
CELLAR
CIRCUIT

®INK
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

 # 1 0 6 M A Y 1 9 9 9

MEASUREMENT AND SENSORS
Accurate Measurement
in Harsh Environments

Graphing Weather Monitor

USB Essentials

Embedded Internet:
What’s Available?

2 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

TASK MANAGER

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ingo Cyliax
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

PROJECT EDITOR
Janice Hughes

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar
INK are registered trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written
consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Sensing the Obvious

e diting is a hazardous profession. With this
magazine, fortunately, we don’t encounter life-

critical situations (or at least that’s what the disclaimer

is for). But, my job has its perils nevertheless.
Over a year ago, Janice Hughes wrote in a Guest Task Manager that

editing is a profession that encourages perfectionism and obsessive-com-

pulsive behavior. To do it well, you have to care a lot about a lot of little
things. Too true. We do care, and we try our hardest to make every bit of
editorial true and accurate.

Unfortunately, we don’t succeed 100% of the time. For example, last
month, we added Test Your EQ, a new section that invites you to quiz
yourself on how well you know engineering basics. As I write this, that issue

is just hitting the newsstands and already my e-mailbox is full of messages
from readers pointing out that there were—gasp!—errors in Problems 3 and 4.

Indeed, the schematic in Problem 3 was incorrectly drawn, and Problem 4

had some capitalization errors. Those are the kinds of mistakes that threaten
credibility, and to an editor, that’s the worst. Although I despise them—to the
extent that I make a career out of purging their existence—I can live with the

occasional (preferably, extremely rare) typo. But in my opinion, drawing a
diode backwards in a quiz like Test Your EQ is a whopper of an error for an
established engineering publication like Circuit Cellar.

Fortunately, along with the correction, many of the readers who wrote in
also included compliments and said how much they like the magazine. One
person wrote that the errors “couldn’t just be a coincidence. After all, this is

the April issue, and it’s been so long since we’ve had even the slightest hint
of tomfoolery, any errors must be glaringly wrong on purpose. And you
thought you really had me, or vice versa!”

Well, we weren’t pulling tricks on you, but here’s something else to
consider. If you’re willing to move to Connecticut and you have a burning
desire to join the nit-picking editors of Circuit Cellar, send us your resume. We

are expanding our editorial staff and are looking for another technical editor.
Looking for an editor among our readers may seem a bit odd to you, but

it makes perfect sense to me. Indeed, it came as no surprise that our

readers picked up on the mistakes immediately. In fact, they generated
more letters to the editor than I’ve seen in years.

Fortunately, I can see the positive sides to all this: One, we don’t usu-

ally flub up in such an obvious manner. And two, you all really know your
basics, or as Jeff said, “Well, that’ll test ’em!”

But just in case you didn’t notice that backwards diode in Problem 3,

I’ve got a WeatherROCK I’d like to sell you.

CIRCUIT CELLAR ® Issue 106 May 1999 3www.circuitcellar.com

36 Nouveau PC
edited by Harv Weiner

38 PalmPilot Application
Using Open Source Tools for Development
Richard Ames

45 RPC Real-Time PC
Astronomical Issues
Part 2: Radio Astronomy
Ingo Cyliax

52 APC Applied PCs
Embedded Internet
Part 1: On the Network
Fred Eady

ISSUE
INSIDE

Graphing Weather Monitor
Mark Bauman

Accurate Linear Measurement Using LVDTs
George Novacek

Sensing Water with Multiple Electrodes
Jack O’Neill

I MicroSeries
USB Primer
Part 1: Practical Design Guide
Mike Zerkus, John Lusher, and Jonathan Ward

I From the Bench
Dallas 1-Wire Devices
Part 2: All on One
Jeff Bachiochi

I Silicon Update
Betting on Webware
Tom Cantrell

2

6

8

82

95

 96

E
M

BE
DD

ED
P
C

12

20
28

58

70

76

106106

Task Manager
Elizabeth Laurençot

Sensing the Obvious

Reader I/O
Circuit Cellar Online

New Product News
edited by Harv Weiner

Test Your EQ

Advertiser’s Index
June Preview

Priority Interrupt
Steve Ciarcia

What’s in a Name?

READER I/O

6 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

• Now there’s an easier way to search past articles for certain topics. The search-
able CD-ROMs of the Circuit Cellar back issues are ready to be shipped, so
stop by our homepage and find out how to get yours!

• Don’t forget that your Design99 entries are due June 1, 1999, so check the
Design99 Rules Update section for the latest updates on contest guidelines.

Silicon Update Online: Flexible Flash ’51—Tom Cantrell
Lessons from the Trenches: Logging in the ’90s—George Martin
Design Hint: Working with USB: Checklist, Glossary, and USB Sources—Mike

Zerkus, John Lusher, and Jonathan Ward

The May
 Design Forum
password is:

Forecast

New!

Design Forum

The cci newsserver is the place to go
for on-line questions and advice on
embedded control, announcements, or
to let us know your thoughts about
Circuit Cellar.

Newsgroups

ONLINE
Circuit Cellar www.circuitcellar.com

TIMING IS EVERYTHING
I read “A Minimalist Multitasking Executive” (Circuit

Cellar 101) with some skepticism as to the benefit of
multitasking in embedded systems. Now, I’m even more
skeptical and concerned about the errors in the article.

The authors “chose a value of 2000 cycles per tick, or
about 25 µs for a ’HC11 running with an 8-MHz clock”
(p. 21). An ’HC11 with an 8-MHz clock has a 2-MHz
internal clock, so 2000 cycles equals 1 ms, not 25 µs.

No ’HC11 with an 8-MHz internal clock capability
is listed on any Motorola short form. Even if there was,
the tick would be 125 ns × 2000, or 250 µs, which makes
such an OS impractical for most embedded systems
(usually heavily interrupt dependant).

The ’HC11 has a possible interrupt latency of 40
(IDIV/FDIV) + 27 + 12 cycles for the RTI, for a total of
79 cycles or 39.5 µs, plus any time required to process
the interrupt (e.g., turning off the interrupt flag). These
tasks consume ~13 more cycles, so even the simple timer
ISR suggested requires at least 50 µs to process—unless
the programmer couldn’t use the divide instructions, which
reduces it to 35 µs but makes the 25-µs tick impractical.

Other than the timer interrupt handling task sched-
uling, no interrupts can be processed as ISRs. They have
to be polled. This fact precludes this OS from almost all
embedded designs, even some of the simplest. If the
authors wrote the C compiler, they should have had a
better knowledge of the ’HC11’s timing.

Alan Cook
South Australia

Our purpose wasn’t to extol the virtues of a multi-
tasking executive, but to demonstrate two of its funda-
mental concepts—timer interrupt preemption and the
state-saving mechanism. Any preemptive executive has to
deal with these. The article shows that to get a minimal
system going, you doesn’t need a lot of code, even in C.

You are correct regarding the timing error. The
important parameter isn’t so much the amount of time,
but the numbers of cycles per tick.

This system is meant to be reasonably portable.
Does 2000 cycles give a reasonable amount of tradeoff
between interrupt and scheduling overhead and system
responsiveness? If your system needs to schedule more
often, change the tick cycle time and the default num-
ber of ticks. Decreasing the tick cycle time increases
scheduling activity and introduces more overhead.

This system doesn’t preclude you from using other
interrupts. It lets you hook to the timer interrupt so if
you want to poll at some resources, you can do so at the
timer interrupt rate. It masks interrupts off during the
periods that it accesses the global data structures, which
may not be acceptable in some cases.

A system using nothing but interrupt handlers and
an idle main loop is a multitasking system. In this sce-
nario, depending on the hardware, scheduling is done by
the interrupt priorities (preemptive) or interrupt handlers
giving up control (cooperative). But, interrupt handlers
are not the right place to perform lots of calculations.

Richard Man

8 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

PROGRAMMABLE CONTROLLER
Triangle Research International has introduced a

programmable logic controller that features a revolu-
tionary integrated ladder logic + BASIC programming
language. The T100MD-1616 is easy to program using
TRiLOGI V.4 software, which includes a program-
ming editor, compiler, and simulator.

The software is enhanced by custom-programmable
functions, which the user can create using a suite of
BASIC commands. These commands, based on the
popular BASIC language, are much more flexible and
powerful for handling computationally intensive tasks
such as data processing, string handling, and data
communications. A free evaluation copy of the soft-
ware can be downloaded from the company’s web site.

The T100MD-1616 includes a 14-pin LCD module
port, four analog inputs (0–1-V and 0–5-V ranges), one
analog output (0–20-mA current loop), two PWM
outputs, two stepper-motor controllers, four inter-
rupts, and two high-speed quadrature-encoder inputs.

Also included are a real-time clock, PID computa-
tion function, one RS-232C and one RS-485 port
(networkable: master-slave or peer-to-peer), 16 digital
inputs (24 VDC, NPN type), and 16 solid-state out-
puts (24 VDC at 1 A per output).

Triangle Research Intl.
(877) 689-3245
Fax: (877) 689-3245
www.tri-plc.com

HUMIDITY/TEMPERATURE TO PC CONVERTER
The RH-02 is a compact PC-based instrument that

accurately measures both temperature and humidity. It
plugs into the serial port of a PC and uses the supplied
PicoLog software (DOS and Windows 3.1/95/98/NT) to
take measurements.

The software provides simultaneous views of tem-
perature and humidity graphs, exports data to a spread-
sheet, prints and saves data, and more. Alarm limits
can be set to sound if the temperature or humidity go
out of a specified range. The unit is also supplied with
software drivers so users can write their own applica-
tion software. Examples for LabVIEW, Excel, Visual
Basic, Delphi, and C are included.

Applications include monitoring cleanrooms,
laboratories, and computer facilities; checking heating
and ventilation installations; and monitoring artifacts
and documents in libraries and museums. The unit
requires no power supply, so it’s ideal for use in the
field with a laptop computer.

RH-02 measures temperatures from –40 to +70°C
with an accuracy of ±0.2°C (0–70°C). The device mea-
sures humidity from 0 to 100% with an accuracy of
±2% (5–95%).

RH-02 sells for $245 and comes complete with
manual and PicoLog software.

Saelig Co.
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com

www.tri-plc.com
www.saelig.com

CIRCUIT CELLAR ® Issue 106 May 1999 9www.circuitcellar.com

NEW PRODUCT NEWS

DIGITAL THERMOMETER/THERMOSTAT
The DS1721 digital thermometer/thermostat pro-

vides 12-bit temperature readings that indicate the
temperature of the device. Thermostat settings and
temperature readings are all communicated to or from
the DS1721 over a simple
two-wire serial interface.

The device is truly a
temperature-to-digital con-
verter, as no additional
components are required.
Applications for the DS1721
include personal computers,
office equipment, and any
microprocessor-based ther-
mally sensitive system.

The DS1721 reports the
temperature of a device or
environment with an accu-
racy of ±1°C over a tempera-
ture range of –10°C to
+85°C. The device can also

C-PROGRAMMABLE CONTROLLER
The PK2500 is a small, rugged C-programmable

controller that provides a low-cost high-performance
alternative to micro and nano programmable logic
controllers (PLCs). The PK2500 features quick-release
screw terminals and easy field maintenance. It mounts
on a DIN rail for fast field installation. Applications
include environmental monitoring, process and batch
control, temperature, water and waste-water control,
and general machine control.

Its 22 I/O lines support up to 16 protected digital
inputs or up to 12 high-current out-
puts. Eight of the lines are configur-
able. Two inputs can be alternately
configured as an RS-485 port, and
six of the output lines can be con-
figured as inputs. Also included are
four analog inputs with 12-bit reso-
lution, two SPST relay outputs, and
two serial ports that allow RS-232
or RS-485 communications. Each
analog channel has a conditioning
op-amp and changeable bias and
gain resistors to match the desired
analog input range.

The Dynamic C software (com-
plete with integrated editor, com-
piler, and debugger) offers

third-generation language support and execution speed
that is unmatched by ladder-logic–based PLCs. The
software libraries make this PLC alternative designer-
friendly, minimizing project development time.

The PK2500 starts at $245 per unit in 100-piece
quantities.

Z-World, Inc.
(530) 757-3737 • Fax: (530) 753-5141
www.zworld.com

be used as a thermostat by setting the high and low
temperature limits. When these limits are reached,
the device generates a response.

The temperature is reported in a 9- to 12-bit word,
with increments as
small as 0.0625°C.
Three address bits en-
able a user to multidrop
up to eight sensors
along the two-wire bus,
which simplifies the
bussing of distributed
temperature sensing
networks.

The DS1721 sells for
$0.99 in quantity.

Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

www.zworld.com
www.dalsemi.com

10 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
PIC DEVELOPMENT MODULE

The Qik Start 16 development module is an
integrated stand-alone development and training
tool to support students and engineers involved in
the design of Microchip PIC microcontroller-
based electronic circuits. It enables easy proto-
typing and testing of software and hardware
components in designs using embedded controllers.

A major feature of the module is the back-
ground debugging module connector that inter-
faces to a PC and supports in-circuit emulation of
the new Microchip 16F8xx series of microcontrol-
ler products. The Qik Start 16 module enables any
8-, 12-, 14-, 28-, or 40-pin 12Cxx or 16Cxx PIC
series microcontroller to be used.

All VDD, VCC, OSC and MCLR lines are pre-
wired. The OSC signal is generated from an
onboard plug-in clock oscillator or crystal. The 2–
5-V adjustable regulated power supply can be
sourced from a 9-V battery or AC power pack.

Terminals are also available for an external lab
supply or the company’s Design Center. The
MCLR can be initiated from the onboard momen-

tary reset button or via an external reset source. There is
a dedicated socket for EEPROM (I2C or SPI). USART-based
microcontrollers have Tx and Rx lines tied to a MAX232
interface chip, which connects to a DE-9. All port pins are
brought out to connecting terminal blocks for easy access.

The Qik Start 16 module sells
for $98. A Power Pak is avail-
able for $18, and a Wire
Jumper kit costs
$21.

Diversified Engineering
and Manufacturing, Inc.

(203) 799-7875
Fax: (203) 799-7892
www.diversifiedengineering.net

www.diversifiedengineering.net

12 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Graphing
Weather
Monitor

FEATURE
ARTICLE

Mark Bauman

“i
Watch out, weather
forecasters! Mark is
checking up on you,
and now all of his
relatives are, too. For
Christmas, they
received PIC-based
graphing weather
monitors that analyze
current data for
accurate local
weather prediction.

t’s snowing. We’d
better get going!” I

awoke to my wife’s
announcement and ran to

the window. Indeed it was snowing and
the temperature was 34°.

Wondering what the weather guess-
ers were saying, I turned on the radio
as the forecaster proclaimed that the
snow was expected to change to rain
within the hour. I checked the Internet
to review the forecaster’s discussion,
written moments earlier. It confidently
read “Sorry kids—no white Christmas.”

