— Part 2 —

Let’s add some intelligence to
the H-Bridge hardware I
introduced to you last time.
For those of you that are just
joining us, the H-Bridge hardware
that was previously presented
in SERVO is shown in Photo 1.

To recap for those of you that
missed the introductory SERVO
H-Bridge column, we took some
off-the-shelf Microchip MOSFET
drivers and fashioned them along
with some glue logic to act as
driver circuitry for a quad of dual-
MOSFET devices. After all of the
wire slinging was said and done,
we ended up with a pair of H-
Bridges suitable for driving small
brushed and stepper motors.

When we're finished discussing
the schematics, code, and photos in
this month’s SERVO offering, you'll
know how to apply the services of
Microchip’s newest motor control
oriented PIC — the PIC16HV616 —
to the H-Bridge circuitry you see in
Photo 1. With that, let's begin the
H-Bridge driver design cycle.

The PIC16HV616

The 14-pin PDIP version of the

PHOTO 1. If you wish to build up your own version of the
H-Bridge shown here, you can get the H-Bridge ExpressPCB
layout file from the SERVO website
magazine.com). All of the H-Bridge components are
off-the-shelf and can be purchased from many of the
distributors that advertise in this magazine.

PIC16HV616 can be seen dominat-
ing the intelligent H-Bridge driver
componentry shown in Photo 2.
The PIC16HV616 speaks standard
PICese using only 35 assembler
instructions. A precision internal
oscillator provides either a 4 MHz or
8 MHz system clock for the
PIC16HV616's integral subsystems.
A standard crystal or ceramic
oscillator can also be attached to
the PIC16HV616 to provide higher
or lower clock rates.

The PIC16HV616 is actually a
derivative of the PIC16F616. The
PIC16F616 operates over a voltage
range of 2.0 V to 5.5 V. Although
not stated directly in any of the
PIC16HV616 datasheets, the "HV”
more than likely stands for High
Voltage and this is what makes the
PIC16HV616 different.

The PIC16HV616's operating
voltage range spans from 2.0 V
to a user defined maximum. This
is accomplished by applying
the services of a shunt voltage
regulator that is built into the
PIC16HV616. The high voltage
capability of the PIC16HV616
allows this PIC to be thrown into
motor drive circuitry without the
need for an extra voltage regula-
tor for the PIC. Otherwise, the

(www.servo

by Peter Best

PIC16HV616 and PIC16F616 are
logically identical.

The PIC16HV616 embodies all
of the standard bells and whistles
you normally see in any typical
PIC. The PIC16HV616 can sleep on
command, reset on brown-out
conditions, and protect the code
embedded in its program memory.
The PIC16HV616 is also capable of
high sink and source currents on
most of its I/O pins. Two analog
comparators with built-in, user
selectable hysteresis are accompa-
nied by a unique on-chip SR (Set
Reset) latch and a programmable
on-chip voltage reference.

There's also an eight-channel
10-bit analog-to-digital converter in
the PIC16HV616 mix. A trio of
PIC16HV616 timers — TimerO,
Timer1, and Timer2 — provide a
pair of eight-bit timers in TimerQ
and Timer2, while Timer1 (which
can also be gated with the T1G
input) extends to 16 bits of resolu-
tion. Each PIC16HV616 timer can
be prescaled, with Timer2 having
the ability to be both prescaled and
postscaled. Motor control usually
implies PWM (Pulse Width
Modulation). The PIC16HV616's
10-bit PWM subsystem can be
configured with one, two, or four

PHOTO 2. The only items that are hard-wired include the
ICSP interface, the 10K pot, and the MCP6022 op-amp.
Everything that attaches between the PIC16HV616 and
the H-Bridge printed circuit board is open game.

SERVO 08.2006 53

Building (H-)Briddes — Part 2

(3
OI5060304),
BEEL L0,

OEE)
) O0®

look at the H-Bridge
PCB in Photo 1. There
are 16 entry and exit
points, which present
power, ground, MOS-
FET driver inputs, an
enable input signal,
and a sense voltage

output channels.

