
CELLAR
CIRCUIT

®INK
 # 1 0 5 A P R I L 1 9 9 9

DIGITAL SIGNAL PROCESSING
PWM Signal Generation and Measurement

Interfacing Flash Memory with DSP

Build a Video Multiplexer

Create a Win32
Compatible Environment

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

2 Issue 105 April 1999 Circuit Cellar INK®

TASK MANAGER

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ingo Cyliax
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

PROJECT EDITOR
Janice Hughes

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar
INK are registered trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written
consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

School’s in Session

a hh…the breeze is blowing gently, the air is
brisk, the sky is blue—what a refeshing season!

It’s back-to-school time again!

Well, that’s not true for my family here in Connecticut,
but some of my friends are already thinking about pencils and notebooks.
Did you know that the Japanese start their school year in April?

I remember the first time I heard that, just a few years ago. Seemed odd
to me at the time, but maybe I’ve lived a sheltered life. There’s always
something new to learn, isn’t there?

Truly, we’re never so old, so wise, so mature that there isn’t something
we don’t know. Or, what about when it’s been so long since you heard
about something that it’s like learning about it for the first time? Have you

ever experienced a familiar excitement when you go back to solving the
problems you first tried to tackle years ago? Er…hang on a sec—do you
even remember all those formulas and equations?

Perhaps you need to go back to school, too. Here’s your chance, and
from the comfort of your own chair! Starting this month, the Circuit Cellar
academic year begins (and yes, we’re in session 12 months a year). Our
new quiz—Test Your EQ—lets you test your “engineering quotient.”

We begin the monthly quiz in this issue with submissions from Bob
Perrin, who I thank for approaching us with the initial concept. These ques-
tions are adapted from a much longer test given to all engineering appli-

cants at Z-World. Give these problems the old college try and ask yourself,
would you get the job?

As Steve mentioned in Priority Interrupt a couple months ago, our latest

survey showed that readers were concerned that EEs don’t always know
even fundamental electronics. Test Your EQ lets you discover on an on-
going basis whether you make the grade. Maybe you’ve been involved on

the management side of the team for such a long time now, you need a
refresher course.

The answers to the problems in Test Your EQ will be posted on our web

site (www. circuitcellar.com) each month, so you can check right away how
you fared on the problem set. And although we will update the answers
each month, past quizzes and their correct answers will be maintained on

the site as well.
Of course, we also want you to take a turn on the “teacher side” of the

desk. Submit your potential engineering quizzes to me via e-mail, fax, or

regular mail, and for each half page of the magazine that we decide to fill
with your questions, you will receive $50.

Wherever you happen to be today, it may look like spring or fall outside,

but no matter. It’s time to hit the books again. Turn to page 83 to go back to
school now!

Circuit Cellar INK® Issue 105 April 1999 3

42 Nouveau PC
edited by Harv Weiner

45 Win32 and Real Time
Peter Petersen and Tom Schotland

50 RPC Real-Time PC
Astronomical Issues
Part 1: Introduction to Embedded Astronomy
Ingo Cyliax

56 APC Applied PCs
ICE on Tap
Part 2: Emulating over Ethernet
Fred Eady

ISSUE
INSIDE

Integrating Flash Memory in an Embedded System
Ethan Bordeaux and Stefan Hacker

Embedded PWM Signals
Andrew Lillie

Thermistor-Based Conditional Output Sensor
R.K. Kamat, G.M. Naik, and G.G. Tengshe

Video Switch
Cullen Jennings

I MicroSeries
TPU
Part 4: Scheduler and Microcoding
Joe DiBartolomeo

I From the Bench
Dallas 1-Wire Devices
Part 1: One on One
Jeff Bachiochi

I Silicon Update
Maximicro
Tom Cantrell

2

6

8

83

95

 96

E
M

BE
DD

ED
P
C

12
20
28
32

62

72

78

105105

Task Manager
Elizabeth Laurençot

School’s in Session

Reader I/O
Circuit Cellar Online

New Product News
edited by Harv Weiner

Test Your EQ

Advertiser’s Index
May Preview

Priority Interrupt
Steve Ciarcia

Sitting in the Dark

6 Issue 105 April 1999 Circuit Cellar INK®

READER I/O

• Wouldn’t it be great if there was an easier way to search past articles for certain
topics (besides flipping through the pages of 105 back issues)? Stop wishing
and start clicking! Head over to our homepage to find out how to get your
searchable CD-ROM of the Circuit Cellar back issues.

• All aboard the INFO Express ! Loaded with the latest news and information about
Circuit Cellar INK as well as any additions or changes to our web site, INFO
Express stops right at your e-mail address. Visit our homepage to sign up for
this new service from Circuit Cellar.

• While you’re working on your entry for Design99, don’t forget to check the
Design99 Rules Update section for the latest updates on contest guidelines.

Be sure to visit the Circuit Cellar Design Forum this month for more great
online technical columns and applications. The Design Forum password is your
key to great new columns, monthly features, and PIC Abstracts.

Silicon Update Online: HIPe or Hope?—Tom Cantrell
Lessons from the Trenches: Hardware Tips—George Martin
Enclosure Fabrication: Ed Zanrosso

ALTERNATE ROUTE
In “Digital Frequency Synthesis” (INK 99), Tom

Napier used a Microchip PIC16C54 microcontroller for
signal generation. Scenix Semiconductor makes parts
that are improved versions of the PIC for applications
such as this.

The SX18AC can replace the PIC and run 2.5×
faster (50-MHz clock frequency instead of 20 MHz). If
the SX is set for turbo mode, the internal divide by
four is bypassed and the SX runs at the full 50-MHz
clock rate.

Instructions such as GOTO, CALL, and returns take
an extra cycle so the final speed is not quite 10× as
fast. But, with a few changes to the program, there are
other features that can make up the difference.

For instance, a fuse bit enables the arithmetic to
use the carry flag in multiple precision calculations.
This arrangement is faster and saves instructions by
reclaiming some of the cycles lost by using turbo mode.

Using an SX series micro with a 24-bit accumula-
tor gives about 1.9 MHz for the update rate, allowing a
600-kHz filtered output signal. A faster DAC and filter
amplifier must be used to reproduce the higher fre-
quencies. I used an R-2R DAC made with 120- and
240-W resistors.

The April
 Design Forum
password is:

Astro

New!

Design Forum

In case you want to check it out, my Scenix version
of the program is available at http://brouhaha.com/
~eric/scenix/ in SXNCOEX.ZIP.

Richard Ottosen
ottosen@idcomm.com

WHICH NUMBERS COUNT
Steve, thanks for your efforts at Circuit Cellar INK.

Please don’t become big-advertiser driven. INK is the
one magazine in which I look at every advertisement
and read at least 90% of them. In my opinion, you have
a good feel for what your readers want.

I know you’ve voiced your frustrations about advertis-
ers wanting to direct the magazine. I think comments like
the one from Eric Sells in Reader I/O (INK 98) tell the
story for advertisers. What better testimonial than a com-
pany that’s perceived as small and unknown becoming
number two behind one of the giants?

Grant Powell
gapowell@gte.net

If you miss the Circuit Cellar
BBS, then the cci newsserver is
the place to go for on-line
questions and advice on embed-
ded control, announcements
about the magazine, or to let us
know your thoughts about Circuit
Cellar. Just visit our home page
for directions to become part of
the newsgroup experience.

Newsgroups

ONLINE
Circuit Cellar www.circuitcellar.com

8 Issue 105 April 1999 Circuit Cellar INK®

NEW PRODUCT NEWS
8-/16-BIT MICROCONTROLLER

The TSC80251G1D enhances the C251 architecture
core with serial communication interfaces. Running up
to 24 MHz with an active power consumption as low as
24 mW (3-V version), the TSC80251G1D offers an ex-
cellent performance/power-consumption ratio. Applica-
tions include smart-card readers, cordless phones, ISDN
PABx, networking, backplanes, and routers.

The TSC80251G1D features 16 KB of ROM, 1 KB of
RAM, and several on-chip serial communication capa-
bilities such as UART, serial peripheral interface, and
multimaster I2C. The device comes with three 16-bit tim-
ers, a keyboard interface, and complete programmable
counter array with five modules including PWM, input
capture, output compare, and timer/counters. It also
includes an enhanced power-management unit with
power-on reset, brown-out, and prescaler functions.

Available in commercial and industrial temperature
ranges, the product is offered in 44-pin PLCC, 40-pin
DIP, and space-saving 44-pin Thin QFP packages. The
device operates from 2.7 to 5.5 V.

Pricing for a 44-pin PLCC in commercial temperature
range starts at $4.40 in quantities of 10,000.

Temic Semiconductors
www.temic-semi.de/nt/micro

DSP-CONTROLLED SERVO DRIVES
UltraDrive’s G Series servo drives use DSPs that are

specifically designed for motor control. The drives pro-
vide 1/T velocity loop or torque-mode control, true
performance matching with motor RMS horsepower
modeling, and extremely low torque ripple. The G Series
can be used with any servo motors (including linear
brushless servomotors) incorporating either Hall-effect
sensors (trapezoidal commutation) or Hall-effect sensors
plus encoders (sinusoidal commutation).

The G Series offers PWM-switching frequencies from
10 to 20 kHz, and provides current loop bandwidths from
1 to 2 kHz. Four G Series models deliver from 5 to 20 A
continuous current output and continuous output power
from 1.2 to 4.8 kW. Integral power supplies can use
universal AC input voltages from 90 to 265 VAC.

Software in the DSP’s flash memory enables the user
to define motor- and application-specific parameters.
Parameter adjustments can be commanded on-the-fly to
increase application-control flexibility. Windows-based
software provides setup, tuning, and diagnostic utilities
to reduce system setup time and commissioning. The
software includes graphical plotting tools that turn a
desktop or laptop computer into an advanced digital
storage oscilloscope.

Flash memory provides an easy path for system firm-
ware upgrades and eliminates batteries for parameter
storage. Windows software and an upgrade disk are all
that’s required to update drives with firmware enhance-
ments and customer-specific features for applications.

UltraDrive/Westamp
(818) 709-5000
Fax: (818) 709-8395
www.ultra-drive.com

Edited by Harv Weiner

www.temic-semi.de/nt/micro
www.ultra-drive.com

10 Issue 105 April 1999 Circuit Cellar INK®

NEW PRODUCT NEWS
PC REMOTE CONTROL

The KeyRF PC remote control enables you to re-
ceive signals from a keychain remote control trans-
mitter (like a garage door opener) on your PC. It can
be used for overhead-projection presentations, to flip
channels on your built-in PC TV, or for home automa-
tion systems. The RF technology is superior to infra-
red units, allowing 360° transmissions over longer
distances and through walls and objects. The receiver
can be programmed to assign custom keyboard keys to
all five transmitter-button combinations. The KeyRF
plugs between the keyboard and the PC, and it does not
require additional software to be installed on the PC.

The KeyRF kit comes with a two-button keychain
remote control transmitter, a radio-frequency receiver,
a cable to connect to the PC keyboard port, and a user
manual.

List price for the KeyRF kit is $150.

L3 Systems, Inc.
(425) 836-5438
Fax: (425) 868-8706
www.L3sys.com

www.L3sys.com

Circuit Cellar INK® Issue 105 April 1999 11

NEW PRODUCT NEWS

GPS-BASED NETWORK TIME SERVER

SINGLE-BOARD COMPUTER
The BasicBox is an SBC system designed for educa-

tion, experimentation, and embedded applications.
The design is adopted from Jan Axelson’s Microcon-
troller Idea Book.

The standard board configuration contains an 8052
microprocessor with built-in BASIC-52 interpreter,
8 KB of RAM, 8 KB of EEPROM, a UART for RS-232
serial communications, and 35 lines of parallel I/O.
The board is programmable in BASIC-52 or 8051 as-
sembly language with either a PC or a Macintosh via a
modular telephone type cable. The BasicBox is capable
of expanded I/O via its DIN connector.

The BasicBox (BB-1) is packaged
with a copy of Axelson’s book, termi-
nal software, power supply, serial
cable (PC or Macintosh), demo pro-
grams, documentation, and the “Board
of Education” (BB-2)—an experimen-
tation board that gives the user an
interactive learning environment.

The BB-2 contains a variety of
devices designed to give feedback as
the user becomes more familiar with
the BasicBox. The devices include a
speaker that gives audible tones when
exercising the PWM, a seven-segment
LED that can be manipulated both

bit- and byte-wise, a pushbutton for experimenting
with debounce algorithms, a DIP switch for discrete
inputs, and an oscillator for measuring frequency and
bit times.

The BasicBox is priced at $249 plus shipping for
single quantities.

Advanced Graphics Systems
(530) 887-1619
Fax: (530) 887-0107
www.ags-gv.com

The NTS-90 network time server
from TrueTime distributes time to
precisely synchronize client com-
puter clocks over a network. Using
the GPS as its primary source, NTS-
90 transfers the time over the net-
work to client computers using
the well-established network time
protocol (NTP). Synchronization
accuracy over the network is typi-
cally 1–10 ms.

With near plug-and-play operation,
installation is easy and ongoing main-
tenance and support costs are very low.
Client computers can continually be
added to the network and directed to
retrieve time from the NTS-90. An
RS-232 command set provides versatile
control and a single command config-
ures the unit for immediate use. Other
commands give status information,
precision timing, and total control.

The NTS-90 is also a source for
accurate serial time broadcasts and
time on demand. A once-per-second
time broadcast (accurate to the
millisecond) is available via the
serial port. The NTS-90 can also
timestamp external events with
millisecond accuracy.

The NTS-90 comes in a rack-
mountable configuration. The rear
panel supports the synchronization
input connector (GPS or ACTS), a
15-pin AUI network connector,
and a 9-pin RS-232 communica-
tions/initialization connector.

TrueTime, Inc.
(707) 528-1230
Fax: (707) 527-6640
www.truetime.com

www.ags-gv.com
www.truetime.com

12 Issue 105 April 1999 Circuit Cellar INK®

Integrating Flash Memory
in an Embedded System

FEATURE
ARTICLE

Ethan Bordeaux
& Stefan Hacker

u
Turn on to the power
and ease of flash!
Ethan and Stefan
show us the best uses
for flash memory,
and create an inter-
face between a DSP
and flash. It’s easy to
tie into your system,
and you can’t beat
having in-system
programmability.

ntil recently, the
most flexible exter-

nal boot memory was
an EPROM. But, if you

needed to erase or update the data,
you had to remove the EPROM from
the system, expose it to ultraviolet
light, place it in an EPROM burner,
and insert it back into the design.

A better solution is to update code
and data while the nonvolatile mem-
ory is in the system. This is the type
of functionality built into flash memory.

We’re sure you can imagine lots of
applications and system configurations
where such functionality is useful.

One application is an embedded
speaker-independent voice-recognition
unit, as in a hands-free car kit or voice-
activated appliance. The user programs
a number of keywords to perform opera-
tions like dialing a phone number or
turning on and off a device. The pro-
cessor would need to store these voice
patterns in external nonvolatile mem-
ory and be able to retrieve them for
comparison purposes.

Flash memories are also an asset in
systems that need to save data during
a power outage or brownout. The pro-
cessor moves its code and data contents
from volatile internal memory to an
external nonvolatile memory and, on
revival of the system, continues at the
last saved state.

12

20

28

32

Integrating Flash Memory
in an Embedded System

Embedded PWM
Signals

Thermistor-Based
Conditional Output
Sensor

Video Switch

FEATURES

Circuit Cellar INK® Issue 105 April 1999 13

In this article, we explain some of
the benefits and basic functionality of
flash memories. We cover an example
interface between an ADSP-218x DSP
and an Am29F040 flash memory as well
as hardware and software structure.

FLASH VS. EPROM
Even with the in-system program-

mability (ISP) of flash memory, there
are times when a conventional EPROM
may be a better choice for your design.
Table 1 is a partial list of considerations
for choosing a byte memory.

EPROMs cost less than flash mem-
ory with similar storage capabilities,
but there are many reasons to consider
using flash memory. ISP is an obvious
advantage. They can potentially offer
all of the functionality of an EPROM
and an SRAM in a single package.

Because flash memory is such a hot
commodity in today’s semiconductor
market, many manufacturers are focus-
ing research and development, along
with their advanced manufacturing
processes, on the flash market. This
translates into flash memories with
low power consumption during opera-
tion and powerdown, more aggressive
operational voltages, and faster access
times (e.g., Intel’s Strato flash family).

So, if your design requires the abso-
lute lowest power consumption, a flash
memory may be the best nonvolatile
solution. And because operational volt-
ages on flashes have now reached 1.8 V,
they can gluelessly interface to systems
that operate below LVTTL levels.

FLASH ROBUSTNESS
Flash memories are given a rating

for the number of write cycles they can
sustain before the part is not guaranteed
to operate properly. Flash memories
from a few years ago sustained ~10,000
write cycles. Assuming your design is
supposed to last 10 years, this trans-
lates to ~2.7 memory rewrites a day.

Some systems are deterministic
enough to guarantee this rate, but often
it’s unknown exactly how many times
the flash memory will be programmed
or erased in its lifetime. Some flash
memories now guarantee upward of
1,000,000 write cycles (or 270 rewrites
a day) before failure. This alleviates
some of the flash programming con-
cerns and enables them to fit into a
wider variety of designs.

INTERNAL VS. EXTERNAL
There’s been a lot of talk recently

about embedding flash memory on
processors, microcontrollers, or DSPs
and the increased level of system
flexibility that would provide.

The strongest argument for includ-
ing flash memory on a processor is for
prototyping. If a manufacturer provides
a processor with both a ROM and flash-
memory variant, the user can use the
flash device for prototyping and the
ROM-coded processor for production.

But, processors with embedded flash
memory cost 2–10´ more than their
flash-less counterparts and are aimed
at prototyping environments. And,
flash memories frequently can’t oper-
ate as fast as onboard SRAM or ROM.
The entire processor speed can be com-
promised by including flash memory.

Lastly, the size of a flash memory
embedded with a processor is typically
10–30k words. Although this is often
adequate for a portion of program or
data memory, many times, a design
needs access to a much larger memory

space, where it can grab many code
and data overlays or use a nonvolatile
memory source as a virtual hard drive.

Applications like digital cameras
require many megabytes of nonvolatile
storage for saving each “roll” of digital
film. Algorithms such as voice recog-
nition need large external memories
for voice look-up tables. To store 30
words for a speaker-independent voice-
recognition system, up to 512 KB of
external memory is needed.

These applications can’t be sup-
ported by processors with on-chip
flash memory. These systems require
a simple and flexible method of glue-
lessly connecting an external flash for
the optimal solution.

EMBEDDED ALGORITHMS
The simplest way to understand a

flash memory is to think of an SRAM
programmed via a finite state machine
(FSM). When reading information from
the flash memory, you have normal
access to all memory locations, much
like an SRAM or EPROM.

But, when specific operations need
to be performed on the flash, whether
it’s erasing, writing information, or
protecting memory segments from
erroneous erasure, the processor must
use the flash’s embedded programming
algorithms (EPAs).

A series of commands are written
from the processor to the flash. These
commands unlock the flash so it can
accept data, erase sectors, or perform
other programming tasks. We explain
a few of the common functions here.

BYTE/SECTOR WRITE
Byte/sector write lets the host pro-

cessor place data into flash memory.
The processor first writes the unlock
sequence to the flash and then writes
the address and data for the first value
to be programmed.

Figure 1 —A tale of two programming models: the left-
hand side (Am29F040B) requires an unlocking sequence
after every byte is programmed, and the right-hand side
(AT29C040A) requires an entire sector of memory to be
programmed each time you write to the flash.

EPROM Flash memory

Price per megabit $1–3 $2–10, depending on features
Typical packages PDIP, PLCC, BGA BGA, PDIP, PLCC, TSOP
Typical operational voltages 2.5 V, 3.3 V, 5 V 1.8 V, 2.5 V, 3.3 V, 5 V
Power consumption 30–200 mW 15–50 mW (read), 45–200 mW (write/erase)
Typical access time 60–200 ns 18–150 ns

Table 1—Even though flash memories are typically more expensive than EPROMs, a wide range of voltages, fast
access times, low power consumption, and inherent ISP can make them powerful and flexible memory ICs.

Write unlocking
sequence

Write one
byte of data

Last byte?
No

Yes

Programming
complete

Write unlocking
sequence

Write sector of data

Last sector?

Yes

Programming
complete

No

14 Issue 105 April 1999 Circuit Cellar INK®

Depending on the programming
methodology implemented on the flash,
additional unlocking commands need
to be written for each word, or a sector
(typically between 64 bytes and 64 KB)
of memory can be written in a burst
fashion, as you see in Figure 1.

In both types of flash memories,
the processor writes the unlocking
sequences and data to be programmed
into the flash and the flash latches the
data into memory. This sequence en-
ables the processor to continue execut-
ing algorithmic data while the flash
memory handles programming itself.

Keep in mind that the contents of
the block you want to program must
be erased beforehand. A convenient
feature of sector-programmed flash
memories is that they usually erase the
sector before programming it with data.

One methodology is not inherently
better than another, but each is better
suited for certain systems. Consider
these points before choosing a flash-
writing architecture.

First, decide what type of data you’re
writing. Will your data be partitioned
as a large chunk of information (e.g., a
JPEG file for a digital camera) or will
the external memory save single bytes
of information?

If you’re only making small incre-
mental changes to the flash memory,
it might make sense to choose a flash
with a byte-programming protocol. But,
if you write large pieces of data from
the processor, a sector-programmed
flash may be more efficient.

 Second, what kind of processor is
writing to the flash? Low overhead
DMA and fast byte-port accesses are
available in some embedded processors.

For example, the ADSP-218x DSPs
integrate a byte-wide DMA port that
supports a variety of ICs, including
flash memories. Knowing how your
processor will interface with a flash
and its EPAs is useful.

SECTOR/CHIP ERASE
Flash memories are partitioned into

a number of sectors, which enables the
programmer to erase one sector of the
memory at a time.

In general, a series of commands is
written out to the flash to start the
erasing procedure. Even though the
commands are latched into the flash in
a few microseconds, actually erasing the
flash takes a couple seconds.

Some flash memories don’t allow
the processor access to the flash during
a sector erase. Others, however, have
simultaneous read/write architectures
that permit memory accesses to one
block while the other block is erased.

AUTOSELECT/PRODUCT ID
This EPA determines specific infor-

mation about the flash in your system.
The information includes the manu-
facturer ID (necessary because many
companies make pin-for-pin–compat-
ible flash devices), device ID, and sector-
protection feedback. This data is useful
for external flash programmers/burners.

SECTOR PROTECT
The sector-protect EPA disables both

the programming and erasing of a
particular memory sector. This feature
is useful in systems where you both
boot and continually write/erase the
flash. You can set the boot sector to
be protected and leave other memory
segments unprotected for a chip erase.

DATA POLLING
The time it takes a specific EPA to

finish varies greatly, even on the same
device. For example, the Am29F040B
flash memory takes from 7 to 300 µs
to program a byte of data, and sector
erase time can vary from 1 to 8 s. There
are provisions for the flash memory to
signal when an operation completes.

Data polling is a common method
for determining when an EPA is fin-
ished. Once the processor writes the
data into the flash, it is latched inside
the part and the processor isn’t needed
to control the actual writing of data
into memory. But, the flash still
needs to place the new information
into its memory bank and signal when
it’s ready to handle another EPA.

One method is to poll the status of
one of the data bits to see if the EPA
has completed. For example, the Am-
29F040 provides data-polling capability
on data pins DQ7 and DQ6.

By reading back DQ7’s value during
a byte write, you can determine if the
programming is done. If DQ7 has the
inverted value of the programmed value
(e.g., the byte value programmed into
the flash is 0x0F [DQ7 = 0] and DQ7 is
read back as a 1), the EPA is not com-
plete. If DQ7 reads back as the value
programmed on that bit, the EPA is done
and the next byte can be programmed.

DQ6 can be used in a similar way.
While the flash is still in a byte-pro-
gramming EPA, successive reads of

Figure 2 —The Am29LV040B has memory strobes similar
to an EPROM, with the exception of a write pin (WE).

* Flash application server
* int error PROG_BYTE(char c_byte, char d_byte, int addr_lo, int
* addr_hi);
* Byte program:
* c_byte : 0xA0 // Third input to AMD EPA
* d_byte : value to program // holds data to be programmed to flash
* addr_lo: low 16bit // lower part of 22-bit address
* addr_hi: high 6bit // higher part of 22-bit address
* Register usage summary:
* modify : addr_lt, addr_ht, d_btmp
* destroy: ar, ax0, ay0, af
* calls : init_seq, cmd_write, calc_adr, DQ7_poll

prog_byte:
 call init_seq; // EPA unlock sequence
 call cmd_write; // EPA command word write
 ar = dm(d_byte); // fetch byte from input register
 dm(d_btmp) = ar; // store byte in destination register
 call calc_adr; // compute registers from address
 call DQ7_poll; // check for internal completion
 rts; // return from function call

Listing 1 —This code shows you the function PROG_BYTE.

A0–A18

*WE

VCC

Gnd

DQ0–DQ7

*CE

*OE

Am29LV040B

16 Issue 105 April 1999 Circuit Cellar INK®

DQ6 cause the value to toggle.
When the EPA finishes, DQ6’s
value stops toggling and reads
as the same data value. The
data-polling scheme you choose
depends on your processor and
whichever method is easier to
implement in software.

READY/*BUSY PIN
A lower-overhead method of

determining EPA completion is
via a READY/*BUSY pin. Some newer
flash memories include this pin to signal
the status of the flash at any moment.
Essentially, the pin is at a logic low
when the flash is in any EPA and at a
logic high when it’s ready to read data
or in standby.

This method is useful on processors
where the status of external flag pins
can be easily tested. ADSP-218x DSPs
provide a variety of I/O pins and support
for externally generated interrupts,
which can be connected to test the
status of READY/*BUSY.

The tradeoff is that this method ties
up an additional pin and increases the
total number of signals in your design.

FLASH TO DSP
Now that you’re acquainted with

some typical flash EPAs, here’s an
example using an ADSP-2184L DSP
and Am29LV040B flash memory.