Although I love snow (and we don’t
get it often in the Banana Belt), the
forecast was fine with me because we
had a couple hours to drive to reach
my parents’ house for Christmas Eve
celebrations. But as an amateur weather
watcher, I’ve learned to second-guess
the weather service and to verify their
predictions (although I must admit,
they are getting better).

My heat unit calculator (a tempera-
ture monitoring and storage device
that my wife and I designed several
years ago) indicated the temperature
had dropped 3° in the last hour, even
though it was well past daybreak. This
clearly didn’t match the forecast. I
looked at my old-fashioned dial ba-
rometer—the pressure had fallen (un-
fortunately, I couldn’t remember when
the pointer was last adjusted).

12

20

28

Graphing Weather
Monitor

Accurate Linear
Measurement
Using LVDTs

Sensing Water with
Multiple Electrodes

FEATURES

CIRCUIT CELLAR ® Issue 106 May 1999 13www.circuitcellar.com

Power in
9 VDC @ 200 mA

+5 VDC
–5 VDC
–20 VDC
90 VAC @ 400 Hz

Pressure
sensor

MPX5100
Offset

Power
supply

ADC
MAX11D

Gain

MCU
PIC16C64

Image RAM
6264

8K × 8

LCD
240 × 128

Temperature
sensor
AD590

Gain

Offset

We might be in for an
unexpected snowstorm, so
we frantically piled the gifts
in the car and headed to
Grandma’s house hoping to
get a start before the roads
got too bad. Sure enough, it
snowed 8″ that day.

The week before Christ-
mas had been a frenzy of
activity. Shopping is my
least favorite Christmas
activity and in a moment of
frustration I vowed not to
buy gifts next year—I’d
build them.

Now, driving down the
snow-slicked highway, I got
the idea to build an instrument that
would show not just what the
weather is doing but also how it got
there, so I could understand where it
was going.

Such an instrument would have
clearly shown the contradiction between
the weather predicted for that morning
and what actually happened (and it
would be a great gift for several diffi-
cult-to-shop-for relatives). The graph-
ing weather monitor was born.

This project combined my interest
in weather, embedded systems, pack-
aging, analog design, and avoiding
Christmas shopping. After all, if every-
thing worked out I’d never have to
shop again. I could just provide free
firmware upgrades!

As you may have guessed, one year
later I was feverishly fixing that last
line of code (which is still more fun
than shopping). Fortunately, everything
came together and I delivered the units
on schedule and within budget.

I’ve often thought that a weather
instrument that clearly depicted trends
in the temperature and barometric
pressure would be valuable for antici-
pating the weather during the next
several hours. I could track the steep
pressure gradient that often precedes
high winds or follow the passage of a
front. I could watch the life cycle of a
local thunderstorm as it builds and
decays or even anticipate the change
from rain to snow that accompanies
an unexpected winter storm.

DESCRIPTION
Packaged in a 2″-deep

picture frame (4″ × 6″)
with a laminated overlay,
the graphing weather
monitor fits neatly on a
desk or shelf (see Photo 1).
The graphic is formed on
a 128 × 240-pixel LCD
with EL backlighting, and
the monitor is powered by
a 12-V wall transformer
(200 mA).

The barometric pres-
sure and temperature are
displayed simultaneously
along with their trend
lines for the last 48 h.

There are also short-term trend lines
showing how things have changed
during the last 10 min.

The center horizontal line indicates
the point where the pressure or tem-
perature was equal to the current
reading. Points above this line indi-
cate that the pressure or temperature
was higher than the current reading
(by the amount indicated on the left
and right axis). Points below this line
indicate that the pressure or tempera-
ture was lower than the current read-
ing. The pressure line is represented
using a thick line, and the temperature
line is shown as a thin line.

Each point on the long-term trend
is updated every 12 min., which means
that there are 5 pixels/h. The short-
term trend is updated approximately
every 20 s and is more sensitive than
the long-term trend with 30 pixels in
the graph (giving 10 min. of history).
This arrangement is useful for tracking
events such as the passage of a front.

DESIGN CONSIDERATIONS
As a full-time engineering manager,

I’m familiar with design constraints
and tradeoffs. I’ve learned the impor-
tance of listening to the voice of the
customer as part of the initial design
process and developing a dialogue dur-
ing the design phases. I’ve also learned
the importance of providing proven
tools to increase staff efficiency and
still stay within budget and schedule
constraints.

For this project, I placed some severe
constraints on the engineering staff

Figure 2 —This schematic shows the LCD control circuit. Note how the data bus is shared between the PIC, RAM,
and LCD.

Figure 1 —This diagram of the graphing weather monitor illustrates the circuit architecture
and shows the novel PIC-LCD interface and the more conventional analog front end.

14 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

(me). I was working off a tight schedule
and budget. Finding the voice of the
customer was tricky because I wanted
the project to be a (hopefully pleasant)
surprise.

I had a general concept of what the
graphing weather monitor would be,
but it’s always useful to differentiate
between design musts and “it would
be nice if….” The design must be:

• a stand-alone unit because not all
recipients use computers

• simple to operate, with minimal
setup

• reliable and stable
• able to illustrate trends. Graphs are

powerful (a picture is worth a thou-
sand words).

• ready for delivery (four units) on
Christmas Eve, 1997

The design would be nice if:

• components cost less than $120 in
single quantities

• new tools and setup (including PCB
tooling) cost less than $200

• total design and build time was lim-
ited to 10 h per month (120 h total)

• through-hole design could be used
rather than SMT because the unit
would be built at home

CIRCUIT DESIGN
Now the fun begins. The graphing

weather monitor circuit consists of a
power supply block, sensor signal con-
ditioning, ADC, MCU, external RAM,
and an LCD, as shown in Figure 1.

The first design challenge came
early. How should I display the infor-
mation? Because I needed a stand-alone
unit, I ruled out a PC interface. An-
other possibility was to provide video
modulation for direct connect to a
television. I chose a more conventional
method—an LCD module.

Like you, I receive catalogs from
surplus houses touting cheap matrix
LCDs. Rummaging through back
catalogs, I located some great displays

for under $30. I used AutoCad to sketch
the display matrix and determined the
minimum resolution required. I was
pleasantly surprised to find a 240 × 128
display that met my needs for only $20.

When you spend $20 for a 240 × 128
display, you should expect to have to
provide a controller for the display. I’ve
used standard LCD character modules
with built-in controllers for a number
of projects and found them easy to use,
but now I was in uncharted territory.

I’ve learned the hard way that if
something is available off-the-shelf,
it’s a good idea to use or modify it. So,
I researched the available controllers
for matrix LCDs (e.g., Epson’s SED-
1335). These controllers offered great
promise but had major disadvantages
in my application.

For example, most of them require
external video RAM, which is not
directly accessible by the MCU (with-
out additional circuitry). I needed a large
area of external data RAM, so an extra
RAM chip was required.

Figure 3 —When I built the graphing weather monitor, I selected the components to provide
both simplicity and stability.

16 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Also, these controllers are
only available in SMT packages
(which didn’t meet one of my
design criteria) and they cost
about $10 in single-piece quan-
tities. The controllers are capable
and offer many windowing fea-
tures. They simplify character
generation and display multi-
plexing but offer little help in
graphing and line algorithms. I
decided to design my own LCD
controller—in software.

Of course, this forced some
memory, I/O, and speed requirements
on the microcontroller. The memory
requirements for the display are 240 ×
128 (or 3840 × 8 of RAM). Besides that,
at least 512 × 8 was needed for the
history data and an additional ~120 ×
8 was needed for scratchpad memory,
which gave me a total of over 4 KB of
RAM. No small microcontrollers (that
I had tools for) had this amount of
onboard memory, so external RAM
was required.

Using external RAM dramatically
increases the I/O requirements for the
microcontroller to a minimum of 29
points (unless the address/data are
multiplexed lines, which would reduce
to 22 points but require an external
octal latch chip).

Speed was a major consideration.
The LCD must be scanned nearly 100
times per second to prevent flicker.
To accomplish this, the MCU creates
an image stored in external RAM and
then it “replays” this image sequen-
tially by reading the external RAM into
the onboard display drivers.

Because the MCU shares its data
lines with both the external RAM and
the display, the data read out of the
external RAM also appears at the input
to the display. While this occurs, the
MCU frames the data by toggling the
LCD control lines. As you may expect,
the MCU spends the majority of time
in this refresh loop. The required band-
width for this link is ~800 kbps.

The Microchip PIC series (utilizing
a Harvard architecture) provided a
controller that met the memory, I/O,
and speed requirements. A PIC16C64
with a 20-MHz crystal proved worthy
in the circuit shown in Figure 2. Lower
crystal frequencies caused some display
flicker, so I stayed with the 20-MHz
crystal in the final design.

I knew I’d need some sort of ADC. I
was hoping to use the newly introduced
(at that time) PIC14000, which has an
onboard high-resolution ADC. Unfor-
tunately, the I/O count wasn’t suffi-
cient (even using an eight-bit latch).

I selected the Maxim MAX110
12-bit ADC because of its resolution

and simple interface to the MCU.
As a side note, the PIC16C774 is
now available with sufficient I/O
and onboard ADC to do the job.

The display (U3) is an Optrex
DMF660N-EW LCD with 240
(wide) × 128 (high) pixels. The
onboard drivers are Hitachi HD-
61105 and HD61104. The LCD
uses a four-bit parallel data trans-
fer. These data lines are shared
between the PIC, RAM, and LCD.

There are four LCD control
signals—first line marker (FLM),

data latch signal (CP), clock signal for
shifting data (LP), and alternate signal
for LCD drive (M). These signals are
provided by the MCU and used for
data framing.

The LCD requires a negative con-
trast voltage of ~20 V for proper opera-
tion. There are many chips available for
this task, but I chose Maxim’s MAX749.

The MAX749 (U9) is connected in
a flyback configuration to generate the
contrast voltage. Its high efficiency
(80%) and high switching frequency
(500 kHz) allow the use of small com-
ponents. The output is digitally ad-
justable, but I didn’t use that feature
in this design. The MAX749 also pro-
vides the voltage to drive the 79L05
regulator (U8) to power the –5-VDC
analog requirements.

The display is illuminated using an
EL backlight powered by an inverter
generating 90 VAC at 400 Hz. Initially,
I left the backlight on all the time,
but the intensity degraded rapidly. To
prevent this, I added an external switch
to control the backlight.

Table 1—As you can see from these graphing weather monitor specifi-
cations, the unit is more than capable for casual weather observation.

Pressure Range: 27–32″ of Mercury (Hg)
Accuracy: ±0.05″ of Mercury (Hg)
Resolution: 0.01″ of Mercury (Hg)

Temperature Range: –50.0–140°F
Accuracy: ±1°F
Resolution: 0.1°F

Power input 120 VAC, 50/60 Hz converted
 to 9 VDC, 240 mA

Operating temperature 50–90°F
Display size 240 × 128 pixels
Microprocessor PIC16C64A

Photo 1 —The graphing weather monitor is housed in an attractive picture frame. The graphic on the right illustrates the information that is displayed by the unit.

Temp. change
from current

Current
temp.

Short-term
temp. trend

Current pressure Short-term
pressure trend

Long-term trend

Pressure change
from current

Temp. was
falling

Always zero—no
change from

current

Temp. was
risingPressure was rising

Hours past

Time (h)
Pressure equal with

current reading

Pressure
was falling

Te
m

p.

B
ar

am
et

ric
 p

re
ss

ur
e

+40˚

+32˚

+24˚

+16˚

+8˚

0˚

–8˚

–16˚

–24˚

–32˚

–40˚

+0.5

+0.4

+0.3

+0.2

+0.1

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

– 4 8 – 4 2 – 3 6 – 3 0 – 2 4 – 1 8 – 1 2 – 6 Current

+
–

+
–

18 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The external RAM (U2) is simply
an 8K × 8 industry-standard (ancient)
6264. The only requirement here is
memory size and speed. The overall
schematic is shown in Figure 3. Dur-
ing image writing, the LCD is turned
off (~100 ms) while the MCU stores
the display image in external RAM.

I borrowed the temperature circuit
from the heat unit calculator design
that I mentioned earlier. This circuit
has been rock solid in a number of
units and environments.

The temperature sensor (U12) is an
AD590. This laser-trimmed sensor
provides a calibrated current propor-
tional to the absolute temperature.
The signal conditioning circuit uses a
conventional 7650S chopper-stabilized
op-amp (U5) with offset trim (RV1)
and gain (RV2) potentiometers.

The chopper-stabilized amps offer
good long-term stability by zeroing out
offset currents on a regular basis, and
they are virtually immune to DC drift.
A potential design improvement could
be made by replacing the potentiom-
eters with a software-intensive calibra-

tion and scaling routine (e.g., storing
setup parameters in an EEPROM).

The pressure sensor provided a
special challenge. Initially, I tried an
uncompensated pressure sensor and
found it to be a much better tempera-
ture sensor than a pressure sensor. I
went back to the drawing board after

examining the compensation curves,
running through the math, and realiz-
ing that I didn’t have a suitable tempera-
ture chamber to design the circuit.

Fortunately, Motorola came to the
rescue with the MPX5100. This sensor
is factory calibrated to provide a tem-
perature-compensated pressure output
and it has proven to be stable and reli-
able. Its output (U7) is conditioned by
another 7650S chopper-stabilized op-
amp (U6). Offset and gain are adjusted
using RV5 and RV3, respectively.

For the ADC, I used a MAX110,
which is a highly capable two-channel
±14-bit serial chip. The resolution is
more than sufficient for this applica-
tion, and its reference voltage is derived
from an LM4040 (D2) precision refer-
ence adjusted to 2 V by a tap off RV4.

I ran into some difficulty with the
power-up condition on the MAX110.
As it turns out, VSS must come up
before VDD or the analog portion of the
chip won’t function. Because VSS is
generated by the flyback converter, it
takes some time to come up. I fixed
this by delaying the onset of VDD.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 1 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 0

0 1 1 1 0 0 0 0 1 1 1 0

0 1 1 1 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

+000h

+03Ch

+078h

+0B4h

+100h

+13Ch

+178h

+1B4h

+200h

+23Ch

+278h

+2B4h

+300h

+33Ch

+378h

+3B4h

+
00

0h

+
00

1h

+
00

2h

+
00

3h

+
00

4h

+
00

5h

+
00

6h

+
00

7h

+
00

8h

+
00

9h

+
00

A
h

+
00

B
h

Figure 4 —Here you see an example of a font block for
the number five. The column and row headings are
memory offsets, whereas the zeros and ones indicate
the bit state.

CIRCUIT CELLAR ® Issue 106 May 1999 19www.circuitcellar.com

FIRMWARE DESIGN
With the hardware in place, I set

out to craft the firmware. I used as-
sembly language for all of the code.
The code is deterministic (no inter-
rupts) and spends most of its time
transferring through a software state
machine kernel that dispatches vari-
ous routines at appropriate times.