The PIC16HV616's ECCP
(Enhanced Capture Compare PWM)
module can be programmed to
operate in an enhanced mode. The
Enhanced PWM Mode can be used to
generate a PWM signal on up to
four different output pins with up to
10-bits of resolution. This is accom-
plished using one of four modes:
Single PWM, Half-Bridge PWM, Full-
Bridge PWM Forward, and Full-Bridge
PWM Reverse. We'll use the Full-
Bridge modes to drive a brushed DC
motor in this installment.

Since the PIC16HV616 is aimed
at motor control applications, the pro-
gram Flash and SRAM complements
are small with the PIC16HV616
supporting 2K of program Flash and
128 bytes of SRAM. Although the
PIC16HV616 memory numbers may
appear to be tiny, remember that
many amazing things were done
with the original PIC16C5X devices,
which had equal or lesser amounts of
memory space. In fact, | was told by a
Microchip representative that the
PIC16C5X parts are still one of
Microchip’s biggest sellers.

Wire Art

Now that you have the low-down
on the PIC16HV616, let's put the
part to work. Since there are multi-
tudes of ways to connect to and
drive the H-Bridge, the PIC16HV616
H-Bridge driver design must be
flexible enough to provide any-to-any
connection between the H-Bridge
printed circuit board (PCB) and the
PIC16HV616 driver board. Take a

54 sERVO 08.2006

output for external
control and monitoring.

Now take another look at Photo
2. To keep things simple and totally
flexible, the H-Bridge driver circuitry is
built on a custom high quality perf
board, which consists of a .1-inch
center set of plated through holes.
The use of a perf board implies that
instead of a custom PCB, we'll use
wire art to fashion our H-Bridge driver
circuit.

The H-Bridge's 16-pin interface is
populated with a 16-pin single-row
header. The H-Bridge driver mates to
the H-Bridge 16-pin header with a
32-pin double-row header socket.
The header socket could also be a
single-row socket but the double row
configuration makes it a bit easier
to orient vertically and makes for a
sturdier mounting point.

Note that the PIC16HV616 is
surrounded by a pair of double-row
male headers in Photo 2. Also notice
that a 32-pin double-row male header
parallels the 32-pin double-row
female header socket. The method to
this header madness is revealed in
Photo 3.

Forget about double-row as a
physical attribute of the headers as
each 32-pin double-row header is
effectively a pair of 16-pin single row
headers tied together electrically.
Another look at Photo 3 shows that
each of the row pins on every double-
row header is connected to its respec-
tive row neighbor via a wire jumper.
The 32-pin header and socket on the
PIC16HV616 driver board are wired in
parallel using wire jumpers forming
four columns of 16 pin positions.
Each of the 16 rows between the

PHOTO 3. This is a shot of my wire art that makes all of the
necessary connections between the PIC16HV616, the H-Bridge
printed circuit board, and the H-Bridge driver’s supporting
components. Note my use of SMT passive components to save space
and make things neater on the component side of the board.

female and male 32-pin headers is
connected electrically by a wire
jumper.

The same holds true for double-
row male headers that surround the
PIC16HV616. A wire jumper extends
from each PIC16HV616 pin across the
pair of adjacent header pins. The dou-
ble-row pinout arrangement allows us
to use temporary wire jumpers with
female terminations to connect any
point of the H-Bridge 16-pin interface
to any pin of the PIC16HV616. In
addition, the extra pin in each row is
exposed and can be used as an
additional jumper point or a test point
for monitoring logic levels or voltages.

The MCP6022 op-amp is used to
amplify the voltage at the H-Bridge's
sense output pin. Only the op-amp’s
input and output pins are accessible
via a header pin. All of the passive
components associated with the
MCP6022 circuit are SMT packages
and are mounted under the
MCP6022 socket on the wire side of
the H-Bridge driver perf board.

| hardwired the 10K pot to the
PIC16HV616's AN2 analog-to-digital
converter input pin. Since this is all
on perf board, you may wish to
bring the pot's pins out to header
connections for more connection
flexibility.