The Am29LV040B (see Figure 2) has
a basic set of memory strobes. Other
flashes may provide READY/*BUSY
strobes, hardware pins for locking the
contents of the memory, or methods
of reading information for synchronous
burst transfers. We chose this memory
primarily for its simple hardware and
software interfaces.

The ADSP-2184L is a 16-bit fixed-
point DSP. This processor family con-
tains a number of external interfaces
including an external byte-wide DMA
port that can be configured to support
8-bit memories, including flash. Figure
3 shows the pins that the DSP uses to
connect to an external memory.

There are 14 address and 24 data lines
available externally on the DSP. This
configuration enables direct external-
program memory execution because
its opcodes are 24 bits wide. But, when
the DSP accesses external byte space,

only D8–D15 are connected to the flash
memory data bus, allowing D16–D23
to become address bits and creating a
total address reach of 4 MB.

The DSP can supply the necessary
chip-, read-, and write-select strobes
to the flash. Because the ADSP-2184L
operates at speeds up to 40 MHz and
flash memory may be just 5–6 MHz,
the on-chip wait-state generation logic
enables a flash interface without ex-
ternal glue logic.

The ADSP-2184L does not operate
out of external byte-wide memory.
That memory is typically too slow to
support the processor’s operational
speeds. Instead, the DSP transfers the
information from the byte-wide mem-
ory into internal SRAM and operates
from this memory space.

There are hardware provisions for
packing data and program-memory
words (16 and 24 bits) into internal
memory. Byte memory space is in-
tended to be a large region of memory
where the processor can fetch instruc-
tions or data to be operated on or to
save externally to the chip for later use.
Software development tools let code
and data be saved as memory overlays,
which can be loaded into the DSP
under control of an overlay manager.

FLASH SOFTWARE
The code modules of our ADSP-

2187L flash software enable the pro-
grammer to access flash memory via
function call APIs. Table 2 lists the base
functions, along with their purpose.

Each function expects input data to
be located in specific registers and
output data to be placed into specific
registers. Once you understand the
rules, it’s simple to tie the function
calls into your software. An example
of the assembly code used to program

Function Purpose

BDMA_SETUP Initializes the byte-wide memory port for
flash transfers

PROG_BYTE Write one byte of information to flash
READ_BYTE Read one byte of information
SECT_ERASE Erase one sector of information
MEM_IDENT Identify the manufacturer
AUTO_INC Automatic incrementing of address for

 multiple-burst transfers

Table 2—In our software, we adopted a function-calling scheme that hides
much of the underlying protocols and architecture of the flash memory.

one byte of memory on the
ADSP-2184L is in Listing 1.

The code shows the first
layer of the software interface
between the flash and DSP.
Because many of the basic
building blocks for each of the
EPAs are similar, an additional
set of functions (INIT_SEQ,
CMD_WRITE, CALC_ADR, and
DQ7_POLL) were written for
PROG_BYTE to call.

This function assumes that the
flash software housekeeping function
(BDMA_SETUP), which configures the
DSP for byte transfers, has already
been called.

There are several steps to the basic
program flow for PROG_BYTE. First,
place the appropriate values into the
addresses pointed to by c_byte, d_
byte, addr_lo, and addr_hi.

Be sure that the values contained
in the ar, ax0, ay0, and af registers are
no longer needed. If they are needed
after PROG_BYTE completes, the back-
ground register set on the ADSP-2184L
can be used for programming opera-
tions and then switched back when
the function ends.

PROG_BYTE calls two functions,
INIT_SEQ and CMD_WRITE, which
write the first three bytes of informa-
tion into the Am29F040B’s FSM to
unlock the memory.

The third step is a memory transfer
between the input data location and
the API. This transfer is necessary to
save the value of the data word for use
later when polling the data.

CALC_ADR creates the address where
the data is stored in the flash. It per-
forms the last byte transfer to the flash.

Lastly, DQ7_POLL (which continu-
ally tests the status of the DQ7 bit) is
called to determine when the flash has
transferred the data into memory and
when it’s free to enter a new EPA.

Figure 3 —The ADSP-2184L provides all the memory
strobes required to control the flash memory.

 D8–D15

(A0–A13, D16–D23)

 *RD

 *WR

 *BMS
ADSP-2184L

Circuit Cellar INK® Issue 105 April 1999 19

NOW IT’S YOUR TURN
This flash interface is easy to tie

into your application code. With a set
of reference functions for interfacing
these devices, you can add new func-
tions as your system needs change and
flash technology develops. I

REFERENCES

Advanced Micro Devices, Am29-
F040B, Datasheet, 1998.

Analog Devices, ADSP-2100 Family
Users Manual, 1995.

Atmel, AT29C040A Datasheet, 1998.
C. Leidigh, “Flash Memory Buyer’s

Guide,” Communications Sys-
tems Design, March 1998.

Ethan Bordeaux works for Analog
Devices as a 16-bit DSP product line
applications engineer. He has worked
with embedded speech processing appli-
cations including speaker identification,
speech recognition, and adaptive echo
cancellation systems. You may reach
him at ethan.bordeaux@analog.com.

Stefan Hacker is a DSP applications
engineer at the European DSP support
center for Analog Devices. His focus is
on OEM accounts using 16- and 32-bit
DSP products in consumer and indus-
trial applications. You may reach him
at stefan.hacker@analog.com.

SOFTWARE

The functions described here and
instructions for linking them into
your design are available via the
Circuit Cellar web site.

SOURCES

Am29F040B, Am29LV040B
Advanced Micro Devices, Inc.
(408) 732-2400
Fax: (408) 732-7216
www.amd.com

ADSP-218x
Analog Devices
(781) 329-4700
Fax: (781) 329-1241
www.analog.com/dsp

AT29C040A
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

www.amd.com
www.analog.com/dsp
www.atmel.com

20 Issue 105 April 1999 Circuit Cellar INK®

Embedded PWM Signals

FEATURE
ARTICLE

Andrew Lillie

Andrew shows that
embedded microcon-
trollers are quite
capable signal gen-
erators and measure-
ment tools. The
modular design of
the MPC555 enables
the mixing and match-
ing of submodules,
so you can get the
I/O you need.

pplications have
grown in complexity

over recent years, and
microprocessor suppliers

have responded with more sophisticated
embedded controllers. Today’s micro-
controllers have on-chip peripherals
that control everything from automo-
biles to electronic xylophones.

One microcontroller application is
PWM, a process used to control devices
such as stepper motors, communication
systems, battery management, audio
applications, and thermal write/erase

heads. The auto industry uses PWM
to generate control signals.

The MPC555 embedded processor
was designed for automotive applica-
tions like electronic throttles, regula-
tor valves, and position motors. It
carries a modular I/O system (MIOS)
that is capable of eight PWM channels
and 10 period- and pulse-measurement
channels. MIOS1 is the implementa-
tion of the MIOS architecture used in
the MPC555.

In this article, I outline the initial-
ization of the MIOS module and explain
the clock management and program-
ming necessary to generate a 25% duty
cycle, 2.5-MHz waveform. I also give
you programming examples in assem-
bly and embedded C. Let’s look at how
the MPC555 submodules are integrated
and how they communicate with each
other and the PowerPC core.

SIGNAL GENERATION
The MIOS consists of a library of

flexible I/O and timer functions includ-
ing counters, input capture, output
compare, pulse and period measure-
ment, and PWM. It’s easily configured
for different kinds of applications be-
cause it is composed of submodules.

The PWM can be initialized and
programmed by setting up the appro-
priate registers. The eight PWM chan-
nels are controlled by one system
register and three registers that are
unique to each channel.

Table 1—Here are the bit settings for the MCPSM, address 0x306816. This register controls the MIOS counter
prescaler submodule. The MIOS counter is the common clock between the eight PWM channels on the MPC555.

Bit Name Function Description

0 PREN Prescaler enable This active high read/write control bit enables the
MCPSM counter. PREN is cleared on reset:
0 = MCPSM counter disabled
1 = MCPSM counter enabled

1 FREN Freeze enable When set, this active high read/write control bit makes it
possible to freeze the MCPSM counter if the MIOB freeze
line is activated:
0 = MCPSM counter not frozen
1 = Selectively stops MIOS1 operation when the
FREEZE signal appears on the IMB3

2–11 — Reserved
12–15 PSL Clock prescaler This 4-bit read/write data register stores the modulus value

for loading into the clock prescaler. The new value is
loaded into the counter the next time the counter equals
one or when disabled (PREN bit = 0). Divide ratios are:
0000 = 16
0001 = No counter clock output
0010 = 2
…
1111 = 15

a

Circuit Cellar INK® Issue 105 April 1999 21

STARTING THE MIOS COUNTER
To use the PWM channels, start the

MIOS counter, which is slaved to the
intermodule bus (IMB). The IMB runs
at half the system clock, so let’s assume
it’s operating at 20 MHz. Figure 1 ex-
plains the MIOS submodule integration.

The MIOS counter prescaler sub-
module (MCPSM) divides the system
IMB clock to generate the counter clock.
It also synchronizes all the submodules
with the same division of the system
clock.

The clock signal is prescaled by
loading the value of the clock prescaler
register into the prescaler counter every
time it overflows. This arrangement
permits all prescaling factors between
2 and 16. The MCPSM is controlled
by the MCPSM status/control register.
Counting is enabled by asserting the
PREN bit in the control register (see
Figure 1a and Table 1).

Because the PWM uses one count
of the MIOS counter per transition of
the PWM signal, the maximum fre-

quency that the MIOS modulators can
generate is half the MIOS counter clock
frequency. Later you’ll see that this
affects the resolution of the generated
waveform. Figure 1b shows the inter-
action of the clock signals between
MPC555 modules.

Following the register description
in Table 1, set the first bit high to en-
able the counter and write 0010 to bits
12–15 to set the divider to 2 for the
fastest counter possible. A faster counter
results in faster waveforms and more

accurate measurements. All
other bits should be 0.

In hexadecimal, write
0x8002 to register 0x306816
(MCPSMCR). If you program
this register using a background
debug mode tool, enter some-
thing like write -w 0x306816
= 0x8002. -w indicates that a
16-bit word is to be written.

To automate the program-
ming process further or include
the PWM in an application,
you can write a header file in
C similar to Listing 1. In the
application code, the command
for bit-wise programming is
mcpsmscr.fren = 0;. To
write the whole register at once,
use MCPSMSCR = 0x8002;.

Programming in C makes
it easy to identify the bits and
their functions. But for real-
time debugging and testing,
assembly is faster because the
code doesn’t need to be com-
piled and loaded each time.

Figure 1a —In the MPC555 MIOS submodule integration, the CP0–
CP7 bits are the prescaler bits 8–15 in Table 2 and are unique to
each PWM channel. b—This timing diagram shows resolution
dependencies and MCPSM generation. Note the four counts of the
MIOS counter per period of the PWM channel.

IMB clock (FSYS) IMB

Bus
 MCPSM interface

 Counter
 clock

CPx

8-bit
prescaler

FREN

EN

CPO–CP7

16-bit down
counter

16 bit <= comparator

Pulse width PWMB2

Next pulse width
MPWMB1

Output
flip-flop

Output
buffer

Output
logic

DDR

PIN

POL

EN

Modular I/O bus (MIOB)
(To all submodules)

Clock prescaler
register (PSL)

PREN

Output pin

IMB: 20 MHz

MIOS counter (MCPSM): 10 MHz

4 periods of resolution

PWM 0: 2.5 MHz, 25% duty cycle

1 period of IMB for each MCPSM transition

a) b)

 Bit Name Function Description

0 PIN Pin input status PIN bit reflects the state present on MPWMSM (MIOS PWM
(Submodule) pin. Software can thus monitor the signal on
pin. The PIN bit is read-only. Writing to it has no effect.

1 DDR Data direction register When the PWM function is used, the DDR bit has no effect.
2 FREN Freeze enable This active high read/write control bit enables the MPWMSM

to recognize the freeze signal on the MIOB:
0 = MPWMSM not frozen even if MIOB freeze line is active.
1 = MPWMSM frozen if MIOB freeze line is active.

3 TRSP Transparent mode TRSP bit indicates that the MPWMSM double buffers are
transparent: when the software writes to either the MPWMA
or MPWMB1 register, the value written is immediately
transferred to respectively counter or register MPWMB2:
0 = Transparent mode deactivated
1 = Transparent mode activated

4 POL Output polarity control POL bit works in conjunction with the EN bit and controls
whether MPWMSM drives the pin with the true or the
inverted value of the output flip-flop.

5 EN Enable PWM signal The EN bit defines whether MPWMSM generates a PWM
 generation signal or is used as an I/O channel:

0= PWM generation disabled (pin can be used as I/O)
1= PWM generation enabled (pin is output only)

6–7 — Reserved
8–15 CP Clock Prescaler This 8-bit read/write register stores the two’s complement of

desired modulus value for loading into the built-in 8-bit clock
prescaler. The value loaded defines the divide ratio for the
signal that clocks the MPWMSM period counter. Table 3
gives the clock divide ratio according to the CP values;
also see Figure 1.

Table 2—Here are the bit descriptions for the PWM status/control register (0x306006). Each of the eight PWM channels has a
PWM status/control register, allowing independent programming. Bits 8–15 determine the clock divider for each PWM channel.

22 Issue 105 April 1999 Circuit Cellar INK®

CHANNEL PROGRAMMING
The next step is to program the

individual PWM channels. Each chan-
nel is controlled by the period, pulse,
and status/control registers.

The PWM period register sets the
number of divisions per period of the
waveform (i.e., the resolution of a
single period). Choosing the resolution
of the wave requires special consider-
ation because it involves a compromise.

The resolution of the wave is in-
versely proportional to the maximum
frequency that can be produced. A
higher resolution requires more cycles
of the MIOS counter per period and
therefore a lower overall frequency.

The period register contains the
binary value corresponding to the num-
ber of MIOS clocks allocated to the
period of the waveform. The lowest
possible resolution is two bits, with one
clock each for high and low transitions.

Why would you want a higher
resolution? Higher resolutions allow
finer control over the signal’s duty cycle.
With 2-bit resolution, you’re limited
to a 50% duty cycle. With 16-bit reso-
lution, you have almost 65,000 possible
duty cycles. Continuing this example,
you can program the PWM channel
with a period resolution of four with
write -w 0x306000 = 0x0004.

The PWM pulse register sets the
number of divisions of the period regis-
ter that are high. That means the ratio
of the pulse register to the period regis-
ter determines the signal’s duty cycle.

The pulse-register value must be
less than the value contained in the
period register. In this example, enter
write -w 0x306002 = 0x0001 for
a 25% duty cycle on channel 0.

The third register is the PWM status/
control register. The last eight bits of
this register set the clock divider for
the particular PWM channel. This clock
divider operates on the MIOS counter
submodule programmed earlier.

Each PWM channel uses a divider
to slow the MIOS counter clock, but
remember that this also affects the
period and pulse-width registers. Table
2 describes the bit assignments for the
PWM status/control register. Bits 8–15
determine the clock prescaler, whose
values are shown in Table 3.

PUTTING IT TOGETHER
With the 20-MHz IMB divided in

half for a 10-MHz counter, you need
to program the PWM channel to divide
the MIOS counter by 1. Now there’s
room to split the period into four parts
and allow a 25% duty cycle at 2.5 MHz.
Here, use write -w 0x306006 =
0x54ff for PWM channel 0.

SUBMODULE CONFIGURATION
The MPC555 includes a MIOS dual-

action submodule (MDASM) that makes
pulse-width and period measurements.
It can also be used to capture wave-
forms and generate single and continu-

ous pulses. Let’s use the MDASM to
measure the period of the waveform
that was generated earlier using the
PWM.

To measure the output of the PWM
with the MDASM, you need to get the
signal from the PWM channel (here,
channel 0) to the first MDASM chan-
nel. You can do this with a jumper wire
and the pins available on the eval board.

The chosen MDASM channel must
be configured to measure the period of
the signal. You can calculate the period
of the waveform by reading (from the
register) the number of counts that
occur during the period of the signal.

SETTING UP THE COUNTER
The MPC555 MIOS has a modulus

counter submodule (MMCSM) that
works as a free-running counter to
which events can be referenced when
they are detected. It can also be used
for complex counting and timing
functions.

The MDASM and the MMCSM
work together to measure inputted
waveforms. For this example, set the
counter to be free-running and to auto-
matically roll over when it reaches its
maximum value. The counter is con-

Prescaler Value MIOS prescaler
(CP in hex) clock divider

FF 1
FE 2
FD 3
FC 4
FB 5
… …
02 254 (28–2)
01 255 (28–1)
00 256 (28)

Table 3—These clock prescaler bits determine the
prescaler used to divide the MIOS counter clock for
each PWM channel.

#ifndef _MIOS_H
#define _MIOS_H
//MIOS Counter Prescaler Submodule Status/Control Register(MCPMSCR)//

typedef struct {
unsigned pren: 1;
unsigned fren: 1;
unsigned reserved_bit2_11 10;
unsigned psl: 4;

} Mcpsmscr;
#define mcpsmscr (*(Mcpsmscr *)0x306816)
#define MCPSMSCR (*(volatile unsigned short *)0x306816)
#endif

Listing 1 —This C header file for the MIOS counter prescaler module provides two methods to address
the register: bit-wise in lowercase or word-wise in upper case.

> read -l 0x306058
(0x306058)
00306058 ABCDABC9 00028002

� � �

Listing 2 —The MDASM module outputs the value of the MMCSM counter in a long word when the read
�l command is used with register 0x306058. There are four counts of the 10-MHz clock between ABCD
and ABC9.

Circuit Cellar INK® Issue 105 April 1999 23

Table 4—The MMCSM status/control register (0x306036) controls the counter used by the MDASM to reference
transitions on the inputted waveform.

Bit Name Function Description

0 PINC Clock input pin This read-only status bit reflects the logic
 status state of the clock input pin.

1 PINL Modulus load This read-only status bit
 input pin status reflects the logic state of the modulus load pin.

2 FREN Freeze enable This active high read/write control bit enables the
MMCSM to recognize the MIOB freeze signal.

3, 4 EDGN, Modulus load These active high read/write control bits set
EDGP falling/rising falling/rising edge sensitivity, respectively.

 edge sensitvity 00 = Disabled
01 = MMCSMCNT load on rising edges
10 = MMCSMCNT load on falling edges
11 = MMCSMCNT load on rising and falling
edges

5, 6 CLS Clock select These read/write control bits select the clock
source for the modulus counter.
00 = Disabled
01 = Falling edge of pin
10 = Rising edge of pin
11 = MMCSM clock prescaler

7 — 0
8–15 CP Clock prescaler This 8-bit read/write data register stores the two’s

complement of the desired modulus value for
loading into the built-in 8-bit clock prescaler. The
new value is loaded into the prescaler counter
when the next counter overflow occurs or the
CLS bits are set to select the clock prescaler as
the clock source. Table 3 gives the clock divide
ratio according to the CP values.

trolled by the MMCSM status/control
register described in Table 4. The
MDASM can be referenced directly to
an external clock if one is available.

I set up the MDASM to count on
rising edges (register bits 3–4) and to
use the MMCSM clock. The clock
prescaler is programmed by the same
values as the PWM prescaler bits listed
in Table 3, and I set it up to follow the
MMCSM clock with a prescaler divi-
sion of 1. Therefore, the counter will
run at 10 MHz, or 100 ns per count.

According to Table 4, you enter
0x0eff into register 0x306036 to set up
the MDASM counter by using write
-w 0x306036 = 0x0eff.

To ensure that the counter starts
properly, reset it by loading all zeros
into the modulus latch register. The
modulus latch register is a read/write
register that contains the 16-bit value
of the counter used by the MDASM.
write -w 0x306032 = 0x0000
resets the counter. With the clock
running, you can set the MDASM to
detect the waveform periods and refer-
ence them to the MDASM counter.

24 Issue 105 April 1999 Circuit Cellar INK®

Bit Name Function Description

0 PIN Pin input status Reflects the status of the corresponding pin.
1 WOR Wired-OR Not used in DIS, IPWM, IPM and IC modes.
2 FREN Freeze enable This active high read/write control bit enables the

 MDASM to recognize the MIOB freeze signal.
3 — 0
4 EDPOL Polarity In IPM and IC modes, the EDPOL bit selects the

 input capture-edge sensitivity of channel A.
 0 = Channel A captures on a rising edge.
 1 = Channel A captures on a falling edge.

5 FORCA Force A Not used in DIS, IPWM, IPM, and IC modes, and
 writing to it has no effect.

6 FORCB Force B Not used in DIS, IPWM, IPM, and IC modes. Writing
to it has no effect. FORCA is cleared by reset and
is always read as zero. Simultaneously writing a
one to FORCA and FORCB resets output flip-flop.

7, 8 — Reserved
9, 10 BSL Bus select Selects which of the four possible 16-bit counter

 buses passing nearby is used by the MDASM.
11 — 0

12–15 MOD Mode select Selects the MDASM’s mode of operation. To avoid
 spurious interrupts, MDASM interrupts should be
 disabled before changing the operating mode. It’s
 also imperative to go through the disable mode
 before changing the operating mode.

Table 5—The MDASM status/control register (0x30605E) is programmed using these bits. To measure the
waveform’s period and frequency, program it to perform input period measurement by writing 0010 to bits 12–15.

Bits 9 and 10 select which 16-bit
counter bus the MDASM uses. Writing
00 to these two bits selects the default.

ger the MDASM counter on the rising
edge. Figure 2 shows the MDASM sub-
module for input period measurement.

CHANNEL CONFIGURATION
Next, initialize the MDASM to per-

form input period measurement. Like
the PWMs, the MDASM channels have
their own configuration registers. Each
is programmed and read using the data
A, data B, and status/control registers.

The data A register contains a value
for the counter when the last event
occurred. The data B register contains
the previous value of data A or an
independent measurement.

The status/control register has a read-
only bit reflecting the status of the
MDASM pin as well as read/write bits
related to its control and configuration.

The MDASM status/control register
(MDASMSCR, address 0x30605E)
initializes the first MDASM channel.
Table 5 defines the bits in this register.

Bit 0 is a read-only status pin that
toggles according to the status of the
incoming waveform. For input period
measurement, let’s write 0 to the
unused bits (1, 3, 5, 6, 7, 8, and 11).

Because you don’t want the MDASM
to freeze in background debug mode,
bit 2 is left as 0. Bit 4 is set to 0 to trig-

Circuit Cellar INK® Issue 105 April 1999 27

REFERENCES

A. Lillie, Using the MIOS on the
MPC555 Evaluation Board, App
note AN1778, Motorola,
www.mcu.motsps.com.

Motorola, MPC555 User’s Manual,
www.mcu.motsps.com.

SOURCE

MPC555
Motorola
(800) 521-6274
Fax: (512) 895-4465
www.mot-sps.com

Photo 1a —The scope
capture of the MPC555
MIOS PWM output shows
a 2.5-MHz 25% duty cycle
signal with a fast slew
rate. The pulse width is
measured at 100 ns or
25% of the 400-ns period.
b—This scope capture of
the MPC555 MIOS PWM
output shows a 2.5-MHz
25% duty cycle signal with
a slow slew rate. Note the
volts per division scale
compared to Photo 1a.

a) b)

At Motorola, Andrew Lillie has worked
in the powertrain systems and ad-
vanced media platforms divisions. He
is now involved with system-on-a-chip
design technologies. You may reach
him at ra8334@email.sps.mot.com.

Other buses are available to the
MDASM, depending on the frequency
to be measured. To perform frequency
measurement, you need to measure the
input period (MOD 0010) and convert
the time measurement into a frequency.
It’s also possible to measure the pulse
width (IPWM) of the inputted signal
by changing MOD 0010 to 0001.

To measure the input period, load
write -w 0x30605E = 0x0002 into
the MDASM status/control register.

OBTAINING MEASUREMENTS
When the MDASM channel detects

a rising edge, it writes the MMCSM
counter value to its data A register. On
detection of the following rising edge
(one period later), the MDASM moves
the first counter value into data B regis-
ter and puts the new value in register A.

My MMCSM runs at 10 MHz, or
counts at 100-ns intervals. Subtracting
register B from register A gives the
number of 100-ns counts during one
period of the input waveform. To read
the data in the data A and B registers,
type read -l 0x306058 into the

command window of the background
debug programmer.

To ensure that you read the contents
of the two consecutive MDASM data
registers at the same time, use a long
read (-l). Otherwise, you might mis-
count because of the time it takes to
read the data in two successive word
reads.

The software tool returns eight hex
characters in one long word. Listing 2
shows a measurement I made. Results
from subsequent applications will differ
from the example because the values
are read from a free-running counter.

The long word ABCDABC9 contains
the contents of the data registers. Data
A contains ABCD, and ABC9 is in data
B. By subtracting register B from regis-
ter A (D – 9 in hex), you get 4. To cal-
culate the frequency, multiply by 100 ns
and take the reciprocal to get 2.5 MHz.

RESULTS
Photos 1a and 1b show the 2.5-MHz

25% duty-cycle waveform. An inter-
esting feature of the MPC555 MIOS
submodules is its ability to enable a

slower slew rate on the
generated waveforms.
Photo 1a shows the faster
setting and Photo 1b
shows the slower one.

The slower transitions
use less power because
the keepers that pull the
output high or low are
turned off. This setup is
useful in power-sensitive
applications that require
only slower waveforms to
allow ample time for the
gates to fully open.

Bus
select

16-bit register A

16-bit register B

Edge
detect

16-bit up
counter

Clock
select Submodule bus

Two 16-bit counter buses

From
prescaler or

pin

Input pin

Input capture
interrupt on

designated edge

Figure 2 —Here’s a MIOS double-action submodule configured for input
period measurement mode. There are two 16-bit buses between the
16-bit up counter and data registers A and B.

A slower rise/fall time may also be
useful in analog applications involving
audio where low-pass filtering needs to
be kept to a minimum. Notice that the
volts per division are turned down to
detect the slower rise times in Photo 1b.