 As you probably figured out, the
firmware is responsible for just about
everything. Here are the major tasks
that are embedded in this application:

• time slicing between refresh and data
acquisition/image generation

• timekeeping
• data scaling
• data storage management
• graphing calculations
• display image mapping
• control and addressing of external

image and data RAM
• display refresh (~100 Hz)
• font generation
• trend-line generation (both short term

and long term)

It’s beyond the scope of this article
to discuss the details of each of these
facets, so I’ll expand on:

• border, axis, and line generation
• data to image bitmap conversion
• trend line data conversion to image

graphic

The border, axis, and line generation
are simply math functions implemented
in loops to create the lines for the scale
and axis. To determine where the line
should go, I made an AutoCad drawing
depicting the display (with correspond-
ing RAM addresses) and inserted the
lines where appropriate. This made it
easier to compose the code because I
could see exactly which addresses
needed to be included in the code.

Because the LCD responds only to
pixel data, any information presented
must be converted to a bitmap. To map
the display, I sketched a 12 × 16 font
block because this ratio best fit my
needs for the main data displays (see
Figure 4).

The 0s and 1s represent the indi-
vidual bits that are coded into memory.
Each number on the left represents an

Mark Bauman is a registered profes-
sional engineer and the manager of
the electrical engineering group at
Key Technology in Walla Walla, WA.
Mark has held an amateur radio li-
cense for 21 years. You may reach
Mark at bauman@bmi.net.

offset row address, and each number
on top represents an offset column
location. The width of the font is
larger than one byte (12 vs. 8 bits) so I
used two bytes to represent each row.

Another graphic function is the
transformation of the time-ordered data
from the sensors to a trend line and
graphic that depicts how the parameter
changed over a period of time. I chose
to store relative history data rather than
absolute data to simplify calculations
and reduce the size of the database.

Each value is adjusted relative to
the current reading and is displayed
accordingly. The data is stored in the
external RAM from 00f0–0fff hex and
10f0–1fff hex. The external RAM is
written in an efficient manner so it
can be quickly retrieved for the LCD
during the refresh process.

The trend routine contains a dot-
connecting routine so the data is dis-
played as a solid line rather than a
series of dots (significantly improving
visibility). There’s also a utility to draw
a thin line and a thicker line to differ-
entiate two parameters.

PULLING IT ALL TOGETHER
Having everything working on a

breadboard is one thing, but having
four working units that are packaged
and relatively reliable is quite another.
I quickly concluded that this job was
not a wire-wrap job. Printed circuit
boards were the only way to go.

I began searching for an inexpensive
layout tool. I was glad to find a light
version (that cost only $50 to register)
of the ARES layout program. A copy
of the ISIS companion schematic cap-
ture was also included. Unfortunately,
the net list connection was deactivated
but it was easy to work with the ARES
layout tool and its autorouter did an
outstanding job, given the constraints.

To keep other tooling costs down, I
chose to go with a single-layer board
using jumpers (0-Ω resistors) on the top
layer. I was able to obtain four boards
(including tooling and drilling) for $50!

The PCB is the same size as the LCD
PCB, with matching mounting holes.
This allowed the two boards to sand-
wich together and made a tight package
that fit into the picture frame with a
slight modification by a Dremel tool.

The overlay is a laminated laser-
printed sheet containing the axis legend
and other information that is affixed
to the front of the LCD housing. The
final specifications for the graphing
weather monitor are shown in Table 1.

In Seven Habits of Highly Success-
ful People, Stephen Covey recommends
starting projects with the end in mind.
That thought kept me going on this
project. Fortunately, the project was on
time and within budget, and it gener-
ated happy customers. Special thanks
to my wife for her encouragement. I

SOFTWARE

Source code for this article is avail-
able via the Circuit Cellar web site.

SOURCES
PIC16C64
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

MAX110
Maxim
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

DMF660N-EW
Timeline, Inc.
(800) 872-8878
(310) 784-5488
Fax: (310) 784-7590

HD61105, HD61104
Hitachi
(415) 589-4207
Fax: (415) 583-4207
www.hitachi.com

MPX5100
Motorola
(512) 328-2268
Fax: (512) 891-4465
www.mot.com

AD590
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analogdevices.com

www.microchip.com
www.maxim-ic.com
www.hitachi.com
www.mot.com
www.analogdevices.com

20 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Accurate Linear
Measurement
Using LVDTs

FEATURE
ARTICLE

George Novacek

a
Need reliability in a
hostile environment?
LVDTs may be the
answer. These trans-
ducers are widely
used for converting
mechnical displace-
ment into electrical
signals. George helps
us understand how
they work and how
we can use them.

h, the ubiquitous
LVDT! It’s the most

widely used device for
converting mechanical

displacement into electrical signal
(usually a DC voltage linearly propor-
tional to its core displacement).

In this article, I want to look at the
LVDT from a practical standpoint.
What is it? How does it work? How
can you use it in your projects?

Besides theoretically infinite reso-
lution and excellent linearity, LVDT’s
major claim to fame is reliability in
hostile environments. Such reliability
makes LVDT the obvious, and often
only, choice for aerospace, chemical
process, nuclear industry, or any other
precision or safety-critical application
under tough environmental conditions.

Of course, using an LVDT as part
of a closed-loop control system with an
embedded controller doesn’t guarantee
a failsafe operation. It’s just the first
step. I’ll show you what it takes to
develop a failsafe embedded controller
(e.g., for aircraft landing gear).

Delving into the details of safety-
critical design of embedded controllers
opens an engineering can of worms
that leads to such esoteric subjects as

Figure 1 —LVDT secondary output voltage is linear with
core displacement with abrupt phase reversal at null.
Ideally, the phase is 0° and 180°, but small phase shifts
like the 5° shown can be compensated by RC networks.

built-in test (BIT), testability, electro-
magnetic compatibility (EMC), reliabil-
ity, and hazard-/failure-mode analyses.

I’ll also discuss the most controver-
sial (and sometimes incorrectly labeled)
subject of embedded controller design—
software reliability. This topic will
shatter any remaining illusions that
software is fun. And, hopefully, it will
cause you to raise your eyebrows even
higher every time you perform the
three-finger salute.

Let’s start by defining an LVDT.
Linear variable differential transformer
(LVDT) is a transformer-type linear
displacement transducer that converts
the rectilinear motion of an object
mechanically coupled to its movable
core into a corresponding electrical
signal.

The LVDT has been around for
nearly 100 years. It’s used wherever
precision, repeatability, reliability,
and safe operation even in the most
hostile environments are required.
LVDTs are used in industrial process-
ing, medicine, transportation, and
aerospace industries where the envi-
ronments range from cryogenic tem-
peratures of 4 K (–450°F) all the way
up to 1100°F and beyond.

LVDTs fit the aircraft industry well.
You’d be hard pressed to find any
other type of displacement transducer
on aircraft. From the freezing tem-
peratures of flight surfaces in strato-
sphere, to slush and sleet on landing
gears, to the hot gases inside jet en-
gines, LVDTs are unmatched for reli-
ability, precision, and life expectancy.

LVDTs and their cousins (RVDT
and DVRT, which I’ll look into later)
are made by many companies. U.S.

Core displacement

Va + Vb
 AC

Phase 5˚

–175˚

Output VAC

Phase

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 21

manufacturers include Macro Sensors
(Schaevitz Technologies), Kavlico,
G. W. Lisk, MPC, and Microstrain.

WHAT’S IN A NAME
As its name implies, LVDT is a

transformer. It has one primary and
two secondary windings. Photo 1a
shows a cross-section of a small LVDT.
The primary winding, located in the
middle between two secondary wind-
ings, is supplied with a constant-ampli-
tude, constant-frequency excitation
voltage (carrier).

With the movable core (Photo 1b)
located precisely in the middle such
that the magnetic flux between the
primary and both secondary windings
is identical, the two secondary wind-
ings produce equal voltages, Va and Vb.
As the core moves, the ratio between
Va and Vb changes.

If you connect the secondary wind-
ings in series but in opposite phase, Va

and Vb subtract from each other. The
resulting AM modulated carrier ampli-
tude is linearly proportional to the
absolute core displacement from the
center, and the phase abruptly reverses
180° at the null (center).

Figure 1 shows the relationship
between the core displacement and the
output voltage and its excitation versus
output voltage phase within linear
operating range, which is usually up
to 80% of the coil’s physical length.

To satisfy just about any conceiv-
able measurement need, LVDTs are
routinely produced with linear stroke
ranging from 0.005″ to 25″. The chal-

lenge in producing a long-stroke
LVDT is to maintain uniform
distribution of magnetic flux
through the length of the coils.

The most serious drawback
is price. Not even off-the-shelf
devices are cheap, and aerospace-
grade LVDTs can cost thou-
sands of dollars each. Why not
replace them with less expen-
sive transducers? The answer
to that question can be found
by looking at the LVDT’s list
of unique features.

For one, an LVDT permits
frictionless measurement.
Physical contact between the
moving core and the coils is

unnecessary. Because there’s no friction,
there’s nothing to wear out, giving an
LVDT an essentially indefinite mechani-
cal life. The physical separation between
the core and coils means the core can
be immersed in hot corrosive pressur-
ized media, such as 3000-psi Skydrol
hydraulic fluid, without a dynamic seal.

The inherently infinite resolution
is achieved because of the frictionless
operation (no hysteresis) combined with
the induction principle of operation.
The LVDT responds to minute core
movements, limited only by the elec-
tronics’ S/N ratio and display resolution.

The location of the LVDT’s intrinsic
null point is stable and repeatable. The
isolation between the windings and
the fast dynamic response are nothing
to sneer about, nor is the incredible
operating temperature range. After all,
it’s just a wire; there are no PN junc-
tions to blow.

Last but not least, the LVDT is
sensitive to the axial movement of
only the core, providing excellent
cross-axis rejection when used, for
instance, in accelerometers.

RELATED DEVICES
Before discussing the LVDT’s elec-

trical characteristics, I should mention
some related devices. The LVDT’s
cousins are the rotary variable differ-
ential transformer (RVDT), the linear
variable transformer (LVT), the rotary
variable transformer (RVT), the half-
bridge LVDT, the differential variable
reluctance transducer (DVRT), and the
AC and DC LVDT, RVDT, and so on.

The RVDT measures angular dis-
placement. Internally, the RVDT can
be compared to an electric motor. It
has three stator windings analogous to
the LVDT windings. The core is an
armature rotating inside those coils.

Figure 2 shows the relationship of
an RVDT output versus angular dis-
placement. It is near sinusoidal, with
approximately ±60° linear range.

RVDT manufacturers can improve
the linearity by profiling the rotating
armature so you can obtain excellent
linearity and a usable range of about
±85°. If good linearity is required beyond
±60°, a gear (often internal) is used to
scale down the measured shaft rotation.

Unlike the LVDT, which can be
designed in many different lengths to
fit the requirement, the RVDT comes
only as a one- or two-cycle RVDT.
Figure 2 shows the output versus angu-
lar displacement characteristic of the
one-cycle RVDT.

A two-cycle RVDT has its range
cut in half by symmetrical design of
the armature, so its linear range is
only about ±30°. This range is useful
in applications where the larger range
is not needed (e.g., the movement
sensor for aircraft rudder pedals, typi-
cally limited to ±27.5°).

Figure 3 shows the equivalent cir-
cuit of the variable differential trans-
former sensor. LVDT, LVT, RVDT, and
RVT are electrically the same. Every-

Figure 2 —RVDT output dependence on the angular displacement
is close to sinusoidal, with the ±60° range linearized by core
design. This graph shows a one-cycle RVDT. The two-cycle RVDT
has the peaks 90° apart (as opposed to 180°).

0˚–60˚ 60˚ 90˚–90˚

Angular
displacement

Output
voltage

Figure 3 —The LVDT is “just” a transformer, with the
dots marking the beginnings of the windings. With the
secondary windings’ ends connected together and the
beginnings serving as outputs, the two secondary
signals are added in opposite polarity, providing zero
output, when magnetic flux between the primary and
each secondary is identical.

Primary
winding

Secondary
winding

A

Secondary
winding

B

Va

Vexc

Vb

22 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

thing I say about LVDTs applies to these
devices, unless mentioned otherwise.

Remember the secondary windings
A and B are connected in series with
opposite phase, such that Va and Vb

are subtracted from each other. Origi-
nally, when most signal conditioning
was performed by synchronous de-
modulation, access to the individual
secondary coils was unnecessary (more
on this later). Manufacturers connected
the two coils internally and brought out
two input (excitation) and two output
leads to reduce cost and weight.

With the advent of
monolithic ratiometric
decoders about a decade
ago, the need arose to
have access to the con-
nection point between
the two secondaries—
sometimes called center
tap. Not a problem, as
long as you understand
that the coils are wound
in opposite phase.

When the tap was
required, European engi-

neers began calling devices with the
tap “self-testing” or “self-monitoring.”
Engineers in North America referred
to devices without access to the tap as
LVT and RVT, and devices with tap
access as LVDT and RVDT.

A rumor developed that LVTs and
RVTs were obsolete designs and there-
fore inferior. It’s not true, but it is under-
standable: ratiometric decoding provides
excellent performance, which had
been nearly impossible to achieve.

To make interfacing simpler and
using the transducer more attractive,

manufacturers such as Schaevitz offer
both AC and DC varieties. The AC
LVDT is the device I talk about here.

The DC LVDT is precisely the same
device with the interface (conditioning)
electronics integral within the device.
The DC LVDT simplifies interfacing
by reducing it to two or three wires.
However, it’s uncommon in aircraft
applications primarily because of its
lower reliability and potential inabil-
ity to survive the harsh operating
environment.

To complete the family tree, I need
to mention the half-bridge LVDT and
the DVRT. Both are autotransformers
with a center tap and a moving core.
The excitation, often as high as 70 kHz
or more, is applied across the autotrans-
former. The output voltage from the
center tap and its phase have the same
characteristics as the LVDT in Figure 1.

Because the device needs only
three wires for interface, it is lighter
and cheaper to manufacture than the
three-coil LVDT. The signal condition-
ing required for the interface is similar
to the LVDT.

Figure 4 —The synchronous demodulator is gated at the positive zero
crossing of the excitation signal to half-wave rectify the secondary. This will
be a positive voltage when the phase is 0° and negative when the phase
has switched 180°. The phase shifter is needed to compensate nonzero
primary to secondary phase.

Excitation
oscillator Demodulator

Output
amplifier

gain and zero
adjustment

Phase
shift

LVDT

Displacement

VDC

Low-pass
filter

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 23

ELECTRICAL
CHARACTERISTICS

Before I discuss how to
convert the LVDT output
to the customary displace-
ment-proportional DC
voltage, let’s review the
transducer’s electrical
characteristics. After mea-
suring the output voltage
and phase, the results are
as shown in Figure 1, pro-
vided that two crucial
requirements are satisfied.

First, the AC excitation must have
constant amplitude. Also, the phase
angle between the two secondaries
when connected in opposite direction
must be constant 180°. Ideally, the
phase angle between the primary and
the secondaries should be 0°; other-
wise you need to adjust it for synchro-
nous detection. At any rate, the phase
angle must be constant unless a phase-
independent signal conditioning is used.

