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Within a case study on the protein-protein interaction network (PIN) of Drosophila melanogaster
we investigate the relation between the network’s spectral properties and its structural features such
as the prevalence of specific subgraphs or duplicate nodes as a result of its evolutionary history. The
discrete part of the spectral density shows fingerprints of the PIN’s topological features including
a preference for loop structures. Duplicate nodes are another prominent feature of PINs and we
discuss their representation in the PIN’s spectrum as well as their biological implications.

PACS numbers: 89.75.-k, 89.20.-a, 89.75.Hc, 89.75.Fb, 87.16.Yc, 87.16.-b, 87.10.+e, 02.50.Fz

I. INTRODUCTION

Network structures can be observed in most diverse do-
mains ranging from biological and technological systems
to social or economical systems [ll]. Genetic regula-
tory networks, protein-protein interaction networks and
metabolic networks support the functions of life in any
living organism. Technological networks such as the in-
ternet or the World Wide Web have a huge impact on our
lives and societies. Networks of acquaintances and the ex-
change of information within these networks shape social
and economical systems. Considering the omnipresence
of networks, their investigation has a long tradition in
graph theory [2, 3]. However, during the last few years
high quality data on real-world networks has revealed
that they cannot be adequately described by standard
models from random graph theory and the topic has at-
tracted growing interest. Still, much attention has been
devoted to the derivation of rather specific quantities
like degree distributions or clustering coefficients [4] that
do not allow for a classification and understanding of
network topologies within a broader and self-consistent
framework.

Making an attempt towards a more comprehensive de-
scription spectral graph theory [4, ld, 14, I§] can be con-
sidered as one promising ansatz. A network of N nodes
can be described by its adjacency matrix A = (a;;) with
entries

~_J 1 if there is a link between node ¢ and j (1)
%5 =1 0 otherwise.

The adjacency matrix is a symmetric, non-negative ma-
trix in the case of undirected networks and accordingly
has real eigenvalues {);}, 7 = 1,..., N, being solutions
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of det(A — AI) = 0. The relation between features of a
network and properties of its spectral density

1 N
) = D0 N) @

with respect to its adjacency matrix is a topic of current
research. While dense classical random networks exhibit
a semi-circular spectral density of the adjacency matrix
[9], networks with a broad or scale free degree distri-
bution give rise to a broader spectrum [10, [11, [12, [13,
14, [15). A striking feature of sparse random networks’
spectral density is the emergence of peaks at eigenvalues
of finite trees 9], similar to those found in large random
trees [16], due to the strong prevalence of these subgraphs
[32]. Here we address whether these findings are applica-
ble more generally, that is whether peaks in the spectral
density of sparse random networks can be associated to
a strong prevalence of specific subgraphs. The search
for subgraphs that are statistically overrepresented rel-
ative to a null-model, so-called motifs, recently gained
much attention [17, [18]. As a case study on the relation
between these two approaches, we investigate the spec-
tral properties of the protein-protein interaction network
(PIN) of the fruit fly Drosophila melanogaster [19]. While
no simple correspondence between network motifs and a
network’s spectral proprieties can be derived, on a more
abstract level, we infer from the PIN’s spectrum a preva-
lence of loop structures. Furthermore, some properties
specific to a network that has evolved by duplication of
nodes are studied and discussed within the context of
spectral analysis.

II. THE SPECTRUM OF THE PIN OF
DROSOPHILA MELANOGASTER

For our study we used the PIN of Drosophila
melanogaster as given in [19] and available via the
Database of Interacting Proteins [20]. The protein-
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FIG. 1: The number of nodes divided by 10000 (solid line) and
the fraction of nodes (dashed line) in the largest connected
component in the PIN as a function of the minimal confidence
value of protein-protein interaction. We focus on the PIN
defined by a minimal confidence value of 0.5, see dashed line.
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FIG. 2: Spectral analysis of the protein-protein interaction
network of Drosophila melanogaster. (a) The cumulative spec-
tral density. (b) The discrete frequency spectrum containing
49% of all eigenvalues.

protein interactions have been derived using the two-
hybrid method which, however, is known to generate
many false positives. Therefore each interaction in the
network is classified by a confidence value between zero
and one defining a hierarchy of networks with increasing
minimal confidence value for the protein-protein interac-
tions. In Fig. [M the size of the largest connected compo-
nent in a network with a given minimal confidence value
of interactions is shown.