This adjustment was needed because,
at 2.5 MHz, the 200-ns rise time in
the slow slew mode isn’t enough time
for the signal to reach its final level
because the pulse is only 100-ns wide
(see Photo 1a). For a slower signal and a
greater duty cycle this wouldn’t be an
issue and you could take advantage of
the gradual rise and fall times.

Now, you’ve seen how embedded
microcontrollers with modular chip
design can serve as capable signal
generators and measurement tools for
different types of applications. I

www.mot-sps.com

28 Issue 105 April 1999 Circuit Cellar INK®

Thermistor-Based
Conditional Output Sensor

FEATURE
ARTICLE

R.K. Kamat, G.M. Naik,
& G.G. Tengshe

o
Conventional sensors
can cause bottlenecks
in many applications,
so enter the world of
smart sensor tech-
nology. These authors
created a thermistor-
based temperature
sensor with built-in
hysteresis to minimize
sensitivity to noise
and glitches.

ver the past
decade, we’ve seen

a revolution in micro-
electronic circuits and

devices. Today’s microprocessors and
microcontrollers are powerful and
affordable, and they have revitalized
the instrumentation world.

But, the modest suitability of con-
ventional sensors used in micropro-
cessor-based data-acquisition systems
is becoming a bottleneck in diverse
application fields.

This problem is being overcome by
the rapid development of digital-output
sensors that are compatible with micro-
processors [1]. These so-called smart
sensors have advantages like auto-
matic calibration, automatic
linearization, insensitivity to
interference, elimination of
cross-sensitivity, and im-
proved frequency response.

There’s no question that
the hardware is becoming
more complex inside these
sensors but the external hard-
ware is more simple. This
new arrangement saves the
cost of extra signal condition-
ing and conversion [2].

One application for the smart sen-
sor is a flip-flop sensor [3]. A flip-flop
sensor has a circuit that’s sensitive to
the measurand and, in order to sense,
changes the flip-flop between a stable
and an unstable state by counting the
number of ones and zeros. Such sensors
offer advantages like possible integra-
tion with ADCs and access by address-
ing a matrix of a sensor as in SRAM [1].

The most striking fault of these
sensors is their sensitivity to glitches
or noise impulses. In this article, we
recommend a new type of thermistor-
based temperature sensor with hyster-
esis that minimizes the drawbacks of
a conventional flip-flop sensor.

IC SENSORS IN THERMAL DOMAIN
IC temperature sensors can be

divided into two groups—on-chip signal
conditioning with a built-in sensor and
on-chip signal conditioning with an
external sensor. Integrating the mod-
ules on one chip results in minimal
pick-up noise, adaptive processing,
the possibility of wireless interfaces,
on-chip linearization, calibration, and
cross-sensitivity compensation.

The drawbacks of single-chip inte-
gration include nonstandard processing
steps, nonstandard initial wafer sizes,
and difficulty in predicting the behav-
ior of the material after fabrication.
Choosing a package that permits opti-
mal interaction between the sensor
and measurand can be difficult, and
because of the measurand, there’s the
possibility of damaging the sensing
core and conditioning circuitry.

As early as 1966, Si and GE were
predicted to be the leaders in IC tem-
perature sensors [4]. GE’s poor tem-
perature characteristics enabled Si to
take over the IC market.

Figure 1 —Here’s the full schematic of the Schmitt-trigger sensor
which features high input impedance and full output swing along with
less current burden on the thermistor.

Circuit Cellar INK® Issue 105 April 1999 29

Drift in junction potential
along with temperature sens-
ing, in the case of P-N junc-
tion diodes, was the basis of
first-generation IC tempera-
ture sensors and is still used
today. A programmable
temperature-monitoring
chip with P-N junction as
the temperature-sensing core
was even used for tagging
Atlantic salmon [5].

The transistor, which is
the basic unit of the IC, exhibits good
temperature sensing when connected
in the negative feedback loop of an op
amp. This performance seems to be the
reason for the dual transistor struc-
tures found in many IC temperature
sensors. These ICs use temperature-
proportional delta VBE (also known as
PTAT) that results from operating
similar bipolar transistors at different
current densities.

With the growing need for portable
instruments, the focus has shifted to-
ward low-power designs for IC tempera-
ture sensors. CMOS transistors are being
used to reduce power consumption.

Other techniques, such as extensive
switching of the circuit, on/off-keyed–
type transmission to other modules,
putting the possible number of submod-
ules in standby mode, and hardware/
software partitioning, are being imple-
mented in the effort toward lower
power. Techniques like multithreshold
CMOS (MTCMOS), super cut-off CMOS
(SCCMOS), and variable threshold
CMOS (VTCMOS) are also being used
to reduce power dissipation [6].

A CMOS monolithic temperature
sensor based on compatible lateral
bipolar transistors for the sensor and
reference parts was developed with all
CMOS circuits for ADC, control, and
calibration [7]. However, the current
gain of the lateral bipolar transistor
and the leakage current to substrate
depend on the IC processes, so the
desired results are hardly feasible. That’s
why vertical bipolar substrate transistors
are used in recent CMOS sensors [8].

The sensing is based on the PTAT
mechanism with the output chopped
suitably for offset reduction and then
passed through a sigma-delta A/D
module for digitization. The chip is

1.5 mm2 with a temperature measure-
ment range of –40° to +120°C, a supply
voltage as low as 2.2 V, and power
consumption as low as 7 µW.

IC-based temperature setpoint
switches are also popular in control
applications. Switching the output of
an IC takes place when a sum of PTAT
and its complementary CTAT pass
through zero at a selected temperature
set by external resistor [9]. This low-
cost IC has an open-collector output
and works in the range of –40° to +150°C
with an accuracy of 1°C.

For some time, RTD has been the
industry standard among temperature
sensors. Its success is primarily due to
its corrosion resistance, high melting
point, and ease of purification. This
sensor provides unequalled accuracy,
sensitivity, stability, wide sensing
range, and better nonlinearity charac-
teristics (only of the second order).

With the progress of hybrid IC
technology, it’s possible to design
RTD-based sensing cores on Si-based
substrates. Honeywell has begun de-
veloping temperature sensors for the
automobile and HVAC industries [10].
To reduce cost, they
use a combination of
nickel and iron in
their TD series.

Linearization hardware
is built into the chip and
every care is taken to over-
come the magnetoresis-
tance of the Permalloy. A
reference BIMOS chip for
processing Pt-100 signals
over the range of –200° to
850°C is included [11].
The output signal is time
multiplexed and has fre-
quency-modulated volt-
age that is suitable for

microcontroller processing.
Microminiaturized amorphous GE

thin-film thermistors (insulated by a
thick PCVD silicon nitride layer) have
been used as probes for measuring mass
flow, heat conductivity, perfusion, and
local temperature gradient [12]. These
probes are useful for on-line blood-flow
measurements in physiological and
other medical applications.

Several researchers have worked out
suitable methods of linearization, self-
calibration, and compensation [13–15].
The latest activities in this field sug-
gest that the present trend is to develop
ICs based on RTDs and thermistors.

SENSOR DESIGN
Our sensor design is based on the

emitter-coupled multivibrator [16].
The thermistor is embedded in the
circuit as shown in Figure 1, and the
UTP and LTP calculations are:

UTP =
(R1| |R5)

(R5 + (R1| |R5))
× VCC

LTP =
(R5| |R6)

(R1 + (R5| |R6))
× VCC

Figure 2 —The output response of the sensor was checked on Electronics Workbench.
Here, the thermistor RT is replaced by a sine-wave generator to facilitate simulation.

Photo 1 —This screenshot shows
an enlarged version of the CRO
module of Electronics Workbench.
The square-wave output with
sinusoidal excitation confirms the
result.

30 Issue 105 April 1999 Circuit Cellar INK®

At low temperatures, the thermistor
(RT) has high resistance. Because of
Rset, the base of T1 is at lower voltage
than the base of T2. The base of T2 is
approximately at UTP.

With the increase in temperature,
RT decreases, causing the base poten-
tial of T1 to rise above UTP level. In
turn, this causes T1 and T5 to start,
and T2 and T3 to turn off.

The circuit’s advantages are high
input impedance and full output swing
from 0 to VCC. It also reduces the cur-
rent burden on thermistor in dormant
mode resulting in less power dissipation.

SENSOR IN IC FORM
The Schmitt-trigger sensor circuit

is easy to reproduce as an ASIC because
it is based on all NPN transistors. This
setup eliminates incorrect triggering
(the result of mismatched VBEs on T1
and T2) by careful design of device
layout in the photomasking stage.

To further minimize the effects of
the tolerance and temperature coeffi-
cients on trigger-level definition, we
recommend using a thin-film network
(preferably of metal film resistors) of
R1, R5, and R6. The components added
externally to this proposed ASIC are a
thermistor and Rset, which can be
chosen to suit the application. A simu-
lation of this circuit using Electronics
Workbench is shown in Figure 2.

 In some biomedical applications
where the measurand temperature
range is limited, the thermistor can be
placed on the substrate using hybrid
techniques. A hybrid IC design com-
bines the advantages of silicon pro-
cessing with exotic sensing principles.

The basic circuit can be arranged as
cells in rows and columns. The output
of this matrix sensor is accessed via
addressing techniques similar to those
used in SRAM. The matrix sensor can
be duplicated using VLSI technology.

IC AND DISCRETE VERSION
Our sensor design is suitable as an

ASIC or in a discrete version. The tran-
sistors presently available in the market
are shown in Figure 2 so you can test
the sensor in discrete form.

However, the IC version has some
unique advantages—primarily, the
elimination of incorrect triggering.

This feature is possible because of the
ease with which the well-matched
transistors can be fabricated in ICs. A
thin-film or laser-trimmed network of
R1, R2, and R5 further reduces the
effect of tolerance and temperature
coefficient on trigger-level definition.

NOISE IMMUNITY
The noise immunity of our sensor

is a function of the hysteresis intro-
duced. The existing flip-flop sensor is
sensitive to even a weak noise impulse
produced due to temperature drift or
supply variation.

But, the Schmitt-trigger–based
sensor design can be made insensitive
to noise. You do need to accurately
estimate the noise, however [17].

After obtaining the noise estimate
for a particular application, the resis-
tors R1, R2 and R5 can be chosen so
as to keep the hysteresis gap slightly
more than the noise voltage. This
setup helps to mask the noise.

Other techniques, like ensemble
averaging, can be applied in software
to reduce low-frequency noise. In the
present case, the noise margin kept is:

 UTP – LTP = 8 V – 4 V = 4 V

However, there’s a tradeoff between
sensitivity/resolution and noise immu-
nity. For better sensitivity, the amount
of hysteresis should be minimal (as
with a flip-flop sensor). In a Schmitt-
trigger sensor, the noise immunity is
greater, at the expense of lack of sen-
sitivity in the deadband.

APPLICATIONS
The circuit in Figure 1 can be used

as a low-cost high-performance tem-
perature switch in applications such as
over/under-temperature alarm, elec-
tric irons, over-temperature warnings
in PC board applications, and more.

If the thermistor is biased in a self-
heated region, the circuit can be used
as vacuum alarm, CO2 detection, or
even as an ice indicator on highways.
R1, R5, and R6 should be used to
introduce enough hysteresis to over-
come any expected glitches.

The circuit’s hysteresis is user defin-
able and can be set by choosing appro-
priate values of R1, R5, and R6. With

a mechanical or solid-state relay (e.g.,
a triac) as a load to control the AC cycle,
the circuit can work as a proportional
controller. During the deadband, the
final control element remains unaware
of the measurand status.

Thermistor arrays are required in
many medical applications, including
measuring regional cerebral blood flow.
The micrologic version of the circuit
can be used for this purpose with an
array of thin-film thermistors suitably
arranged on the substrate.

This circuit can also be used to
study temperature changes in relation to
change in the composition of anesthetic
gas. Or, it can record chemical reaction
enthalpy in a microcalorimetric device.

APPLY NOW
Here, we emphasized the importance

of microprocessor-compatible sensors
and reviewed IC temperature sensors.
The main drawback—sensitivity to
noise—is eliminated by proposing
hysteresis in the flip-flop sensor.

We designed a new kind of Schmitt-
trigger sensor by using NPN transistors
to suit integration as an ASIC.

The design team is currently upgrad-
ing the sensor by including modules
to achieve lower power, auto-diagnos-
tics, self-calibration, linearity check,
over-temperature warning, and more.
A similar design is in the process for
RTD sensors. I

R.K. Kamat is a lecturer in electronics
at Goa University and is in charge of
the university’s Internet gateway. His
interests include intelligent instrumen-
tation, sensor design and fabrication,
computer networks, and signal process-
ing. You may reach him via rkkamat@
unigoa.ernet.in.

G.M. Naik heads the Instrumentation
Department at Goa University. His
interests include electronic instrumen-
tation, fiber-optic sensors, computer
networks, and optical signal processing.

G.G. Tengshe heads the Research and
Development Department of D. Y. Patil
College of Engineering, Kolhapur, India.
His interests include biomedical engi-
neering, computer interfaces, thermal
system design, and power electronics.

Circuit Cellar INK® Issue 105 April 1999 31

[7] P. Krummenacher and H. Oguey,
“Smart temperature sensors in
CMOS technology,” Sensors and
Actuators, A21–23, 636–638, 1990.

[8] A. Bakker and J. Huijsing, “Micro-
power CMOS sensor with digi-
tal output,” IEEE Journal of Solid
State Circuits, 31:7, 1996.

[9] A.P. Brokaw, “A temperature
sensor with single resistor set
point programming,” IEEE Jour-
nal of Solid State Circuits, 31,
1908–1915, 1996.

[10] H. Hencke, “The Design and
application of Honeywell’s laser
trimmed temperature sensors,”
Measurement & Control, 22,
233–236, 1989.

[11] G.C.M. Meijer and C.H. Voor-
winden, “A novel BIMOS signal
processor for Pt-100 temperature
sensor with microcontroller inter-
facing,” Sensors and Actuators,
A25–27, 613–620, 1991.

[12] H. Kuttner et al., “Micromini-
aturised thermistor arrays for
temperature gradient, flow and
perfusion measurement,” Sensors

and Actuators, A25–27, 641–645,
1991.

[13] P.P.L. Regtein and P.J. Trimp,
“Dynamic Calibration of sensors
using EEPROMs,” Sensors and
Actuators, A21–23, 615–618, 1990.

[14] P. Hille, R. Hohler, and H.
Strack, “A linearisation and
compensation method for inte-
grated sensors,” Sensors and
Actuators, A44, 95–102, 1994.

[15] P.T. Kolen, “Self calibration/
compensation technique for
microcontroller based sensor
arrays,” IEEE Transactions on
Instrumentation and Measure-
ment, 43, 620–623, 1994.

[16] T.K. Hemingway, “Circuit
consultants case book,” Business
Book Limited, 128–137, 1970.

[17] J.K. Atkinson, R.P. Sion, and S.
Sizeland, “The characterization
and compensation through sensor
array signal processing techniques
of drift and low frequency noise
in thick film semiconductor
sensors,” Sensors and Actuators,
A41–42, 607–611, 1994.

REFERENCES

[1] A.W. Van Herwaarden and R.F.
Wolffenbuttel, “Introduction to
sensors compatible with micro-
processors,” Microprocessors &
Microsystems, 14, 74–82, 1990.

[2] M.R. Haskard, “An experiment in
smart sensor design,” Sensors and
Actuators, A24, 163–169, 1990.

[3] W. Lian and S. Middelhoek, “Flip-
flop sensors: A new class of
silicon sensors,” Sensors and
Actuators, 9, 259–268, 1986.

[4] T.H. Herder, R.O. Olson, and
J.S. Blackemore, Revised Science
Instruction, 37, 1301–1305, 1966.

[5] G. Fischer, C.W. Recksick, and
K.D. Friedland, “A programmable
temperature monitoring device
for tagging small fish: A proto-
type chip development,” IEEE
Transactions on VLSI, 5:4, 1997.

[6] K. Roy, A. Raghunathan, and S.
Dey, “Low power design meth-
odologies for systems-on-chips,”
Int’l Symposium on VLSI for
information appliance, India, 1999.

32 Issue 105 April 1999 Circuit Cellar INK®

OutA

OutB

Sync
detection

Logic DAC

OutA B

Switch

Video Switch FEATURE
ARTICLE

Cullen Jennings

i
Cullen needs a video
multiplexer, but not just
any multiplexer—one
that receives input
from multiple cameras,
detects video-sync
signals, and switches
the multiple inputs on
each field. He can’t
get this device in the
local electronics store,
so he builds it!

n a large com-
puter-vision appli-

cation I’m working
on, I use multiple video

cameras to grab stereo pairs of images.
I needed a video multiplexer that
takes inputs from multiple cameras,
detects the video sync signals, and
switches between the multiple inputs
on each field. So, I constructed one.

My video multiplexer accepts six
inputs and switches them to three
outputs. It does sync detection and
uses a Xilinx 9500-series PLD to
implement the switching logic.

The PLD is in-system programmable,
so it can be changed to implement
switching schemes such as alternating
between camera inputs every 3 s, every
frame, on each field, or on a certain
area of the image. This last scheme
enables a banner from one video input
to be superimposed over another video
image, and other picture-in-picture–
type applications are possible as well.

Although my video multiplexer is
primarily designed for NTSC video
applications, the bandwidth is adequate
for switching video signals for high-
resolution monitors. The switch also
implements a simple DAC that outputs
a video test signal that produces an
image with a few simple gray bars.
This test image demonstrates the sim-
plicity of synthesizing a video signal
using a relatively inexpensive PLD.

This project is interesting from
several points of view. The PLD’s
programming is all done in VHDL.
This powerful language is becoming
much more available to engineers
with small budgets.

The project is constructed using
surface-mount components. Also, the
PCB is only two layers, which keeps
the price down. Video cameras have
become so inexpensive, I’m sure their
use will increase in both commercial
and noncommercial projects.

This circuit is a useful tool for any
project involving multiple video cam-
eras. It is inexpensive (about $50), the
components are widely available, and
it is not particularly difficult to build.

CONCEPT
Figure 1 shows the circuit diagram.

There are three video outputs, which
can choose either three A or three B
inputs. The logic block selects the
inputs to use and receives information
from the sync-detection circuit. It
also synthesizes two output video
signals that can be used as sync chan-
nels or other video test signals.

I connect the A and B channels to
two RGB video cameras that are gen-
locked together, and I also connect the
output to a video digitizer card in a
computer. The PLD is programmed to
switch on each field.

When I capture a frame, the even
field is from one camera and the odd
field is from the other. In software, I
separate these into two images and
process them through a stereo correla-
tion algorithm to compute the distance
from the cameras to the objects viewed.

In another application, I can take a
certain region of the screen from in-

Figure 1 —In this diagram of the video switch, the signals
flow from left to right. The DAC outputs can provide a
regenerated sync signal or some other video test pattern.

Circuit Cellar INK® Issue 105 April 1999 33

put A part of the time and from input
B the rest of the time, enabling a ban-
ner or rectangle from the image A to
be overlaid on the image B.

The system can be programmed to
switch inputs every few seconds to
allow viewing through two cameras or
to put the view from the first camera
in the top half of the image and the
view from the second camera in the
bottom half.

The ability to generate test patterns
can be used to timestamp the video.
Basically, you generate a test pattern
that encodes the frame number as a
binary pattern on the image. Then, use
the switcher to overlay this image
onto the left edge of the input video.
This system is convenient for finding
out exactly how many frames your
video-capture card is dropping and
whether it ever duplicates frames.

A slight modification of the circuit
is required (diode and two resistors) to
feed the AC signal into one of the PLD
inputs so that it can synchronize the
output sync signals with the AC line
signals. Video cameras can be gen-
locked to this input signal, and the
video-camera captures are synchro-
nized with the flicker of the AC fluo-
rescent lights. In some cases, this
action significantly improves the image.

Something I have not yet looked
into but am curious about is whether
it’s possible to regenerate portions of
the sync signal that are corrupted by,
say, a video copy-protection scheme.
It may be easy just to switch over to
the synthesized sync on the scan lines
having a corrupted sync signal.

The project is also convenient if
your scope doesn’t have a TV trigger.
Feed a video signal into this device and
use one of the digital outputs from the
PLD as a trigger for your scope.

RS-170 VIDEO SIGNALS
A video sequence is a series of still

images called frames. Each frame con-
sists of 525 horizontal lines called scan
lines. The frame is split into two fields
with the odd scan lines in the first field
and the even in the second. The video
signal transmits one frame after another.

For each frame, the first field is
transmitted followed by the second.
The fields are sent by transmitting
each of the scan lines with appropri-
ate delays and signals between each
scan line, field, and frame so that the
receiving system can tell what part of
the image is being received. The gray-
scale value of the image at a given
location on the scan line is transmit-
ted by encoding it as a voltage between
0.357 and 1.0 V.

Consider Figure 2. At the start of the
scan line, the image is white, so the
output voltage is 0.7 V. In the gray
region, the output voltage drops to
0.5 V, and in the black area, it drops
to 0.3 V. The scan lines occur at a rate
of 15,734 Hz (about every 63.5555 ms).

At the start of each scan line, a
horizontal sync is transmitted so the
system knows where the scan line
starts (see Figure 3a). Here, we have a
back-porch section that is 1.18 ms long
at 0.306 V, followed by the actual sync
pulse that is 4.7 ms long at 0.020 V.
Finally, there’s the front porch for
3.14 ms at 0.306 V.

The first several scan lines in each
field are not used for image data but
are used for vertical sync and other
purposes. The first three scan lines of
the field contain equalizing pulses,
followed by three lines of serration
pulses and three more lines of equaliz-
ing pulses, as shown in Figure 3b.

The next 11 lines generally contain
black scan lines but might have other

information (e.g., closed caption). The
equalizing pulses are 2.3 ms wide, and
the serration pulses are 4.7 ms wide.

SCHEMATICS
The system’s video output can be

selected from the A or B video input.
The logic block selects the input and
uses the information provided by the
sync-detection circuit to decide when
to switch video inputs. The logic block
also drives a simple DAC that gener-
ates a video output signal on the two
sync out lines (see Figure 4).

All video signals coming into the
system are terminated with a 75-Ω
resistor. Depending on the jumper set-
tings of JP1 and JP2, either the green
A signal or the sync A is fed into the
sync-detection circuit.

The signal is filtered in the passive
RC circuit formed by R3, C7, and C9.
The filtered signal is passed into the
U5 chip, which is a National LM1881
chip that handles the sync detection.

I used Electronics Workbench to
compute the frequency response curve
for this filter (see Figure 5). This tool
forms a convenient front end to SPICE.
It has about a –18-db attenuation of
the color burst signals but little effect
on low-frequency sync signals.

This filter is only required if color
signals are being fed into the system.
It can be removed from the system by
removing C7 and C9. There’s no need
to short R3 because it has little effect
relative to the high input impedance
of U5.

Various sync signals are fed into the
PLD (U8 in Figure 4), which can be
programmed to select the correct input.

The PLD is a Xilinx 9536. It receives
a clock signal from the oscillator and
controls two LEDs. JP6 enables the
logic section to be easily connected up
to another circuit or a logic analyzer.

Figure 2 —This small graph depicts a video signal for a
single scan line. Voltage is on the vertical axis, and time
advances along the horizontal axis. The image is white
for the first third of the line, gray for the second third,
and black for the last third.

0 V

0.3 V

0.5 V
0.7 V

Image
data

previous
line

Back
porch

Front
porch

Image data
this scan lineHoriz.

sync

Figure 3a —This figure depicts a horizontal sync signal between two scan lines. Time advances along the horizontal
axis and the voltage is shown on the vertical axis. b—This figure depicts a vertical sync between two fields. Voltage
is on the vertical axis and time advances along the horizontal axis.

Prev.
field

Equalization
pulses

Serration
pulses

Blank
scan
lines

Scan
lines

Equalization
pulses

a) b)

34 Issue 105 April 1999 Circuit Cellar INK®

Data lines 0–7 can be used as
general-purpose I/O. Data lines 9
and 10 are pulled to certain logic
levels with R22 and R23. They
can be pulled to the opposite levels
by putting jumpers on JP6. Digital
power is also available on the
jumper to power some other circuit.

The PLD controls U6, a MAX-
465 video switch that controls
three channels and can select each
channel from one of two inputs. It
amplifies the signal by a factor of
two, enabling you to divide the
signal by two by running it through
a 75-Ω resistor before driving the
75-Ω transmission line.

This setup makes it easy to
match impedance and avoid over-
driving the output amplifier, even
if the output line is shorted to

ground. It also double terminates the
transmission line, greatly reducing
reflections.

The logic block outputs a two-bit
signal into the DAC built by a two-
resistor network. R9 and R13 form the
DAC for the B input sync, and R19
and R20 form the DAC for the output
sync. Because the PLD outputs can be
set to 0, 1, or Z (tristated), six output
voltages are possible from this DAC.

The power-supply circuitry was
designed to keep the noise on the power
to the analog chips low. I considered
using a switching supply because of
concerns about heat dissipation, but I
decided the linear power regulator
caused less noise on the video output.

The digital circuits have their own
supply because this was a simple way
to reduce transient noise on the analog
lines caused by high-speed digital
switching. When substituting capacitors
or transformers on the input side of the
power regulators, keep in mind that a
12-VAC transformer means 12 VRMS,
resulting in a DC voltage of 17 V.

Figure 6a shows the input video
signal and associated outputs of the

Figure 4 —In this schematic, signals generally
flow left to right. The +5 V off of JP4 drives only
the analog chips, whereas the other +5 V drives
all of the digital chips.

36 Issue 105 April 1999 Circuit Cellar INK®

4 MHz1 MHz100 kHz10 kHz

0

–3

–6

–9

–12

–15

–18

–21

G
ai

n
(d

B
)

the whole analog section, but I also
wanted to keep costs low.

There are almost no breaks in the
ground plane, and I got it on two layers.
JP5 provides a simple way to control
where the analog and digital grounds
get connected. The digital lines are kept
well separated from the analog lines.

With the exception of the filter
formed by C7, C9 and R3, none of the
values are critical. Even the filter values
aren’t that critical, but you should play
with a SPICE model of the filter before
you change them. The LM1881 data-
sheet explains the goals of this filter.