Selecting the excitation voltage and
frequency is fundamental for satisfying
these requirements. The transducers

come calibrated for a specific excitation
signal, guaranteeing gain, linearity, and
often 0° phase shift at the calibration
voltage and frequency.

Although in theory the excitation
frequency can range from a few hertz
to megahertz, the lower limit should
be at least ten times the maximum
frequency of the mechanical movement
you want to measure. If your closed-
loop controller runs an aircraft nose-
wheel with ~6-Hz critical frequency,
the excitation should be at least 60 Hz.

Older systems use 400 Hz, which
is found on many aircraft as the main

power-system frequency.
But, higher frequencies
provide better sensitivity,
efficiency, and phase
control. Without going
into the details, the most
common excitation fre-
quencies today are be-
tween 2.5 and 4.5 kHz,
with 3.2 kHz as a promi-
nent choice.

The excitation signal,
usually ~3 V RMS, must

not saturate the LVDT core. It has to be
a sine wave with low THD, typically
less than 0.5%, for several reasons. First,
the high harmonic content of a distorted
excitation signal may adversely affect
the transducer’s accuracy and linearity.
Second, the higher harmonics can cause
unwanted interference with sensitive
electronic equipment.

The coils typically exhibit 600-Ω
impedance at the excitation frequency.
They often have 1:1:1 turn ratios, with
the secondary windings working into
loads greater than 100 kΩ. Τhe excita-
tion driver needs to be properly rated

Figure 5 —A simple and reliable synchronous demodulator can be built with a few discrete
components. The excitation signal is generated separately and must be very stable for the
circuit to deliver acceptable results.

24 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

to avoid loading-related linear distortion.
And finally, when several LVDTs are
used in proximity, it’s a good idea to
synchronize their excitation frequencies.

Because many aircraft systems oper-
ate at 400 Hz, stay away from using
harmonic frequencies for excitation
(e.g., 3.2 kHz) unless that frequency is
locked onto the 400-Hz distribution
system. This is to avoid generating
beat frequencies by inadvertent cross-
talk that could fall within the control
loop operating range and cause all kinds
of embarrassing problems.

SIGNAL CONDITIONING
LVDT signal decoding (or signal

conditioning) represents conversion of
the AM modulated excitation frequency
(carrier) obtained from the LVDT
secondary windings into a DC voltage.
The resulting voltage represents the
core displacement.

There are several methods for sig-
nal conditioning. Here, let’s look at
the two most widely used ones—
carrier synchronous demodulation and
passive DC demodulation. Each has
its advantages and disadvantages and
I’ll identify their strengths and weak-
nesses when I discuss decoding circuits.

No matter which method you
choose, your signal conditioning cir-
cuit must generate a sinusoidal exci-
tation signal of low THD with good
frequency and amplitude stability as
well as sufficient power. The circuit
must demodulate the AM carrier
(excitation) and filter its remnants out,
and amplify the demodulated signal as
needed for interface with the rest of
the system.

In the diagram of the carrier syn-
chronous demodulation in Figure 4,

notice the phase shifter, which ensures
proper triggering of the synchronous
detector. Most LVDTs are calibrated for
0° phase at the calibration frequency
and amplitude and therefore don’t need
the phase shifter unless they’re going
to be used outside the calibration spec.

Monolithic demodulators are avail-
able off the shelf from manufacturers
like Analog Devices, so only the brave
at heart would want to roll their own.
But, it’s worth looking at a discrete
demodulator circuit if only to under-
stand how it works.

The heart of the design in Figure 5
is an analog switch (Q1) that is syn-
chronized with the positive-going zero
crossings of the excitation frequency
by voltage comparator U1b. Assuming
0° phase-shift between the primary
and the secondaries, no phase control
for the synchro detector is necessary.

Remember that through null tran-
sition the secondary output voltage
phase abruptly changes 180° (depend-
ing on the core displacement from null),
so positive or negative half-waves are
switched to charge through R1 capaci-
tor C1, which develops average voltage
across it. Amplifier U1a is a buffer,
followed by a Sallen-Key low-pass filter
(U1c) to attenuate the remainder of
the carrier.

Although the circuit is straightfor-
ward, its main weakness is readily
apparent. The displacement measure-
ment’s accuracy is directly affected by
the stability of the excitation amplitude,
as well as the frequency. Frequency
fluctuations can cause phase shift,
affecting the operation and accuracy
of the synchronous detector.

If the system needs to work with
precision in a wide temperature range

Photo 1 —These photos show the
cross section of a typical small LVDT
(a) and its core (b). The primary
winding in the center and the two
secondary windings flanking it are
clearly visible. Long-stroke LVDTs use
more sophisticated coil arrangements
to ensure linear magnetic flux through
the operating range.

a)

b)

www.circuitcellar.com CIRCUIT CELLAR ®

Figure 6— The AD698 does
everything the discrete circuit in
Figure 5 does and more. It has a
built-in low THD excitation genera-
tor and compensates for excitation
amplitude variation. Phase-lead
and phase-lag circuits are shown to
compensate for LVDTs with other
than 0° phase shift between the
primary and secondary windings.

environment, better solutions are
needed. For that, I’ll jump to the present
where monolithic ICs (e.g., the AD698)
make the problem simpler to handle.

In addition to synchronous demodu-
lation (as in the discrete example), the
AD698 monitors the primary excita-
tion voltage Va, calculates the second-
ary versus primary voltage ratio Vb/Va,
and modifies the system gain accord-
ingly. This setup greatly reduces the
excitation voltage fluctuations that
are responsible for system gain errors.

Along with the complete decoding
circuitry, the IC contains a stable
precision sine-wave oscillator with
power driver and adjustable frequency
and amplitude. All operating param-
eters can be adjusted by a few external
components. Figure 6 shows the actual
application with AD698.

The design of component values is
straightforward and relies on a few
basic steps. First, determine the oscil-
lator frequency based on the system
requirements and the LVDT specifica-
tion. The frequency is controlled by:

C1 =
35 µFHz
fexcitations

Next, determine the oscillator ampli-
tude. Start with the manufacturer’s
recommended excitation amplitude,
which is typically about 1–3.5 V RMS.
Make sure the power dissipation of
the AD698 is not exceeded and deter-
mine the secondary signal at maximum
deflection (should be in the 0.25–
3.5-V RMS range).

You can calculate the secondary
signal from the turn ratio (if you know
it) or the sensitivity, which is usually
defined in millivolt output per volt
excitation per mil travel (mV/V/mil).
You need to optimize the excitation
and set it by R1. R1 equal to 10 kΩ
provides 3.5 V RMS. The AD698 app
note provides a detailed discussion.

C2, C3, and C4 determine the band-
width of the low-pass filters. They
should be of equal values, such as:

C2 = C3 = C4 = 10– 4 FHz
fsubsytem[Hz]

The value is determined by the sub-
system bandwidth requirements. If the
desired system bandwidth is 250 Hz (a
good value for many control applica-
tions), the resulting capacitance value
is C2 = C3 = C4 = 0.4 µF.

The third step is to calculate gain
for full-scale output, which is set by
R2. R2 is set at:

R2 =
Vout

S × d × 500 µA

where S equals LVDT sensitivity in
mV/V/mil and D equals full-scale
displacement. Where Vout is ±10 V,
sensitivity is 2.4 mV/V/mil, and dis-
placement is ±0.1″, the equation is:

R2 = 20 V
2.4 × 0.2 × 500 µA = 83.3 kΩ

Determining a closed-loop system
bandwidth and how it relates to the
system components is outside the
scope of this article. But, as a practical
note, 0.4 µF is just about the largest

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 27

capacitor you want to use
with the IC and it must be
a quality nonpolarized
capacitor.

With the excitation
frequency usually in the
3200-Hz range, I prefer to
do the low-pass control in
a separate stage with a
Sallen-Key filter. Buffering
of the demodulated output
is an added benefit.

One nice feature of AD698 is that
it enables you to work with a four-wire
interface to the LVDT. But, the prob-
lems of excitation-frequency stability
and phase-shift adjustment still remain,
which brings me to the AD598.

The AD598 is the workhorse of the
industry and performs ratiometric
decoding of the LVDT position signal.
It is insensitive to temperature, fre-
quency, and phase variation through-
out the entire MIL temperature range
of –55°C to +125°C. The only minor
disadvantage is that the AD598 re-
quires access to the secondary tap.

The principle of ratiometric decod-
ing is fairly simple (see Figure 7). The
excitation frequency induces signals
in the secondary windings Va and Vb.
The two signals are rectified, so they’re
insensitive to the phase shift, and the
output signal is then calculated as:

Vout =
Va – Vb
Va + Vb

The ’598 performs the functions
neatly and (like the AD698) includes
the excitation oscillator onboard. The
design procedure for the AD598 is
rather close to that of the AD698.

George Novacek has 30 years of expe-
rience in circuit design and embedded
controllers. He is currently the general
manager of Messier-Dowty Electronics,
a division of Messier-Dowty Interna-
tional, the world’s largest manufac-
turer of landing gear systems. You may
reach him at gnovacek@ptbo.igs.net.

Although Analog Devices doesn’t say
so, my guess is that the two devices
share some building blocks.

Besides the secondary tap access,
the only other limitation ratiometric
decoding imposes on the LVDT is that
Va + Vb remains constant throughout
the operational range. This requirement
is met by the majority of LVDTs.
Although I can’t assume that all LVDTs
automatically satisfy this requirement,
I’ve never seen one that doesn’t.

Designing the circuit around the
AD598 follows the same steps as for
the AD698: determine the excitation
frequency, the excitation amplitude,
and the bandwidth requirements of
the system (see Figure 8).

The excitation frequency determined
by the value of C1, the excitation
amplitude determined by the value of
R1, and the bandwidth controlled by
C2 = C3 = C4 are calculated exactly
the same as for the AD698. Full-scale
output voltage is calculated using:

R2 =
Vout × Va + Vb

S × Vexc × 500 µA × d

where Vout is the desired full-scale out-
put, Va + Vb is the sum of the secondary

voltages (constant), S
is the sensitivity, and
d is the maximum
displacement. The
difference between
the devices is the
addition of the full
secondary to full
primary transforma-
tion ratio:

Va + Vb
Vexc

Note that both
devices show four

SOURCE

AD598, AD698
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analog.com

Figure 8— The AD598 provides an excellent, yet very simple ratiometric inter-
face for LVDTs. Only a handful of discrete components is needed to achieve
avionic-grade precision throughout the full military temperature range.

Figure 7— The ratiometric decoder rectifies each secondary winding separately and compares
the resulting ratios, making the precision of the displacement measurement independent of
the excitation voltage and phase shift. The only proviso is that the sum of the two secondary
voltages does not change with the core position—a condition satisfied in the majority of LVDTs.

Excitation
oscillator

Output amplifier
gain and zero

adjustment

Rectifier
A

LVDT

Rectifier
B

Low pass
filter

Lo pass
filter

Va

Vb

Va – Vb

Va+Vb

additional resistors—R3,
R4, R5, and R6. Under
normal operation (i.e.,
dual power supplies and
symmetrical output),
those resistors aren’t
used.

R3 and R4 serve to
inject output voltage
offset all the way up to
a unipolar output. R5

and R6, in conjunction with R3 and R4,
permit single-supply operation. The app
notes provide step by step instructions
for determining the resistors’ values.

CLOSING THE LOOP
Almost a century ago (January 2,

1906), Porter and Currier obtained
U.S. Patent 808,944 for using a vari-
able differential transformer as a con-
tactless AC motor reverser. Since then,
we’ve seen many refinements to the
original LVDT, but the principle has
remained the same.

When it comes to measuring dis-
placement with precision and with little
worry about the environmental effects,
the LVDT remains unsurpassed. If only
they were a little less expensive…. I

REFERENCES

Analog Devices, LVDT Signal Con-
ditioner, AD598 app note, 1989.

Analog Devices, Universal LVDT
Signal Conditioner, AD698 app
note, 1995.

E.E. Herceg, Handbook of Measure-
ment and Control, Schaevitz
Engineering, Pennsauken, NJ,
1986.

www.analog.com

28 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Sensing
Water with
Multiple
Electrodes

FEATURE
ARTICLE

Jack O’Neill

w
When it comes to
sensing water via its
conductivity, electronic
sensors don’t enjoy
the same widespread
implementation as
mechanical devices.
The reason?
Contamination. But
Jack doesn’t think
the electronic sensor
is in over its head.

hat’s the best way
to sense the presence

of a conducting liquid?
When safety or protection

of property is important, mechanical
is better. Now, those of you in elec-
tronics may object, but the real world
has already spoken. I’ll use a few boat-
ing applications to demonstrate what
I’m talking about. After all, that’s
where this project originated.

Only about 1% of bilge pump
switches in boats are pure electronic.
Sewer lift stations, standard sump
pumps, well pumps, and boiler water
control are almost all mechanical.

My son is a captain and when he
asked me to design an electronic alter-
native for the mercury-float bilge pump
switches in his boat, I confidently
replied, “Nothing to it.” That was
five years ago.

Not long after I made that arrogant
statement, I realized that it was im-
possible to design a reliable water sensor
for a boat that operates in saltwater
because the switch must also be able
to recognize fresh water (e.g., rain).

Some boilers use two-electrode
conduction-type water sensors, which
is possible because the water is rela-
tively clean and has a known conduc-
tion range. With bilge water, there’s no
guarantee of clean water. A design that
recognizes dirty fresh water is best.

Figure 1— This basic electrode configuration demon-
strates the principle. A practical sensor can have more
elements and they may encircle the housing.

A few years after realizing that
reliable operation of dirty-water sensors
was probably impossible, I remembered
a strange (or maybe just nonintuitive)
result I’d encountered when making
water measurements. In the process of
rechecking those results, my method
for sensing a conducting liquid with
multiple electrodes was born and
awaiting delivery to the patent office.

Sensing the presence of water with
electrodes is easy enough for a simple
ohmmeter-type circuit to handle. And,
using an AC current source to prevent
electrolysis permits the design of an
inexpensive device. Then why are
almost all water-sensing devices me-
chanical, even though (in the case
of pump control) they need to provide
some sort of on/off hysteresis?

Mercury-float bilge pump switches
use a pool of mercury inside a float
switch to change the float’s center of
gravity. Sump pumps and sewage lift
stations use mechanical slippage to get
up several feet. Why not use simple
electronic sensors placed where you
want the pumps to start and stop? You
can even incorporate any useful delays.

Most water sensing is done me-
chanically because electronic methods
are unreliable. The reason is contami-
nation. The same contaminants that
support using conducted electrical
current to sense water will conduct as
much current when precipitated onto
the electrode substrate as when in the
water. That doesn’t make it impossible
to build a reliable sensor, but it does
make it more difficult, even if the
switch can be cleaned regularly.