The right-angle six-pin male
header shown in Photo 2 is the
ICSP programming interface. The
PIC16HV616's MCLR reset circuitry is
also made up of SMT devices. You
can see the reset resistor/capacitor
combination and the Vpp blocking
diode nestled beneath the
PIC16HV616 in Photo 3.

Supply voltage for the
PIC16HV616 and the MCP6022 is
provided by the H-Bridge PCB regulat-
ed power supply via the 16-pin head-
er interface. It is a good engineering
practice to include a filter capacitor at
the power junction when passing
supply voltages between boards
using connectors. So, | placed a 10 pF

Building (H-)Bridges — Part 2

PHOTO 4. Here’s a shot of the H-Bridge
and the H-Bridge driver boards mated
at the interface point. Wire jumpers
with female terminations or wirewrap
connections can be used to make
connections between the PIC16HV616
and the H-Bridge MOSFET drivers.

capacitor across the DC supply pins
on the H-Bridge driver board.

Just to make sure power was
indeed present on the H-Bridge driver
pins, | added an LED indicator. Photo
4 is a composite shot of the H-Bridge
and H-Bridge driver board mated
at their respective 16-position
interfaces.

Driving a Brushed
DC Motor

With the addition of the

T

DB 0L000 c
00% 520D B
B A0 O

o9

PIC16HV616-based H-Bridge driver,
the H-Bridge hardware build for our
application is complete. Schematic 1
is a graphical depiction of the
configuration we will use to attach
and drive a brushed DC motor. Note
that the H-Bridge segments are not
coupled in full-bridge configuration

BRUSHED DC MOTOR DRIVE

(USES H-BRIDGE DRIVES 1 AND 2)

ICSP PIN NAME (RJ12 CABLE COLOR)

as there are no jumpers on the JP1
and JP2 pins. Only one pair of the
H-Bridge's quad of half-bridge drives
is needed to drive the brushed
motor. The actual motor leads are

SCHEMATIC 1. A fivejumper hookup is
all that’s needed to drive a brushed DC
motor. The MCP6022 is configured as a
noninverting amplifier with a gain of 10. —

J1 +5VDC JP1 JP2
6 g Nﬁc(;:c(B(\L(LéEI).OW) B io 02 e °—D§
5[4 PGD (GREEN) _ R1 0—0 or—4a b—0 o——d
4 '3 GND (RED) B—>o0 o—4 b—>o o—4
3 2 +Vdd (BLACK) D1 10K +5VDC
? 1 MCLR/Vpp (WHITE) K c2 Q
1N5819 C +5VDC % -
ICSP CONNECTOR o = 10uF
] AuF R6 10K
+5VDC U1 = J2
== +5VDC
+*ovbe ' voo - GND
c1 11 PCM1
RA2/AN2(TOCKI/INT/C10UT | X PWM1
R1 e RA4/AN3/T1G/OSC2/CLKOUT [5—X NCM1
332 : Vss RA5/T1CKI/OSC1/CLKIN |F—X PCM2
o= > Pwm2
PGD " 13 10 NCM2
FGC 5| RAO/ANO/C1IN+/ICSPDAT RCO/AN4/C2IN+ —g—X X PCM3
TCLR 2 RA1/ANA/C12INO-/Vref/ICSPCLK RC1/ANS/C12IN- Fo—X \ome X PWM3
LEDT |\ | RA3IMCLRIVpp RC2/ANG/C12IN2/P1D [— BN X NCM3
N RC3/AN7/C12IN3-/P1C [NCMT X PCM4
RC4/C20UT/P1B 3 S X PWM4
L RC5/CCP1/P1A X NCM4
- ENBL
SNSE
PIC16HV616 H-BRIDGE INTERFACE
+5VDC
NOTE: RJ12 CABLE COLORS +5VDC
RELATIVE TO RJ12 GOLD Cc4 Q
PLUG PINS FACING YOU. o
= s | R2 10k ® vzA
® T 3 R5 1K
e 5 , CURRENT SENSE OUTPUT
6 _
x MCP6022
MCP6022 R3 <
R4 910
100

SERVO 08.2006 55

Building (H-)Briddes — Part 2

FIGURE 1. The motor leads are
attached to each half-bridge segment
of the H-Bridge
Basically, PCM1 and NCM2 are on
to drive the motor in one direction
and PCM2 and NCM1 work together
to drive the motor in the opposite
direction. You can get more details by
examining the
schematics, which I've provided as part
of this month’s download packase.