After you solder on all the SMT
resistors and capacitors, check that
there are no shorts between VCC, +5,
–5, and ground and add all the compo-
nents in the power supply. Do the big
capacitors last because they make it
harder to reach other components.
Check that all the voltages are correct
before you add any expensive stuff.

After adding the chips, I applied
power to the board and checked that
none of the chips got hot. I then added
the connectors and remaining compo-
nents and programmed the PLD.

Next step: check that the input resis-
tance on all the video inputs is 75 Ω.
If everything looks good, connect up a
bunch of video signals and go for it.

If it doesn’t work, start tracing the
signal through from the start. I pow-
ered up the board and fed a video sig-
nal into the sync input and checked a
few points: the output of the filter on
pin 2 of U5, that the field line (pin 7
of U5) is a 30-Hz square wave, and that
the PLD output the same square wave
to pin 2 of connector JP6. It should also
cause the green LED to flicker at 30 Hz.

Check that a signal applied to the
A input gets chopped up at 30 Hz, and
similarly for B. Also check that this
signal is going to U6. Now trace the
signals for the video in and out of U6.

VHDL
VHDL is one way to describe the

desired operation of a logic device.
Although it’s a standard, vendors tend
to choose different parts to implement
and add their own quirks.

I use Xilinx PLDs with the Xilinx
foundation tool chain for place and
route and Synopsys FPGA Express for

Figure 5 —The calculated filter response has a nearly –18-dB effect
on the color burst signal and little effect on the sync signal, which is
mostly under 500 kHz.

field changes at the start of
the vertical pulse.

The board has a mini-DIN–
style connector that’s similar
to an SVideo connector. It
doesn’t take up much space,
but making cables is a pain.
It might have been better to
use BNC connectors.

I designed this circuit to
work with NTSC, PAL, and
SECAM–style video signals
but only tested it with NTSC.
The only values that deserve
much consideration are C11

and R10, which form the time con-
stant for vertical-sync detection. The
voltage levels generated for output
signals by R9, R13 and R19, R20 also
need to be changed.

By the way, instead of using the
Xilinx part, you can also do this
project using a Cypress ISP PLD or
AMD Mach ISP PLD.

LAYOUT AND CONSTRUCTION
The PCB layout was a bit of a chal-

lenge. I wanted a ground plane under

sync-detection circuit. The top trace
is the video input for one scan line
with a horizontal sync at both ends.
The second trace is the field, which
only changes on a vertical sync. The
next trace, the burst, indicates when
the color burst signal is active. The
last trace is the sync, which is active
during the horizontal sync.

Figure 6b is a longer segment of the
signal around a vertical sync. It shows
the same signals as Figure 6a but over
several lines and a vertical sync. The

Circuit Cellar INK® Issue 105 April 1999 37

synthesis. This approach is great for
large FPGAs, but it isn’t cheap.

A less expensive system that works
well for projects using small PLDs is
the Cypress WARP2 system. For a few
hundred dollars, you get a VHDL text-
book, a VHDL synthesis tool, an ISP
cable, and a few PLDs.

An even cheaper (i.e., free) solution
is to use software from AMD and a
Mach PLD. It won’t do VHDL, but it
uses a language at about the level of the
(downloadable) PLD equations.

You can also download the com-
plete code for the application to switch
on each field. In the first part, I declare
all the signals connected to the PLD
and set the pin numbers.

If the line where field is assigned to
sel_out is commented out and the
next line after it is commented in, the
system takes the first input for scan
lines between 01111111 and 11000000
and takes the rest of the image from
the other input.

Various signals are put out to the
test connector so they can be monitored
with a logic analyzer. vsync detects
the vertical sync by looking at the
sync signal’s value during the color-
burst phase of the sync.

hsync generates the horizontal sync
signal. It’s a flip-flop that is set when-
ever there is a sync that is not the verti-
cal sync. It is reset on the start of the
next burst event.

The line-count process sets the line
to the count of the line in the field
you’re on. It counts the horizontal sync
pulses and uses the vertical sync pulse
to reset to zero.

Finally, the digital outs to the DAC
are generated. The gray-scale value
depends on the scan line you are at.

You can make simple modifications
to the VHDL code. To switch every n
frames, set up a counter to count even
fields and switch on an appropriate
value. To switch part way through a
scan line, set up a counter that is reset
by the horizontal pulse and that counts
clock ticks from the oscillator, switch-
ing the output when it hits an appro-
priate value.

PROGRAM IT
The JTAG protocol was designed for

testing the connection between chips.

It is useful for many things including
debugging and programming devices.

Basically, it’s a serial protocol. Each
device has four wires—a TMS (test
mode) signal, a TCK line that clocks
the serial data into the system, and TDI
(test data in) and TDO (test data out).

The TMS and TCK are connected
together and controlled by the master
device doing the testing. The TDI and
TDO are daisy-chained together to form
one long string with all the devices
through which the serial data passes.

Different commands can be sent to
each device, including commands to

Figure 6— The top lines show the video input signal, and the second lines show the field output of the PLD. The
third lines show the color burst active signal, and the bottom lines show the horizontal sync signal. a—Here you see
a complete scan line and the horizontal sync on either end of it. b—Here are many scan lines containing a vertical sync.

a) b)

pass data on the serial line to the next
device in the chain. Basic commands
enable the chip to set the output level
of any pin on the chip and read the
logic level of pins on other chips.
Thus, a JTAG test system can check
that all the traces are correctly con-
nected and there are no shorts.

Extended commands let you program
the PLD via the JTAG interface. In-
system programming is convenient
because there’s no need to own a pro-
grammer that has sockets for different
SMT parts, pins don’t get bent as parts
go in and out of the programmer, and

38 Issue 105 April 1999 Circuit Cellar INK®

SOURCES

9500-series PLD
Xilinx Corp.
(408) 559-7778
Fax: (408) 559-7114
www.xilinx.com

LM1881
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

MAX465
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

Electronics Workbench
Interactive Image Technologies, Ltd.
(800) 263-5552
(416) 977-5550
Fax: (416) 977-1818
www.interactiv.com

WARP2
Cypress Semiconductor Corp.
(408) 943-2600
Fax: (408) 943-2741
www.cypress.com

H.W. Johnson and M. Graham, High-
Speed Digital Design: A Hand-
book of Black Magic, Prentice
Hall, Englewood Cliffs, NJ, 1993.

Maxim, MAX463–470 Two Channel,
Triple/Quad RGB Video Switches
and Buffers, www.maxim-ic.com/
efp/AllParts.htm.

H.-P. Messmer, The Indispensable
PC Hardware Book: Your Hard-
ware Questions Answered, Addi-
son-Wesley, Reading, MA, 1995.

National Semiconductor, LM1881
Video Sync Separator Datasheet,
www.national.com/ds/LM/
LM1881.pdf.

H.W. Ott, Noise Reduction Tech-
niques in Electronic Systems,
Wiley & Sons, New York, NY,
1988.

S. Sjoholm and L. Lindh, VHDL for
Designers, Prentice Hall, Engle-
wood Cliffs, NJ, 1997.

K. Skahill, VHDL for Programmable
Logic, Addison-Wesley, Reading,
MA, 1996.

Xilinx, The Programmable Logic Book
Databook, San Jose, CA, 1998.

REFERENCES

P. Horowitz and W. Hill, The Art of
Electronics, Cambridge Univer-
sity Press, New York, NY, 1989.

K. Jack, Video Demystified, High
Text, San Diego, CA, 1996.

Thanks to Stewart Kingdon, Rod Bar-
man, Lyndsay Campbell, and Alan
Hawrylyshen.

Cullen Jennings works for Image Inte-
gration, a computer consulting company
that develops software and network
solutions for oil companies and soft-
ware for air traffic control. You may
reach him at c.jennings@ieee.org.

SOFTWARE

Project files are available via the
Circuit Cellar web site, including
the schematics in Protel, net lists,
BOMs, Gerber and Postscript plots
of the PCB, drill files, VHDL code
for the PLD, reduced equations of
the PLD that can be implemented
in a language other than VHDL, and
configuration images for program-
ming the PLD.

there’s no need to socket the part on the
board so that it can be reprogrammed.

It’s simple to program the PLD with
Xilinx’s XChecker cable and their soft-
ware. Connect the JTAG pins on the
cable and the ground but not the VCC,
power up the board, and program it.

If you don’t have Xilinx software
and are going to use my configuration
files, get the XAPP058 app note and the
associated software for PCs. Wire up a
cable so you can use your parallel port
data lines to drive the TDO, TMS, and
TCK lines, and read the TDI line by
connecting it to the ERROR line. With
this circuit, there’s no need to buffer
the signals (see section 10.20 of The
Art of Electronics).

Use the software in the app note to
program the PLD. You need to modify
the port access code to match the wir-
ing of your parallel cable (see section
29.1.5 of The Indispensable PC Hard-
ware Book).

I enjoyed building this project, and
it works great. Let me know about
new applications you find for it. I

www.xilinx.com
www.national.com
www.maxim-ic.com
www.interactiv.com
www.cypress.com

CIRCUIT CELLAR INK APRIL 199942

N
PC

PCNouveau
edited by Harv Weiner

RECONFIGURABLE DSP SYSTEM
MiroTech’s Aristotle reconfigurable DSP board en-

ables electrical and computer engineering instructors to
teach application and system development on a DSP
platform. The half-size, PCI add-on board features a Texas
Instruments TMS320C44 DSP (running at 60 MHz) tightly
coupled to a Xilinx XC4036 FPGA in the well-proven HPRC
(reconfigurable) architecture. Both the FPGA and the DSP
are independent and are accessible by users through
designated ports. MiroTech’s 16-bit high-speed banks of
SRAM support the main processing elements. A test bus
controller provides testability through a JTAG scan chain.

Aristotle can be configured with various forms of
support software including RTOSs, compilers, place and
route tools, and more. It also supports plug-and-play
installation under Windows 95/NT. Aristotle’s communi-
cations capabilities include a high-speed PCI interface,
JTAG emulation, and four TIM-standard communications
ports. An IndustryPack mezzanine site provides access to
a wide variety of I/O modules.

TELEPHONY APPLICATION PROCESSOR
The TAP-810 is a CompactPCI-based DSP

resource card designed for PSTN to voice-over-IP
connectivity applications. The board features quad

T1/E1 line interfaces, a 100BaseT controller, and it is
specified for 120 channels of G.723.1 and G.729a as

well as other standard and proprietary algorithms.

This card lets voice and data entering the T1/E1 interface be
compressed by the DSP resource and exit through the Ethernet
interface without unnecessary processing by the host or band-
width transfers over the bus. The host is free to manage call setup
and teardown and to calculate and support custom calling
features for packet-switched calls.

The TAP-810 is fully hot-swap compliant, permitting board
installation and removal in a running system and management of
available resources by application-level software. All connec-
tions to the TAP-810 are made through a rear-panel I/O transition
module, which simplifies cabling and maintenance. This high-
density combination of inputs, outputs, and DSP power provides
the necessary resources to create large systems. With 120
channels-per-board gateways, a standard 19″ chassis can house
up to 672 ports.

The TAP-810 is available at a per-port price of $125 in OEM
quantities.

Analogic Corp.
(978) 977-6817
Fax: (978) 977-6813
www.analogic.com/cti

MiroTech Microsystems, Inc.
www.mirotech.com

www.analogic.com/cti
www.mirotech.com

APRIL 1999 EMBEDDEDPC 43

N
PC

PCNouveau

SOFTWARE DEVELOPMENT TOOLS FOR SHARC DSPs

PASSIVE-BACKPLANE CPU BOARD
MantaRay is a highly integrated Pentium II passive-backplane

CPU board. Using the Intel 440BX chipset, MantaRay supports
processor speeds up to 450 MHz with a 100-MHz external clock
and up to 333 MHz with a 66-MHz external clock. Optional
features include onboard Ethernet that supports 10/100BaseT, a
SCSI controller that supports speeds up to Ultra 2, and video
support that includes 2 MB of SDRAM to work at resolutions up to
1280 × 1024 at 256 colors.

MantaRay supports up to 1-GB SDRAM and contains its own
internal Level II cache embedded in the Pentium II CPU module.
It supports ECC in the Level II cache as well as main memory,
further enhancing data integrity. Additionally, MantaRay
has a DiskOnChip socket to add flash-disk capability
directly on the CPU board.

Other features include two RS-232–compatible serial
ports, one ECP/EPP parallel port, a PCI IDE interface that
supports up to four enhanced IDE devices with up to mode 4
PIO, a USB, and a floppy drive controller supporting up to
two 5.25″ or 3.5″ floppy drives. Mini-DIN connectors are
provided for a PS/2 mouse and a keyboard interface, and an
onboard field-replaceable battery powers the real-time clock.

Blue Wave Systems has
combined Analog Devices’
VisualDSP development tools
with its own IDE6000 devel-
opment environment to pro-
vide a powerful integrated
software development environ-
ment for SHARC-based DSP
systems. Although VisualDSP
and IDE6000 remain distinct
applications, Blue Wave has
created a comprehensive set
of guidelines to ensure that
users receive maximum benefit
from using the two in tandem.

The VisualDSP develop-
ment toolkit consists of three
main parts—a compiler tool
chain, a simulator, and a
project manager. The C com-
piler generates efficient code
that is optimized for both code

density and execution time.
The user can include assembly-
language statements in the C
code for time-critical loops.
Customers can also use pre-

tested math, DSP, and C
runtime library routines to help
shorten time to market.

Combining the integrated
compiler and project manager

of VisuaI-
DSP with the
system-level test
and utility function-
ality provided by IDE-
6000 enables the user to
concentrate on the DSP appli-
cation rather than wasting time
on hardware configuration or
software management.

The combined VisualDSP
and IDE6000 package is be-
ing offered at an introductory
price of $3000.

Blue Wave Systems,
 Inc.
(972) 277-4600
Fax: (972) 277-4666
www.bluews.com

The PCI bus features a 30-/33-MHz clock speed and a 32-bit data
path, improving throughput capacity for high-speed peripherals.

MantaRay’s price ranges from $1775 to $2275 with all the
options.

I-Bus, Inc.
(619) 974-8426
Fax: (619) 268-7863
www.ibus.com

www.bluews.com
www.ibus.com

EPC

APRIL 1999 EMBEDDEDPC 45

Peter Petersen

&

Tom Schotland

Tempted to use Windows NT or 95 as an RTOS? Peter and Tom have an
alternative. They create a Win32-compatible environment with dedicated
embedded-system development tools—less overhead, no real-time deficiencies.

There are many arguments for using
Windows NT or 95/98 for embedded
systems. Mass production has led to de-
creasing prices for PC hardware and
software. Both Windows systems support
true 32-bit flat-address programs and al-
low full utilization of current 32-bit CPUs.

Software development tools are avail-
able and have been tested by countless
developers. And, CPU vendors offer a
range of 32-bit Intel i80386-compatible
microcontrollers like Intel’s ’386EX,
AMD’s Élan series, and National
Semiconductor’s NS486SXF.

But, there are problems, too. Win-
dows NT and 95 need a lot of com-
puter resources. Windows 95 needs at
least 16 MB to run smoothly, and Win-
dows NT needs 32 MB to perform well
(not counting the application’s needs).

Both systems require 100–150 MB
of hard disk space. Even Microsoft’s
Windows NT Embedded variant re-
quires 16 MB of RAM and 20 MB of
ROM or other permanent storage.

Another important issue is real time.
Windows was designed for home and
office applications, which (except for
games or multimedia applications) have
weak or no real-time requirements.

The ability to assign real-time priorities
to a process may mislead developers to
believe that Windows 95 and NT support
real-time processing. But, Windows dy-
namically changes priorities at runtime to
achieve a more equal or fair CPU time

distribution. Sharing the CPU equally is
not the goal of a real-time system.

Win32’s priority scheme implementa-
tion is also subject to priority inversion for
application threads and deferred proce-
dure calls of device-driver interrupt-ser-
vice routines.

And, nonpreemptable system calls can
use a nondeterministic amount of time. The
internal timer resolution is fixed at 10 ms—
too coarse for many systems. Besides, Win-

dows does not guarantee that timer
callbacks can be serviced within a
maximum delay.

Application speed is another issue.
Demon processes to implement various
OS services such as virtual memory
management can steal CPU time from
a time-critical application.

Multitasking with Windows NT and
95 is not as efficient as in dedicated
real-time systems. For example, run-
ning the code in Listing 1 under Win-
dows NT, Windows 95, and an RTOS
yields the results graphed in Figure 1.

Win32 and Real Time

Figure 1—The benchmark performs 400,000 semaphore
operations with 200,000 task switches. The times shown
here are for a 120-MHz Pentium.

Multitasking benchmark
Pentium 120 MHz

11.6

3.8
0.8

0

5

10

15

Windows 95 Windows NT 4.0 On Time RTOS

EP
C

CIRCUIT CELLAR INK APRIL 199946

version of NT, so it’s questionable whether
they’ll have the same degree of compat-
ibility and stability.

BEST OF BOTH WORLDS
Windows NT and 95 just weren’t

designed for embedded systems. Why
not use a system designed for such environ-
ments that has a Win32-compatible API?

This solution combines the advantages
of Windows NT with those of real-time

systems. And, being Win32 compatible
doesn’t compromise any of the features
you’d expect from an embedded-systems
OS. The system equirements would include:

• Win32-compatible API
• real-time extensions to the Win32 API
• support for mainstream Win32 devel-

opment tools
• support for standard run-time systems
• scalability
• access to the computer hardware at the

application level

Besides the Win32-specific features,
the system should provide general fea-
tures needed for real-time and embedded
systems programming:

• low interrupt latencies
• memory protection
• deterministic real-time scheduling

Last but not least,
licensing costs are a cru-

cial factor for embedded
systems development.

A SOLUTION?
Several products claim to add real-

time capabilities to Windows NT. And,
there are different approaches to solving
the real-time problem.

Special ISA or PCI cards can be used
to map normal interrupts to the PC’s non-
maskable interrupt to reduce interrupt
latencies caused by NT device drivers.
However, the real-time application has to
run within a device driver, making access
to and from regular applications difficult.

Software development requires a thor-
ough knowledge of NT’s device drivers.
Device drivers run at the CPU’s highest
privilege level without protection for the
NT kernel or system data structures. A
simple bug can overwrite system memory
and crash NT.

Replacing NT’s hardware abstraction
layer (HAL) is an approach that attempts to
fix problems below the kernel by, for ex-
ample, providing a higher timer-interrupt
frequency. But, the fundamental real-time
deficiencies of the kernel can’t be fixed. A
modified HAL may improve NT’s soft real-
time behavior but not meet the hard real-
time requirements of application threads.

Another approach is to run NT as a
single task of a true RTOS. Although such
a system can yield deterministic time be-
havior, real-time tasks run completely iso-
lated from the Windows world, requiring
complex communications mechanisms.

Software development requires good
knowledge of both the RTOS and Win-
dows NT. This approach requires the use
of Intel’s hardware task switching, which
is slow and increases interrupt latencies
(but yields deterministic upper bounds).

Each of these approaches has its prob-
lems, and the high resource demands of
NT are not reduced (and may even be
increased). The performance achieved is
either only soft real time or impeded by
general performance bottlenecks. All so-
lutions carry additional royalties and in-
crease the OS licensing costs.

Products that need to be deeply inte-
grated into the NT kernel (e.g., at the HAL
level) will always lag behind the latest OS
version. Also, they’ll never be tested by
such a wide user base as the desktop

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#define LOOPS 100000

HANDLE S1, S2;
DWORD WINAPI ThreadA(LPVOID lpdwParam)
{
 while (1){
 WaitForSingleObject(S1, INFINITE);
 ReleaseSemaphore(S2, 1, NULL);
 }
 return 0;
}
DWORD main(void)
{
 HANDLE H;
 DWORD ThreadID, T, i;
 S1 = CreateSemaphore(NULL, 0, 1, "BenchSema1");
 S2 = CreateSemaphore(NULL, 0, 1, "BenchSema2");
 H = CreateThread(NULL, 0, ThreadA, NULL, 0, &ThreadID);
 Sleep(100);
 printf("switching between two tasks %i times...\n", LOOPS);
 T = GetTickCount();
 for (i=0; i<LOOPS; i++){
 ReleaseSemaphore(S1, 1, NULL);
 WaitForSingleObject(S2, INFINITE);
 }
 T = GetTickCount() - T;
 printf("Time for %i loops: %i milliseconds\n", LOOPS, T);
 TerminateThread(H, 0);
 CloseHandle(H);
 CloseHandle(S1);
 CloseHandle(S2);
 printf("Hit return to terminate...\n");
 getc(stdin);
 return 0;
}

Listing 1—Here’s the source code for the benchmark program used to obtain the benchmark
results. This program can run without source-code modifications under Windows 95, NT,
and the On Time Win32-compatible embedded RTOS.

Figure 2—The On Time Win32/NT-compat-
ible embedded RTOS has a scalable compo-
nent architecture. Only the components
needed are loaded on the target.

Application

RTKernel-32 RTFiles-32 RTIP

RTTarget-32

Target hardware

EP
C

CIRCUIT CELLAR INK APRIL 199948

A Complete Example
Let’s assume you have a host PC running DOS or Windows and

a target PC that is supposed to boot the On Time Win32 RTOS
and you want to run a test program compiled with Borland C++.

First, create the following test program in HELLO.C:

#include <stdio.h>
int main(void)
{
printf("Hello, RTTarget-32!\n");
return 0;

}

Compile and link the program with bcc32 hello.c rtt32.lib.
To be able to run the program on the target, you must locate the
program. For this purpose, a small configuration file must be
created (HELLO.CFG):

// Define memory layout
Region NullPage 0 4k RAM
Region LowMem 4k 636k RAM
Region HighMem 1M 1M RAM

// Locate boot code and associated data
Locate BootCode DISKBOOT.EXE LowMem
Locate BootData SystemData LowMem
Locate DiskBuffer DiskBuffer LowMem
Locate Header Hello LowMem

// Locate program entities
Locate Section CODE HighMem
Locate Section DATA HighMem
Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

Now you can locate using RTLoc hello, which produces
files HELLO.RTB (the relocated program image) and HELLO.
LOC (a detailed map file).

To create a bootable disk, insert an empty formatted disk
in drive A and type bootdisk hello a:. Place the disk
in the drive of the target computer and reboot it. RTTarget-
32’s boot code initializes the PC, reads the program from the
diskette, switches to 32-bit protected mode, and executes the
program.

plications (programs us-
ing printf()-style I/O)
on any system with a
’386 or higher CPU.

Its Win32 compatibil-
ity can support the com-
plex run-time systems of
current Win32 C++ com-
pilers, including C++ lan-
guage features like ex-
ception handling, global
and local object construc-

tion/destruction, name spaces, and RTTI.
It supports Win32 advanced features like
uncommitted memory, structured excep-
tion handling, thread variables, and DLLs.

Its scalability permits booting and run-
ning a complete 32-bit application in just
16 KB of memory (see Figure 2). A supple-
mentary native API supplies real-time func-
tionality not available under Win32 alone.

Its foundation is the cross-development
system RTTarget-32, which implements the
core of the OS. It includes all the develop-
ment tools needed to run 32-bit applica-
tions built with standard Win32 compilers
on an embedded target.

The real-time kernel extends RTTarget-
32’s Win32 API support with multithread
functions, semaphores, and critical sec-
tions. RTFiles-32 adds a file system, and
RTIP adds a TCP/IP stack (see Figure 2).

DEVELOPMENT PROCESS
The software development process

begins with RTTarget-32, and proceeds in

ties. Standard Win32 development tools
can be used. Because there are no extra
implementation layers, applications have
maximum performance and minimum size.

Commercial RTOSs using this approach
include Phar Lap’s Embedded Tool Suite
and On Time’s Win32/NT-compatible
RTOS. Windows CE satisfies some of the
requirements, but its nondeterministic per-
formance, high interrupt latency, and large
memory requirements (often above 2 MB)
make it unsuitable for hard real-time use
and small embedded systems.

Special versions of Microsoft develop-
ment tools are required to create Windows
CE applications, so standard desktop Win-
32 tools can’t be used. Finally, to boot
Windows CE on standard embedded-PC
hardware, MS-DOS must be present.

A WIN32-COMPATIBLE RTOS
Let’s look at one RTOS designed to be

Win32 compatible. The On Time Embed-
ded RTOS runs Win32 console-mode ap-

• low resource
requirements

• ROMability
• ease of use and pow-

erful debug capabilities
• low or no run-time royalties

TWO APPROACHES
There are two approaches to

implementing a Win32-compat-
ible RTOS. A Win32 API layer may
be added as an extension to a
preexisting traditional RTOS, or an RTOS
may be designed from the ground up with
implementation of a Win32 subset as a
core design goal.

An example of the first approach is the
Willows RT toolkit from Willows Software
(also known as APIAccess from Award
Software). The Win32 layer is supplied
as a library that can be linked with an
application built under one of several
standard non-Win32 RTOSs, giving the
application source-level compatibility with
a Win32 subset.

However, binary compatibility is limited,
since it is supplied through the use of
virtual machine and other slow emulation
techniques that simulate the native Win32
run-time environment for binary code.
And, mainstream Win32 development tools
can’t be used with a non-Win32 RTOS.

The second approach does not suffer
from the same problems. Both source and
binary compatibility with desktop Win32
are possible without performance penal-

32-bit
Win32

compiler

32-bit
assembler

Object
files

Compiler
run-time
library

RTTarget-
32 library

32-bit
linker

.EXE
file

RTTarget-32
locator

RTTarget-32
hardware
.CFG file

file

LOC
file

Hex
file

Program
image

file

Figure 3—This diagram illustrates creating a binary program image file with
standard Win32 compilers and the On Time Embedded RTOS.

EPC

APRIL 1999 EMBEDDEDPC 49

data areas is not permitted and triggers
an exception.

RAM remapping can be used to com-
bine fragmented memory regions to larger
consecutive regions (e.g., conventional and
extended memory on PC-compatible sys-
tems) or consecutive virtual regions consist-
ing of both RAM and ROM can be created.