2

3 conductive
electrodes

Insulating substrate
(or partially conductive)

½

a

b

c

CIRCUIT CELLAR ® Issue 106 May 1999 29www.circuitcellar.com

Figure 2a— Water is sensed
by the op-amp output level
change. When the elec-
trodes are immersed, the
output is 1 V. When they are
dry, the output is 4 V. b—
This circuit uses a bridge to
sense water. The electrodes
are spaced in the same ratio
as the bridge resistance
ratios. If the ratio is not close
to 4:1, current flows in the
gate of the TCR223 (SCR).
This will gate the triac into
conduction to operate the AC
load (relay, motor, etc.).

Electronic sensors can be used in
water boilers because the sensor is
designed with a sensitivity to match
the water. Tap water, although vari-
able, doesn’t present the wide range of
conductivity encountered in bilges,
lift stations, and sumps.

But, enough with all that. Let’s see
what it takes to get the job done.

SENSOR DESIGN
An ohmmeter, with probes spaced

1⁄2″ apart in distilled water, gives a
reading over 100 kΩ. In tap water, the
reading ranges from 10 to 30 kΩ. And
in seawater, you get readings below
1 kΩ. The design problem is clearly
the need for a wide range of sensitivity.

Because the electrodes must be
supported by something, a conducting
layer eventually precipitates onto
whatever supports the electrodes. A
sensor that’s sensitive enough to de-
tect rainwater would have a hard time
ignoring any buildup left by saltwater.
Building a reliable water sensor using
only two electrodes is quite impossible.

This example uses probes spaced
1⁄2″ apart. If the spacing is increased to
2″, would the resistance be four times
greater? No. The concept of resistivity
gets in the way here.

You’d think a sample of resistant
material four times longer would have
four times the resistance. In the case
of a volume of conducting liquid, only
a small percentage of the conduction
is in a direct path between the elec-
trodes. So, over small changes of spac-
ing, there is virtually no change in
resistance. This is the key to the pat-
ented method. How do we exploit this
phenomenon?

Contaminants that precipitate on
the electrodes and the supporting sub-
strate create a planar resistor, much
the same as a film resistor. The resis-
tance of such a resistor is proportional
to its length. When a three-dimensional
volume of water surrounds the elec-
trodes, the resulting resistance is nearly
the same at 1⁄2″ spacing as it is at 2″.

When there’s no water present and
a layer of contaminants remains, the
respective resistances are in a ratio of
the respective physical spacing (here,
4:1). Now you can tell for sure when
no water is present. This is the basis for
the electrode arrangement in Figure 1.

Note that the electrodes span the
width of the supporting substrate. This
arrangement keeps the resistance (result
of surface contamination) linear, with
respect to the distance between them.
It’s important that an intimate con-
nection exist between the
substrate and the electrodes
to reduce any connection
anomalies to a minimum.

A sensor like the one in
Figure 1, when immersed in
water, presents a resistance
from a to b about the same as
from b to c. Any contaminant
resistance appears to the con-
nected electronics in the
spacing ratio (4:1).

There are many inexpen-
sive and highly reliable cir-
cuits that can be used to
exploit this simple relation-
ship. Before exploring such
applications, note that no
existing device uses this prin-
ciple and the mechanics of the
electrode mounting and sub-

strate material are the key to a suc-
cessful application.

Mechanics may not be interesting,
but they are important. As for the
electronics, that’s the easy part.

CONSTRUCTION
In Figure 2a, an op-amp is connected

so the gain is controlled by fixed resis-
tors R and R/4. The electrode spacing is
also in a 4:1 ratio because contamination
between electrodes would form planar
resistors in parallel with R and R/4.

It’s reasonable to expect the contami-
nants to deposit uniformly enough to
maintain a resistance ratio of about 4:1.
With 1 V in, the output would be 4 V
with no water present and 1 V when
immersed in water.

 In the case of a two-electrode sen-
sor, a water–to–no-water threshold
current must be established. If a deposit

D2

C1

2.
2

k

60

8.
8

k

800 k

200 k

TCR
223

C2

D1
Q4004L3

Load 1 MFD

10 MFD

24
 V

A
C

Up

Figure 3— This graph plots Rc against amp gain. These curves are
typical effective water resistances for various types of water and
small electrodes. These plots, plus field data about contamination,
enable you to design a reliable sensor.

100

90

80

70

60

50

40

30

20

10

1.5 2.0 2.5 3.01

1k

2k

5k

10k
20k

RW = 30k

Rc = Parallel contamination

Gain = 4RW + RC
RW + RC

RW = Water resistance at narrow
gap and wide gapk

+V

–V
IVPP

No water ~ 4 V

Water ~ 1 V

Up

R

R/4

+
–

2½

a) b)

30 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

of contamination lets the threshold
current flow, there’s no way the circuit
can discriminate between it and water.
There don’t appear to be any electronic
tricks to fix the two-electrode sensor.

My sensor uses a resistance ratio
change to alter the gain of an op-
amp or unbalance a bridge-type
circuit (see Figure 2). The sensi-
tivity is reduced as contamination
builds up, but at least it doesn’t
give false indications of water.

There are several ways to over-
come reduced sensitivity. As con-
tamination builds up, it appears
in parallel with R and R/4. The
resulting ratio remains close to 4:1.

The ratio (or amp gain) doesn’t
reduce to one when immersed in
water because the water’s resis-
tance (RW) is in parallel with the
input (R/4) and feedback (R) resis-
tors. RW is about the same across
each electrode gap. The effective
gain of the op-amp, considering
these resistances and the contam-
ination’s resistance, is:

Amp gain = R
R/4

= 4

With contamination, it is:

Rc

Rc/4

and with water present, it is:

Gain =
RcRW / Rc + RW

Rc/4 RW / Rc/4 + RW

=
RWRc RW + Rc/4

RWRc RW + Rc/4

=
4RW + Rc
RW + Rc

Figure 3 presents plots of the gain
at several values of water resistance.
These plots show the gain of an op-amp
when the three electrodes are immersed.
The normal op-amp gain when the
electrodes are dry is shown in Figure
2a. The circuit discriminates by using
an output of around 4 V compared to a
selected lower threshold voltage, which
the circuit can reliably recognize.

With no contaminants on the sub-
strate, the output is either 1 or 4 V.
The contamination changes the gain
of the op-amp from 1 V when immersed,
to a higher gain when water is not
present because the planar resistors,

Figure 4— This circuit adds a summing amp to the circuit in
Figure 2. The summing amp compensates for input loading
changes and other variable conditions. This extends the ability
to differentiate between water or no water at the electrodes.

+V

–V

Up

+

–

+

–

60 k

30 k

5

6
7

LM
358

 R1
24 k

 R2
100 k

2

3
4

60 k

8

20 k

~ 3 V
normal

~ 0 V
in water

1 VPP
400 Hz–

3 kHz
input

Output

Sensor
Probe

~ 4 V
normal
~ 1 V
in water

60 k

2½

CIRCUIT CELLAR ® Issue 106 May 1999 33www.circuitcellar.com

Figure 5— This circuit can be added to Figure 4 to
monitor current through contamination when dry.
Current flows into the gate of the SCR. If if exceeds a
threshold (e.g., a two-electrode sensor), action can be
taken, either automatic or manual.

Up

800 k

200 k

TCR
223

Sensitivity
100 k

although in a 4:1 ratio, end up in par-
allel with the apparent water resistance.
The result is a ratio of less than 4:1.

 To set an op-amp’s gain, the typi-
cal values of fixed resistors are 100
and 25 kΩ. Figure 3 shows the effects
of a contamination build-up starting
at 100 kΩ (wide gap). The water resis-
tances are also typical for clean tap
water to seawater with electrodes
spaced at 1⁄2″ and 2″.

Suppose you select 3 V as a thresh-
old op-amp out. More than 3 V means
no water; less than 3 V means water.

The graph shows where the con-
tamination reduces the sensor’s ability
to sense water. For example, if the
water is 30 kΩ and the wide-gap con-
tamination is 15 kΩ, then any more
contamination would defeat the sensor.

But, if the contamination is less
than 15 kΩ, any water would be sensed.
The response is the reverse of the two-
electrode sensor and is also less severe.
A two-electrode sensor with a thresh-
old current equivalent to 30 kΩ reports
water when 30 kΩ of contamination is
present. In most practical applications,
the reduction in sensitivity under
discussion is not a problem. (Besides,
there is a remedy, if necessary.)

Two electrodes of a three- or a sepa-
rate two-electrode sensor can measure
contamination as it is deposited. The
three-electrode sensor knows when the
water is gone. If, before it loses sensi-
tivity, some preset level of current is
exceeded while no water is present, an
alarm or shut-off action can be triggered.

Jack O’Neill has worked as a techni-
cian and engineer in electronics since it
was called “radio.” He has spent the
last 15 years designing and develop-
ing products for personal and indi-
vidual applications. You may reach
him at icapp@bellsouth.net and via
www.icapplications.com.

The TCR223 in Figure 5 is set to
react before the basic three-electrode
sensor got close to too low a sensitivity
for its application. The circuit in Figure
2b is a more precise version of Figure
2a. A summing amp compensates for
varying conditions of the signal by
subtracting the effective input signal
from the output, leaving only the
amount resulting from amplifier gain.

Figure 2b is a bridge-type circuit.
Standard 24-VAC control voltage is
used to operate a relay or some other
AC load, and the gate circuit of the
TCR monitors the bridge. With no
water present, there’s no gate current.

When water is present, the resulting
unbalance turns the SCR on for one-half
cycle charging C1. D1 transfers this to
C2, which amounts to a voltage doubler.

You don’t need to double the volt-
age, but you must isolate any DC from
the bridge arms. The (–)DC voltage turns
the triac on to power the load. D2
completes the AC cycle through the
probe to prevent electrolysis.

The TCR223 needs a gate current
of ~3 mA to be triggered. SCRs with

SOURCE

TCR223
Teccor Electronics
(972) 580-7777
Fax: (972) 550-1309

12-µA sensitivity are available. Figure 5
is an add-on circuit that senses when
contamination becomes excessive. The
LED lights or an optical isolator takes
any action desired. If the LED is lit when
the sensor is not detecting water, then
it’s because of the contamination.

Of course, design improvements are
always possible, particularly through the
use of microcontrollers. Unfortunately,
I don’t have room to discuss them here.
If you contact me to license the patent,
we can discuss them then. I

CIRCUIT CELLAR MAY 199936

N
PC

www.circuitcellar.com

PCNouveau
edited by Harv Weiner

INTERBUS CONTROLLER BOARD
The IBS PC ISA SC/I-T controller board enables any PC

(ISA bus) to interface to an interbus I/O network using the
advanced functions of Generation 4 firmware. The functionality of

this generation firmware provides up to 255 bus segments, 16 device
levels, 512 devices per configuration, up to 4096 I/O points per

configuration, and up to 62 devices with parameter channel.
Logical addressing and data preprocessing are provided on the controller

board, and software drivers are available for most popular third-party applica-
tion programming packages. High-level programming drivers are available for
DOS, Windows 95/NT, and OS/2. The board can also be used without drivers
by accessing the board’s dual-port memory.

The IBS PC ISA SC/I-T controller board is a half-size board suitable for micro-
sized PCs. The board provides direct inputs for local switches, accessible from
the application program. A watchdog circuit resets the I/O in the event of
application program failure. A hardware-compatible version in the PC/104
format is also available.

Applications include the direct connection of hardware, ranging from simple
sensors and actuators to intelligent field devices to the PC via the interbus.

Phoenix Contact, Inc.
(800) 586-5525 • (717) 944-1300
Fax: (717) 944-1625
www.phoenixcontact.com

RUGGED SBC
The 2111 Industrial SBC is a rugged, Pentium-based

PC/104-Plus single-board computer designed for outdoor and
mobile applications such as vision, security, and data-acquisition
systems. Featuring over 250,000-h MTBF, extended operating
temperatures from –40°C to +85°C, and the ability to operate

under extreme shock and vibration conditions (50-G shock/10-G
vibration), the unit is ideal for harsh environments.

The 2111 is based around a Pentium MMX or AMD K6
processor operating at speeds up to 266 MHz. It supports up to
64 MB of EDO DRAM and up to 72 MB of onboard flash disk

memory. Two 16C550 serial ports, an ECP/EPP
parallel port, dual EIDE on PCI Local bus, a floppy
controller, dual USB ports, as well as keyboard and
mouse ports are included.

The board also features an integrated onboard
10/100Base-T network, flat-panel display interfaces,
and an onboard switch-mode DC-DC converter that
provides 3.3-V output. The 2111 supports a range of
OSs including QNX, VxWorks, DOS, and Windows
95/NT.

Toronto MicroElectronics, Inc.
(905) 625-3203
Fax: (905) 625-3717
www.tme-inc.com

www.phoenixcontact.com
www.tme-inc.com

MAY 1999 EMBEDDEDPC 37

N
PC

www.circuitcellar.com

PCNouveau

MULTIFUNCTIONAL PC/104 MODULE
The MiniModule/SES multifunction module provides Ethernet,

serial/parallel, and SCSI controllers in a highly integrated
PC/104-compliant module. An NE2000-compatible Ethernet
interface supports 10-Mbps data-transfer rates and provides
direct connection to twisted-pair (10BaseT) media. Alternate
external media (e.g., thick coax [10BaseE] and optical fiber) can
be interfaced via the onboard AUI interface.

Two PC-compatible serial ports are implemented with 16C550-
type UARTs that have 16-byte FIFO buffers for fast throughput.
One serial port can be configured to support RS-232 or RS-485
operation; the other is RS-232 only.

The parallel port is an enhanced bidirectional port with
support for the IEEE-1284 (EPP/ECP) standard. An internal FIFO
buffer and DMA transfer modes allow greatly increased data rates.
This port can be used as a standard PC printer port or programmed
as a DIO port to provide digital sensing and control functions.

The SCSI interface is based on the Adaptec AIC6370 SCSI-II–
compliant controller and supports up to 10-Mbps data rates in fast
synchronous mode. The AIC6370 is fully supported with driver and
utility software for compatibility with popular desktop and real-
time OSs.

The MiniModule/SES sells for $169 in quantity.

Ampro Computers, Inc.
(408) 360-0200 • Fax: (408) 360-0220
www.ampro.com

INDUSTRIAL-CONTROL
MODULE

Tri-M System’s IR104 provides 20 optoiso-
lated inputs and 20 high-capacity relay outputs on a
single fully PC/104-compliant module. Each optoisolated
input can accept either AC or DC input voltages ranging
between 3 and 24 V. The relay contacts are rated at 5 A at
250 VDC to permit the direct control of small motors or solenoids.

When it is connected to any PC/104-compatible CPU, the unit
offers a reliable, safe, and economical alternative to older PLC-
based technology used in automation of industrial monitoring and
control.

The IR104 provides a convenient means to control external
digital devices while maintaining electrical isolation from the
equipment. Programming control of hardware is accomplished
using standard desktop OSs and application software.

A Lattice in-circuit-programmable gate array easily decodes
the I/O memory address on the ISA or PC/104 bus and is field
programmable to custom addresses or custom I/O algorithms.
This feature enables inputs to be read through an I/O memory
read, and the output relay can be controlled through an I/O
memory write.

The IR104 sells for $325.