PCM1/P1A |
I

VDD

connected to half-
bridge Drives 1 and

=

2 of the H-Bridge. A
much simplified half-
bridge connection
diagram is shown in
Figure 1.

| PCM2/P1C
=

Only five
4@7 jumper connections
(ENBL, PCM1 to

NCM1/P1B E}L

P1A, PCM2 to P1C,
NCM1 to P1B, and
NCM2 to P1D) are
necessary to config-

{ﬂ NCM2/P1D

-

original

in this manner.

H-Bridge

ure the H-Bridge to
operate in ECCP Full-
Bridge mode. An
optional sixth connection from the
H-Bridge SNSE (current sense)
output to the MCP6022 op-amp’s
input can be attached if you want
to monitor the motor's current
consumption.

The voltage output at the
MCP6022's output is equal to the

motor’s current consumption. For
instance, if the voltage at the
output of the op-amp is one volt,
the current consumption is one
amp. That's in a perfect world
as you must consider even with
1% components all around the
op-amp, there will be some small
percentage of deviation in the
voltage measurement.

The fifth jumper connection
involves activating the H-Bridge's
ENBL (Enable) input pin. The H-Bridge
ENBL pin must be logically high to
allow the MOSFETs to be driven. The
ENBL line can be simply tied high or
tied to a PICI6HV616 pin for
firmware control. For the sake of
simplicity, | chose to tie the ENBL
line high with a jumper from the ENBL
pin to the +5V pin on the H-Bridge
interface.

Once the PCMx and NCMx
jumpers are in place, the H-Bridge
driver code is used to invoke the ECCP

Full-Bridge mode. You may

Listing 1

void main()

{
TRISC = 0b11000011;
ANSEL = 0000000100;
ADCON1 = 0b01010000;
PR2 = Ox3F;

OPTION = 0b00000111;

ADCONO = 0b00001001;
CM1CONO = 0x07;

TMR2ON = 1;
master timer = 0;
secs = 0;

mins = 0;

hours = 0;

TOIE = 1;

PEIE = 1;

GIE = 1;

PORTC = 0x00;

while (1)

{
timer = 0;
GODONE = 1;
motor (rev) ;
while (timer

timer = 0;
GODONE = 1;
motor (fwd) ;

while (timer ==

//P1A-P1D outputs
//select AN2
//ADC conversion clock Fosc/16

//set PWM period 320uS@8MHz or PWM freqg of 31.25KHz

//set TMRO prescaler 1:256

//enable ADC
//disable comparators

//turn on PWM
//initialize clock

//enable TMRO interrupt
//enable peripheral interrupts
//enable global interrupt

= 0)¢

wish to consult Figure 1
again as | describe the
ECCP Full-Bridge Forward
and Reverse modes. In
ECCP Full-Bridge Forward
mode, the PIC16HV616's
PT1A pin is driven active
and P1D is modulated via
PWM. The active state of
the PIC16HV616's ECCP
I/O pins is determined in
firmware.

In this application,
the active state pro-
grammed as a logical
high. The PIC16HV616's
P1B and P1C pins are held
inactive in ECCP Full-
Bridge Forward mode. To
drive the motor in the
reverse direction, the
ECCP Full-Bridge Reverse
mode is used. In ECCP
Full-Bridge Reverse mode,
the PIC16HV616's P1C

LISTING 1. What you don't see here
are the motor function and the clock
interrupt service routine. Don’t worry.

The complete volume of source code
is included with the H-Bridge driver
download packase.

56 SERVO 08.2006

Building (H-)Bridges — Part 2

pin is driven active and the PWM
modulation is provided by the P1B
pin. ECCP pins P1A and P1D are held
inactive in ECCP Full-Bridge Reverse
mode.