For our further analysis we choose a network with a min-
imal confidence value of 0.5 which contains 4681 proteins
and 4794 interactions corresponding to an average de-
gree (k) = 2.05. The network is enriched with biologi-
cally meaningful interactions while it still shows a strong
largest connected component (i.e. a giant component)
containing about 2/3 of its nodes.

We determined the eigenvalues of the adjacency matrix
corresponding to this PIN. The cumulative spectral den-
sity in Fig. B (a) exhibits jumps at various eigenvalues
which are represented by the discrete spectrum in Fig.
(b) [33]. Since about 2/3 of the network’s nodes be-
long to its giant component and 49% of the eigenvalues
in the network’s spectrum are in the discrete spectrum,
the emergence of spectral peaks cannot be explained by
small isolated clusters alone.

A. The discrete spectrum and network motifs

To get a better understanding of the emergence of spec-
tral peaks we compare the discrete spectrum with the
corresponding spectra of two reference networks. First,
we look at a network of the same size and degree sequence
but randomized links following the procedure of [21] (a
randomized PIN). Second, we consider a classical random
network of the same size and average degree (k) = 2.05
(a random network), that is a network with a probabil-
ity p = 0.000438 for a link between any two nodes. In
Fig. the discrete spectrum of the adjacency matrix
of the protein-protein interaction network of Drosophila
melanogaster as well as of the two reference networks are
shown, the latter being averages over 10 reference net-
works.

To get more reliable results, we concentrate our further
analysis only on eigenvalues that can be found more than
twice in the spectrum of the original network. Qualita-
tively, we see that while the classical random network
shows only a few peaks of that size corresponding to the
eigenvalues of simple tree-graphs (2.1, 3.1, 4.1, 4.2. in
Fig. H), additional eigenvalues appear in the discrete
spectrum of the randomized PIN with the same degree
sequence as the original network and eventually the orig-
inal network (see Fig. B). This change in the spectral
properties indicates some differences in the structural or-
ganization of the underlying networks. In the following
paragraphs, we will discuss how the observed hierarchy
of spectral peaks reflects the networks’ topologies and re-
lates to other concepts like the search for motifs.
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FIG. 3: The discrete frequency spectrum of (a) the PIN of
Drosophila melanogaster containing 49% of all eigenvalues,
(b) a randomized PIN with identical degrees at each node
containing 43% of all eigenvalues, and (c) a classical random
network of identical size and average degree (k) = 2.05 con-
taining 27% of all eigenvalues.

Following the arguments of [16], we suggest that the
prevalence of specific peaks in the discrete spectrum of
a network corresponds to a strong representation of cer-
tain subgraphs. It has recently been shown that net-

works from different contexts show characteristic over-
representation of specific subnetworks which are usually
referred to as motifs [17, [1§]. Although motifs can be ex-
pected to leave marks in a network’s spectrum, there is
seemingly no simple correspondence between the eigen-
values of small subgraphs and spectral peaks. First, sub-
graphs are not generally represented by their eigenvalues
in the spectrum of the whole network. Second, isospec-
tral graphs are not necessarily isomorphic [23]. Neverthe-
less, a thorough comparative study of the discrete spec-
trum can provide some insight into the networks’ struc-
ture. In Figs. Bl and H we show the connected subgraphs
up to size 5 with the full set of eigenvalues present in the
discrete spectrum of the whole network. It shows that
the spectrum of the PIN is more consistent with loop-
structures (cf. graphs 3.2, 4.3, 5.4, 5.5, 5.6, 5.8) than
any randomized version which might hint to regulatory
functionality supplied by this network. The eigenvalues
behind these structures might correspond to eigenvalues
of trees, e.g., the eigenvalues of a triangle (graph 3.2)
or the box (graph 4.3, often also referred to as bi-fan
structure) might well be explained by graphs 2.1 and
5.3. However, to represent the eigenvalues of graphs 5.5
and 5.6 one has to consider trees of minimum size 8 and
7, respectively. The eigenvalues of graph 5.8 cannot be
found among trees of size up to 10. Considering that the
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FIG. 4: Connected subgraphs with up to 4 nodes: A bullet
(e) in the three middle columns denotes that the eigenvalues
of this graph can be found in the spectrum of the original
network (PIN), the randomized network (Rand. PIN) or the
random network (Rand. network), respectively. The right-
most column shows whether the subgraph is a motif accord-
ing to the mfinder software (default settings, [14, 29]). White
bullets (o) correspond to single eigenvalue occurrences.
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FIG. 5: Connected subgraphs with 5 nodes: A bullet (e) in
the three middle columns denotes that the eigenvalues of this
graph can be found in the spectrum of the original network
(PIN), the randomized network (Rand. PIN) or the random
network (Rand. network), respectively. The rightmost col-
umn shows whether the subgraph is a motif according to the
mfinder software (default settings, [17, 22]). White bullets
(o) correspond to single eigenvalue occurrences.