Tri-M Systems, Inc.
(604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

www.tri-m.com
www.ampro.com

EP
C

CIRCUIT CELLAR MAY 199938 www.circuitcellar.com

Figure 1—The connector on the back of the
PalmPilot provides access to serial commu-
nication signals and general-purpose I/O.

DTR
+3.3 VDC
RD
RTS
TD
CTS
GPI
GPO
NC
SG

10 1

Richard Ames

Did you know the PalmPilot is a programmable device? Probably not. Richard
shows us how the same feature that lets us link to a desktop PC and download
our daily schedule can be used to download new application programs.

Scientists are seemingly rare these days,
but certain characteristics make identifying
scientists easy, should one walk near your
workbench. When travelling between the
study habitat and the lab habitat, a scientist
often uses a pacing gait, which isn’t very
efficient but does make it easier to think
about scientific problems.

Also, the left shirt pocket is often puffed
out by a small wire-bound notepad contain-
ing notes on what the scientist is thinking
about and what will be considered next.
When sharing a habitat with a scientist,
the ordinary engineer’s attention is often
fixed on the small notebook, which surely
contains a wonderful archive of great ideas.

That’s what I thought, but I realized that
I couldn’t just run out to the drugstore, buy
a notepad, and start filling it with insight-
ful notes. After all, wire-bound shirt-pocket
notepads are not programmable. Being
an engineer, I need to be able to write code.

Well, it’s the end of the twentieth century
and little programmable notepads are avail-
able at the local office supply store. Of the

pocket-sized programmable devices, the
3Com PalmPilot is one that has a healthy
developer community that shares tips,
tools, and source code to ease the path to
application development for the platform.

It may not be immediately apparent that
the PalmPilot is a programmable device,
perhaps because it is pitched primarily as
an organizer and extension to your desk-
top computer. However, the same desk-
top PC-link that enables you to transfer the
data in an address book or schedule can
also be used to download new applica-

tion programs into the PalmPilot. From the
PalmPilot’s perspective, an application
looks like another internal database.

You can also download an interpreter
into the PalmPilot and develop applications
entirely on the device—a native hosted
environment. There are interpreters
for BASIC, C, Forth, and Lisp.

With some of these systems, you can
enter your program using the onboard
memo writing application and execute the
program with the interpreter application.
This may bring back the thrill of hanging
out in the back of the classroom covertly
trying to set up your programmable calcu-
lator to display real-time graphics with an
eight-digit seven-segment LED display.

But, the PalmPilot has a lot more than
an LED display and there are more accom-
modating application-development envi-
ronments than the native environment of
the PalmPilot itself. The first PalmPilot ap-
plications were developed on Macintosh
computers using a tool chain targeted to
generate code for the PalmPilot.

PalmPilot Application
Using Open Source Tools for Development

MAY 1999 EMBEDDEDPC

EPC

39www.circuitcellar.com

are to find a suitable distribution and select
some hardware to run the software.

Which Linux distribution to use is yet
another one of those areas of the com-
puter world that inspires spirited discus-
sion. Choosing a distribution affects the
ease of installation, maintenance, and the
ability to upgrade your system. There’s no
perfect answer. The references point you
to more discussion on this topic, so I’ll lead
on through example by discussing the the
Debian GNU/Linux distribution.

DEVELOPMENT HARDWARE
Your development system needs at

least a ’386-family processor, 200 MB of
hard disk space, a VGA display, and 4 MB
of memory. If you have an older machine,
you may want to put it to work running
Linux. The latest hardware always seems
more satisfying though, and Linux has
support for multiprocessor motherboards.

The system can be set up to boot
multiple OSs or you can dedicate the
system to running Linux. My system here
runs only Linux. In a world of change, you
can expect something in this installation
process to change as well (check www.
debian.org/debian/install.html).

BOOT DISKS
To start installing your

Linux system, you need a boot
disk, also called the rescue disk.
The image for that disk is available
from the Debian web site or one of its
mirrors. The mirrors usually provide faster
download times and ease the burden on
the main server.

You also need five disks’ worth of com-
pressed base-system software and a driver
disk. You should have a spare disk handy
for writing an emergency boot floppy once
the system is installed on the hard drive.

The disk images can be retrieved using
a web browser or ftp program. A typical
disk-image file has a path such as
/debian/disks-i386/base14-1.bin. Not
all of the installation diskettes are in MS-
DOS format, so a special utili ty
(rawrite2) is used to write the disk
image files to floppy disk. This utility is
available at the distribution site.

Here’s an overview of the installation
process with the scenario I installed on an
’486-based system with a 212-MB hard
disk and 16 MB of RAM. It can receive
information from the outside world through
a 1.44-MB floppy drive and a modem.

Once you’ve prepared your seven
special Debian boot disks, put the rescue
disk into the drive and reboot the ma-
chine. The initial screen should inform you
that you are about to transform your
machine into a Linux box and it gives you
your first chance to turn back.

Assuming that you don’t have any
attachment to what is on the hard drive,
pressing Enter boots a minimal Linux kernel,
spits out more than a screen’s worth of

detailed information about your
system hardware, and starts in
on the process of configuring
your system.

The configuration dialogs
use a simple text screen-ori-
ented user interface that lets
you use the tab key to move
between fields and Enter to
move on to the next screen.
After setting up your basic video
and keyboard type, it’s time to
divvy up your hard drive for
the new OS. This step can be
done with the cfdisk program,
which should automatically
start when you get to this point
in the installation.

The original cross-development environ-
ment (from Metrowerks) has been ported
for use in Windows environments and has
been bolstered by other cross-develop-
ment solutions. One of them has an inter-
esting price tag—it’s free.

The GNU C compiler has been a long-
standing focal point for free software
development tools. Now there’s a pack-
age for the GNU compiler that enables
you to develop PalmPilot applications.

You don’t need to stop at the compiler.
It’s possible to assemble a development
environment for the PalmPilot or other tar-
gets entirely from free open-source soft-
ware. This software goes from the OS that
boots the system to the text editor, the
target simulator, and the download utility.

I’ll show you how to put your own code
into the PalmPilot. And just for fun, let’s do
it all using free software.

BRINGING UP GNU/LINUX
Linux is a Unix-like OS developed by

Linus Torvalds while he was a student at
the University of Helsinki in Finland. The
OS has grown from being a very ambitious
personal project into something of a cult.
When the Linux kernel is mated with the
Unix-like tools produced by the
GNU project and joined by ad-
ditional application software, it
creates an environment that ri-
vals your average desktop box
loaded with a commercial OS
and applications. Some highlights
of its directory structure are listed
in Table 1.

The process of assembling,
installing, and maintaining the
components composing a
GNU/Linux system can take a
lot of effort. Luckily, the task was
taken on by a number of orga-
nizations that produce Linux
distributions. The first steps on
the road to your own Linux system

Listing 1—This resource script provides the information for the main form for the Meter-
Reader application shown in Photo 1.

FORM idReadForm 0 0 160 160 USABLE NO FRAME BEGIN
TITLE "MeterReader"
FIELD ID idLocField AT 20 20 AUTO AUTO NONEDITABLE
FIELD ID idReadField AT 20 50 AUTO AUTO EDITABLE
BUTTON "<prev" ID idPrevButton 40 120 AUTO AUTO
BUTTON "<next" ID idNextButton 60 120 AUTO AUTO
END

Figure 2—The PalmOS development tools are used to create the resource
components that make up the application and then gather them into a prc
file that can be loaded into the PalmPilot.

MR.c

m68-palmos-coff-gcc

m68-palmos-coff-obj-res

code0000.MR.grc data0000.MR.grc rloc0000.MR.grc

MR.bin

code0001.MR.grc pref0000.MR.grc

MR.prc

pilrc

MR.bmp
MR.prc

MR

build-prc

tFRM03e8.bin

tAIB03e8.bin

MBAR03e8.bin

EP
C

CIRCUIT CELLAR MAY 199940 www.circuitcellar.com

item. If all goes well, the PPP connection
transfers the files and after several hours
you receive a report that the software
installation was successful. While you’re
waiting, track down that Debian CD-
ROM. After dselect finishes, you can
start exploring your new system.

One of the first things you may want to
do is edit a file. In the Unix world there are
two common text editors—vi and emacs.

vi is popular in part because it is the
most likely editor to be found on a Unix
system. If you find yourself wanting to edit
a file on an unfamiliar Unix system, chances
are, you can find vi and get the job done.
vi also happens to be rather capable.

emacs is also common and quite pro-
grammable. Say you’re in the middle of
an edit session and want to review your e-
mail without switching to a new window.
Extensions enable emacs to display your
e-mail from within the editor and do a
number of other useful tasks. You may
never even need to leave the text editor.

There are other PC-like text editors
available such as joe and xjed. joe will be
comfortable if you’re happy with the default
DOS screen editor. xjed is more of a
programmer’s editor that takes advan-
tage of the X Windows environment.

For more information about migrating
from DOS to a Unix-based system, see
the sidebar on page 42.

INSIDE THE PALMPILOT
The PalmPilot is built around a

Motorola 68328 DragonBall proces-
sor running at 16 MHz. There’s also a
32-bit address space that provides up
to 4 GB of memory.

The PalmOS and a set of built-in
applications live on a 512-KB or 1-MB
ROM on a plug-in memory card, which

Tetris. Don’t worry, all of these will be
coming because they’ve been set up in
neat little packages.

These packages are special-purpose
files that integrate all the information
needed by an installation utility so the
contents can be installed and configured
and ready for immediate use. At this point,
you have the opportunity to load whole sets
of packages, minimal system requirements,
or the full-fledged Swiss army knife setup.

If you want to pull your software in over
the PPP connection, it makes sense to skip
the options and individually select the
packages you want. This option is offered
next from within a utility called dselect.

With dselect you can specify PPP as
your access method and select specific
packages. The packages can also be
loaded from a Debian CD-ROM. Some
software packages depend on other pack-
ages, and dselect advises you in select-
ing a set of compatible packages.

You need the following packages for
PalmPilot development: xserver, man-db,
pilrc, prc-tools, and xcopilot. While brows-
ing through the list of packages, you’re
bound to see others that you want to check
out, so add them to the shopping cart, too.

Now it’s time to go through the check-
out line behind the Install Packages menu

There’s plenty of
advice available on the

best way to set up these
partitions, depending on the

size of the hard disk and system
memory. In my example system, a

typical configuration is an 80-MB root
partition, a 100-MB user partition, and a
32-MB swap partition.

The root and user partitions should be
set to type Linux ext, and the swap parti-
tion should be type Linux Swap. Select the
Write option to write the new settings to
the disk before leaving cfdisk.

The next step should be to initialize the
swap, root, and user partitions. The root
file system is then mounted and the OS
kernel will be copied there. Once you have
the OS on the hard disk, you are prompted
to provide the driver’s disk so that addi-
tional device driver support can be loaded.

If you have a minimal system, you don’t
need anything special from this disk. If you
want to expedite the process by installing
from a CD-ROM, you may need to load a
CD-ROM driver.

The next step is configuring the net-
work, which is only a matter of thinking up
an appropriate name for your machine.
The details of setting up your link to your
ISP come later in the process.

Now it’s time to feed the remaining
disks into the machine, configure the clock,
set up to boot into Linux, and make a
backup-bootable disk. Once all of this is
done, you can reboot the machine and
load the kernel directly from the hard disk.

You’ll be prompted to set up accounts
for the superuser and yourself. Then, you
can set up the PPP connection. Here you need
IP addresses for name servers, user name
and password, and the number to dial.

Now you have a base system on your
hard drive, but it’s not very useful. You’re
bound to miss the familiar environment of
editors, compilers, GUIs, and the copy of

Listing 2—The boilerplate main loop for a PalmOS application doesn’t leave much room for
creativity. After the initial form is set up, execution continues in the event processing loop.

DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
{
 Int err;
 if (cmd == sysAppLaunchCmdNormalLaunch) {
 err = StartApplication();
 if (err)
 return (err);
 FrmGotoForm(MainForm);
 EventLoop();
 StopApplication();
 }
 return 0;
}

Table 1—Here are some highlights of the directory structure in a GNU/Linux system.

Command Description

/bin Essential command binaries
/boot Files for the boot loader
/dev Device files
/etc System configuration files
/home/username Your home directory
/lib Essential shared libraries
/mnt Temporary file system

 mounting point
/sbin System binaries

Command Description

/tmp Temporary files
/usr/X11R6 X Window system files
/bin User commands
/doc Details on installed packages
/include Standard C headers
/lib Libaries for programming
/man Home of the man pages
/var/lock Lock files for resources
/log System event log files

EP
C

CIRCUIT CELLAR MAY 199942 www.circuitcellar.com

of gray. PalmOS provides up to 50 points/s
from the digitizer with 0.35-mm accuracy.

PalmOS APPLICATIONS
PalmOS applications have special fea-

tures that make them different from the
usual embedded system software. The soft-
ware in a simple embedded device can
initialize the system hardware and memory
and then go into an endless loop, checking
for conditions and calculating responses.

Even though the underlying OS kernel
does preemptive multitasking, PalmOS
applications are single-threaded event-
driven programs. The applications need
to listen for special messages from the OS
and play nicely with other applications.

The applications do have some char-
acteristics that should be familiar to em-
bedded-system software developers. The
application must be frugal with memory
because the application code and data
come directly out of the system memory
(which can be as little as 128 KB in the

contains between 128 KB and 2 MB of
pseudo-static RAM, depending on the
model. The external data bus is 16 bits
wide to reduce cost.

The system communicates to the out-
side world through its serial port, which
has OS support for interrupt-driven output
at 56 kbps. CTS and RTS signals are
brought out to the contacts at the base of
the device as shown in Figure 1, and there
are eight hardware buttons on the system.

The system is designed to run for 40 h
on two AAA alkaline cells. Because the
device is likely to spend most of the time
in sleep mode, the batteries are good for
a few months of use. But, for constant
active access to the PalmPilot or for a
possible fixed application, there are sug-
gested ways to patch a constant power
source through the external connector.

Remember, the PalmPilot’s purpose is
to provide an electronic notepad. Thus the
backlit 160 × 160 pixel LCD is overlaid
with a digitizer and capable of four levels

Pilot 1000). This memory allocation is less
of a concern with more recent members of
the PalmOS family, thanks to 2 MB of
system memory (see Table 2).

There are no disk drives in the system,
so instead of using a file system for appli-
cation programs and data storage, a
database is used to store applications,
their data, and their state information. So,
applications open and close databases
that are maintained in nonvolatile memory
rather than disk-based files. The OS is
specially designed to provide efficient
access to the database records, even though
they may be scattered through the system
memory.

PalmOS also makes good on its privi-
leged position between the hardware and
your application by interpreting pen strokes
on the writing surface so your application
can be fed characters instead of tracking
x-y coordinates. There’s also a rudimen-
tary beep from the PWM on the 68328, a
timer with 10-ms resolution, a real-time
clock that’s always running (set to wake
up an application at an arbitrary time),
and a TCP/IP stack.