The code needed to drive a
simple brushed motor is rather simple
and is shown partially in Listing 1. The
brushed motor driver firmware
configures the PIC16HV616's P1A,
P1B, P1C, and P1D pins as outputs,
which is required if ECCP mode is to
be used. The 10K pot — whose wiper
is attached directly to the
PIC16HV616's AN2 analog-to-digital
converter input pin — will be used in
this application to control the speed
of the motor. The PIC16HV616’s
analog-to-digital converter reads the
voltage at the 10K pot's wiper and
the measured voltage value is then

loaded in as the PWM duty cycle
value via the CCP1CON and CCPR1L
registers.

The forward and reverse
motion of the brushed motor
is determined by bits within
the CCP1CON register. The
PIC16HV616's internal clock is set
for 8 MHz operation. I've also imple-
mented a 32.768 ms-per-tick clock
by prescaling Timer0 with a 1:256
ratio. The TimerO clock is used
strictly for delay timing in this appli-
cation. The brushed motor direction
delay is set for 30 32.768 ms ticks,
which is approximately one second.

Thus, here’s how the brushed
motor firmware flows:

- The 32.768 ms tick timer is reset to
zero.

BIPOLAR STEP MOTOR DRIVE
(USES H-BRIDGE DRIVES 1, 2, 3 AND 4)

ICSP PIN NAME (RJ12 CABLE COLOR)

- A duty cycle analog-to-digital
converter conversion is started.

« The motor function is called with a
fwd argument.

- Duty cycle and direction informa-
tion is loaded.

- P1A is driven active and P1D emits
PWM at measured duty cycle.

- Motor shaft turns in a forward
direction for one second.

- The 32.768 ms tick timer is reset

SCHEMATIC 2. This is a single-step
stepper motor implementation. Note
that there is no PWM involved in the
stepping motion. PCM1 through PMC4
simply walk through the bipolar step
pattern continually.

J1 +5VDC JP1 P2
6 NC (BLUE) 0 2
6 [5 PGC (YELLOW) 3
i 4 PGD (GREEN) _ .
3
3 2 +Vdd (BLACK) +5VDC
f 1 MCLR/Vpp (WHITE) 9
"
ICSP CONNECTOR 10uF
+5VDC U1 J2
+5VDC
+5VDC 1 oo oVt
C1 11 PCM1
RA2/AN2/TOCKI/INT/C10UT [5—X > Pwmi
R1 10El 14 RA4/AN3/T1G/OSC2/CLKOUT [H—X X NCM1
332 ’ VsS RA5/T1CKI/OSC1/CLKIN F—X PCM2
— X~ PWM2
PGD 13 10 PCM4 X~ NCM2
PGC— 15| RAO/ANO/C1IN+/ICSPDAT RCO/AN4/C2IN+ [—5—PCW3 PCM3
VLR 7| RA1/AN1/C12INO-/Vref IGSPCLK RC1/AN5/C12IN- -e——PFew2 X PWM3
LEDT |\ | RASIMCLRIVpp RC2/AN6/C12IN2-/P1D F=——BcH X NCM3
N RC3/AN7/C12IN3-/P1C |5 —— PCw4
RC4/C20UT/P1B 5—>< X~ PWM4
= RC5/CCP1/P1A —X X NCM4
- ENBL
SNSE
PIC16HV616 H-BRIDGE INTERFACE
+5VDC
o
+5VDC
NOTE: RJ12 CABLE COLORS 1 _ca
RELATIVE TO RJ12 PLUG
GOLD PINS FACING YOU. I—"’F @ U2A
o = U2B R2 10K
% [N =B RS K RRENT SENSE OUTPUT
5 , , 1 cu SENSE OUTPU
6| : »
L MCP6022
MCP6022 R3 <
< R4 910
1 100

SERVO 08.2006 57

Building (H-)Briddes — Part 2

JP1

65 o5
4 3
20 C1
e} [}

D RI\/E?\/OLTAGE

3
D2 PB1 3 6

M
Ry
<
2

R1 2 14 4 4 13 5 R2
10K 2 ||__" ‘__|| 4 10K
7AAC08 = let ca “ 7AC0!
TC4467/SOIC T~ TC4467/SOIC
= vce 10p 10p vee=
5.6 5.6
R3 R4
10K 7.8 7.8 10K
U2A NB1 c2 c3 At u2B

