

 2 Combinational Design: Binary-
to-BCD conversion

This experiment introduces combinational circuit design using the Xilinx
software for implementation and testing. This includes:

 Schematic Capture
 Combinational Verilog
 Modular design

By the end of this lab you should be able to…
...design a combinational circuit which coverts from one base to another
…use both schematic capture and Verilog to implement a combinational circuit

This lab assumes that you have purchased a Spartan 3 development board and
have your own laptop computer to install the software.

You will need to fill out the lab DATA SHEET located at the end of this lab
assignment during the performance of the lab.

I. Shift-Add-3 formula
………………………………………………………………………………………………………

Binary Coded Decimal (BCD) is used to represent binary numbers using the decimal system.
Often calculations are performed in binary and then converted to BCD to display on LCDs. Each
decimal digit has a 4-bit binary representation. Since there are ten decimal digits (0-9), there are
ten different binary representations. Since four bits can represent sixteen individual codes, six
codes are not used. The typical BCD values are shown in Table 1.

ECE 4743/6743 Binary-to-BCD conversion

2

Decimal Digit Binary Representation
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 1. BCD representation

Decimal numbers with multiple bits require a 4-bit BCD number for each bit. For numbers 10-
99, we need 8 bits. For numbers 100-999, we need 12 bits. Table 2 illustrates this concept.

 Hundreds Tens Ones
Decimal 9 5 2
BCD 1001 0101 0010

Table 2. Multiple decimal digits

Note that if we convert a binary number to BCD, sometimes more than one digit location is
required. The binary number 1100 represents the decimal number 12. To convert a four bit
binary number to a decimal number, any number greater than 1001 must be converted to two 4-
bit BCD numbers. This is done by adding 6 to the binary number. For example, given the binary
number 1100, if six is added to this, the result is 0001 0010. Converting each of these
individual BCD numbers results in the decimal number 12.

A similar computation could be done using shifts. Recall that a left shift moves all bit values one
position to the left (toward the MSB). A left shift has the same function as multiplying the binary
number by two. If we have the number 0101, and we shift it left, we know the result will be
1010 (assuming we shift in a zero). If we then want to convert this number to a BCD, we will
have to add six to it. Knowing that we will convert the number to BCD, we can check the
original number before shifting it. If it is five or greater, then we can add three to that number.
Then when we shift it, it will automatically be in BCD form. Table 3 illustrates this concept
using the number 0110.

ECE 4743/6743 Binary-to-BCD conversion

3

Operation Binary
Original number 0110
Add 3 1001
Shift Left 0001 0010
Decimal 1 2

Table 3. Preemptive add, then shift example

This concept can be used on a binary number with any number of bits. For each bit in the binary
number, the shift-add-3 algorithm must be implemented. For a four bit number, four shifts must
be performed. Before each shift is performed, if the number is greater than four, then it must be
added to three. Once all four bits have been shifted, the final BCD number will be in the upper-
most bits of the new number. See the example in Table 4.

Operation Tens Ones Binary
Start 1111
Shift 1 111
Shift 11 11
Shift 111 1
Add-3 1010 1
Shift 1 0101
Decimal 1 5

Table 4. Four-bit Shift-Add-3 example

To perform a 4-bit binary conversion, 12 bits must be used. The upper four bits will be the tens
decimal digit and the middle four will be the ones decimal digit. The lower four bits will be
ignored. In the previous example, only the relevant bits were shown. In reality, the missing bit
locations would contain zeros. This process can be extended for any size of binary number.
Another example for an eight bit binary number is shown in Table 5.

ECE 4743/6743 Binary-to-BCD conversion

4

Operation Hundreds Tens Ones Binary
Start 1111 1111
Shift 1 1111 111
Shift 11 1111 11
Shift 111 1111 1
Add-3 1010 1111 1
Shift 1 0101 1111
Add-3 1 1000 1111
Shift 11 0001 111
Shift 110 0011 11
Add-3 1001 0011 11
Shift 1 0010 0111 1
Add-3 1 0010 1010 1
Shift 11 0101 0101
Decimal 2 5 5

Table 5. Eight-bit Shift-Add-3 example

ECE 4743/6743 Binary-to-BCD conversion

5

II. Combinational Implementation
………………………………………………………………………………………………………

The Shift-Add-3 algorithm can be implemented using all combinational logic. The truth table for
the individual Add-3 module is shown in Table 6. It has a 4-bit input and a 4-bit output. When
the set of inputs is less than 5, it outputs the same number. When the set of inputs is greater than
four, it adds three to the input. Given the implementation, the inputs should never be greater than
the number nine, so all inputs above nine are don’t care.

A3A2A1A0 S3S2S1S0
0000 0000
0001 0001
0010 0010
0011 0011
0100 0100
0101 1000
0110 1001
0111 1010
1000 1011
1001 1100
1010 XXXX
1011 XXXX
1100 XXXX
1101 XXXX
1110 XXXX
1111 XXXX

Table 6. Add-3 module truth table

To shift a set of numbers in a combinational circuit, the inputs are connected to the outputs, but
shifted by one position. So the least significant bit would route to the second least significant bit.
This can be repeated for each stage the Shift-Add-3 operation must occur. Note in the example in
Table 5, only when there are three or more bits in a column does it need to be checked for Add-3.
The circuit for the Shift-Add-3 is shown in Figure 1.

Your objective for the this lab is to implement the Shift-Add-3 circuit in the Xilinx design
software and download the circuit to your Spartan 3 development board. The input to the circuit
will be the eight switches and the output will be the four-digit seven-segment LED array.