SAMPLE APPLICATION
Let’s consider an application where

the PalmPilot is used to help a meter
reader collect and deliver readings from
utility meters. The program presents a
series of addresses to visit and the read-
ings at each address are entered into the

PalmPilot. At the end of the
day, the information is down-
loaded into a database with-
out having to be transcribed
from a log sheet.

When envisioning this ap-
plication, you’re likely to think
in terms of how the screen of
the PalmPilot will look and how
the user will interact with that
screen. In implementing the
application, the visual layout
of the screen (or form, in Palm-
speak) is defined by a resource
script. This script specifies ob-
jects that appear in the form,
such as buttons, fields, check-
boxes, and other elements.

For the meter-reader appli-
cation, you can imagine that
the address to visit is promi-
nently displayed and there’s
an area to write the meter

Migrating from DOS to Unix

DOS Unix Action

dir ls Show working directory contents
time date Show current time
ver uname –a Show OS information
type myfile.txt | more cat myfile.txt | more Display myfile.txt, pausing between pages
mkdir doc mkdir doc Create doc dir below working directory
cd doc cd doc Move to doc directory
del hello.c rm hello.c Delete the file hello.c
copy \home\sam\hello.c cp /home/sam/hello.c. Copy a file to the working directory
dir /s myfile.txt find -name hello.c –print Search for hello.c in this dir and all subdirs
unzip -d hello.zip tar -zxf hello.tar.gz Unpack a heirarchical archived set of files
help dir man ls Show online manual info

• Long filenames are available, and case is significant.
• DOS text files indicate the end of a line with the characters CR and LF. Unix text files use just

LF.
• The default shell has a number of features. Old commands can be accessed with the up and

down arrow keys. Information that has scrolled off the screen can be reviewed with Shift-Pg
Up. File names can be completed by pressing Tab.

• To shutdown gracefully, change to superuser with the su command and enter shutdown -h
now. Wait for the message “system halted” before switching off the power.

Table 2—
Here is the

PalmPilot fam-
ily, including dis-

continued models.
Memory capacity fol-

lows the usual generous
curve.

Product PalmOS ROM RAM Processor

Pilot 1000 1.0 512 KB 128 KB 68328
Pilot 5000 1.0 512 KB 512 KB 68328
PalmPilot 2.0 1 MB 512 KB 68328
 Personal
PalmPilot 2.0 1 MB 1 MB 68328
 Professional
Palm III 3.x 2 MB 2 MB 68328
Palm IIIx 3.1 2 MB 4 MB 68328EZ
Palm V 3.1 2 MB 2 MB 68328EZ

MAY 1999 EMBEDDEDPC

EPC

43www.circuitcellar.com

reading at this address. The next address
can be called up by pressing a forward
arrow and previously visited addresses
can be reviewed by pressing a back
arrow. Listing 1 shows what this might
look like as a resource script, and Photo 1
shows the result.

Executable code is linked with the ob-
jects in the form. For example, when the
user presses the forward arrow button, the
next address to visit is displayed.

STARTUP ROUTINE
In a traditional embedded system imple-

mented in C, code execution starts at the
location pointed to by the reset vector,
runs some startup code, and then jumps to
the main() function. For a PalmOS ap-
plication, you can consider the system
software to always be running, and the
execution of the application starts in the
PilotMain() function. Listing 2 shows the
boilerplate body of a PalmOS application.

The first step of the application is to
check the launch conditions. For simple
applications, the only condition handled
is a normal launch (when the user selects
the application icon from the Application
picker screen). The cmd parameter that is
passed in the PilotMain() call is checked
to see if the application was called under
this condition. If it was, the application
starts. Otherwise PilotMain() returns.

Some applications must retrieve state
information when they are first started so
they can present a screen that looks the
same as it did when the application was
last running. This is the purpose of Start-
Application(), which is specific to the
application. A simple application can
return false from this function, indicating
that there were no problems in starting the
application.

Execution continues by calling Event-
Loop(), which is the main event loop for
the application. This loop processes a
stream of events that are fed to the appli-
cation by the OS.

Many events can be handled directly
by the OS without any special processing
by the application. But, the application is
given dibs on these events as well, in case
special processing is needed. The structure
of the event loop is shown in Listing 3.

The first step is to retrieve the next event
in the event queue with a call to EvtGet-
Event(). Many events can be handled
directly by PalmOS functions so Sys-

HandleEvent() and MenuHandle-
Event() are first given an opportunity to
act on the event.

These functions return true if they were
able to completely handle the event. If the
application sees these calls returned true,
it doesn’t do any more event processing.
Opening menus and pressing buttons on the
PalmPilot are examples of events that can be
handled completely by these OS functions.

If execution continues to fall through
beyond these functions that the OS handles,
the current event may be one that should
be handled by the application.

STOP ROUTINE
The stop routine shuts

down the application grace-
fully and saves the information
that will be needed the next time
the application is activated.

The heavy lifting is in Application-
HandleEvent(), which looks for events
such as button presses and updates the
screen in response to these events.

MEET THE TOOLS
Once the application is coded, it must

be converted into a format that can be

EP
C

CIRCUIT CELLAR MAY 199944 www.circuitcellar.com

SOURCE
PalmPilot
3Com
(800) 638-3266
(408) 326-5000
Fax: (408) 326-5001
www.palm.com

loaded into the Palm-
Pilot. The compiler

(m68k-palmos-coff -gcc)
used in developing PalmOS

applications is a patched version
of the GNU C compiler. It is used to

compile and link the application C source
code (see Figure 2).

PalmOS expects the application source
code to be divided into a number of
resources, including ones dedicated to
initializing application global memory
and specifying application preferences.
The obj-res utility in the code converter
(m68k-palmos-coff-obj-res) converts the
object code into the expected resources.

A PalmPilot application is implemented
as a collection of resources, of which the
application program code is just one. The
other resources are prepared using the
pilrc resource compiler. This utility takes
a text description of the menus and other
resources and converts them into binary
resource files, which can be combined
into a PalmPilot file.

Ultimately, the PalmPilot expects to re-
ceive a new application in a format known
as prc. build-prc takes all the binary
resources and builds them into a prc file.

pilot-xfer speaks the appropriate
serial protocol to synchronize with the
PalmPilot to update an application in the
system memory. This utility is also used to
backup and restore application data.

x-copilot is a virtual PalmPilot sitting
on the screen of your development system.

This simulator enables you to quickly load
your latest code and exercise it without the
having to download to the physical device.

This sample session shows the process
by which these tools are used together to
build an application. M68k-palmos-coff-
gcc -O1 MeterReader.c -o Meter-
Reader compiles the main module and
stores the output in the file MeterReader.
The -O1 specifies level 1 optimization.

M68k-palmos-coff-obj-res
MeterReader takes the file produced in
the previous step and splits it into the set
of resource components that are expected
by PalmOS. pilrc MeterReader.rcp
runs the resource script through the re-
source compiler to generate resources for
the forms and menus.

Build-prc MeterReader.prc
"MeterReader" Mete *.grc *.bin
is the final step and combines the re-
sources into a properly formatted prc file
that can be loaded directly into the Palm-
Pilot. The command line specifies an output
file (MeterReader.prc), an application
name ("MeterReader"), and a creator ID
(Mete). All the files with suffixes of grc
(code resources) and bin (forms and
menus) are combined to create the prc file.

Now, the prc file can be loaded into
the simulator or the PalmPilot, but there
will be no list of addresses to visit. The list
is stored in a separate database file—
MeterReader.pdb. This file can be built
from an ASCII text file using makepdb, a
utility specific to this application.

Once the database is loaded, verify
that you can scroll through the address list
and fill in meter readings. After the read-
ings are filled in, a sync operation with the
desktop system can move the database to
the desktop, and the readings can be
extracted.

Normally, this process is integrated into
the PalmPilot desktop application using
special software known as conduits. But,
this support doesn’t exist for Linux yet.

NEXT STOP
If you program with free tools, consider

sharing your discoveries with the user
community that put together the framework.
We all benefit from well-considered
postings, improved tools, beefed-up docu-
mentation, and shared source code. EPC

Photo 1—The CoPilot is a virtual PalmPilot on
your computer screen that can be used to test
applications without downloading to a physi-
cal device.

REFERENCES
3Com PalmOS reference, tutorials, and articles, www.

palm.com/devzone/info.html, Software Developer
Documentation

Debian GNU/Linux homepage and distribution, www.
debian.org

DragonBall databooks, www.mot.com/SPS/WIRELESS/
products/m68328.html

GNU project, www.gnu.org
Linux distributions summary, www.linuxresources.com/

apps/ftp.html
Linux documentation project, www.metalab.unc.edu/

LDP
PalmOS software and source code examples, www.

palmcentral.com
PalmPilot resource compiler, www.scumby.com/

scumbysoft/pilot/pilrc
PDA software development site, www. roadcoders. com
Pilot application development tutorial, www.iosphere.

net/~howlett/pilot/GNU_pilot_SDK_Tutorial.zip
Pilot-to-GNU communications tutorial, www.iosphere.

net/~howlett/pilot/GNU_Pilot_SDK_Tutorial.zip
Pilot programming newsgroups, news://news.

massena.com/pilot.programmer.gcc, and www.
acm.rpi.edu/~albert/pilot

X-Copilot, xcopilot.cuspy.com

SOFTWARE
The complete meter-reader application is available via
the Circuit Cellar web site.

Richard Ames fulfills his need to write
code at Oresis Communications, prefer-
ably in the lab habitat. You may reach him
at richard_c_ames@yahoo.com.

Listing 3—The event loop in a PalmOS application processes events as they are served up
by the system, giving first dibs to default event handlers.

void EventLoop(void)
{
 Word error;
 EventType event;
 do {
 EvtGetEvent(&event, evtWaitForever);
 if (!SysHandleEvent(&event))
 if (!MenuHandleEvent(NULL, &event, &error))
 if (!ApplicationHandleEvent(&event))
 FrmDispatchEvent(&event);
 }
 while (event.eType != appStopEvent);
}

www.palm.com

MAY 1999 EMBEDDEDPC

R
P
C

45www.circuitcellar.com

Real-Time PC

Ingo Cyliax

Astronomical Issues
Part 2: Radio Astronomy

Karl Jansky accidentally discovered
radio astronomy at Bell Labs in the ’30s.
While investigating the noise sources that
affect radio communications, he found that
there was a correlation between some
noise sources and the sidereal day.

Remember that the sidereal time is the
time fixed to the right ascension angles in
the sky. Jansky found that the maximum
noise seemed to come from a specific
region in the sky, which turned out
to be the center of our galaxy.

It seems that the radio spec-
trum has a large window that is
unaffected by the earth’s atmosphere.
The radio spectrum starts above fre-
quencies that are reflected by our iono-
sphere (less than 20 MHz, depending
on the atmospheric conditions) and goes
well into the microwave band over 1 cm
(30 GHz). This range is rather large
compared to the available visible spectrum.

One complex and interesting radio
source that is easy to detect with minimal

equipment is the radio emission from
Jupiter. Like the earth, Jupiter is magnetic
and traps ionized particles. Because Jupi-
ter rotates, its magnetosphere acts as a
synchrotron and generates radio emissions
at various frequencies. Also, the moon Io
contributes to the effects, making the emis-
sion patterns complex.

As Ingo looks to the sky this month, he begins measuring radio emissions from
Jupiter using an all-digital wide-band receiver. After describing its construc-
tion, he details the tests it endured and shows us the resulting spectra.

Jupiter emissions from about 20 to
40 MHz can be received with a simple
shortwave receiver. But, it turns out that
my shortwave receivers use the automatic
gain control (AGC) feature to improve the
quality of standard AM broadcast.

Without AGC, AM stations would fade
in and out with atmospheric conditions.
However, AGC makes it impossible to
make power measurements. Because I
didn’t want to modify my receivers and

wanted to make computer-based ob-
servations anyway, I decided to
build an all-digital receiver.

RADIO BACKGROUND
Three types of receiver designs

can be used—direct conversion, tuned
receiver, and heterodyne receiver. Of
these, the heterodyne receiver design is
the most widely used. The “super” in a
super-heterodyne receiver is a marketing
gimmick used to sell heterodyne receivers
in a market of tuned-radio receivers (TRFs).

Photo 1—This is how
breadboarding is done in radio work. By design-
ing modules in small project boxes, like filters,
preamps, and oscillators, it’s easy to plug and
play. For modules that use power, use small
feedthrough bypass capacitors. Also, use linear
power supplies and plenty of ferrite beads.

CIRCUIT CELLAR MAY 199946 www.circuitcellar.com

5 V

TTL/CMOS
Osc. Module

All of these receivers do the same
thing. They select a signal (the radio station
of interest), amplify it, and demodulate it.
In the case of AM signals, the demodulator
is essentially a detector that measures the
amplitude of the carrier.

The TRF measures amplitude by band-
pass filtering the signal and amplifying it
in several stages. The final stage drives a
detector (usually a diode rectifier and a
low-pass filter) and audio amplifier. It’s a
simple extension of a crystal radio set.

A heterodyne receiver uses a nonlinear
component to mix the input signal from a
local oscillator. Mixing is simply multiply-
ing, so the input signal is multiplied with
the local oscillator (LO) signal:

Vif = cos (ωct) × cos (ωLOt)

Using trig identity, this is equivalent to:

Vif = 1
2

cos ωct + ωLOt + 1
2

cos ωct – ωLOt

In other words, multiplying the input with a
signal from an LO, generates two signals—
one at the sum of the frequencies (Fc + FLO)
and one at the difference (Fc – FLO).

In a heterodyne receiver, we select one
of these products with a bandpass filter and
it becomes the intermediate frequency (IF).
The signal at IF is amplified, detected, and
low-pass filtered. IF frequencies of 455 kHz
and 10.7 MHz are commonly used, and
some receivers have up to three stages.

Heterodyne receivers are popular be-
cause it’s much simpler to build a high-gain
amplifier at a low IF frequency than to build
high-gain amplifiers at higher frequencies.
Also, it’s easier to build the selective filter
needed to filter the station of interest at the
fixed IF frequency than a variable filter in
each TFR stage. Keep in mind that all of
the filters in the TFR have to track the same
frequency band at the same time.

A direct conversion (or synchronous)
receiver is a heterodyne receiver that mixes
the input signal with the exact frequency of
the signal of interest. If you do the math, it
gives you one product where the two
cosines cancel each other, and another
product that is double the frequency.

A signal without the carrier is the signal
we already want. For AM modulation, the
resulting signal is the amplitude informa-
tion. In a direct conversion receiver, you
simply need a low-pass filter and a high-
gain audio amplifier.

Until now, I’ve only mentioned AM
detection. You can generalize the detector
in a heterodyne receiver, by mixing the
input signal with both the in-phase and
quadrature phase of a LO. This is done in
the last stage of a receiver and results in
two IF products, normally labelled as I
and Q, which are then filtered separately.