Uncommitted memory enables an ap-
plication to differentiate between reserv-
ing and using (committing) address space.
Most C/C++ run-time systems rely heavily
on uncommitted memory so it must be
supported by the OS for efficient memory
management.

Of course, access to physical memory
for DMA or memory-mapped devices is
supported by assigning appropriate ac-
cess rights for these memory regions (ei-
ther statically in the locate process or
dynamically at runtime).

The CPU’s debug registers, in combi-
nation with paging, enable the implemen-
tation of powerful debugging features
and can remove the need to use ICEs. Any
invalid memory reference triggers an ex-
ception. Within the debugger, the offend-
ing instruction is highlighted and the cause
of the problem can be investigated.

Debug registers are used to implement
hardware breakpoints (e.g., break on a
write cycle at a specific address). Hard-
ware breakpoints can be set in ROM or
RAM and don’t change the program’s
run-time behavior.

SCALABILITY
Because the different parts of the On

Time RTOS are modules linked from a
library, only those parts used by the
application are included automatically.
The RTTarget-32 RTOS core and all exten-
sions are supplied as linkable libraries.

A minimal RTTarget-32 program runs
in about 12 KB of ROM and 4 KB of RAM
(or 16 KB of RAM in systems booted from
disk). An application linked with all of the
available extensions (RTKernel-32, RTFiles-
32, RTIP, floating-point emulator, and DLL
loader) requires about 128 KB of ROM
and 128 KB of RAM.

The On Time RTOS isn’t a Windows NT
clone. Only a subset of NT’s API is sup-
ported to keep the resource requirements
small. For example, only console mode
apps without a GUI are supported al-
though graphics programming is possible
using an add-on graphics library.

a manner that doesn’t intrude into the
compiler’s normal development cycle. The
compiler with its linker and run-time sys-
tem libraries is used in the same way as for
native Win32 development (see Figure 3).

Both the compiler’s command-line tools
and IDE can be used. A library is supplied
to make RTTarget-32’s Win32 and non-
Win32 API available to the application.
Other RTOS components are supplied as
additional libraries.

RTTarget-32’s locator processes a stan-
dard Win32 .EXE file and a target hard-
ware configuration file. The various compo-
nents of the .EXE are located (and possi-
bly separated into RAM and ROM areas).

The locator includes boot code and
required DLLs into the program image and
generates a single application image file
that can be burned into an EPROM or
placed on a boot disk. During develop-
ment, the application is located by down-
loading over a serial link under the control
of the cross debugger or a download utility.

RTTarget-32 consists of:

• configurable target boot code
• bootdisk utility
• locator
• target-resident debug monitor for re-
mote debugging

• download utility and debugger
• Win32 emulation library providing ap-
proximately 160 Win32 API functions

• serial I/O library

RTTarget-32 supports Borland C/C++,
C++ Builder, and Delphi as well as Visual
C++ and Watcom C/C++. The cross debug-
ger is based on Borland’s TD32 and sup-
ports source-level remote debugging of
Borland, Microsoft, and Watcom programs.
Integration into the Microsoft Visual Studio
and Borland IDEs permits use of those
environments’ debuggers as well.

The debugger supports embedded-sys-
tems development (interrupt handling, port
I/O, etc.). State-of-the-art data compres-
sion and caching allow fast downloading.

Another feature is the efficient use of the
memory management and debugging fa-
cilities of ’386 and higher CPUs. RTTarget-
32 can use paging for memory protection,
RAM remapping, and uncommitted memory.

When memory protection is enabled,
critical system data structures such as
descriptor tables are inaccessible to the
application code. Writing to read-only

Peter Petersen has done research in the
field of massively parallel real-time data
acquisition at DESY (German Electron Syn-
chrotron). He contributed to the develop-
ment of an Ada compiler for a multi-proces-
sor computer system before founding On
Time in 1989. You may reach him at pp@
on-time.de.

Tom Schotland studied mathematics and
computer science and worked as a real-
time programmer in neuroscience labora-
tories before joining On Time in 1993.
You may reach him at tom@on-time.com.

SOURCES
APIAccess
Award Software International
(415) 968-4433
Fax: (415) 526-2392
www.award.com

Embedded Tool Suite
Phar Lap Software
(617) 661-1510
Fax: (617) 876-2972
www.pharlap.com

On Time Embedded RTOS
On Time Software
(516) 689-6654
Fax: (516) 689-1172
www.on-time.com

Windows CE, NT, 95/98, Visual C++
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

Borland C/C++, C++ Builder, Delphi
Inprise
(800) 457-9527
(408) 431-1000
Fax: (831) 431-4122
www.inprise.com

Watcom C/C++
Sybase, Inc.
(510) 922-3555
(800) 879-2273
www.powersoft.com

SOFTWARE
Source code for this article may be downloaded via the
Circuit Cellar web site.

 The On Time RTOS
does not support Win-
dows NT or Windows 95
device drivers, but real-time em-
bedded systems often have to deal
with proprietary hardware. Here,
RTTarget-32’s support for port I/O, inter-
rupt handling, and access to the physical
address space from within the application
code makes life easier for developers.

With so many options, finding the right
OS for real-time embedded systems can
be challenging. By using a Win32-compat-
ible RTOS, you can leverage the technology
base of standard PC hardware and soft-
ware and put it to use in the world of
embedded systems. EPC

www.award.com
www.pharlap.com
www.on-time.com
www.microsoft.com
www.inprise.com
www.powersoft.com

R
PC

CIRCUIT CELLAR INK APRIL 199950

RE in

0–30 MHz

30–60 MHz (+5 MHz IF)

ADC

sin (Wct)

cos (Wct)

16:1

16:1

I

Q

Figure 1—The components to the left of the ADC in this digital receiver are the
preamplifier and the antialias or band-pass filter used to select an input
frequency band. The receiver uses the cos(Wct) and sin(Wct) to tune the
digital input signals and down-convert it into signals I and Q, which can be
processed in software by a DSP or regular CPU.

Real-Time PC

Ingo Cyliax

Astronomical Issues
Part 1: Introduction to Embedded Astronomy

It just wouldn’t be an EPC section without
a space application and Fred’s not launch-
ing anything this month, so I guess it’s my
turn. Actually, I’ve been interested in the
field of astronomy for some time because
many of the problems encountered in
astronomy can be solved with computers.

In this series, I want to show you some
real-time applications in astronomy. This
month, I cover positioning and time refer-
ences and introduce the topic of radio
astronomy as well as a project I’ve been
working on.

POSITIONING
A major challenge in as-

tronomy is locating the things
you want to look at or measure.
Locating things would be easy
if the earth didn’t rotate around
its own axis and the sun. Well,
that arrangement won’t change
anytime soon. However, locat-
ing objects is not impossible.

To solve the rotation problem, astrono-
mers use the idea of a celestial sphere.
The celestial sphere is a fixed reference
that enables you to locate stars via fixed
coordinates.

These fixed coordinates are known as
declination (Dec) and right ascension (RA).
Dec is the angle between the object and
the celestial equator. RA is the angle
between the object and a fixed reference
point (expressed in hours, minutes, and
seconds) on the equator.

Ingo isn’t just talking about large ideas. His focus is on actual issues relating
to astronomy, like GPS and digital radio astronomy. The result is a stellar
project that deals with high-speed digital signal processing.

The celestial sphere has a north pole,
which is on the earth’s axis of rotation. The
plane of the celestial equator is inclined
(by approximately 23.5°) compared to
the plane of Earth’s orbit around the sun.

Even though stars appear to always
have the same Dec above the celestial
equator, the sun does not. It varies from
23.5° above the celestial equator to 23.5°
below. These points, called the solstices,
take place around June 21 (northern) and
December 22 (southern), which are the

longest and shortest days in
the respective hemispheres.

The times when the sun is
directly on the celestial equa-
tor are called equinoxes. There
are vernal (March 21) and
autumnal (September 23) equi-
noxes. The reference point on
the celestial equator for our
RA is the vernal equinox.

But, because the earth’s
orbit precesses slightly (about

APRIL 1999 EMBEDDEDPC

R
PC

51

from my calculated time, I get
0:50:02, which is much closer to the
correct time. Because xephem uses a
more accurate epoch to compute the
sidereal time, I’ll trust the tool rather
than my hand calculations.

The older version of this software
is called ephem. ephem doesn’t have
an X Window GUI so it can be
embedded in a telescope controller.
It’s fairly small and doesn’t require
many OS services to run. It can even

be built to run under DOS.
Now that you know how to find things

in the sky with software, or by hand if you
were stranded on an island, let’s take a
survey to find out how much accuracy is
involved.

The moon is 0.5°, or 1800″, in diameter.
To find out how long it will take to transit,
simply divide the size by the earth’s
rotation. This turns out to be:

So, if your time reference is off by more
than a minute, the telescope will miss the
moon—the largest object in the sky.

Jupiter, on the other hand, is the largest
planet and it is about 30″ in size. The
transit time for Jupiter works out to:

Even more demanding. That means your
telescope is going to miss Jupiter unless
you can compute the RA to within 0.9 s.

If you want to track an object smoothly,
you have to continuously recompute its
position at the resolving power of the
telescope. A terrestrial optical telescope
has a maximum resolving power of ~0.5″,
so you want a positioner that can position
at that accuracy (or less, if your telescope
has less resolving power).

Now you’re clearly in the realm of real-
time control.

and you get (2,332,800 + 61,820) ×
1.003 = 2401803.86, which you sub-
tract from the RA. Converting that
(–2326413.86) back to standard time
format, you get 1:46:01, which is the
local sidereal time.

Luckily, other people have figured all
this stuff out and written the software.
Also, the reference, or epoch, is taken
from an astronomical almanac that’s more
precise than the one I used. xephem is my
choice because it runs under Linux and X.

This package computes and displays
the location of stars and nebulae as well
as planets and their moons (see Photo 1).
Its catalog can be extended and updated
using databases downloaded from the ’Net.
It can also be used to drive a telescope.

One feature I like is the ability to
compute satellite locations based on or-
bital data that you can download from the
’Net. You can be like NASA and plot the
track of shuttle missions in real time,
assuming you get the correct orbital data.

Plugging in my local sidereal time and
my longitude, I computed the local side-
real time to be 0:59:55. At first I thought
I made a significant mistake in my earlier
calculation, but as it turns out, I didn’t. My
longitude is roughly 89° W, which implies
that a true local time has an offset of
5:55:59 from the meridian, while the
timezone I live in has a 5:00:00 offset.

This offset means that the wall-clock
time will be almost 56 min. later than the
sidereal time I calculated, assuming that
the sun transits (passes overhead) at ex-
actly 12:00. If I subtract the offset (0:55:59)

50″ per year), there’s a slight discrep-
ancy. So, star catalogs are calibrated
to specific years, usually every 50
years. If you use a star catalog that’s
calibrated for the year 2000, you
have to adjust the true vernal equinox
by subtracting 50″ from the position.

The easiest way to use this star
catalog with a telescope is to use an
equatorial mount. An equatorial mount
is aligned with the polar axis of
earth’s rotation. The declination angle
is fixed, and once aligned, it doesn’t
need to be changed.

Next, calibrate the RA by finding
the sidereal time. The local sidereal
time is defined as the position on the
celestial equator overhead at the
observer’s location. At the vernal equi-
nox, the local sidereal time is zero.

Like terrestrial time, sidereal time is
measured in hours, minutes, and seconds.
But, sidereal time is slightly faster than
terrestrial time. One sidereal day (i.e., 24
sidereal hours) is equal to 23:56:04 in
terrestrial time. That works out to one extra
sidereal day every year.

Think of it this way. If the earth didn’t
rotate with respect to the sun (i.e., the
same side of earth always faced the sun),
there would be one sidereal day per year
because the earth would rotate one time
with respect to the celestial sphere, which
is fixed at the vernal equinox.

Because the earth rotates about 365
times with respect to the sun, we have to
add an extra sidereal day. That means
the sidereal day is a bit shorter than the
terrestrial day and explains why the stars
rise about 4 min. earlier each day.

To compute the sidereal time, you
need to know when the RA is at a specific
terrestrial time. For example, the January
issue of Sky & Telescope lists the RA of the
sun on February 1 to be 20:56:30 at
midday when the sun is at its zenith.

Let’s calculate the current local side-
real time. I’m writing this at 18:48:00 on
January 4th, local time. There’s a differ-
ence of 27 days and 17:12:00 between
right now and the time when I’ll know the
exact sidereal time (February 1).

When you’re working with time, it’s
best to convert everything to seconds. The
RA then becomes 75,390 s and the time
difference is 2,332,800 + 61,820 s.
Convert the terrestrial time difference to
sidereal time by multiplying by 1.003

Photo 1—Here’s the
sky view screen from
xephem. xephem not
only gives you the graphi-
cal view of the sky but can
also calculate various astronomi-
cal data for objects in its database.

R
PC

CIRCUIT CELLAR INK APRIL 199952

| ./fir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ./magphs

One simple program that accomplishes
this is gps-linux. This program runs under
Linux and reads and converts the mes-
sages into a format that the date program
under Linux/Unix can use.

Using just the NMEA interface gives a
certainty of 10–100 ms from the GPS
receiver. This range is because of the
unpredictable latency from the time the
message is sent until the time it is received
and decoded. You can enhance the accu-
racy by timestamping the messages when
they are received. Timestamping eliminates
some of the uncertainty in the buffering.

Professional-quality GPS receivers that
can be used for time synchronization
output a pulse per second (PPS) signal that
is synchronized to the internal clock of the
GPS receiver, and thus to the GPS net-
work. Using the PPS signal to synchronize
the computer clock permits time-synchro-
nization accuracy of better than 10 µs.

There are various schemes for interfac-
ing the PPS signals with modem control
signals via the RS-232 interface. The data
from the NMEA message coarsely synchro-
nizes the clock, and the PPS signal pre-
cisely times elapsed seconds. In a way, the
computer is used to phase-lock the com-
puters’ idea of time to the GPS network time.

xntp, an implementation of the net-
work time protocol (NTP) system, has PPS
and non-PPS–based GPS interface rou-
tines to synchronize the network time to a
GPS receiver.

For astronomy purposes, location in-
formation is also useful. After all, longi-
tude information helps you precisely
calculate the sidereal time based on the
UTC time and the offset from the meridian.
The latitude information can be used to
indicate the elevation of the polar axis
needed for an equatorial mount.

Figure 2—This graph shows the spectral response of a 16:1
decimation filter. The filter is crude but can be implemented
efficiently. A sharper filter can be implemented at a lower
sampling rate if necessary.

TIME REFERENCE
Time is an important

variable when locating ob-
jects. You need an accurate time

reference to compute the sidereal
time, which is necessary to position

the telescope and track the object.
In the example, the 32 ms required to

track a high-resolution telescope is prob-
ably on the upper end that is necessary for
positioning. A 0.5″ telescope is expensive,
and you’d need perfect viewing condi-
tions to take advantage of the resolution.

But, accurate time is also needed to
correlate findings between different ob-
servation sites. Several experiments in
astronomy depend on time. One example
is occultation measurements. An occultation
is when a planetary object or the moon
moves in front of a star.

Astronomers measure occultations to
calibrate orbital components of planets,
the moon, and the earth. To measure an
occultation, record when the star disappears
and reappears. It’s a discrete event in which
the star blinks out and then blinks back on.

When more than one observer records
these events accurately, the results are
precise. You need to coordinate time
between observers. Most astronomers
can’t afford an atomic clock, so they use
radio time broadcasts to synchronize their
clocks.

In North America, this can
be done with WWV(B), which
is a time signal broadcast by
shortwave radio on standard
frequencies. Another time stan-
dard is broadcast by CHU.
Other parts of the world have
similar time services.

WWV time signals can be
decoded and used to calibrate
clocks. These clocks are com-
monly referred to as radio
clocks. Some are available with
computer interfaces so they can
be used to synchronize comput-
ers and networks.

Today, you can use a global position-
ing system (GPS) to synchronize your
clocks. Most GPS receivers have serial
(RS-232)-based computer interfaces that
augment existing navigation equipment
in boats and airplanes. GPS receivers
have also become popular for time syn-
chronization of computers and networks.

All you need is a GPS receiver with a
NMEA-0183–compatible interface and
the software to read it. NMEA-formatted
messages are easy to parse and look a lot
like Listing 1. The GPS receiver sends
these messages over the serial line and
the interface software on the computer
reads them, parses them, and adjusts the
clock to the time indicated in the messages.

Photo 2—This radio map of the sky was created by Daniel Boyd Fox (a local amateur
astronomer) with a 16-foot dish antenna and an ICOM R7000 communication receiver. He wrote
a program (SETIFOX) to calculate the spectral data. The emission in the middle (around RA 18h)
is caused by our galactic center, and the dentrils above and below are the spectra of the Doppler-
shifted hydrogen emission of stuff moving away (lower frequency) and approaching (higher
frequency).

APRIL 1999 EMBEDDEDPC

R
PC

53

RADIO ASTRONOMY
One area of astronomy that fascinates

me is radio astronomy. Most people auto-
matically think of big radio dishes and
exotic equipment, but you can do some
radio astronomy on a smaller scale.

In particular, you can use satellite TV
dishes along with general-purpose scan-
ners and receivers to make hydrogen-
emission radio maps of the sky. Photo 2
shows a map that was done by a local
amateur astronomer with a 16-foot dish
antenna and an ICOM R7000 communi-
cation receiver. The different colors indi-
cate power. The vertical axis is the spectrum
about the hydrogen emission line, and the
horizontal axis is the RA as scanned by
the earth’s rotation.

Also, Jupiter is a strong radio source
below 38 MHz. You can receive Jupiter
emissions with a shortwave receiver and
an antenna with selectivity at the specific
frequency.

Simply point the antenna at roughly
the declination you expect to find Jupiter
(approximately 0°57′). As earth sweeps
close to the RA of Jupiter (0:02:30), the
emissions from Jupiter should maximize.
The phenomenon should sound like a
whooshing sound on the radio and isn’t
present all the time. The radio emissions
are caused by the dynamic interactions of
Jupiter’s magnetosphere and its moon Io.

If radio emissions from Jupiter don’t
interest you, there’s another astronomical
phenomenon that can be measured by the
shortwave band and other frequencies.
As meteors travel through the atmosphere,
they leave an ionized trail that radio
signals bounce off of. Radio-station sig-
nals that can’t normally be picked up will
bounce off the meteor trails and be heard.

If the setup is right, you can count how
many meteors enter the atmosphere. Even
small meteors that can’t be seen will
bounce back radio signals.

What does this have to do with real-
time PC? Well, I’ve always wanted to do
a project with high-speed DSP, but I didn’t
want to build a radar or sonar system.
Because I’m interested in radio astronomy,
I thought this project would be interesting
and challenging. Also, the timing is right.

Building a totally digital shortwave
receiver with a tuning range of DC–
25 MHz requires an ADC that samples at
50 MS/s. Although the flash ADCs used
in video and other signal-acquisition appli-

cations can handle the speed, they only do
it at 8 bits, which doesn’t provide enough
dynamic response to do direct sampling.

But, both Analog Devices and Burr-
Brown recently introduced 12-bit ADCs
that can sample at over 50 MS/s. They
also have the analog input bandwidth
capable of dealing with radio applications.

Let’s see what a digital radio system
would have to look like. For this example,
I used the AM receiver shown in Figure 1.

An all-digital radio is a system where
the digitization is done before the first
mixing stage. The only analog components

are the preamplifier (if
necessary) and the anti-
aliasing filter.

If the ADC is used to mix the
signal down, the antialiasing filter
is a band-pass filter. More precisely,
it’s a low-pass filter to select the baseband.
ADCs that are suited for digital radio
applications typically have a wide analog
bandwidth so signals at 4× the sampling
rate can be mixed down.

Once the RF signal is digitized, it’s
channelized by selecting a subband of
the signal and reducing the sampling rate

CIRCUIT CELLAR INK APRIL 199954

for further processing. Theoretically, you
can filter the digital signal to the band-
width you want to look at.

In the AM receiver example, that means
filtering a 50-MS/s signal directly down
to a 6-kS/s bandpass filter—computationally
expensive and not exactly practical. Chan-
nelizing lets you pick larger blocks of band-
width to reduce the sampling rate so you
can do the final filtering or signal processing.

Reducing the signal rate, or decimation,
is like throwing away the samples you
don’t need or subsampling the input samples.
In itself, this task would cause signals to be
aliased so you must apply a low-pass filter
before you toss out the samples.

A simple way to handle this process is
to use a barn-door filter. This crude digital
filter is inexpensive to implement, espe-
cially when used as a decimation filter. A
16:1 decimation filter reduces the sampling
rate by 16 and only lets one-sixteenth of
the spectrum pass through. Figure 2 shows
the spectrum of a 16:1 decimation process.

Because the decimation process is a
low-pass filter, you may wonder how to
get at the frequencies outside the low
band. Just use the same idea an analog
radio uses. A mixer is used to multiply the
input signal with a carrier. The mixer’s
output is the sum and the difference of the
carrier and the signal of interest.

Adjust the carrier so the difference shifts
the signal of interest into the passband of
the decimation filter and you’re in business.
You can tune any signal in the input.

To make the radio general, mix the
input signal with both the sin() and the
cos() of the carrier to produce two products
(I [in-phase] and Q [quadrature] signal)
that are then filtered separately.

With an AM receiver, you’re interested
in the magnitude of the signal, which is:

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems
Inc., a San Diego–based formal synthesis
company, where he works on formal-
method design tools for high-assurance
systems and develops embedded-system
products. You may reach him at
cyliax@derivation.com.

But, with an FM receiver, the key is the
phase difference of the signal or:

Other modulation techniques use I and
Q to demodulate into the final signal as
needed. Once the input signals are mixed
into the I and Q signal and decimated, the
signal is low-pass filtered until you have a
6-kS/s signal that carries the final 3-kHz
bandwidth AM signal.

You may wonder if multiplying a syn-
thesized sin() and cos() can be done more
cheaply at the sampling rate than by
band-pass filtering the signal first. I’ll cover
the topic next month when I describe how
these signal-processing components can be
realized in an FPGA. RPC.EPC

SOFTWARE
xephem—ftp://iraf.noao.edu/contrib/xephem/

xephem_3.1/xephem-3.1.tar.g
gps-time—http://mix.hive.no/~tommy/linux/gps-

time/gps-time.tg
xntp—ftp://louie.udel.edu/pub/ntp/

REFERENCES
R. Beebe, Jupiter: The Giant Planet, Smithsonian Insti-

tution Press, Washington, DC, 1997.
B.F. Burke and F. Graham-Smith, Introduction to Radio

Astronomy, Cambridge University Press, New York,
NY, 1997.

G. North, Advanced Amateur Astronomy, Cambridge
University Press, New York, NY, 1997.

J.B. Sidgwick, Amateur Astronomer’s Handbook, Do-
ver Publications, New York, NY, 1971.

R.R. Bate, D.D. Mueller, and J.E. White, Fundamentals
of Astrodynamics, Dover Publications, New York,
NY, 1971.

Sky Publishing Corp., Sky & Telescope, Cambridge, MA.

Listing 1—In the data from an NMEA output of a GPS receiver, everything is separated by
commas. NMEA defines the format and components of each line (i.e., sentences). The current
time (054449.813) can be found in several different sentences in different positions. gps-time
(one of the programs I mentioned) looks for a sentence that starts with $GPGGA.

$GPGLL,3909.360,N,08625.143,W,054449.813,A*2D
$GPGGA,054449.81,3909.360,N,08625.143,W,1,04,2.0,00033,M,,,,*3D
$GPRMB,A,0.01,L,SIM001,SIM002,3911.410,N,08625.153,W,002.1,000.,021.7,V*10
$GPRMC,054449.81,A,3909.360,N,08625.143,W,21.7,001.3,050199,02.,W*60
$GPAPB,A,A,0.0,L,N,V,V,2.4,M,SIM002,2.2,M,0.9,M*61
$GPGSA,A,3,01,02,03,04,,,,,,,,,2.0,2.0,2.0*34
$GPGSV,3,1,10,10,78,049,,24,51,058,,06,42,311,,13,36,084,*7E
$GPGSV,3,2,10,30,33,259,,05,22,214,,04,14,083,,26,12,172,*7F
$GPGSV,3,3,10,17,06,274,,18,03,032,,,,,,,,,*72

http://mix.hive.no/~tommy/linux/gps-time/gps-time.tg
ftp://iraf.noao.edu/contrib/xephem/xephem_3.1/xephem-3.1.tar.g
ftp://louie.udel.edu/pub/ntp/

A
PC

CIRCUIT CELLAR INK APRIL 199956

Applied PCs

Fred Eady

It doesn’t matter whether you’re a seasoned design engineer or brand new
to embedded systems. Fred presents the bare bones of the SuperTAP setup,
so even if you’ve never used an emulator before, you will be ready to now!

I t would be great if I could start up the
SuperTap and run a demo simulation right
here on the printed page. It would also be
great if everyone reading this column
knew embedded systems in and out. Unfor-
tunately, that isn’t the way it is. Besides, a
two-word column wouldn’t go over real well.

There are plenty of you who I consider
to be top-notch engineers. Your discipline
may be chemicals, electricity, or even
information technology. The point is, there
are professionals reading this column who
aren’t necessarily “embedded.”

With that thought, I think it’s good to
put some emphasis on just what the Super-
Tap does and how to get it to the point of
actually “doing.” Describing the running of
emulation is useless if the reader has never
used an emulator. So, let’s open the Super-
Tap Emulator installation guide to page 4-1
and put SuperTap on an Ethernet network.

SUPERTAP ON THE NETWORK
The first order of business after the

network hardware (a 3Com EtherLink III

Ethernet interface card) is installed in the
host PC is to define all of the players. This
step is done via the host database, TCP/IP
definitions, and our imaginations. Setting
up the 3Com card was a snap. I’m hosting

Windows 95 on the SuperTap host PC,
and all the necessary drivers for the 3Com
card were there.

I tested initial Ethernet connectivity by
using NetBEUI to communicate with the
computer I’m using to write this article. Of
course, I’ll be using TCP/IP. For the net-
working folks out there, Photo 1 is a
familiar sight.