frequency of a given tree of size n in a sparse network de-
creases exponentially with n [d] and relating the findings
in the PIN to those in the randomized reference networks
we hypothesize that the spectral peculiarities reflect the
loop structure in the original network.

To quantify the correspondence between the number of
specific subgraphs in the PIN and the PIN’s discrete spec-
trum we tried to decompose the spectrum into the con-
tributions of connected subgraphs up to size 5. This,
however, was not feasible indicating that higher order
contributions, though being individually small, cannot
be neglected as a whole.

Although we have to ascertain that there is no simple
correspondence between subgraphs of a network and the
prevalence of their eigenvalues in the discrete spectrum
of the whole network we want to discuss the relation of
spectral properties to the notion of motifs. According
to the definition introduced in Ref. [17], a motif is a
subnetwork that shows strong prevalence within the net-
work relative to a randomized network. For our analy-
sis we refer to the default requirements implemented in
the mfinder software [17, 22], that is a motif is a sub-
graph that occurs at least by two standard deviations
more than in 100 randomized networks with the same
degree sequence. In Figs. @l and [ the rightmost columns
show which connected subgraphs up to size 5 are motifs
in the PIN according to these criteria. There exist a lot
of highly connected motifs while the spectrum reflects
more the tree-structures in the network. However, the
fingerprints of trees in the spectrum of both the original
and the randomized PIN are consistent with the fact that
they do not show up as motifs according to the above def-
inition. One might further speculate whether some mo-
tifs are hidden for spectral analysis because they are in
fact building blocks of larger units. For example graph
5.5 as well as its subgraph 4.4 is a motif according to
L1, 22]. But only the eigenvalues of 5.5 can be found in
the spectrum of the PIN. Moreover highly connected mo-
tifs do not occur in high (absolute) numbers and might
accordingly be drowned in spectral analysis.

B. The circuitry of the PIN

In section [[TAl we have shown that the discrete spectrum
of the PIN of Drosophila melanogaster favors the eigen-
values of loopy subgraphs. This observation derived from
the investigation of distinct local structures and their
eigenvalue representations can be confirmed by an as-
sessment of the whole set of eigenvalues. Evaluating the
trace of the matrix A*

N
Tr(AF) =) " Af (3)
=1

yields the number of directed loops of length £ in the un-
derlying network [6, [10] as shown in Fig. [ though ne-
glecting details of the graphs underlying the loops. Note,
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FIG. 6: (a) The frequency of loops of size k in the PIN of
Drosophila melanogaster (solid line), a randomized PIN with
identical degrees at each node (dashed line) and a classical
random network of identical size and average degree (k) =
2.05 (dotted line). Odd cycles represents non-trivial loops,
that is, deviations from a tree-like structure in the networks.
(b) The relative frequency of loops of size k in the PIN of
Drosophila melanogaster with respect to the randomized PIN
(dashed line) and the classical random network (dotted line).

that even loops might be trivial going back and forth in
a tree while odd loops are non-trivial. The difference
in growth rates of the numbers of loops of growing size
between the original network and the classical random
network is likely due to the strong fragmentation of the
latter one (many isolated nodes). However, the strong
relative prevalence of loops of odd length in the origi-
nal network is more remarkable with respect to the net-
works’ topologies. This becomes more obvious from Fig.
Bl (b) showing the number of loops of a given size in the
original PIN normalized to the numbers in the two refer-
ence networks. While tree graphs only have trivial loops
of even length, loops of odd length indicate non-trivial
loops which confirms the results derived from the evalu-
ation of the discrete spectrum on the basis of eigenvalue
representations of small subgraphs.

The analysis of a network’s discrete spectrum could re-
veal some structural information about the network as a
whole. This information is less specific than an analysis
in terms of motifs, that is only conclusions about more
general properties like the prevalence of loops are possi-
ble instead of exact motif counts. However, it should be
emphasized that spectral analysis is not hampered by an
a priori bias towards predefined quantities like motifs of a
given size. It is a challenging question of future research
to investigate the relationship between a network’s spec-
trum and its topological features, e.g. in terms of motifs,
in more detail to get a more rigorous and unbiased char-
acterization of a network’s topological features.

IIT. FINGERPRINTS OF DUPLICATION

The evolution of many biological networks and specifi-
cally PINs is assumed to be strongly driven by duplica-
tion (and diversification) of nodes in the network [24, 27].
The genomes underlying the PIN of many organisms
have undergone a few whole genome duplications com-
plemented by many single-gene duplications [2€]. After
duplication, one of the duplicates usually diverges from
its original appearance, possibly providing new function-
ality. The concept of duplication has similarly been rec-
ognized to be important for functional roles in a network
motif [27]. The search for fingerprints of the evolutionary
history of a PIN naturally has to include an assessment of
duplicate nodes, that is those that share the same inter-
action partners. Fach set of duplicate nodes represents
an equivalence class also referred to as an orbit. The re-
duced network is a network in which all nodes of an orbit
are reduced to one node.

| Duplicate nodes | Duplicate links

PIN D. melanogaster|686 728
Randomized PIN 626.0 + 22.0 629.1 4+ 22.0
Random network 151.0 + 14.2 151.0 £ 14.2

TABLE I: The table shows the number of nodes that are du-
plicates (duplicate nodes) and the number of neighbors asso-
ciated to these nodes (duplicate links) in the original network
and the two reference networks, that is the difference in the
number of nodes and links between the original network and
the reduced network. Isolated nodes have been neglected.

Tab. [ shows that the PIN has more duplicate nodes
(with associated links) than the reference networks. Fig.
[@shows the frequency of orbits of a given size in the origi-
nal as well as in the reference networks. The distribution
of orbit sizes in the original network is very close to the
one found in the randomized PIN with the same degree
sequence, but much broader than that of the classical
random network.

Again, spectral analysis offers a complementary approach
to the topic. Using the results in Appendix A, we deter-
mined the eigenvalues of those graphs that arise from
duplication of the two simplest reduced graphs: a line
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FIG. 7: The frequency of orbit size in the PIN of Drosophila
melanogaster (solid line), a randomized PIN with identical
degrees at each node (dashed line) and a classical random
network of identical size and average degree (k) = 2.05 (dot-
ted line). Isolated nodes have been neglected.

and a triangle (graphs 2.1 and 3.2 in Fig. H)). We allowed
for up to ten duplications of each node of the reduced
network and searched for the eigenvalues of the resulting
subgraphs. However, spectral analysis is only consistent
with the emergence of star graphs and the original tri-
angle as well as the box or bi-fan structure (graph 4.3 in
Fig. B).

Considering the representation of star graphs in the spec-
trum of the PIN one might guess that the high frequency
of large orbits mainly reflects nodes with many leaves. A
look at the joint distribution of the size of an orbit and
the degree of its nodes in the original and the reference
networks supports this hypothesis. In 100 reference net-
works (of both kind) the nodes in an orbit larger than
one have degree one, that is only nodes with degree one
have duplicates. Only in extremely rare cases do nodes
with degree two have a single duplicate.

This matches the global situation in the original net-
work, however, there are some remarkable exceptions
with nodes of high degree in large orbits shown in Fig.
that cannot be found in the reference networks. This
is also well in accordance with the values found in Tab.
[l Different from the original network, in both reference
networks the number of duplicate links is practically the
same as the number of duplicate nodes.