I*T

' N
PWMT 1 TC4469/S0IC P L TC4469/S0IC 4 PWM2
3 24 10p 10p Y 4 6
NCM1 2 14 2 AL 2 13 5 NCM2
1 3
1

=
=

NOTES: R7

1. ALL MOSFETS = IRF7309 0.10 +5vDC
2. D1-D2 = BAT54S

3. 74HC00-74HCO8 VCC = PIN 14 —
4. 74HCO00-74HC08 GND =PIN 7 B
5. TC4467-TC4469 VDD = PINS 15,16

6. TC4467-TC4469 GND = PINS 7,8

7. VCC = +5VDC

8. DRIVE VOLTAGE >= +5VDC <= +12VDC

DRIVES 1 AND 2

~ SCHEMATIC 3. Here’s a detailed
look at a pair of H-Bridge drivers.

Placing jumpers on JP1 makes things * The motor function is called with a PWM at measured duty cycle.
interesting. rev argument.
« Motor shaft turns in a reverse
to zero. « Duty cycle and direction informa- | direction for one second.
tion is loaded.
- A duty cycle analog-to-digital - This entire cycle repeats from the
converter conversion is started. « P1C is driven active and P1B emits beginning.

s s That's all there is to driving a
Listing 2 brushed DC motor. Now, let's
void main(void) turn our configuration and coding
¢ efforts towards driving a simple

TRISC = 0b00000000; // PORTC = Output ioelr Simgser e

OPTION = 0b00000111; // TMRO Prescaled 1:256

master timer = 0; // Clear RTC regs

secs = 0; Driving a Stepper Motor

mins = 0;

hours = 0; Before we can attach a bipolar

TOTE = 1; // Enable TMRO Interrupt stepper motor to the H-Bridge Drives,

PEIE = 1; // Enable Peripheral Interrupts . .

GIE = 1; // Enable Global Interrupt W_e must do Som.e physical reconflg—

uring. Note that in Schematic 2, JP1

while (1) // Loop Forever and JP2 are populated with jumpers.

{ The presence of these jumpers
;é??é = gém x ;:ii;;mingfim combines the quad of half-bridges
while (timer ;: 0); // Waitgfor timer gto expire Into 3 p.alr off full briees. Leis Use
timer = 0; Schematic 3 to step through what
PORTC = PCM4; happens when the JP1 jumpers are in
while(timer == 0); place. Keep in mind as we're walking
timer = 0;

PORTC = PCM2;

LISTING 2. The H-Bridge circuitry takes the

while(timer == 0); complexity out of this code. All we have
timer = 0; to do to move the stepper motor shaft is
PORTC = PCM3; ollow the coil activation/deactivation
while (timer == 0); pattern for a bipolar stepper motor. Operation
} of bipolar stepper motors is described very
) well in Microchip’s AN907 app note.

58 SsERVO 08.2006

Building (H-)Briddes — Part 2

through this process that the
half-bridges coupled by JP2 behave
exactly the same way.

Let's begin by placing an
imaginary jumper across JP1 pins 1
and 2 only. When a logical high is
presented to the PCM1 pin, the
imaginary jumper we just installed on
Schematic 3 routes the high-going
signal applied to PCM1 over to
NCM2, which just happens to be the
PA1’s electrically complementary
MOSFET. NA1 activates and current
flows through PA1, the motor
winding, and NA1. Now let's add
another imaginary jumper across JP1
pins 3 and 4.

When a logical high PWM signal
is applied to PWM1, that same signal
is applied to PWM2 by way of our
newly installed imaginary jumper at
JP1 pins 3 and 4. The logical high
PWM signal we just applied has no
effect upon the output of NAND gate
U2A as its input levels did not change.
PA1 is still active at this point. At
NAND gate U2B, there is also no
change in output as PWM2's and
NCM2's inputs did not change state
either.