ECE 4743/6743 Binary-to-BCD conversion

6

A3

A2

A1

A0

S3

S2

S1

S0

Add-3

A3

A2

A1

A0

S3

S2

S1

S0

Add-3

O
ne

s

bcd(0)

bcd(1)
bcd(2)
bcd(3)
bcd(4)

bcd(5)
bcd(6)
bcd(7)
bcd(8)

Te
ns

A3

A2

A1

A0

S3

S2

S1

S0

Add-3

A3

A2

A1

A0

S3

S2

S1

S0

Add-3 bcd(9)
bcd(10)
bcd(11)

H
un

dr
ed

s

A3

A2

A1

A0

S3

S2

S1

S0

Add-3A3

A2

A1

A0

S3

S2

S1

S0

Add-3A3

A2

A1

A0

S3

S2

S1

S0

Add-3

bin(0)

bin(1)
bin(2)
bin(3)
bin(4)
bin(5)
bin(6)
bin(7)

‘0’

‘0’

‘0’
‘0’

Figure 1. Shift-Add-3 circuit using the Add-3 module

III. Laboratory Work
………………………………………………………………………………………………………

Setting up the project file

1. First extract the compressed files into a project directory called “Lab2”. It would probably be

convenient to put it in the same place as Lab1.

2. Load Project Navigator and open the lap2top.sch schematic. Notice that the eight switch
inputs are connected through buffers to the BCD outputs. This will make the LCDs display
the binary values in hexadecimal. In this configuration only the right-most characters are
used, so the left two characters are connected to ground (so they will display zeros).

3. The BCD outputs are not directly connected to the LCD. A special interface is needed to
properly format the outputs to the LCD. You won’t need to know how the interface works to
complete the lab.

4. Compile the program and download the design to see your board displaying the hexadecimal
outputs.

ECE 4743/6743 Binary-to-BCD conversion

7

Grade B: Using schematic capture for the Add-3 module

1. Reference the truth table for the Add-3 module.

2. Write a boolean equation for S3, S2, S1, S0. You can use Karnaugh maps (K-maps) to
minimize the logic required. You can also use minterm notation. Reference chapter 2 in
your textbook if you do not remember how. The Xilinx software will minimize your logic if
you don’t want to; however, simpler equations mean fewer mistakes.

3. Implement each of the four equations in the schematic file “add3.sch”using the Xilinx design
software package. You will need to use input/output markers, gates (found under Logic
symbols), and connect them all with wires.

4. Once the design is complete, synthesize the circuit by executing the Synthesize – XST
process.

5. Create a schematic symbol with this circuit by executing Create Schematic Symbol under
the Design Entry Utilities process.

6. Open the top level schematic “lab2top.sch”.

Note: To check the functionality of your Add3 module, refer to the class notes on how
to build a 4-bit binary-to-BCD converter. Implement this circuit first and download
it to your Spartan 3 board. Check all 4-bit combinations on the numeric display
before continuing.

7. Follow Figure 1 to implement your circuit. Use the Add-3 module you created to place into
the design. In the categories window, select the second line which is the directory name for
your project. The symbol name “add3” will appear in the bottom left window.

8. Note that a single wire cannot have two names. If you want to connect a wire to ground, it
must first go through a buffer.

9. Compile your source and download the design to your Spartan 3 board.

10. Have the TA evaluate your assignment.

Grade A: Using Verilog for the Add-3 module

1. Create a new Verilog source module by right-clicking in the sources window and selecting

“New source”.

2. Select Verilog module and type “add3veri.v” in the file name box. Click “Next”.

3. Enter the four inputs and four outputs under the heading “Port Name”. You should have 8
lines when finished. Be sure to select under “Direction” whether they are inputs or outputs.
Click “Next” and then “Finish”.

4. A Verilog template will open which has the entity completed. You will only need to
complete the architecture portion.

ECE 4743/6743 Binary-to-BCD conversion

8

5. Implement the four equations using concurrent statements. This is more efficient than using
if-else statements with an adder/comparator.

6. Once you have completed the Verilog code, create a new symbol, and change the top-level
schematic to use your Add3 Verilog module instead of the schematic Add3 module.

7. Compile your source and download the design to your Spartan 3 board.

8. Have the TA evaluate your assignment.

ECE 4743/6743 Binary-to-BCD conversion

9

LAB DATA PAGE Name: _____________________________

Grade B. Using schematic capture for the Add-3 module

1. Program compiles (Yes/No) ________
2. Using schematic capture for output equations (Yes/No) ________
3. All eight switches change the display (Yes/No) ________
4. All numbers correctly displayed (Yes/No) ________

Total hours reported (from work log) for this lab portion: __________

TA CHECKOFF SIGNATURE: ______________________________(must be legible!)

Grade A: Using Verilog for the Add-3 module

1. Program compiles (Yes/No) ________
2. Using Verilog for outputs (Yes/No) ________
3. All eight switches change the display (Yes/No) ________
4. All numbers correctly displayed (Yes/No) ________

Total hours reported (from work log) for this lab portion: __________

TA CHECKOFF SIGNATURE: ______________________________(must be legible!)

Student Evaluation:

What did you like most about this lab?

What would you change about this lab to make it better (not necessarily easier)?

ECE 4743/6743 Binary-to-BCD conversion

10

WORK LOG PAGE Name: _____________________________

Lab portion worked on / completed Start Time &

Date
Stop Time &

Date
Hours:

Grade C:
Grade B:

Total Hours:

Grade A:

