially where the bug occurs a long time before the consequences are seen.
= Or where the state of the system disappears with a change in scope(s).

= Plus - don’t have to stop the program. Crucial to some projects.

These are the types of problems that can be found with a quality ETM trace:
= Pointer problems. Illegal instructions and data aborts (such as misaligned writes).

= Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did | get here ?

= Out of bounds data. Uninitialized variables and arrays.
= Stack overflows. What causes the stack to grow bigger than it should ?

* Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

= Communication protocol and timing issues. System timing problems.
= ETM facilitates Code Coverage, Performance Analysis and program flow debugging and analysis.

For information on Instruction Trace (ETM) pleas e visit www.keil.com/st for other labs discussing ETM.

35 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

29) Document Resources: See www.keil.com/st

Books:
1. NEW! Getting Started MDK 5: Obtain this free book here: www.keil.com/mdk5/.
2. There is a good selection of books available on ARM processors. A good list of books on ARM processors is found at

www.arm.com/university by selecting “Teaching Resources”. You can also select ARM Related Books but make
sure to also select the “Books suited for Academia” tab to see the full selection.

3. uVision contains a window titled Books. Many documents including data sheets are located there.

4. Alist of resources is located at: www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers.
The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

Application Notes:

8. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

9. Segger emWin GUIBuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf

10. Porting mbed Project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

11. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

12. Using pVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

13. RTX CMSIS-RTOS in MDK 5 C:\Keil vS\ARM\Pack\ARM\CMSIS\3.20.4\CMSIS RTXDownload
14. RTX CMSIS-RTX www.keil.com/demo/eval/rtx.htm and www.arm.com/cmsis
15. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
16. Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

17. Cortex Debug Connectors: www.arm.com and search for cortex debug_connectors.pdf
18. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

Keil Tutorials for STMicroelectronics Boards: see www.keil.com/st

Community Forums: www keil.com/forum and http://community.arm.com/groups/tools/content

ARM University program: www.arm.com/university. Email: university@arm.com

ARM Accredited Engineer Program: www.arm.com/aae
mbed: http://mbed.org

For comments or corrections on this document please email bob.boys@arm.com.

For more information on the ARM CMSIS standard: www.arm.com/cmsis,

36 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

30) Keil Products and Contact Information:
Keil Microcontroller Development Kit (MDK-ARM™)

= MDK-Lite™ (Evaluation version) $0
= NEW Il MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)
= MDK-Standard™ (unlimited compile and debug code and data size)
= MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries)

For special promotional pricing and offers, please contact Keil Sales for details.

USB-JTAG adapters (for Flash programming too)
= ULINK2 - (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.

= ULINKpro — Cortex-Mx SWV & ETM trace.
MDK also supports ST-Link, CMSIS-DAP and Segger J-Link Debug adapters.

The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free. = e -
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! I

www.keil.com/demo/eval/rtx.htm or C:\Keil v5\ARM\Pack\ARM\CMSIS | PIKEIL
Keil provides free DSP libraries with source code for Cortex-M processors.] KEIL | Pevelopmen s
Call Keil Sales for details on current pricing, specials and quantity discounts. P cene S = b

Sales can also provide advice about the various tools options available to you. —
They will help you find various labs and appnotes that are useful. dacsinm

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

. . . . N . . L=
Call Keil Sales for special university pricing. Go to www.arm.com/university to \r "
view various programs and resources. —_—

MDK supports STM32 Cortex-M3 and Cortex-M4 processors. Keil supports £ ’

many other ST processors including 8051, ARM7, ARM9™ and ST10
processors. See the Keil Device Database”™ on www.keil.com/dd for the complete list of STMicroelectronics support. This
information is also included in MDK.

Contact Keil Sales for USA prices. Contact sales.intl@keil.com for pricing in other countries.

For the entire Keil catalog see www.keil.com or contact Keil or your local distributor.

For Linux, Android and bare metal (no OS) support on ST processors such as SPEAr, please see DS-5 www.arm.com/ds5.

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document and for more STMicroelectronics specific information, go to www.keil.com/st

CMSIS Version 3: See www.arm.com/cmsis and http://community.arm.com/groups/tools/content for more information.

Also see www.keil.com/st and www.keil.com/forum

ARM?* Cortex” Microcontroller
Scftwars Interface Standard Intelligent Processors by ARM®

WIS Cortex KEIL

Tools by ARM

37 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F4 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