When the PWM signal swings to
a low logical level at PWM1, it also
swings low at PWM2. U2A’s output
level does not change as both of its
inputs are low, resulting in a high
output, which keeps PA1 energized.
The resulting low-going PWM pulse
results in a pair of low-level inputs at
NAND gate U2B. U2B's output shifts
from logically low to logically high.
U4B’s inverting input sees the U2B
high output as a low input and turns
off NA1. PCM2 and NCM1 are kept
out of the picture by their pulled
down inputs.

When we install that last imagi-
nary jumper across JP1 pins 5 and 6,
PB1, NB1, PCM2, PWM2, and NCM1
are drawn into the mix and respond
to logic level stimulus exactly like their
counterparts PA1, NAT1, PCMT,
PWM1, and NCM2.

Okay, while we're in imaginary
mode, replace the motor in
Schematic 3 with a coil from a
bipolar stepper motor. Then create
another circuit just like the one in

Schematic 3 for the second coil of a
bipolar stepper motor. What you end
up with is an H-Bridge for each
bipolar stepper motor coil, or our
H-Bridge hardware.

The code in Listing 2 energizes
the bipolar motor coils in a pattern
that flips the rotor of your stepper
motor round and round. To reverse
the direction of rotation, simply
reverse the order of the writes to
PORTC in Listing 2. Speed up the
rotation by shortening the delays
between steps. Conversely, slow
down the rotation by increasing the
delays between steps. | used the
same 32.768 mS tick timer code from
the brushed motor application in the
stepper code to make delay genera-
tion easy.

If you need to know more about
how bipolar stepper motors work,
| suggest getting a copy of
Microchip’s AN907, Stepping Motor
Fundamentals. There you will find a
bipolar stepper motor truth table that
you can directly correlate to the
stepper motor code and schematics
I've provided for you.

Things to Play With

Our H-Bridge and motor discus-
sion is complete. You now have
everything hardware and firmware

SOURCE
PIC16HV616

MCP6022
Microchip Technologies
www.microchip.com

you need to spin small- to medium-
sized stepper and brushed DC
motors. Here are some things you
can tinker with once you get your
motors spinning. If you need
over-current shutdown capability, you
can use the current sense circuitry to
feed an analog-to-digital converter
input or comparator input on the
PIC16HV616 and kill the Enable
line when a preset current level is
exceeded. Motor RPM can easily be
obtained and controlled by monitor-
ing the motor shaft rotation optically
and counting the incoming pulses
over a predefined time period.

The H-Bridge design used in
this series was designed with a
development board mentality. You
can greatly decrease the physical
footprint of the H-Bridge and H-Bridge
driver circuits described within these
pages to fit a medium-powered
programmable motor controller into
the tightest of spaces.

Peter Best can be contacted via
email at peterbest@cfl.rr.com

UML or BNF?
SEE_HERE:

Al

;s BNF simple example
: Begin
IV-KITS :== BREADBOARDS
& | _PARTS
& i _ CHIPS
& i _ CODE
& | _ CONSTRAINTS

: end

ORDER:

"Using BNF for Design"

"THERE IS NO ROYAL ROAD TO DESIGN" EUCLID (¢ 300 be)
"but, "THERE IS A CHEAP TOLL ROAD"" CLARK (c 2000 ad)

: (THIS IS A COMMENT)
;s Teach your kid that American Design needs to be much better than

; ""Good enough for government work." Perhaps the result will be
; firms and engineers that can design a SUV, a LEVEE, or a Robot.

(& | _IS AND OR NOT)

where BREADBOARDS = BB2; BB3; BB4; BB5; ..
.- LOW_COST AND SHORT SCHEDULE

...... (120 pages softcover) $9.00 MO only,

postpaid USA

USE_BNF as a design language for systems, hardware, software, firmware, planning,
packaging, debugging, testing, documentation, analysis, synthesis, verification, and
validation. It is a top_down and bottom_up definitional methodology. In general

BNF is not logic but a consistent rational and irrational methodology for words,
numbers, and events, as well as IDEAS, OBJECTS, ATTRIBUTES, and ELEMENTS.

IV. POB 245. WALDWICK. NJ. 07463-0245

SERVO 08.2006 59