From the Database of Interacting Proteins [20] and Fly-
Base [28] we derived names and descriptions (if avail-
able) for the proteins in Fig. B as shown in Appendix B.
We find that duplicate proteins are likely to have similar
functionality in accordance with results in the yeast PIN
[29).
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FIG. 8: Subgraphs of nodes that form orbits of size > 2 and
that have degree > 2 (black), orbits of size 2 of nodes with de-
gree 2 have been omitted. The white nodes are the neighbors
of duplicate nodes that may have more neighbors than shown.
The nodes’ labels are their identifiers from the Database of
Interacting Proteins [2(], cf. Appendix B for more details.

IV. SUMMARY AND CONCLUSIONS

Recent developments in the research on complex net-
works have brought up a better understanding of a net-
work’s topology and its connection to functionality. How-
ever, a comprehensive theory of networks incorporating
classical graph theory as well as recent findings into a self-
consistent framework has still to be worked out. Consid-
ering spectral graph theory to be a promising ansatz for
this attempt, we have done a case study on the PIN of
Drosophila melanogaster. The eigenvalues of a network’s
adjacency matrix (and of related matrices) provide infor-
mation about a network’s structural properties like the
number of connected components, its diameter or char-
acteristics of its degree distribution. Here, we have put
special emphasis on the investigation of the discrete spec-
trum of a sparse network relating it to prevalent substruc-
tures. Although it will probably not be possible to derive
the densities of specific subgraphs from the spectrum of
a network we could show that structural prevalences on
a more abstract level are reflected in the (discrete) spec-
trum of the PIN under investigation. While we here fo-
cused on the appearance of loops in subgraphs as well as
the whole PIN future analysis might reveal further topo-
logical features.

Considering the evolutionary history of PINs we also dis-
cussed the appearance of proteins that share their neigh-
bors together with the fingerprints of these structures
that can be found in the network’s spectrum. Studying
structures of duplicate proteins in more details we find
that they often have close functional relationships in ac-
cordance with earlier findings in yeast.



The requirement applied here for the members of an or-
bit to show exactly the same neighborhood is very re-
strictive, though required to allow for transitivity. This
might be generalized by the definition of a similarity mea-
sure that quantifies the overlap of the neighborhoods of
two nodes. This similarity measure can be defined as a
distance measure between nodes and the application of a
clustering algorithm in the associated metric space might
give further insight into local structures.

This case study shows that a more systematic assessment
of the relation between a network’s spectral and topolog-
ical properties has to be a topic of future research. It is a
challenging task, however, it can bring important insight
into a network’s structure in a less biased and more sys-
tematic way than currently available.

Acknowledgments: C. Kamp would like to thank A.
Bunten for providing computing facilities and software
and for many helpful discussions on technical problems.
I am as grateful to N. Farid, S.A. Teichmann and J. Leal
for the discussions and many helpful comments on the
manuscript. Also, we would like to acknowledge the hos-
pitality of the department of physics of the university of
Oslo during the period of finalizing this manuscript. This
work was supported by a fellowship within the Postdoc-
Programme of the German Academic Exchange Service
(DAAD).

Appendix A

Let A be a N x N matrix representing an undirected
graph, i.e. a symmetric matrix with entries a;; € {0,1}
and a;; = 0. Let D be the matrix that is obtained after m
perfect duplications of nodes or in other words by m du-
plications of rows and columns, respectively. Let i1,...,i,
I €{1,..., N} the number (identifier) of (mutually differ-
ent) nodes that have been duplicated and m;, ,...,m;, be
the corresponding number of duplications per node with
m = Z;Zl my;. Let A;, the matrix A but with the ele-
ment a;;; replaced by a;;;; + A. Analogously, the matrix
A, ..i, corresponds to the matrix A but with a;, i, ,...,a4,4,
replaced by a;,4, + A,... @44, + A. Let furthermore I be
the identity matrix. Then the following equation holds

det(D — AI) = (4)
(=A)™ det(A — AI)
+ (=A™ mi, det(A;, — M)

r<l
+ (—/\)m Z Z miTmij det(Am-j — )\I)
r<l—1r<j<l

+ (_/\)m Z Z ZmiTmijmis det(Amﬂs — )\I)

r<i—2r<j<l—1j<s<I

+(_/\)mz Z Z miT...miy det(AiT...iy_)\I)-

r<lr<j<2 z<y<l

Note that the last term is equivalent to
My, ...mq, det(Ay, . 5, — AI). It gets obvious from
this formula that perfect duplication of nodes only adds
zeros to the spectrum of the graph.