Photo 2 is where the rubber meets the
road as far as the host PC’s TCP/IP is
concerned. This is a private network so
we can use any address. To avoid the
problem of choosing addresses that have
special uses, such as the loopback ad-
dress, I’ll play it safe and use the recom-
mended addresses and subnet masks.

This is all jolly good stuff that’s pure
Windows 95 and to most of you, routine.
Routine isn’t always bad. Remember that
the real gold is getting the equipment on
the network.

The next step towards the end of the
rainbow is to set up the hosts database.
This relatively simple maneuver involves

ICE on Tap
Part 2: Emulating over Ethernet

Photo 1—Every time I do this, I always seem
to forget something. Not this time!

A
PC

APRIL 1999 EMBEDDEDPC 57

is in the box. If you weren’t around last
time when I unpacked SuperTap, I should
mention that there were a couple of media
access units (MAUs) that didn’t appear to
be necessary.

Well, here we are and the 10BaseT
MAU is now connected to the Ethernet
communications Adapter’s Ethernet port
and an RJ-45 twisted pair cable is leaving
the port and terminating at a port on the
Ethernet hub.

I have the SuperTap and Ethernet com-
munications adapter HSS (high-speed se-
rial) port tied together via an RJ-45 cable.
A 10BaseT MAU is connected to the
15-pin AUI (10Base5) port on the Ethernet
communications adapter, and a standard
RJ-45 twisted pair Ethernet
cable is connecting the MAU
and a standard dumb Ethernet
hub. But, installation of the
Ethernet adapter is not quite
complete.

There’s a matter of down-
loading some network pa-
rameters to the Ethernet
adapter’s flash. To accom-
plish this task, we must power
up the SuperTap/Ethernet
adapter combination. This is
done with a well-thought-out
DIN cable arrangement. The
cable is foolproof—it can only
be plugged into the power-
supply brick one way.

The longer of the two male cables
plugs into the DIN connector on the Ethernet
adapter and the short DIN is connected to
the power receptacle of the SuperTap.
The reason for this arrangement is so the
Ethernet adapter lead is power-limited.

Before we power up the SuperTap,
let’s make the physical
and logical connections
to the host PC that will
enable us to communicate
with the Ethernet commu-
nications adapter.

First, connect a serial
cable between the host
PC’s async port and the
serial port on the Ethernet
communications adapter.
Although this procedure
can be performed with
any serial async emitting
device, we’ll use Bill’s
Win95 HyperTerminal.

After setting up for
9600 bps, 8N1, and hard-
ware handshaking, I set the
Ethernet communications adapter
rotary switch to 0. Photo 4 repre-
sents another milestone in bringing
SuperTap to a productive state.

Let’s take a closer look at the informa-
tion contained in the HyperTerminal win-
dow in Photo 4, starting at the Ethernet
address line. The Ethernet address con-
sists of six hexadecimal numbers each
separated by a colon. Just so happens
that this hexadecimal address matches
the Ethernet communications adapter ad-
dress printed on a label on the 15-pin AUI
connector.

Note too that the static IP address
selected line looks a lot like the IP address
we entered in the hosts database file: the
IP address for the Ethernet communica-
tions adapter. A close look at the static
netmask selected entry reveals a match of
the subnet mask value we input in Photo 2.

For the TCP/IP-challenged out there,
the subnet mask values must match be-
tween the communicating parties. Conve-
niently enough, our netmask defines a
Class B network.

The broadcast-enabled line signifies
that the Ethernet communications adapter
won’t ignore network broadcast of rout-
ing information. This has to do with routing
tables and the magic that goes on behind
them. Our network uses static values so
this parameter won’t help or hurt us.

“Route daemon started” tells us that the
default configuration that automatically
runs the daemon on Ethernet communica-
tions adapter startup is active and the
daemon was started. The last line is pretty

finding the hosts file and adding our
player’s definitions. Under Windows 95,
the hosts file is found in the Windows
directory. It’s a little more hidden in NT but
not hard to find. The network is defined in
Photo 3.

Here’s where we take a slightly different
path. The initial setup of SuperTap sug-
gests using a serial connection. If that’s
too mundane for you, the next suggestion
is Ethernet via BNC or thin-wire 10Base2.
Guess what we’re gonna use? Ethernet, of
course, but with twisted-pair 10BaseT.

The only downside to this method is
that if you don’t own an Ethernet hub, this
method is a more pricey way to go. The
upside is that the cable is easier to work
with and there are no 50-Ω terminators to
deal with. Heck, this is the Circuit Cellar
Florida Room. How many hubs do we
need anyway? Looks like 10BaseT to me.

Another good thing about the Applied
Microsystems development kit is that ev-
erything you need to get this puppy going

Photo 2—It may be routine, but it had better
be correct.

Photo 3—Don’t let the example lead you astray. The ad-
dresses must start in column 1.

Photo 4—It’s always nice to see stuff come up, but it’s doubly nice
when it comes up with the data you entered!

A
PC

CIRCUIT CELLAR INK APRIL 199958

Terminal communicating with the
Ethernet communications adapter
via the Ethernet adapter’s serial
port. The IP information that we
entered is associated with the
Ethernet address (the six hex dig-
its separated by colons) that’s
stored in the Ethernet communi-
cations adapter’s nonvolatile RAM.

If our SuperTap was on a
larger network, any TCP/IP ad-
dress resolution request (ARP)
transmitted by the network OS
would get a response from our
Ethernet communications adapter.

The idea is to use the IP address to get the
hardware address of the addressed device.

Those requests don’t exist, but we still
need to IP-identify the Ethernet communi-
cations adapter. The static IP address and
static netmask you see reported by the
Ethernet communications adapter in Photo 4
were entered using netparam.

As you’ve probably ascertained, the
Ethernet communications adapter is loaded
with firmware that enables communica-
tion with the outside world using asynchro-
nous serial protocols. It also contains code
that starts the daemon and lets the Ethernet
communications adapter play on larger
more sophisticated networks.

I won’t get any deeper into network-
ing, but before we move on, here’s the
command syntax for storing the static IP
address and static netmask on the
adapter’s flash:

netparam -static_ip_address
126.1.1.2 -resolve_ip_address
static netparam -static_netmask
255.255.0.0 -resolve_netmask
static

Remember when I used NetBEUI to test
the Ethernet connection between the soldier
and host_pc machines? Photo 5 is the result
of pinging SuperTap from the host PC side.

IT’S ALIVE
Now that we can access SuperTap

from anywhere in the Florida Room (or the
world, for that matter), let’s load up the
debugger, flip the appropriate switches,
and look at some of the code in action.

Looking back to Part 1, I recall unpack-
ing an embedded PC with no processor
and no instructions. I scoffed at this being
just another embedded platform that surely

s t r a i g h t f o r -
ward—the Com-

Adapt App started.
 In a nutshell, our net-

work is small and doesn’t
access hosts across network

gateways and routers. This also
implies that TCP/IP reverse address
resolution protocol (RARP) or boot
resolution protocol (BOOTP) won’t
be used in our self-contained network.

Here’s what’s going on in our
network world. We entered the IP
address manually using Hyper-

Photo 5—Did you know that PING actually stands for Packet
InterNet Groper?

 APRIL 1999 EMBEDDEDPC 59

Photo 6—I’ve never been so
happy to see so many but-
tons!

Photo 7—Beauty in the hexadecimal eye of the beholder.

I could figure out. Obviously, it was to be
the target for the SuperTap, but the only
clue was that the SuperTap plugged into
the empty processor socket.

Since then, I’ve read a few more pages
of the documentation. Seems that this
insignificant target board is the tool I’ll use
to open your eyes to SuperTap operation.

After looking over the Adastra embed-
ded PC target, I decided it was time to act.
After all, how much smoke and bright light
could I possibly generate if something
went wrong? With that mindset, I went off
in search of a power supply.

It’s hard to believe that Applied Micro-
systems didn’t include a power supply.
They certainly thought of everything else.
At this point, I thought you might want to
know what the lashup looked like before
I added the Adastra.

The Ethernet communications adapter
was alive with flashing lights indicating
that TCP/IP was busy passing data be-
tween the Ethernet adapter and the host
PC. The 10BaseT MAU is all green and go.
(Did I say “go”? That’s what happens
when you live near the Cape.)

SuperTap’s internal cool-
ing fan is running, and the
power indicator is green.
I’m a little concerned that
the run/pause LED is red,
but everything else seems
to be cooking right along.

OK, it’s time. Off with all
power to the SuperTap and
Ethernet communications
adapter. I carefully mate an
extender for the ’486 socket
to the SuperTap and insert
the same in the empty
Adastra ’486 socket. Super-
Tap and the Adastra are

mated and awaiting
power.

I’m thinking that I need
to finish the article with
working hardware and all
the worst scenarios are run-

ning through my mind, but here goes.
Power to the SuperTap and Ethernet com-
munications adapter.

No problems yet. No blinding light or
smoke. Things are looking good.

Now, power to the Adastra. The
Adastra power-supply fan is running and
the power didn’t shut down. Things are
looking better. All that stands between us
and a functional emulation system is a few
keystrokes on the CAD-UL XDB startup
screen to define working directories, boot
options, and connection type.

Behold the portal to the promised land
in Photo 6. The first half of the command
uses the XDB startup screen parms to
locate working directories, determine CPU
type, and figure out the TCP/IP stuff.
Listing 1 is the .XDB file that sets up the
memory map and user-defined buttons
(download, start, reload, and exit) that
are directly above the command screen.

As you can see, we can talk all day just
about the buttons across the top of the
command XDB window. I went ahead and
downloaded the CDEMON hex file and
started it.

CIRCUIT CELLAR INK APRIL 199960

Photo 8—Memory where you
need it, when you need it, and
how you need it.

Photo 7 shows the C source code in the
upper window and the command status in
the lower window. I pulled up a CPU
register window to give you a taste of how
that looks on XDB. We can’t visit every
button, so I’ll show you the really juicy ones.

First, let’s take a closer look at memory
mapping. Memory mapping enables you
to allocate overlay memory in the areas
that concern your programs. Overlay mem-
ory is a chunk of memory (usually RAM)
that can be placed in various address
spaces.

SuperTap comes with 1 MB of overlay
standard and can be upgraded to multiple
megabytes of overlay. A typical memory
map is shown in Photo 8. I selected the
modify option to illustrate just how overlay
memory can be used.

Starting from the left, note the access
frame. Selecting an option within this
frame sets the user access privileges for
this block of overlay memory. If your
program should not access this area of

memory, select None. Using
this option, SuperTap is de-
signed to alert you if this
area is stepped on.

By selecting Read, you can also use
this area to emulate a ROM data area.
Again, if any program writes to a read-
only area, SuperTap informs you of the
transgression.

The remaining frames determine where
the memory resides (Memory Type), who
can use the memory area (Space), how
wide the bus will be (Bus), and whether or
not to force a Ready (Force Ready).

SuperTap does all the things a good
emulator does. Memory dumps, register
displays, breakpoints, and traces are all
standard.

One feature that caught my eye was
the manner in which SuperTap described
and allowed the manipulation of descriptor
tables. Photo 9 is a typical GDT display.

Notice that all of the bits are broken out
for easy reading. When a bit is selected,
its function and state are explained in plain
English. Everything about that descriptor
is right there, and as you can see, the
segment can be modified from here, too.

Listing 1–Sorta C, sorta DOS batch file, sorta works.

stop
dele map /all
set map /access=all /space=all /type=emulator \
 0xfff80000 until 0xffffffff
set map /access=all /space=all /type=emulator \
 0 until 0x40000
set option /asm = on
set control /display=0
define button download "\
load /hex of cdemon.hx;\
load /debug=0/segment/noload of cdemon.bd;\n"
define button start "\
restart;\
set break at main hard;run;dele break at main;set task /step;\n"
define button reload "\
load /hex of cdemon.hx;\
restart;\
set break at main hard;run;dele break at main;set task /step;\n"
define button exit "\
exit\n"

 APRIL 1999 EMBEDDEDPC 61

SOURCES
’486
Adastra Systems
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

ISA Ethernet adapter
3Com
(800) 638-3266
(408) 326-5000
Fax: (408) 326-5001
www.3com.com

SuperTAP
Applied Microsystems Corp.
(800) 426-3925
(425) 882-2000
Fax: (425) 883-3049
www.amc.com

XDB debugger
CAD-UL, Inc.
(602) 945-8188
Fax: (602) 945-8177
www.cadul.com

Photo 9—You can trash the
manual. All of your bits are right
here.

Photo 10—Strap on a booster or two, add an
external tank….

Fred Eady has over 20 years’ experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems design
and communications. Fred may be reached
at fred@edtp.com.

TAPPING OUT
You’ve just experienced emulation

through emulation. Via the printed page,
you’ve taken a SuperTap emulator from
box to production.

SuperTap is by no means perfect. The
folks at Applied Microsystems know this and
have stepped forward with the shortcomings.

Some of the bugs relate directly to how
the ’486 works, but none are show-
stoppers. For instance, attempting to force
wait states on overlay memory mapped to
active target memory may cause unpre-
dictable results. I agree with that. To use
the old adage, if it hurts, don’t do it.

Most of the other bugs are simple
omissions. Things like the Save Settings
command not saving the state of open
windows. As I said, not showstoppers, but
bugs nevertheless.

Otherwise, the SuperTap is a great
learning tool. In fact, while I was reading

through the documentation, I
found the answer to an Intel
hex question I’d been research-
ing on the Internet for days with
no avail.

My kit is obviously a market-
ing demo setup, but it has enough real stuff
to make it worthwhile. Whether you’re a
seasoned embedded engineer or one of
the professionals I spoke of earlier, you
need a tool like this one.

A little bit of everything that’s important
to embedded is here. There’s some network-
ing, some Windows NT/95, some honest
hardware, and plenty of hexadecimal.

I can’t show you the pretty LED displays
on the Ethernet communications adapter
or the rolling LED display on the Adastra
board, but I’ll leave you with Photo 10—
SuperTap in control. It may have come
from a big box, but it’s not complicated.
It’s embedded. APC.EPC

www.adastra.com
www.3com.com
www.amc.com
www.cadul.com

62 Issue 105 April 1999 Circuit Cellar INK®

MICRO
SERIES

Joe DiBartolomeo

i

TPU

P
ar

t

of4
4

 62

72

78

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

n the first half
of this series, I

looked at the most
common implementa-

tion of the basic timer/counter func-
tion found on most microprocessors.

Next, I introduced the TPU, a tim-
ing unit that’s completely different
from the common implementation.
Remember, the TPU is a semiautono-
mous microengine that can run prepro-
grammed timing/counting functions
out of CPU ROM or run user microcode
out of onboard RAM or flash memory.

Last month, I looked at program-
ming the TPU using microcode. Be-
cause it’s important to understand the
hardware when programming in mi-
crocode, I started by looking at the
TPU’s hardware structure. The main
hardware block is the execution unit
(basically, a microengine), which runs
the microcode.

The execution unit is a shared
resource among the 16 TPU channels
on the ’68332. Sharing the execution
unit means that only one channel’s
microcode can be run at a time. Access

4

Scheduler and Microcoding

Figure 1 —The scheduler’s round-robin priority scheme
ensures high-priority channels get the majority of execu-
tion time and lower-priority channels don’t get locked out.

4
In this final
installment
of the TPU

series, Joe looks in
detail at the scheduler
and the CHAN sub-
instruction. Once ev-
erything is up and
running, you’ll find that
the TPU enables the
CPU to use its time
more effectively.

H M LH H M H

Time slot
transition

Circuit Cellar INK® Issue 105 April 1999 63

to the execution unit is
determined by the sched-
uler, which is what I
want to look at this time.

When I presented the microcode
instruction formats and subinstruction
set last month, I purposely left out
one subinstruction—CHAN—because I
wanted to cover the scheduler first. So,
in the final installment of this series,
I want to discuss CHAN and present an
example of TPU microcoding. Decod-
ing a matrix keypad is a good example
of how the TPU can save both CPU
time and money.

SCHEDULER
A TPU channel gains access to the

execution unit by issuing a service
request. Once the scheduler grants
access, the execution unit runs that
channel’s microcode.

Microcode for all TPU channels is
made up of states and is organized as
a function. There are 16 possible states
per function. Which channel state is
executed depends on which of the 16
possible entry points causes a service
request. Later, I’ll look at entry points
and event service requests.

Each TPU channel’s microcode is
completely independent of all other
channels. The only constraint is pro-
gram memory size. The address of the
state to be run is obtained from the
entry-point segment and is loaded into
the execution unit. When the state
ends, the scheduler determines access
to the execution unit.

The scheduler doesn’t arbitrate the
individual channel events (i.e., the
states). It only arbitrates between
channels. A schematic of the scheduler
and the 16 TPU channels was presented
in Part 1.

The scheduler places the channel
service requests into a round-robin

priority scheme which ensures that
high-priority channels get the majority
of the execution unit’s time and lower
priority channels don’t get locked out.

In the priority scheme illustrated
in Figure 1, note that there are seven
time-slot partitions that reserve four
timeslots for high-priority channels,
two for middle-priority, and one for
low-priority channels. Also, priority
passing occurs when a timeslot for a
priority level occurs and no channel
with that priority level is requesting
service. This arrangement ensures no
idle time as well as orderly passing to
the next priority level.

REQUEST LATENCY
In a round-robin priority scheme,

the length of time between a service
request and the granting of service is
referred to as latency time. Latency

time depends on how many TPU
channels are active and how long each
channel’s service takes. So, predicting
latency time is quite difficult, if not
impossible.

In most systems (particularly real-
time systems), this lack of predictabil-
ity is unacceptable. However, there’s
a way to determine the worst-case
latency of any channel. It’s a simple
formula based on the number of active
TPU channels, the time each channel
function requires, and the channel’s
priority levels.

For example, let’s look at the worst-
case latency of a high-, middle-, and
low-priority channel. In this example,
all channels are continuously request-
ing service. As you can see in Figure 2,
TPU channels 0–5 are high priority,
6–10 are middle priority, and 11–15
are low priority.

Figure 2 —In this example of latency
time for high-, middle-, and low-
priority channels, note that because
each channel is constantly requesting
service, the latency time is equal to
the worst-case latency time (WCL).

H M LH H M HH M LH H M H H M LH H M H H M LH H M H H M LH H M H H M LH

0 1 2 3 4 5 67 8 9 10 1112 0 1 2 3 13 4 5 0 7 1 14 152 8 3 4 9 5 0 10 1 2 6 36 11Active channel

Priority level

NOP four clock cycles NOP NOP NOP NOP

Timeslot
transition

ten clock cycles

WCL for a high priority = 22.6 µs

WCL for a middle priority = 38.6 µs

WCL for a low priority = 77.5 µs

(High execution time) + (Middle execution time) + (Low execution time) + (Timeslot transition) + (NOPs) = Clock cycles

High priority (5 × 30) + (3 × 25) × (2 × 20) + (11 × 10) + (1 × 4) = 379 clock cycles (22.6 ms)
Middle priority (10 × 30) + (4 × 25) × (3 × 20) + (18 × 10) + (2 × 4) = 648 clock cycles (38.6 ms)
Low priority (20 × 30) + (10 × 25) × (4 × 20) + (35 × 10) + (5 × 4) = 1300 clock cycles (77.5 ms)

Table 1—The entry points for TPU states include four states that are entered via CPU control and 12 states that are
entered via pin action.

Host Link Match/transition
Entry request request service request Pin Channel
points (HSR) (LSR) (M/TSR) state flag 0

Host 0 01 X X 0 X
control 1 01 X X 1 X
states 2 10 X X X X

3 11 X X X X

Operational 4 00 0 1 0 0
states 5 00 0 1 0 1

6 00 0 1 1 0
7 00 0 1 1 1
8 00 1 0 0 0
9 00 1 0 0 1
10 00 1 0 1 0
11 00 1 0 1 1
12 00 1 1 0 0
13 00 1 1 0 1
14 00 1 1 1 0
15 00 1 1 1 1

Circuit Cellar INK® Issue 105 April 1999 65

Table 2—As you can see from the syntax, with
four valid formats, CHAN is the most complex
subinstruction.

channel is set the same way as it
was when the system was running
the preprogrammed functions
(i.e., by setting the respective
two bits of the channel priority
registers CPR0 and CPR1).

PROGRAM STORAGE AND
ENTRY POINTS

The user microcode resides in
onboard RAM or flash memory, de-
pending on the microprocessor. In the
’68332, microcode resides in 2 KB of
onboard RAM which is divided into
two segments—a 1-KB microcode
segment and a 1-KB entry point seg-
ment, as shown in Figure 3.

The microcode segment holds the
32-bit instructions that make up the
state routines and functions. A state
routine is a noninterruptable sequence
of micro-instructions. A function can
have up to 16 state routines that are

To simplify this example, each prior-
ity class requires the same amount of
execution time. High-priority channels
require 30 clock cycles and middle-
and low-priority channels require 25
and 20 clock cycles, respectively.

It takes 10 clock cycles for a time-
slot’s transition to be completed. Also,
a four clock-cycle NOP executes when
a priority level’s round robin ends.

There’s also a RAM collision rate
(RCR) to be considered. The RCR is a
two-cycle wait that occurs when the
CPU and the TPU both access the TPU
RAM at the same time and a RAM
collision occurs. I’ve buried the RCR
in the cycle times of each priority level.

Assuming a clock of 59.6 ns, you
can determine from Figure 2 that the
latency time would be 22.6 µs for a
high-priority channel, 38.6 µs for a
middle-priority channel, and 77.5 µs
for a low-priority channel. In this
example, all channels are constantly
requesting service so the latency time
is the worst case.

When the system is running in
emulation mode, the priority for each

accessed by the state address. The
entry-point segment holds the address
of the states.

Table 1 shows the possible entry
points. There are four host-service
request (HSR) entry points that are
exactly the same HSR bits as for the
preprogrammed function. The HSR
entry points let the CPU start a TPU
channel function. The other 12 entry
points are based on channel activity.

The structure to define a state in
TPUASM is:

Format 2
chan {flags} {,pac} {,psc} {write_mer}

{,neg_TDL} {,neg_MER} {neg_LSL} {,cir}
Format 3

 chan {flags} {,tbs} |{ {,neg_TDL}
{,neg_MER} } {{,pac} {,psc}} | {, config:=p}
{,enable_mtsr|disable_mtsr}

Format 4
chan {flags} {,cir}

Format 5
chan {flags} {,cir}, {match_gte|match_equal}

{flags} is one of the following keywords:
set flag0, set flag1, set flag2, clear flag0,
clear flag1, clear flag2

66 Issue 105 April 1999 Circuit Cellar INK®

microcode for that state is executed
and control is then returned to the
scheduler.

From Table 1 you can see that the
channel hardware can generate 12
different service requests. Each TPU
channel has several registers that are
used to capture and match based on
events that occur on the output pin or
on the two internal timers TCR0 and
TCR1. The subinstruction CHAN sets
the events that can produce a service
request.

CHAN SUBINSTRUCTION
The CHAN subinstruction controls

the actions of the channel and the
output pin. Its syntax is shown in
Table 2. Note that there are four valid
instruction formats—2, 3, 4, and 5—
making CHAN the most complex sub-
instruction.

The pcs sets the channel pin state
and can be PIN:=HIGH, PIN:=LOW, or
PIN:=PAC. The pac controls the pin’s
action once a match occurs.

If the pin is programmed as an out-
put, the action on the pin is deter-
mined by:

• pac:=high—on match event forces
pin high

• pac:=low—on match event forces
pin low

• pac:=no_change—on match event
doesn’t change pin state

• pac:=toggle—on match event forces
pin state to toggle

If the pin is programmed as an
input, the transition that is detected
is determined by:

• pac:=high_low—high to low transi-
tions detected

• pac:=low_high—low to high transi-
tion detected

• pac:=no_detect—no transitions de-
tected

• pac:=any_trans—any transitions
detected

The TBS controls the channel con-
figuration, setting the channel as input
or output, which TCR is matched,
and which TCR is captured. These are
the commands that are defined in
Table 3.

As you can see, CHAN has many
options so the pin can be finely con-
figured. chan tbs:=out_m2_c1,
pac:=toggle is an example of set-
ting up a channel. The channel pin is
set up as an output on a match of
TCR2, capture TCR1, and toggle the
pin state.

Now that you’ve seen the basics of
microcoding, it’s time to look at an
example. I realize that all of this entry
point, service request latency, and
states information can be complicated
and a little intimidating, but you need
to be informed if you want to use the
full capabilities of the TPU.

My examples don’t involve any of
these issues, except for one entry point.
In fact, many applications don’t re-
quire entering and exiting between
TPU functions.

Of course, there is a price to pay—
normally, larger code size—but this
disadvantage is offset by the fact that
RAM not used for entry points can be
used for program storage, thereby
allowing programs greater than 1 KB.
Thus, using an entry point from func-
tion 15 leaves all other entry point
RAM available for program storage.

MATRIX KEYPADS
Matrix keypads are commonly

included in embedded systems to
permit access and control of a system
or instrument. The technique for
decoding a matrix keypad is fairly
well known.

Each key is represented by a row
and a column, as illustrated in Figure
4. When a key is pressed, the column
and row lines are connected by the

%entry name= NAME; start ad-
dress = ADDRESS;
disable_match(enable_match);

cond hsr1= x, hsr0=x, lsr=x,
m/tsr=x, pin=x, flag0=x;

(Insert microcode here)
end_of_phase or end_of_link

Each state in each TPU channel
function must have this structure.
Therefore, if you want to enter STATE
at address START through a host ser-
vice request when hsr1 and hrs0 are
both one, use:

%entry name= STATE; start ad-
dress = START;
disable_match;

cond hsr1= 1, hsr0=1, lsr=x,
m/tsr=x, pin=x, flag0=x;

All 16 states must be terminated prop-
erly with an end_of_state or end_
of_phase even if they are not used.

When a request for service occurs
on a channel, the scheduler determines
when that channel gets access. Once
the scheduler grants access to the
requesting channel, control is passed
to the appropriate state routine. The

Figure 4 —Here’s the hardware setup for 4 × 4 matrix
keypad decoding. As you see, it requires eight TPU
channels—four input channels for the rows and four
output channels for the columns.