Equation (@) can be proven by induction. Considering a
graph with adjacency matrix A in which an arbitrary
node ¢ is duplicated m times leading a duplication
matrix D one can show that

det(D—AI) = (—\)™[det(A — AI)+m det(A; — AI)]. (5)

After validating the case of [ = 0, m = 0 of equation ()
we do the induction by evaluation of the adjacency ma-
trix D of a graph generated from the duplication graph
represented by D by duplicating (a non-duplicate) node
i141 M4y, times. Therefore, we apply (H)

det(D — AI)
= (=A)i,, [det(D — AI) +m;,,, det(D;,,, — AI)]

and derive det(D — M) and det(D;,,, — AI) using the
assumption (@) yielding the formula @) for m + m;,,,
duplications of [ + 1 mutually different nodes.

As an example, this formula is applied to the 2 x 2-matrix
A corresponding to two connected nodes. Then, i1 = 1,
i = 2 and one gets for the matrix D after m = mq +mo
duplications:

det(D — )\I) = (_)\)m()\Q —1- mi1 — Mg — mlmg)
/\1;2 = £V1+m+mims.

Translating this into the number of nodes per orbit n; =
m; + 1 leads to the eigenvalues

)\1;2 = :I:\/nlng.
Appendix B

The following tables contain the information on the pro-
teins shown in Fig. extracted from the Database of
Interacting Proteins [2(] and FlyBase [2€].

DIP ID Protein name/description

DIP:17489N CG11719-PA open reading frame, Mst98Ca,
(Male-specific RNA 98Ca)

DIP:17490N CG18396-PA open reading frame, Mst98Cb,
(Male-specific RNA 98Cb)

DIP:17144N  CG4015-PA open reading frame, Fcp3C,
(Follicle cell protein 3C)

DIP:18312N  CG17777-PA open reading frame

DIP:17051N  CG17666-PA open reading frame

DIP:17123N  CG15781-PA open reading frame

DIP:17121IN  CG15032-PA open reading frame

DIP:17122N  CG15489-PA open reading frame

DIP:20125N  CG1981-PA open reading frame, Thd1,
G/T-mismatch-specific-thymine-DNA-
glycosylase, double-stranded DNA-binding,
mismatch repair

DIP:20084N  CG13363-PA open reading frame

DIP:19658N  CG12212-PA open reading frame, peb,

(pebbled),
transcription factor activity



DIP:17485N  CG10154-PA open reading frame,
structural constituent of peritrophic
membrane, (sensu Insecta)

TABLE II: Proteins found in the 2-orbit with nodes of de-

gree 10, both duplicates (bold) are male specific RNA (with
corresponding polypeptides).

DIP ID Protein name/description

DIP:18704N CG2789-PA open reading frame,
bonzodiazepine receptor activity,
transporter activity,
metabolism and transport

DIP:18703N CG1341-PA open reading frame, Rptl,
endopeptidase activity, ATPase activity,
proteolysis and peptidolysis

DIP:21261N  CG3173-PA open reading frame
DIP:20398N  CG12096-PA open reading frame
DIP:17864N  CG10694-PA open reading frame

damaged DNA-binding, base excision repair

DIP:20457N CG12405-PA open reading frame, Prx2540-1,
(Peroxiredoxin 2540),
peroxidase, antioxidant activity,
defense response, oxygen species metabolism
DIP:20458 N CG12896-PA open reading frame,
peroxidase activity
defense response, oxygen species metabolism

DIP:20623N  CG9624-PA open reading frame

DIP:17811N  CGb5576-PA open reading frame, imd,
(immune deficiency),
antimicrobial humoral response,
(sensu Invertebrata)

DIP:17346N  CG12470-PA open reading frame

DIP:18935N  CG8974-PA open reading frame,
transcription regulatory activity,
“nucleo-metabolism”, transcription,
CG32581-PA open reading frame,
transcription regulatory activity,
“nucleo-metabolism”, transcription
DIP:20125N CG1981-PA open reading frame, Thdl,
G/T-mismatch-specific-thymine-DNA-
glycosylase, double-stranded DN A-binding,
mismatch repair
DIP:19658N CG12212-PA open reading frame, peb,
(pebbled),
transcription factor activity
DIP:20084N CG13363-PA open reading frame