TPU channel

TPU

4

5

6

7

0

1

2

3

D 159

E A 6 2

F B 7 3

10 C 48

Column 0

Column 1

Column 2

Column 3

Row 0

Row 1

Row 2

Row 3

R

VCC

R R R

Key-pressed
value Key

0 0000 0
0 0001 1
0 0010 2
0 0011 3
0 0100 4
0 0101 5
0 0110 6
0 0111 7
0 1000 8

Figure 3 —In the ’68332, the 2 KB of onboard RAM is
divided into 1 KB for microcode and 1 KB for program
entry points. The microcode instructions are 32 bits
long. The formatting details were covered in Part 3.

32 bit
$000

$17F

$1FF

Microcode

Function 0, Entry point 0–15

Function 15, Entry point 0–15

Entry points

.

.

.

.

.

.

Key-pressed
value Key

0 1001 9
0 1010 A
0 1011 B
0 1100 C
0 1101 D
0 1110 E
0 1111 F
1 0000 10

Circuit Cellar INK® Issue 105 April 1999 67

key switch. Then, it’s just a matter of
determining which row and column
are active.

To determine the active rows and
columns, pull all the column lines
high and then systematically drive the
column lines low one at a time. When
a low appears on a row, it identifies
the row that was selected.

The column is then known, and
thus the key pressed is identified. Of
course, you can do the reverse by driv-
ing the rows low and monitoring the
column lines.

In this example, I use a 4 × 4 matrix
keypad. I’ll use four TPU channels as
input and four TPU channels as out-
puts. The key pressed is sent to the
CPU via parameter RAM location 7 of
channel 15.

At this RAM location, a value of
0000 means that no key was pressed.
A value other than 0000 indicates to
the CPU which key was pressed (see
Figure 4). It’s a simple matter for the
CPU to read this location for keypad
information. The flowchart for the
matrix keypad decode is shown in

START

SET TPU channels
0, 1, 2, and 3 as

input rows

SET TPU channels
4, 5, 6, and 7 as
output columns

SET column 0 (only)
low

SET column 1 (only)
low

SET column 2 (only)
low

SET column 3 (only)
low

Call ROW_SCAN

Call ROW_SCAN

Call ROW_SCAN

Call ROW_SCAN

ROW_SCAN

Yes

No

P = P+1

P = P+1

P = P+1

P = P+1

Row1
= 0

Row0
= 0

Row2
= 0

Row3
= 0

KEY_PRESSED = P

KEY_PRESSED = P

KEY_PRESSED = P

KEY_PRESSED = P

Exit

Yes

No

Yes

No

Yes

No

KEY_PRESSED = 0

P = 0
Main

Figure 5 —This flowchart illustrates the TPU
code for the 4 × 4 matrix keypad decode.

Figure 5, and Listing 1 shows
you the microcode. (The RUN_
SCAN function is not shown
and is available via the Circuit
Cellar web site.)

The first thing I do in the
microcode is set up the TPU
channels. TPU channels 0, 1,
2, and 3 are set up as inputs
and are the four rows using
chan TBS:=in_m1_c1. Be-
cause I don’t use the match
and compare features, m1 and
c1 are not relevant.

The next thing is to set
TPU channels 4, 5, 6, and 7 as
outputs and initialize their pins
high using the two subinstruc-
tions chan TBS:=out_m1_c1
and PIN:=high. As with the

68 Issue 105 April 1999 Circuit Cellar INK®

input channels, the capture and com-
pare features are not relevant. The
chan_reg instruction is used to change
channels.

The last thing I do before getting
into the main loop of the program is
to set KEY_PRESSED to zero. This
indicates to the CPU that no key has
been pressed.

Now the column scanning begins. I
set the p register equal to zero and take
the column 0 pin (line) low and check
each row one at a time. The subroutine
ROW_SCAN is used to scan the rows. I
increment the p register by one prior
to checking each row, but I only store
p in the KEY_PRESSED location when
a low is detected on a row.

On return from ROW_SCAN, set the
column 0 pin high and the column 1
pin low. Then, call ROW_SCAN again
and repeat the process for columns 2
and 3.

At this point, if a key had been
pressed, KEY_PRESSED would have a
nonzero value representing the key
that had been pressed. If no key was
pressed, then KEY_PRESSED would
still be zero. That completes a scan of
the matrix keypad, and the loop starts
again at MAIN.

In this example, you can clearly see
the benefit of being able to program
the TPU, both in terms of CPU load
sharing and overall system cost. If the
TPU wasn’t present, the CPU would
have to perform the keypad decoding
using valuable CPU time. If CPU time
couldn’t be spared, external circuitry
would be required and system cost
would be increased.

There are many additions such as a
key debouncing, CPU interrupt, a wait
to allow the CPU more time to read
the KEY_PRESSED, or a keypad buffer
that can be easily added to this program
because most of the parameter RAM
is unused. The next example takes
advantage of the parameter RAM.

DATA COLLECTION
Many embedded applications re-

quire the acquisition and manipula-
tion of data from external sources.
Normally, an embedded CPU requests
an ADC to convert an external analog
signal to digital form, reads the ADC,
and processes the data.

%macro KEY_PRESSED 'prm7'. (Key pressed stored in parameter RAM location 7)
(Set TPU channels 0�3 as inputs rows, 4�7 as outputs, column, decoding, see
Figure 4)

au chan_reg:= #$00. (Set TPU channel 0 as input)
nop.
chan TBS:=in_m1_c1.

au chan_reg:= #$10. (Set TPU channel 1 as input)
nop.
chan TBS:=in_m1_c1.

au chan_reg:= #$20. (Set TPU channel 2 as input)
nop.
chan TBS:=in_m1_c1.

au chan_reg:= #$30. (Set TPU channel 3 as input)
nop.
chan TBS:=in_m1_c1.

au chan_reg:= #$40. (Set TPU channel 4 as output, pin set high)
nop.
chan TBS:=out_m1_c1,
PIN:=high.

au chan_reg:= #$50. (Set TPU channel 5 as output, pin set high)
nop.
chan TBS:=out_m1_c1,
PIN:=high.

au chan_reg:= #$60. (Set TPU channel 6 as output, pin set high)
nop.
chan TBS:=in_m1_c1,
PIN:=high.

au chan_reg:= #$70. (Set TPU channel 7 as output, pin set high)
nop.
chan TBS:=in_m1_c1,
PIN:=high.
au p:=#$00.
ram -> @KEY_PRESSED. (Start with KEY_PRESSED = 0, no key pressed).

MAIN:
au p:=#$00. (Reset p)
ram -> @KEY_PRESSED. (Start with KEY_PRESSED = 0, no key pressed).
au chan_reg:= #$70. (Change to TPU channel 7, column 3)
PIN:=high. (Take column high low)
au chan_reg:= #$40. (Change to TPU channel 4, column 0)
PIN:=low. (Take column line low)

Call ROW_SCAN, flush. (Scan row to see if a key has been pressed)
au chan_reg:= #$40. (Change to TPU channel 4, column 0)
PIN:=high. (Return pin high)
au chan_reg:= #$50. (Change to TPU channel 5, column 1)
PIN:=low. (Take column line low)

Call ROW_SCAN, flush. (Scan row to see if a key has been pressed)
au chan_reg:= #$50. (Change to TPU channel 5, column 1)
PIN:=high. (Return pin high)
au chan_reg:= #$60. (Change to TPU channel 6, column 2)
PIN:=low. (Take column line low)

Call ROW_SCAN, flush. (Scan row to see if a key has been pressed)
au chan_reg:= #$60. (Change to TPU channel 6, column 2)
PIN:=high. (Return pin high)
au chan_reg:= #$70. (Change to TPU channel 7, column 3)
PIN:=low. (Take column line low)

Call ROW_SCAN, flush. (Scan row to see if a key has been pressed)
(A Wait could be placed here to give CPU time to

read KEY_PRESSED)
goto MAIN, flush. (All rows and columns scanned, start again)

Listing 1 —In the TPU code for decoding a 4 × 4 matrix keypad, notice that the TPU runs autonomously,
passing the keypressed value to the CPU via parameter RAM. ROW_SCAN is on the Circuit Cellar web site.

These functions are normally inter-
laced to maximize CPU throughput.
However, it would be better if all the
CPU had to do was read the data. This
situation is where the TPU comes in
handy.

Figure 6a shows a setup where the
TPU controls the ADC and stores the
data in TPU parameter RAM. The
TPU can initiate the conversion, wait
for the conversion to be complete, and
store the data in parameter RAM for

Circuit Cellar INK® Issue 105 April 1999 69

Figure 6c. The TPU reads 13 serial
ADCs and stores the data in param-
eter RAM. Because the converters are
serial, they require more time to trans-
fer the data, which makes using the
TPU even more appealing.

The example in Figure 6c follows
the Motorola SPI serial bus. Three
TPU channels pins are used as data
clock (CLK), master in slave out (MISO),
and master out slave in (MOSI). The
remaining 13 TPU channel pins are
used as chip selects.

Again, a FIFO in TPU RAM can be
set up giving the CPU a great deal of

the CPU to read it. The TPU could do
this under CPU control.

A better approach is to have the
TPU collect the data in a free-running
mode and use the 100 words of pa-
rameter RAM as a FIFO, as shown in
Figure 6b. The TPU parameter RAM
is divided into a 92-word FIFO, and
8 words are used for communications
and control between the TPU and the
CPU.

The TPU collects the data as fast
as it is generated by the ADC and
stores it in parameter RAM where the
CPU can take it off as needed. The

CPU and TPU simply maintain FIFO
pointers. The control portion of the
parameter RAM can be used for things
such as flagging FIFO full, half-full,
and empty.

This setup gives the CPU many
options when it comes to data pro-
cessing because most processing algo-
rithms require an array of data. These
processing techniques vary from simple
averaging to slightly more complex
techniques, such as boxcar averaging,
to full DSP techniques.

Another example of the TPU collec-
tion data for the CPU is shown in

TPU
channel 0–11

TPU
channel 12–15

12 data bits

4 control bits

D0–D11
ADC

CS, Convert,
Data Ready, Busy

a)
Figure 6 —Diagrams (a) and (c)
show how the TPU can be used
to control ADCs and store the
data in TPU parameter RAM,
which acts as a FIFO (b).

c)

b)

T
P

U
 c

ha
nn

el
 #

0

1

2

3

Clock (CLK)

Master in slave out (MISO)

Master out slave in (MOSI)

Chip select ADC 1

Chip select ADC 13

CLK

MISO

MOSI

CS
.

.

.

.

ADC
#1

CLK

MISO

MOSI

CS

ADC
#13

15

.

.

.

TPU parameter RAM channel 0

92-word FIFO

8-word
communicate/control

TPU parameter RAM channel 14

TPU parameter RAM channel 15

.

.

.

70 Issue 105 April 1999 Circuit Cellar INK®

Joe DiBartolomeo has over 15 years of
engineering experience. He currently
works for a radar company and runs
his own consulting company, North-
ern Engineering Associates. You may
reach him at jdb.nea@sympatico.ca.

SOURCE
Microcontroller
Motorola
(512) 328-2268
Fax: (512) 891-4465
www.mot.com

REFERENCES
T. Harman, The Motorola MC68332

Microcontroller, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

Motorola, Central Processor Unit,
1990.

Motorola, Time Processor Unit
Macro Assemble Reference
Manual, TPUASM.

Motorola, Time Processor Unit Ref-
erence Manual, TPURM/AD, 1993.

Motorola, TPU Microcode Technical
Training Course, MTT39/CN, 1996.

Command Definition

in_m1_c1 Input, match TCR1, capture TCR1
in_m2_c1 Input, match TCR2, capture TCR1
in_m1_c2 Input, match TCR1, capture TCR2
in_m2_c2 Input, match TCR2, capture TCR2
out_m1_c1 Output, match TCR1, capture TCR1
out_m2_c1 Output, match TCR2, capture TCR1
out_m1_c2 Output, match TCR1, capture TCR2
out_m2_c2 Output, match TCR2, capture TCR2
write_mer Writes match event register
neg_TDL Negates transition detect latch
neg_MRL Negates match recognition latch
neg_LSL Negates link service latch
enable_mtrs Enable service request
disable_mtrs Disable service request
config :=p Allows setup via CPU
cir Sets host interrupt request for the

 current channel

Table 3—This table expands two short parms for the CHAN
formats 2, 3, 4, 5, and 9 from Table 2.

PUT IT TO WORK
It’s important to realize the

flexibility that the TPU pro-
vides for the systems, hard-
ware, and software designers.
The few examples I’ve given
barely scratch the surface of
uses for the TPU.

Even a company as large as
Motorola couldn’t anticipate or
service every application with
their preprogrammed functions
in ROM. That’s why the TPU
is user-programmable.

Although this concludes the
series on the TPU, no series of
this length could possibly cover
every detail and every applica-
tion of the TPU. My goal was

to present the TPU in general terms
and still provide enough details so you
could see how versatile the TPU is
and how it can significantly increase
CPU throughput.

Whether you use the many prepro-
grammed functions or write your own
microcode, think of the TPU as a co-
processor and not just a timing unit. I

flexibility. I used the Motorola SPI
interface as a base, but you can use
other serial buses such as I2C.

In Figure 6a, external hardware can
be used to increase the number of
ADCs, data bits, or both. The TPU
and CPU FIFO can just as easily be
used with a DAC to generate arbitrary
waveforms.

www.mot.com

72 Issue 105 April 1999 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

Dallas 1-Wire

Hey, it’s
not just
one time
only! Jeff
opens

this new series on the
Dallas 1-wire bus
protocol by discussing
1-wire devices and
how they are accessed
when you use them
alone on a single
bidirectional I/O pin.

hose of you who
work with small

embedded micros
know that there are

always tradeoffs to be made between
cost and function. You pay more, you
get more. Whether it’s code space,
internal RAM, peripherals, or I/O, the
more you need the more it costs.

It’s no wonder that when designs
change (via managerial enhancements),
designers often go nuts trying to cram
in the necessary bells and whistles.
Sure, great designs maximize the use
of available assets. Just don’t expect
tomorrow’s bright idea to be easily
implemented with today’s minimalist
designs. Maybe we engineers have to
start outsmarting management by
overcompensating for the anticipated
deluge of last minute must-haves.

There are a number of successful
approaches to adding function through
external devices without demanding
more and more I/O from a processor.
To keep the required I/O to a minimum,
these approaches tend to use some kind
of serial protocol. SPI and I2C are two
of the most popular.

SPI uses up to four signal lines (SCL,
SDI, SDO, and CS), whereas I2C uses
two signal lines (CLK and DATA). SPI
is a shorter protocol because each
device has its own chip select. I2C
requires address information to be
sent along with the data so it’s a

longer protocol. But, it only requires
two signal lines, even when multiple
devices share the same I/O.

THE CHALLENGE
Is it possible to reduce the neces-

sary interface to a single I/O pin, yet
still let multiple external devices com-
municate with a processor? Dallas
Semiconductor accepted the challenge
years ago by creating a line of 1-wire
data devices.

To fit a 1-wire protocol, the device
needs to communicate using a half-
duplex protocol. This arrangement
achieves bidirectional communication
over the same wire.

The Dallas design is based on an
open-collector type drive with a pull-up
resistor to VCC. Any device connected
to the 1-wire bus can pull the idle state
(bus held high by the pullup) down to
ground with its open-collector output.

The computer or microcomputer
that the external 1-wire device is
connected to is considered the master.
All external devices are considered
slaves. Generally, the slave devices
won’t clamp the bus low unless they
are responding to the master’s request.

Most 1-wire devices are powered
parasitically, which means that they
derive their power from the bus (while
it’s pulled up). This setup gives their
timed circuits energy to respond to a
falling edge on the bus.

Communication between the mas-
ter and slave devices is handled via
read and write timeslots. A timeslot
is a predetermined period of time that
begins when an active state (low) is

t

Part 1: One on One

1
DATA=1

0
WRITE-1 timeslot READ-DATA timeslot

1
DATA=1

0

1
DATA=0

0
WRITE-0 timeslot

1
DATA=0

0
READ-DATA timeslot

Master output
Pull-up resistor
Slave output

Figure 1 —After an initial low output, both write and
read timeslots can hold the output low indicating a data
bit of 0. When writing, the master controls the data, and
when reading, the slave controls the data.

Circuit Cellar INK® Issue 105 April 1999 73

must be a way for the master to tell an
external device to respond. When a
single device is part of the system, either
as a permanent component or a sock-
eted temporary touch device, a reset
pulse should precede any commands.

Although devices that are perma-
nently attached will always be present,
temporary devices may or may not be
there. The reset pulse is a request for
any connected devices to respond with
a presence pulse to indicate that at
least one device is connected.

ONE ON ONE
Each device has a unique serial

number associated with it, but when
only one device is connected on the 1-
wire bus, communication is simplified.
The SKIP_ROM command (CCH) is the
only command necessary to activate
the device. SKIP_ROM commands the
attached device to immediately wake
up and take notice.

It’s not necessary to know the ID
number of the device. If you don’t
know the family of the device you're
talking to (it may be any touch device),
you can issue READ_ROM and the at-
tached device will respond with its
family code, ID number, and cyclic
redundancy check (CRC) byte. From
the family code byte you can determine
what kind of device is connected.

The 8-byte ROM code contains the
family code byte, 6 bytes of ID code,
and a CRC byte. The CRC byte is based
on the previous 7 bytes and can be
used to authenticate the validity of
the 8-byte transmission. Although a
wrong CRC byte might be because of
a bad data transfer, it could also mean
that multiple devices are talking at
the same time.

This time around, I’m limiting the
discussion to single devices tied to an
I/O pin. Figure 2 shows how the CRC
byte is calculated. Each bit shifted into
the CRC byte is XOR’d with bits 4, 5,
and 8 of the CRC before shifting.

ASM
_RESET_P bcf PORTB,0 ;Force 1-wire I/O bit low

bsf STATUS,5 ;Point to Bank1 (direction control)
bcf TRISB,0 ;I/O directin=output, 1-wire forced low
movlw 167 ;167 counts (500 µs)
movwf _cntr ;into count register

RESET_P1 decfsz _cntr ;decrement count and skip next if=0
goto RESET_P1 ;else go back and decrement again

RESET_P2 bsf TRISB,0 ;I/O direction=input, 1-wire pulled up
bcf STATUS,5 ;point back to Bank0
movlw 20 ;20 count (60 µs)
movwf _cntr ;into count register

RESET_P3 decfsz _cntr ;decrement count and skip next if=0
goto RESET_P3 ;else go back and decrement again
clrf _temp ;initialize samples register=0

RESET_P4 movlw 36 ;36 counts (180 µs)
movwf _cntr ;into count register

RESET_P5 btfss PORTB,0 ;skip next if 1-wire is high
incf _temp ;low so increment samples register
decfsz _cntr ;decrement count and skip next if=0
goto RESET_P5 ;else go back, sample, decrement again

RESET_P6 movlw 80 ;count 80 (240 µs)
movf _cntr ;into count register

RESET_P7 decfsz _cntr ;decrement count and skip next if=0
goto RESET_P7 ;else go back and decrement again
return ;done (temp returns sampled low count)

_W_B rrf _temp ;rotate LSBit data into carry
btfss STATUS,0 ;skip next if carry (data)=1
goto W_B2 ;else jump to data=0 routine

W_B1 call W1S ;call the write-1 time slot
goto W_B3 ;go on

W_B2 call W0S ;call the write-0 time slot
W_B3 decfsz _cntr ;decrement count and skip next if=0

goto _W_B ;else go back and do another bit
return ;done sending all bits

_R_B call R_S ;call the read time slot
movf _rtemp ;get the sampled low count
bcf STATUS,0 ;clear carry (read data=0 setup)
btfsc STATUS,2 ;skip next if sampled count <>0
bsf STATUS,0 ;set carry (read data=1)
rrf _temp ;rotate data into the MSBit
decfsz _cntr ;decrement count and skip next if=0
goto _R_B ;else go back and do another bit
return ;done sending all bits

W1S movlw 1 ;1 count (3 µs)
movwf _ctemp ;into count register

Listing 1 —With these assembly-language routines, you can use a bidirectional bit to talk to any Dallas 1-wire
device.

(continued)

Figure 2 —A cyclic redundancy check (CRC) provides some assurance that the received data is good. The last byte
of a transmission holds the CRC value calculated from the previous data bytes.

1st

Stage
2nd

Stage
3rd

Stage
4th

Stage
5th

Stage
6th

Stage
7th

Stage
8th

Stage

Input data

X0 X1 X2 X3 X4 X5 X6 X7

If the external device is receiving
data, it samples the bus after a mini-
mum of 15 µs from the initial drop of
the bus. If the external device must
send data, the data is placed on the bus
immediately following the initial drop
(see Figure 1).

Remember that a slave device won’t
initiate data transfer on the bus. There

applied to the 1-wire bus. The falling
edge of this short pulse lets the other
devices know when to read the data
bus or write to the data bus for the
remainder of the time slot.

There are two different slot timings—
reset and data. The reset slot contains
a low for at least 480 µs and a response
time of not more than 300 µs. These
long times are easily recognizable from
the shorter data-slot times.

Data slots are no more than 120 µs.
These consist of a maximum 15 µs low
followed by the actual data, which is a
high or low on the bus. The master’s
initial low gets all external devices
listening to the bus.

74 Issue 105 April 1999 Circuit Cellar INK®

Although six assembly-language
routines are shown in Listing 1—
reset, write-1, write-0, read, write-
byte, and read-byte—only the first
four of these routines are necessary.
With these four routines, you can

bcf PORTB,0 ;force 1-wire I/O bit low
bsf STATUS,5 ;point to Bank1 (direction control)
bcf TRISB,0 ;I/O direction=output, 1-wire forced low

W1S1 decfsz _ctemp ;decrement count and skip next if=0
goto W1S1 ;else go back and decrement again
bsf TRISB,0 ;I/O direction=input, 1-wire pulled up
bcf STATUS,5 ;point to Bank0
movlw 33 ;33 count (99 µs)
movwf _ctemp ;into count register

W1S2 decfsz _ctemp ;decrement count and skip next if=0
goto W1S2 ;else go back and decrement again
return ;done sending bit

W0S movlw 30 ;30 count (90 µs)
movwf _ctemp ;into count register
bcf PORTB,0 ;force 1-wire I/O bit low
bsf STATUS,5 ;point to Bank1 (direction control)
bcf TRISB,0 ;I/O direction=output, 1-wire forced low

WOS1 decfsz _ctemp ;decrement count and skip next if=0
goto WOS1 ;else go back and decrement again
bsf TRISB,0 ;I/O direction=input, 1-wire pulled up
bcf STATUS,5 ;point to Bank0
movlw 04 ;4 count (12 µs)
movwf _ctemp ;into count register

WOS2 decfsz _ctemp ;decrement count and skip next if=0
goto WOS2 ;else go back and decrement again
return ;done sending bit

R_S movlw 1 ;1 count (3 µs)
movwf _ctemp ;into count register
bcf PORTB,0 ;force 1-wire I/O bit low
bsf STATUS,5 ;point to Bank1 (direction control)
bcf TRISB,0 ;I/O direction=output, 1-wire forced low

R_S1 decfsz _ctemp ;decrement count and skip next if=0
goto R_S1 ;else go back and decrement again
bsf TRISB,0 ;I/O direction=input, 1-wire pulled up
bcf STATUS,5 ;point to Bank0
movlw 3 ;3 count (15 µs)
movwf _ctemp ;into count register
clrf _rtemp ;initialize sample count=0

R_S2 btfss PORTB,0 ;skip next if 1-wire input=1
incf _rtemp ;low so increment samples register
decfsz _ctemp ;decrement count and skip next if=0
goto R_S2 ;else go back and decrement again

R_S3 movlw 16 ;16 count (48 µs)
movwf _ctemp ;into count register

R_S4 decfsz _ctemp ;decrement count and skip next if=0
goto R_S4 ;else go back and decrement again
return ;done receiving bit

ENDASM
END

Listing 1 —continued

Figure 3 —Here, I used a PicStic as a 1-wire
interface controller. Calls to assembly-language
routines from BASIC enable me to quickly write
simple applications using 1-wire sensors. Output
messages go to either a PC or a serial LCD.

make contact with almost any 1-wire
device.

My first program was written as a
generic program enabling you to ex-
periment with various 1-wire devices.
It was written for the PicStic using

76 Issue 105 April 1999 Circuit Cellar INK®

PicBasic but it can be used with almost
any PIC microprocessor.

I like to use the PicStic because it
contains all the essentials you need
every time you build a PIC circuit—a
5-V regulator, crystal, and supporting
capacitors. And because the PicStic is
electrically reprogrammable (it uses a

’16F84), my debugging time is reduced.
PicBasic lets me embed assembly lan-
guage where necessary and still use
the higher level commands to quickly
build the framework.

You’ll also need to know the specif-
ics for each 1-wire device (i.e., which
commands to use for which devices

RESET <presence>

Command (hex)? CC (SKIP_ROM)
Response (bits-dec)? 0

Command (hex)? BE (READ_SCRATCHPAD)
Response (bits-dec)? 72
<temp> <pos/neg> <user1> <user2> <res1> <res2> <cr> <cpc> <crc>
48 0 0 0 255 255 41 81 51

Figure 4 —My first program was flexible enough to enable me to enter any of the 1-wire command bytes and receive
responses from any of the devices connected. Here you can a SKIP_ROM command with no response and a
READ_SCRATCHPAD command with a 9-byte (72-bit) response.