DIP:18934N

DIP:17489N  CG11719-PA open reading frame, Mst98Ca,
(Male-specific RNA 98Ca)
DIP:17490N  CG18396-PA open reading frame, Mst98Cb,

(Male-specific RNA 98Cb)

TABLE IV: Proteins found in a 3-orbit with nodes of degree
2, lines separate different orbits, bold proteins are duplicates.
Note, that Mst98Ca and Mst98Cb form a 2-orbit of degree
10, too (cf. Tab. ).

DIP ID Protein name/description

DIP:18389N CG18779-PA open reading frame
DIP:18387N open reading frame CG-10530/4-PA,
Lcp65Agl /Lep65Ag2 protein,

(larval cuticle protein),

structural constituent of larval cuticle,
(sensu Insecta),

larval cuticle biosynthesis,

(sensu Insecta)

CG2082-PA open reading frame,
signal transduction

DIP:18391N  CG16978-PA open reading frame
DIP:18390N  CG12907-PA open reading frame

DIP:18392N

TABLE III: Proteins found in a 2-orbit with nodes of degree
3, lines separate different orbits, bold proteins are duplicates.

DIP ID Protein name/description

DIP:20847N CG8284-PA open reading frame, UbcD4,
(Ubiquitin conjugating enzyme 4),
ubiquitin conjugating enzyme activity,
ligase activity,
protein metabolism, ubiquitin cycle

DIP:23198N CG30344-PA open reading frame

DIP:18933N CG10862-PA open reading frame,
ubiquitin conjugating enzyme activity,
ligase activity,
protein metabolism

DIP:19548N CG31366/18743-PA open reading frame,

Hsp70A, (Heat shock protein 70A),

heat, defense response,

protein complex assembly and folding
DIP:19549N CG31449/31359/6489-PA open reading frame,

Hsp70B, (heat shock protein 70B),

heat, defense response,

protein complex assembly and folding
DIP:19551N open reading frame CG31449-PA, Hsp70Ba,

(heat shock protein 70Ba),

heat, defense response,

protein complex assembly and folding
DIP:19552N CGb5834-PA open reading frame, Hsp70Bbb,

(heat shock protein 70Bbb)

DIP:18493N  CGT7945-PA open reading frame,
chaperone activity

DIP:20272N  CG5203-PA open reading frame, CHIP,
chaperone activity, protein folding
and metabolism

DIP:20308N  CG32130-PA open reading frame

DIP:18578N  CG13165-PA open reading frame

TABLE V: Proteins found in the 4-orbit with nodes of de-
gree 4, all duplicates (bold) are heat shock proteins (Hsp),
released after heat shock or other stress.

DIP ID Protein name/description

DIP:19748N CG1252-PA open reading frame, Ccp84Ab,
(cuticle cluster 7),
structural constituent of larval cuticle,
(sensu Insecta)

DIP:19749N CG2360-PA open reading frame, Ccp84Aa,
(cuticle cluster 8),
structural constituent of larval cuticle,
(sensu Insecta)




DIP:17392N  CG9949-PA open reading frame, sina,
(seven in absentia),

sensory organ development
CG6615-PA open reading frame, scaf6,
RNA binding, nuclear mRNA splicing
via spliceosome, spliceosome complex
CG2341-PA open reading frame, Ccp84Ad,
(cuticle cluster 5),

structural constituent of larval cuticle,
(sensu Insecta)

CG15422-PA open reading frame

DIP:18536N

DIP:20225N

DIP:17713N

DIP:17492N  CG12723-PA open reading frame
DIP:17076N  CG6945-PA open reading frame
DIP:17488N  CG11505-PB open reading frame

TABLE VI: Proteins found in the 2-orbit with nodes of de-
gree 7, duplicates (bold) are constituents of the larval cuticle.
Note, that peb, Thdl, and CG13363-PA also form a 3-orbit
with respect to Mst98Ca and Mst98Cb (cf. Tab. [M]).
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