'Written in PicBasic
'variable definitions
'b0 used in bit tests

symbol first=b5 ;Celsius value
symbol second=w3 ;b6 & b7 Fahrenheit value
symbol temp=b9 ;data being passed
symbol cntr=b10 ;bit counter
symbol ctemp=b11 ;temp counter
symbol rtemp=b12 ;temp zero counter

START: call RESET_P ;1-wire reset (and presence)
if temp=0 then NO_GOT_P ;check for no device
temp=$CC : cntr=8 ;SKIP_ROM command (it's 8 bits long)
call W_B ;1-wire send
temp=$44 : cntr=8 ;Convert Temperature command (it's 8 bits

long)
call W_B ;1-wire send
pause 500 ;wait for conversion
call RESET_P ;1-wire reset (and presence)
if temp=0 then NO_GOT_P ;check for no device
temp=$CC : cntr=8 ;SKIP_ROM command (it's 8 bits long)
call W_B ;1-wire send
temp=$BE : cntr=8 ;READ_SCRATCHPAD (it's 8 bits long)
call W_B ;1-wire send
cntr=8 ;8 bits
call R_B ;1-wire read
first=temp/2 ;first=value read (divide by 2 for nearest

whole degree)
second=temp*9 ;here's where the conversion
second=second/10 ;to degrees F
second=second+32 ;is done
serout 7, n2400,(12) ;form feed
serout 7, n2400,("The Temperature is...",13,10)
serout 7, n2400,(13,10,#first," Celsius",13,10,#second," Fahrenheit")
goto START ;do it all again...

NO_GOT_P:
serout 7, n2400,("No device",13,10)
goto START

Listing 2 —This BASIC program (using assembly routines from Listing 1) communicates with a DS1820
1-wire digital thermometer and displays the temperature (in Celsius and Fahrenheit) on a PC or LCD.

Circuit Cellar INK® Issue 105 April 1999 77

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES

1-wire devices
Dallas Semiconductor
(800) 336-6933
(972) 371-4000
Fax: (972) 371-3715
www.dalsemi.com

PicStic
Micromint, Inc.
(800) 635-3355
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

PicBasic
microEngineering Labs
(719) 520-5323
Fax: (719) 520-1867
www.melabs.com

SOFTWARE

Source code for this article, as well
as a Dallas 1-wire parts list, may
be found via the Circuit Cellar web
site.

and how many bytes a command will
return, if any). Refer to the individual
1-wire datasheets for this information.

After wiring up the circuit in Figure
3, programming the PicStic, and ap-
plying power, you are presented with
three choices—reset the 1-wire bus,
send a command, and request data.

Commands are broken down into
function and memory commands. A
reset is required before any function
command, and a memory command
may follow a function command. The
function and memory commands are
write only, but either command may
offer a response.

 Let’s try using the program on a
DS1820 connected to the 1-wire bus.
Following these steps, we receive the
responses displayed in Figure 4.

If the device’s VCC lead is connected
to ground (true 1-wire connection) you
must not use the 1-wire bus for 500 ms
after sending a convert temp com-
mand (44h). Because the device uses
parasitic power in this configuration,
it must see a high for this duration.

After that, you can proceed with
reading the conversion. However, if
you connect its VCC lead to VCC, you
can poll the device for end of conver-
sion status with Response (bits-
dec)? 8 <busy>.

The response to READ_SCRATCH-
PAD has the temperature in the first
byte. If you know it’s above 0°, you
can stop reading after the first byte.

The conversation the master has
with a 1-wire device can be terminated
at any time. The temperature reply is
in 0.5°C increments. To get a true
temperature in Celsius degrees, divide
this by 2 (ditch the 0.5 bit).

To convert this temperature to
Fahrenheit, perform the conversion
calculation:

 F =
9C

5
+ 32

or, in our case (because Celsius is in
0.5° increments):

F =
9C

10
+ 32

This circuitry and software can
easily be massaged into displaying the

present temperature in both Celsius
and Fahrenheit with a bit more software.

Using a serial LCD can eliminate
the serial connection to your PC that
would be used in the experimental and
debugging process. Listing 2 shows you
what my BASIC program looks like
(minus the same assembly-language
routines that are used in Listing 1).

Next month, I’m going to look at
the 1-wire bus with multiple sensors.
I’ll show you how to get these devices
to act civilly with one another.

You might want to check out
Dallas’s web site for documentation
on 1-wire devices. They have serial
and parallel port dongles for reading
external touch memory devices.

Software for reading these on the
PC is also available, if you’re into that.
I prefer to provide my micros with the
ability to use these devices directly. I
hope that’s your direction, too. I

www.dalsemi.com
www.micromint.com
www.melabs.com

78 Issue 105 April 1999 Circuit Cellar INK®

Figure 1 —The MAX1460 combines everything needed to accommodate a variety of bridge-type sensors. Major
integrated functions include a programmable gain amp (PGA), 16-bit ADC, temp sensor, and 16-bit processor.

a s in a movie, the
big star chips (like

micros and memories)
garner all the attention

and adulation. But although they’re
given little more than a few seconds
of scrolling fine print in the credits,
others are just as important when it
comes to getting the film in the can.

The headliners rely on a supporting
cast of chips to handle glue logic and
real-world interfacing. Regulators,
voltage comparators, op-amps, filters,
analog converters, and communications
transceivers all have roles to play.

In the quest to cram everything on
a single chip, the next step is to inte-

grate these nondigital support functions
onto the MCU, creating what’s best
described as a mixed-signal micro.

Examples of the trend abound. Micro-
chip made a deal with Seattle Silicon
and introduced the PIC16HV540, which
includes a built-in voltage regulator
(use any 6–12-V battery or wall-mount
supply) and high-voltage (15 V) I/O for
direct connect to sensors and relays.

The trend also presents an opportu-
nity for new suppliers to enter the
MCU market. For instance, Analog
Devices leveraged their mixed-signal
know-how with the AduC812, which
combines a fast (200 kHz) eight-channel
12-bit ADC, two-channel 12-bit DAC,
and flash-based 8051 MCU core.

It’s not hard to imagine other mixed-
signal leaders making a move. So, I was
excited, but not surprised, when I heard
Maxim was working on a processor.

For those (presumably few) of you
not familiar with the company, Maxim
has done well by offering a huge selec-
tion of mixed-signal problem solvers
including ADCs, DACs, op-amps,
supervisors, transceivers, and the like.

This being their first showing in the
processing theatre, the MAX1460 is
best described as a smart ADC because
the on-chip 16-bit processor isn’t user
programmable. The processor isn’t the
star; it plays a supporting role.

Figure 1 gives you a backstage look.
The on-chip processor is one link in a
signal chain that includes a program-
mable gain amp, 16-bit ADC, tempera-
ture sensor, 12-bit DAC, and op-amp.

Maximicro

Tom says
that the
MAX1460
has lots
of talent

but its processor will
never be a star. Why?
Because it doesn’t
aspire to be. That’s
the innovative twist
he applauds on
Maxim’s first step into
the micro market.

SILICON
UPDATE

Tom Cantrell

16-bit interface to all signals

12-bit digital
output

REF = VDD

REF = VDD

Oscillator

16-bit
Digital signal

processor

DAC

Mux
16-bit ADC

Temperature
sensor

Out

D0–D11

VSS

+5 V

+5 V

10 k

XIN

XOUT

VDD

2-MHz
resonator

X1

C1
0.1-µF

Sensor

INP

INM

AGND

PGA and
coarse
offset

correction

Control
logic

EEPROM

Amp
out

Configuration
register

Instruction
ROM

OP
AMP

Temperature
and

sensor signal
registers

Correction
coefficients

registers

10 k

CS1 CS2 Start Test *Reset SDIO SDO EOC AMP– AMP+

MAX1460

Circuit Cellar INK® Issue 105 April 1999 79

The micro is described as a RISC or
DSP, presumably combining aspects
of both (not that there’s much differ-
ence anymore). At this point, the details
of the architecture and on-chip ROM
code haven’t been disclosed, although
much can be inferred by the functions
they perform.

PIEZO DE RESISTANCE
To get a better idea of what the MAX-

1460 is, let’s look at where it came
from and what it’s supposed to do.

The MAX1460 is designed to act as
a signal-conditioning front end for a
variety of sensors, especially those
based on the classic Wheatstone bridge.
The Wheatstone-bridge concept exploits
the fact that physical energy (tension or
compression) causes a change in resis-
tance detected as a voltage differential
between the two legs of the bridge.

The Wheatstone bridge is versatile.
Use gravity as the physical input and
you’ve got a scale. Turn it sideways
and it’s an accelerometer. Mechanically
connect it, and voilà, a strain gauge.
Use the bridge as a diaphragm and it
detects pressure, level, and flow.

That’s the good news. The bad news
is extremely low-level output that is
hard to detect and easily swamped by
ambient electrical interference.

A typical piezo-resistive bridge sensor
may be able to generate only 20 mV or
so per volt of excitation. In a 5-V system,
that means the peak output is 100 mV,
which even at meager 8-bit resolution
requires the ability to detect low-level
signals down to hundreds of micro-
volts per least-significant bit. Push for
12 bits and you’re talking nanovolts!

Resistors also react to temperature
(i.e., thermistor), which is nice when
that’s what you want to do. Otherwise,
it’s a pain.

An uncompensated sensor may
exhibit thermal errors on the order of
10, 20, or even 30% of full-scale output
(FSO) including significant (e.g., 5%
FSO) nonlinearity. Without tempera-
ture compensation, there’s no need to
worry about A/D resolution because
even a few bits of accuracy will be
tough to obtain.

You know the drill. Get some op-
amps, a temp sensor (to compensate),
ADC, MCU, and a grab bag of discretes,

then have at it. Amplify
the input and remove any
offset, compensate (both
gain and offset) for tem-
perature, and output the
digital result.

Earlier parts like the
MAX1457 and ’58 (see
Figure 2), put together a
few parts of the puzzle.
The main difference is
that the ’57 uses a rela-
tively large (128 × 16)
external EEPROM to
store temperature com-
pensation coefficients and the ’58 has
a smaller EEPROM (8 × 16) on chip.

The different size of the EEPROM
reflects a fundamental difference in
the ’57’s and ’58’s approach to com-
pensation. It starts by realizing that
the goal of compensation is to come
up with curves that cancel the sensor’s
output and offset thermal error curves.

Every programmer knows there are
two ways to generate a curve. Either
come up with an equation that defines
the curve, or use a table lookup. That’s
the difference between the ’57 and ’58.

The ’57 relies on its larger EEPROM
to store a table of output and offset
compensations corresponding with up
to 120 temperature points. This setup
enables the output to be fine-tuned
across the entire temperature range,
yielding excellent 0.1% accuracy.

Meanwhile, the ’58 (essentially an
analog computer hardwired to execute
one calculation) uses an equation in-
corporating error coefficients. An
equation of only a few terms takes up
a lot less room in memory than a table,
hence the ’58’s smaller EEPROM.

But, a simple equation usually does
not perfectly fit a real-world curve, so
the ’58’s accuracy (1%) isn’t as good as
the ’57’s. Still, 1% is good compared
to the 10–20% or greater error of an
uncompensated sensor.

Although a big improvement over
rolling your own, the ’57 and ’58 are
still analog from the system designer’s
point of view. Not only do you have
to come up with an ADC and the soft-
ware to babysit it, you’re likely to
encounter problems getting the analog
signal from here to there, especially in
a high-temperature or otherwise harsh

environments where the sensor and
controller are physically separated.

LITTLE SIGNAL, BIG BITS
Enter the ’1460. By adding the ADC

and micro, the ’1460 puts everything
under one roof, inputting a tiny signal
from the bridge and outputting accurate
(0.1%, 12 bit) 1s and 0s. The operating
principle is exactly the same as before,
but now most of the details and sensi-
tive analog signals are handled on chip.

The design is ratiometric (i.e., rela-
tive to supply voltage) with input cen-
tered around a virtual ground, obtained
by connecting 10-kΩ pull-up and pull-
down resistors to AGND. Maxim
recommends avoiding the extremes of
the input range for best signal-to-noise
ratio (SNR). So, it’s best to try to keep
the input between 1 and 4 V rather
than the full-scale 0–5 V.

The first step is coarse amplification
(×46, ×61, ×77, or ×93) and offset correc-
tion (eight selections) to get dynamic
range into the ballpark. The output is
a differential voltage between –VDD and
+VDD that, post-A/D conversion, is
interpreted as an integer value between
–32768 and +32767 or, for correction
coefficients, a fraction between –1.0
and +0.99997.

Once digitized by the 16-bit ADC,
the coarse-adjusted input and on-chip
temperature-sensor reading are fed to
the processor. Although the output is
only 12 bits, 16 bits of resolution are
required here to prevent quantization
and rounding errors from polluting the
final output.

The other set of processor inputs
comes from the correction-coefficient
registers in Table 1 that reflect the offset

Photo 1 —They call it a smart ADC, and the MAX1460 arguably repre-
sents Maxim’s first entry into the micro market.

80 Issue 105 April 1999 Circuit Cellar INK®

and output specs for a particular sensor,
including thermal characteristics.

With digitized input and temp and
the correction coefficients in hand,
the processor executes Output = Gain
(1+ G1T + G2T2) (Signal + Of0 + Of1T +
Of2T2) + DOFF to generate an output that
compensates the sensor’s offset and gain
(see Figure 3).

Gain and DOFF deal with the basic
gain and offset of the sensor and G1,
G2, Of1, and Of2 handle linear and non-
linear components of thermal compen-
sation. Essentially, the MAX1460
processor does in software what the
earlier parts did with analog circuits.

Once the calculation is complete,
the 12-bit result is output in parallel
on the D0–D11 pins. It’s
simultaneously delivered
as a bitstream on the OUT
pin. Feeding OUT back
through the spare on-chip
op-amp and adding a few
discretes permits a high-
level (rail-to-rail) analog
voltage or 4–20-mA output
to be generated.

It may seem odd for a
sensor to go both ways
(i.e., analog and digital
outputs), but often, indus-
trial designers require
legacy analog capability to
help smooth the migration
of their customers and
installed equipment base
to fully digital designs.

From the system
designer’s perspective,
MAX1460 operation is
simple. Just power up and
the signal is acquired and
processed, and 67 ms later
the outputs (D0–D11, OUT)
are updated and the EOC
pin signals completion.
Two chip-select pins (CS1
and CS2) condition all
digital I/Os, so multiple
’1460s can reside on a
common bus.

Conversion can also be
initiated with the START
pin. This feature is useful if
the default 35-ms sensor
warm-up time is insuffi-
cient. There’s a repeat

mode that automatically reinitiates
conversion (max. sample rate is 15 Hz).

SERIAL SETUP
Using the MAX1460 is easy. But,

setting it up (i.e., determining the
proper calibration coefficients and
programming them into the on-chip
EEPROM) is another story.

With the TEST pin asserted, two
other pins (SDIO and SDO) provide
access to the chip’s inner workings.
The first gotcha is that in Test mode,
the host system is responsible for pro-
viding a 2-MHz 50% duty-cycle clock
on XIN that not only clocks transfers
on SDIO and SDO but also runs the
chip. According to the designers, the

BIAS
generator

Oscillator

16
-b

it
D

A
C

 -
 O

ffs
et

 T
C

16
-b

it
D

A
C

 -
 O

ffs
et

16
-b

it
D

A
C

 -
 F

S
O

16
-b

it
D

A
C

 -
 F

S
O

 T
C

16
-b

it
D

A
C

 -
 F

S
O

 li
ne

ar
ity

FSOTCDAC
OTCDAC
OFSTDAC
FSODAC

LINDAC

LINOUT

FSOTCOUT

VBBUF

VBDRIVE

A = 1

A = 1

A = 1

AMPOUT

VOUT

NBIAS

FADJ
FOUT

Serial

EEPROM
interface

AGND

PGA

MCS

ECS

ECLK
EDI

EDO

LINDACREF
AMP+
AMP–

B drive

ISRC

INM

INP

VSS

VDD

12-bit
ADC

VDD

VDD

VDD

VSS

MAX1457

12
-b

it
D

A
C

 -
of

fs
et

 T
C

12
-b

it
D

A
C

 -
 o

ffs
et

C

on
fig

ur
at

io
n

re
gi

st
er

12
-b

it
D

A
C

 -
 F

S
O

12
-b

it
D

A
C

 -
 F

S
O

T
C

FSOTC

Limit

Temp

A = 1

Out

VSS

Digital

interface

PGA

CS
WE

SCLK
DIO

B drive

INM

ISRC

INP

VDD

RFTC

RISRC

Σ

128-bit
EEPROM

Temp

Offset
(RODAC)

VSS

VDD

MAX1458

a)

b)

Figure 2 —Earlier Maxim parts, the MAX1457 (a) and MAX1458 (b),
targeted the same bridge sensor applications but required support from
an external ADC and micro.

Circuit Cellar INK® Issue 105 April 1999 81

Once the sensor-specific configura-
tion and calibration is determined, it’s
time to burn it into the 128-bit (8 × 16)
EEPROM. This exercise calls for a dif-
ferent (125 kHz) clock and multiple
commands to program each bit indi-
vidually.

I don’t see any commands to read
the EEPROM; only one to erase it. Not
sure how comfortable I am with the
concept of a write-only memory. On
the other hand, it offers security to
anyone worried about having their
coefficients ripped off. I suspect there’s
a way to read the EEPROM, but it’s
not in the datasheet.

Once programmed and put back into
service (TEST deasserted), things get
simple again. After powerup, the MAX-
1460 automatically loads the EEPROM
contents into the configuration and
correction-coefficient registers and
does its thing.

EV WAY OUT
The fact that the setup procedure is

nontrivial would seem to dampen
aspirations for self-calibrating designs
that could adapt over time, perhaps to
compensate for sensor aging or envi-
ronmental changes.

To their credit, Maxim appears to
disclose enough
details to enable
you to support in-
system self-recon-
figuration. But, they
clearly expect that

clock could probably range from about
1 to 3 MHz before it impacts conver-
sion accuracy, but the datasheet says
2 MHz, period.

Calibration for a particular MAX-
1460 and sensor pair involves deter-
mining the appropriate values for the
configuration and correction-coefficient
registers. The idea is to operate the
sensor and MAX1460 pair under vari-
ous temperature (low, medium, and
high) and input-excitation (low and
high) conditions to gather enough data
points to fit a curve using the output
equation and correction coefficients.

To communicate with the chip, the
host system issues commands (see Table
2) and monitors processor activity and
results via SDIO and SDO. The proces-
sor reveals the contents of the accumu-
lator (S), the 8-bit program counter (P),
and the 8-bit instruction it’s currently
executing (PS). A new instruction and
corresponding 32 bits of status (S, P, and
PS) are delivered every 16 clock cycles.

After issuing the start-conversion
command, the host looks for the ap-
pearance of certain opcodes on SDIO
to catch the conversion result on SDO
exactly 130,586 XIN clock cycles later
(i.e., 65.293 ms). Remember that all of
this happens at 2 MHz.

Table 1—The key calculation performed by the on-chip processor compensates sensor offset and gain for tempera-
ture by using sensor-dependent correction coefficients.

Coefficient Register address Function Range Format

Gain 1 Gain correction –32,768 to +32767 Integer
G1 2 Linear TC gain –1.0 to +0.99997 Fraction
G2 3 Quadratic TC gain –1.0 to +0.99997 Fraction
Of0 4 Offset correction –1.0 to +0.99997 Fraction
Of1 5 Linear TC offset –1.0 to +0.99997 Fraction
Of2 6 Quadratic TC offset –1.0 to +0.99997 Fraction
DOFF 7 Output midscale pedastal –32,768 to +32767 Integer

Command Hex Code

Write a calibration coefficient into a DSP register 1 hex
Block-erase the entire EEPROM (write 0 to all 128 bits) 4 hex
Write 1 to a single EEPROM bit 2 hex
NOOP (no operation) 0 hex
Start conversion: registers are not updated with EEPROM 8 hex

 values. SDIO and SDO are enabled as DSP outputs
Start conversion: registers are updated with EEPROM A hex

 values. SDIO and SDO are enabled as DSP outputs
Start conversion: registers are not updated with EEPROM C hex

values. SDIO and SDO are disabled
Start conversion: registers are updated with EEPROM E hex

values. SDIOand SDO are disabled
Reserved 3, 5, 6, 7, 9,

B, D, F hex

Table 2—Calibration and
EEPROM programming is
carried out by a host system
that issues commands to the
on-chip processor and
monitors operation via the
SDIO and SDO pins.

82 Issue 105 April 1999 Circuit Cellar INK®

SOURCES

MAX1457, ’1458, ’1460
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

PIC16HV540
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

AduC812
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analog.com

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

–10

–4

–6

–8

0

–2

8

6

4

2

10

0 10 20 30 40 50 60 70

Uncompensated sensor error

Temperature (˚C)

E
rr

or
 (

%
F

S
O

)

Offset

FSO

–2.00

–0.10

–0.15

0

–0.05

0.15

0.10

0.05

0.20
Compensated transducer error

Temperature (˚C)

E
rr

or
 (

%
 S

pa
n,

 4
00

0
C

od
es

)

0 10 20 30 40 50 60 70

Offset

FSO
Figure 3 —Once
calibrated, the output
accuracy across
temperature of the
MAX1460+ sensor pair
(a) is dramatically
improved compared to
the uncompensated
sensor (b).

a) b)

reprogramming the EEPROM won’t be
done often and will be handled by a test
system rather than logic built into the
application.

To that end, they offer the MAX-
1460 evaluation kit. It includes an EV
board with the ’1460 and sample pres-
sure sensor, an interface board that
connects to a PC parallel port, Win-
dows software that walks the user
through calibration, and EEPROM
programming and documentation.

Keep in mind that calibration for a
custom-matched MAX1460 and sen-
sor pair is tedious. It may take a couple
hours because the sensor has to soak

for about 30 min. at each temperature.
Thus, the software assist that Maxim
provides to automate the process is a
welcome addition.

Although it’s targeted at a fairly
narrow niche, I find the MAX1460
intriguing in its implications for the
bigger picture. It provides more evi-
dence of the trend towards mixed-
signal micros and smart sensors.

The Maxim folks I spoke with indi-
cated that opportunities related to IEEE
1451.2 (the digital sensor interface dis-
cussed in INK 104) are under review.

Finally, Maxim’s entry into the
micro marketplace, albeit rather indi-

rectly, may portend exciting times for
MCU customers and competitors. I

www.maxim-ic.com
www.microchip.com
www.analog.com

96 Issue 105 April 1999 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Sitting in the Dark

y ou get up one morning and get ready to jump in the shower. It smells funny. Obviously your local water
treatment facility is having a little “control” problem. Instead, you get dressed and jog over to the local BART

station for the ride to work. Unfortunately, it seems that the trains aren't running. You return home to get your car and
drive to work but red lights are flashing at many intersections. Some idiot runs the flashing red light in front of you and

crashes into another car. You call 911 on your cellphone, but no one answers. The 911 emergency system isn’t working.
Three hours later you make it to the office. You would have been a bit earlier but the elevator was down and it took you 20 minutes to

climb 16 floors. Fortunately, you're just in time for the meeting with the lawyers hired to carry out a company merger. The bad news is that
apparently the state has lost your company’s corporation records and all the lawyers can say is that it will probably be rather expensive to
fix the problem. In disgust you say “I need a drink!” and suggest that everyone head (down the stairs) to the restaurant across the street.

After a few rounds you discover that you’re the only one with enough cash to cover the check. No one else could find a working ATM
this morning and the bar’s credit card scanner rejects any card with a ’00 expiration date. Work is a total loss so you leave and head over to
“The Video Den” to check on the HDTV you put a $2000 deposit on last week. When you get there, they have no record of your order or the
deposit. So, you call and ask a friend to drop by your apartment and get your receipt but the telephone line is dead. And on, and on….

As humorous as this sounds, it is certainly an unpleasant scenario. Of course, the media will have you believe that reports like this
are going to be the norm after January 1st, 2000. So why am I talking about this now? Well, after July, I’m sure Y2K is all you’re going to
hear about. Unfortunately, because so many of the problems will undoubtedly involve embedded controls, I can’t ignore the issue entirely—
especially after recently running into a Y2K problem myself.

As many of you know, my house is controlled by a computerized home automation system (HCS-II) which was designed and
documented here in the magazine. It has performed flawlessly and now includes many enhancements and peripherals. Like most HCS
users, I only update the software when I change the system configuration (if it ain’t broke, don’t fix it).

Last year, users asked if the HCS was Y2K compatible. We set a PC for 11:59 PM on 12/31/99 and had it update the HCS real-time
clock. After a minute, the HCS clicked over to 01/01/00 12:00 AM—and kept going! We announced that the HCS was Y2K compatible.
Which meant I didn’t have to rip into my own HCS to change the software.

Hold on there. A few weeks ago we got a call from a HCS user who ran the same test we performed and got the same results. Then
he set the PC for the middle of January 2000 and tried to set the HCS clock. Disaster! Apparently, the HCS could rollover correctly from
1999 into the new millenium, but it couldn’t be set correctly by a PC once the date was actually in the year 2000. We fixed the problem
immediately and issued a new software release (V.3.62). But, without a concerned user we might not have discovered the problem until
someone actually updated their clock next January. How many other situations like this are out there?

This bit of personal horror made me think harder about the Y2K issue in general. I’m not jumping on any Y2K bandwagon. I don’t
expect chaos. Unfortunately, regardless of its hype, the Y2K problem is real and embedded chips are the greatest risks. Embedded
microcontrollers have become key components in complex commercial products such traffic lights, power generation equipment, water and
sewer systems, airport runway lights, antenna aiming systems, and so on. In between are the products that average consumers encounter
daily—elevators, fax machines, televisions, VCRs and microwave ovens, to mention just a few.

An elevator is a noteworthy example of the Y2K problem. If the interval between maintenance checks is exceeded (as calculated by
the embedded chip), most elevators become inactive and go to the bottom of the shaft to await maintenance. If the chip reads 00 and
calculates the maintenance interval from 1900, the shutdown procedures activate and the elevator becomes inoperable.

Fixing Y2K problems is going to be an exercise in rounding up enough programmers (manpower) who ask the right questions
(intelligence). I had a couple thousand HCS owners checking to see if we had a problem. The real Y2K problem is in finding the manpower
to check all of the world’s elevators. With all the embedded controllers out there, ultimately some of them won’t get the millenium message.

As you can see, embedded control is a big part of the Y2K situation. I’m not trying to add to the hype, I’m just endeavoring to balance
things with a little personal experience. Unfortunately, talk can’t fix it and I have eight months to update my HCS software—or else.