With both the I and Q components,
you can demodulate all of the common
modulation techniques. For example, to
demodulate an AM signal, measure the
vector magnitude of the two signals:

Vam = I(t)2 + Q(t)2

For FM signals, measure the phase
difference:

Vfm = atan
Q(t)
I(t)

Receivers that use this kind of demodula-
tion technique are sometimes called diver-
sity receivers because they can be used to
demodulate just about anything (including
digital-modulation techniques used in mo-
dems). This is especially true when the I

Figure 2—Standard oscillator modules don’t
usually have enough to drive a 50-ΩΩΩΩΩ clock.
The hex CMOS inverters are wired in parallel
to boost current output. Don’t attempt this
with TTL drivers.

L1 L2 L3

C1 C2

Figure 1—To configure the three-pole Cheby-
chev low-pass filter, select the component
values from a table (in the ARRL handbook).
Capacitor values are usually fixed to stan-
dard values. Inductor values can be anything
you like when you wind your own inductors.

 MAY 1999 EMBEDDEDPC 47www.circuitcellar.com

and Q components are digitized and
processed with a DSP.

For radio astronomy, you usually want
to measure the power of the receiver signal
in a specific band. This equation is like the
amplitude of an AM signal, but squared:

V2 = I(t)2 + Q(t)2

Of course, “true” power would involve
RMS values of the signals, but that’s just a
corrective factor of 1.414.

Let’s turn our attention to digital receiv-
ers. By now, you’ve figured out that I’m not
talking about a receiver with a digital-
frequency readout. A digital receiver is a
receiver that uses DSP techniques to se-
lect, demodulate, and detect signals.

The concepts are the same, but until
recently, digital receivers have been in the
realm of military receiver technology mostly
because components such as high-speed
ADCs and high-speed digital processors
are expensive. It makes sense to use this
technology when you want to build jam-
proof receivers or receivers that need to

be ultra-stable. As a side note, radio jam-
mers usually target the IF frequencies of
heterodyne receivers because that’s where
most of the gain processing is done.

Thanks to the explosion of the personal
communication market, cell phones, pag-
ers, and other components that are up to the
task are available, making it more eco-
nomical to build digital radios. One such
component is the high-speed converter
tailored for this application. It samples at
over 50 MS/s.

I’ve played with both the Burr-Brown
AD807E (51 MS/s) and the Analog De-
vices AD6620 (71 MS/s). Both are tar-
geted for the cellular base station market,
but they’re perfect for my application.

THE PROJECT
My initial experiment was to construct

a wide-band receiver with a 10-MHz band-
width. This conservative approach pro-
vides a 20-MS/s sampling frequency and
made it easy to design the signal-process-
ing chain implemented in the FPGA I had
available. In future articles, I’ll discuss how
to extend this receiver’s frequency range.

Initially, I used a random long-wire
antenna. I made no attempts to tune the
wire or match it to the 50-Ω feed to the
radio. This setup can be improved, of
course, to improve sensitivity. A dipole
antenna tuned to the frequency I’m inter-
ested in would work much better.

The antenna feed is terminated into a
0–10-MHz antialias filter built around a
three-pole Chebychev filter. This filter has
a cutoff frequency of around 9 MHz and
a –3-dB point at around 11 MHz. Figure 1
shows the schematic. The component val-
ues were taken from a table in the ARRL

handbook.
I made sure the filter was right

by measuring it with signal gen-
erator and an oscilloscope. The
filter performance isn’t critical,

Photo 2—The PC/104-based FPGA
is connected to the A/D eval module
with a short ribbon cable. An anti-
alias low-pass filter module, which
would be added to the input, pre-
vents aliasing from radio sources at
higher frequencies. It also serves as
a band-limiting filter for the preamp
because it amplifies anything from
DC to over 1 GHz.

Figure 3—The I/O FPGA implements the tuner
and first decimator. The bus I/F FPGA deci-
mates and buffers the data for the host. The
memory is not used in this design, although
it could be used to buffer data for high-speed
acquisition.

I/O FPGA

JEDEC Memory FPGA

CNF Dec.
Bus I/F FPGA

PC/104

X-bus

I/O

R
P
C

CIRCUIT CELLAR MAY 199948 www.circuitcellar.com

unless you want to look at signals close to
the top end of the spectrum. After the filter,
I have a small FET-based preamplifier that
boosts the signal by ~20 dB.

The filter and preamplifiers are housed
in small metal project boxes with BNC coax
connectors to connect them to the system.
This technique is handy for “breadboard-
ing” RF designs. For example, switching
in a different filter is as easy as disconnect-
ing the old filter and plugging in a different
filter (see Photo 1).

You also need an RF signal generator
and oscilloscope. My signal generator
covers the frequency range I’m interested
in and has an adjustable output attenuator.

That’s pretty much it for the analog
components. The converter evaluation
board has a matching transformer to make
the single-ended coax feed match up with
the differential inputs of the ADC. It also
has a connector for a sampling clock.

On the AD6620, the clock source can
be an external signal generator fed in via

a coax connector or onboard
TTL clock chip. I chose the TTL-
clock chip option. For driving the
AD807E board, I constructed
a TTL oscillator in a small project
box for driving 50-Ω loads.

This step was challenging
because normal TTL/CMOS os-
cillators can’t drive a 50-Ω load
directly. I had to boost the out-
put of the oscillator chip with a
hex CMOS inverters all in paral-
lel. Figure 2 shows this circuit.

The Analog Devices and
Burr-Brown ADCs are followed
with bus drivers. Although the

ADCs are 5-V devices, the bus drivers can
be powered at 5 or 3.3 V to adapt them
to your specific system needs.

And lastly, the outputs from the bus
driver and a buffered version of the sam-
pling clock are sent over a regular 40-pin
IDC header. The signals are laid out so I
can simply plug either board into my
FPGA board with a ribbon cable.

If you put several connectors on the
ribbon cable, it’s possible to bus up to four
of the FPGA boards onto a single ADC
board. Photo 2 shows how the filter con-
nects to the preamplifier (which feeds into
the ADC board, allowing the ADC board
to be wired into the PC/104 FPGA board).

The FPGA board is a Xilinx FPGA-
based PC/104 module that interfaces with
the ADC board and contains all of the
high-speed DSP functions. Along with the
availability of the ADCs, FPGAs are key
components in making this project possible.

The signal processing is intensive and
still somewhat out of the realm of most
DSPs and certainly not possible with a
Pentium (even an MMX). Note that you
can have multiple FPGA boards with all of
them receiving the digitized signal of the
ADC module. With that arrangement, it’s
easy to build multichannel receivers.

The FPGA boards are organized as
shown in Figure 3. There are three FPGAs
and an option for adding memory. For my
initial design, I put the high-end processing
in the FPGA that services the I/O connector.
Some of the low-level processing, the inter-
rupt generator, and bus interface go in the
FPGA connected to the PC/104 connector.

As I mentioned, a digital receiver oper-
ates on the same principle as analog
receivers, except that all of the signal
processing is done using DSP techniques

Figure 4—
The FSW input

sets the phase
increment for the

phase register. The
phase register selects the

instantaneous phase angle
for the CORDIC computation,

which computes a scaled cos/
sin based on the input value from
the ADC. The output of the CORDIC
is decimated before being sent.
Note that part of the phase indi-
cates the quadrant of the compu-
tation because CORDIC can only
compute between –90º and 90º.

+
–

+
–

+
–

12 stages

+

CORDIC

in

FSW

Quadrant

"0"

16:1 Dec

16:1 Dec

MAY 1999 EMBEDDEDPC

R
P
C

49www.circuitcellar.com

instead of analog components that
exhibit the need for properties. The
model I used is a direct-conversion
diversity receiver.

In my receiver, after the signal is
digitized, I mix it with the in-phase (I)
and quadrature (Q) of a LO signal,
which is the frequency of the signal
of interest. The resulting I and Q
signals are low-pass filtered until
they have the bandwidth I need. In
my case, the bandwidth is dictated
by the I/O bandwidth from the FPGA
board and the host system.

The LO is a numerically controlled oscil-
lator (NCO). At first, implementing an
NCO digital sine generator may seem
simple. I use a register called a phase
accumulator that keeps incrementing the
phase of the sine wave by some value.
This increment is called the frequency
setting word (FSW).

The FSW is set to select the phase
increment per cycle and can therefore be
used to select the frequency. The output of
the phase accumulator is sent to a ROM
containing the sine values for each pos-
sible phase position. Now let’s look at
implementation details.

To build a 12-bit sine generator with a
12-bit phase accumulator in an FPGA,
you need a 4096 × 12-bit look-up ROM.
If you take advantage of the symmetry in
a sine wave, you only need 1024 × 12.

Xilinx FPGAs have ROM function blocks
that come in 16 × 2 and 32 × 1 varieties.
To implement this look-up table, you need
32 × 12 blocks (384), plus a bunch of
multiplexers to select one of the 32 blocks.
This is good so far, but the biggest device
I can use in the FPGA board only has 400
blocks and I haven’t even thought about
the multiplier yet. So far, no good.

CORDIC TO THE RESCUE
A few years ago, I wrote about an

algorithm called coordinate transformation
computer (CORDIC) (“Robot Navigation
Scheme,” Circuit Cellar 81). CORDIC is
an efficient algorithm to implement tran-
scendental functions (e.g., sine and cosine).

Because of its flexibility and small size,
CORDIC is frequently used in digital signal
processing. It’s a bounded iterative tech-
nique and takes n steps to compute results
to n-bit precision.

The complexity is roughly three n-bit
accumulators, or six blocks in Xilinx. One

logic block implements two bits of an accu-
mulator. But, 12 steps to compute a 12-bit
solution implies a clock rate of 12 ×
20 MS/s (240 MHz), which is too fast for
the particular FPGA I’m using.

CORDIC can be pipelined, which un-
rolls the loop into 12 separate compo-
nents that can compute at the same time.
The delay through the pipeline has a
latency of 12 cycles, but it can produce a
new result on every clock cycle.

Figure 4 diagrams the CORDIC pipe-
line, including the phase accumulator (which
computes the instantaneous angle for the

CORDIC input) and a 16:1 decimator. All
this, including the interface to capture/
synchronize and multiplex the output over
a single 12-bit bus, takes 327 logic blocks.

This functional block performs these
operations each clock cycle:

• NCO—one 16-bit add
• CORDIC—36 12-bit add/subtracts
• CORDIC—36 single-bit shift (divide by 2)
• decimators—two 16-bit adds

With a total of 75 operations performed
at 25 MS/s, that’s equivalent to 1875 MIPS!

Photo 3—The ini-
tial 0–10-MHz spec-
trum is noisy because
of dropped data in the
host interface. The test sig-
nal is a 4-MHz carrrier modu-
lated with a 1-kHz test tone.
Spectrum plots are good tools
when you’re diagnosing signal-pro-
cessing problems.

R
P
C

CIRCUIT CELLAR MAY 199950 www.circuitcellar.com

REFERENCES
American Radio Relay League, The ARRL Handbook

for Radio Amateurs, ARRL, Newington, CT, 1998.
B. Brannon, Basics of Designing a Digital Radio

Receiver (Radio 101), Analog Devices, Greensboro,
NC, 1998.

B.F. Burke and F. Graham-Smith, Radio Astronomy,
Cambridge Press, Cambridge, UK, 1997.

J.J. Carr, Secrets of RF Circuit Design, McGraw-Hill,
New York, NY, 1996.

J.J. Carr, Practical Antenna Handbook, McGraw-Hill,
New York, NY, 1998.

E.C. Ifeachor and B.W. Jervis, Digital Signal Process-
ing: A Practical Approach, Addison-Wesley, Read-
ing, MA, 1993.

J.D. Kraus, Radio Astronomy, Cygnus-Quasar Books,
Powell, OH, 1986.

P.J. Nahim, The Science of Radio, American Institute of
Physics, Woodbury, NY, 1996.

G. North, Advanced Amateur Astronomy, Cambridge
Press, Cambridge, UK, 1997.

W.L. Orr, Radio Handbook, SAMS, Carmel, IN, 1993.

SOURCES
ADCs
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analog.com

Burr-Brown
(520) 746-1111
Fax: (520) 889-1510
www.burr-brown.com

FPGAs
Xilinx
(408) 559-7778
Fax: (408) 559-7114
www.xilinx.com

PC/104 FPGA board
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1484
www.derivation.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

Photo 5—Here’s a 0–8-MHz spec-
trum plot over one day. The hori-
zontal axis is the frequency and
the vertical axis is the time. The
scan starts and ends at 12 PM.
You can see how the AM band
changes at 6 PM and 6 AM. Many
AM broadcast stations have to
lower the their power and trans-
mission pattern at night. Note
how the 49-m shortwave band
(~6 MHz) opens up at night.

Photo 4—
This is a live

radio spectrum
of 0–8 MHz on my

antenna. Each hori-
zontal tick is 0.8 MHz.

The peak around 1.4 MHz
is a local AM radio station.

Each vertical tick mark is
~100 dB in this graph. You can
see how much dynamic range a
radio would need to pick up
some of the weaker stations
(little bumps) while not saturat-
ing on the local stations.

The NCO in this receiver can tune
down to 305-Hz steps, defined by the size
of the phase accumulator (16 bit). When
the FSW is set to 0x0001, it takes 216 steps
to complete one phase. At 20 MS/s, that
works out to 305 Hz. To get finer tuning
steps, increase the number of bits in the
phase register and FSW.

The PC/104 interface FPGA has another
16:1 decimator, the interrupt generator,
and the bus interface. The PC/104 bus is
fairly slow. I made measurements (Circuit
Cellar 99) and determined that 400 KBps
is about the maximum for this 8-MHz PC/
104 bus implementation. I want to trans-
fer I and Q samples, which end up being
4 bytes, so the practical limit is ~100 kHz.

Using the two cascaded 16:1 decimators,
I got a baseband sampling rate of 78 kHz
and a bandwidth of 39 kHz. For decod-
ing AM signals, this bandwidth is too
wide and doesn’t provide enough selec-
tivity, but it’s sufficient for my power
measurements. Although shortwave stations
typically use 6 kHz, in the AM broadcast
band you need about 10-kHz bandwidth.

The host system manages the interface
to the receiver and is divided into a real-
time component, which reads out the
samples from the receiver and does the

real-time processing. The host system also
controls the receiver, which includes setting
the FSW in the NCO to select the frequency.

For my initial experiment, I implemented
a spectrum analyzer. The frequency scan-
ning control is handled by a Tcl script that
selects the frequency, reads a buffer of
samples from the receiver through a FIFO
from the real-time interrupt service routine,
and computes the power in that spectrum.
The data is saved to a file or can be viewed
interactively with a Tcl/Tk. All of this is
done under RT-Linux.

RESULT
I tested my receiver by taking spectrum

measurements. I sampled the spectrum at
20 MS/s with a 4-MHz test signal. The test
signal also had a 1-kHz test tone modu-
lated on it. The result is shown in Photo 3.
As you see, there’s quite a bit of noise,
which was caused by the host machine
missing interrupts and samples being missed.

Photo 4 is a better graph, showing
where I used a sampling rate of 16 MS/s
to sample the RF spectrum from my an-
tenna. This spectrum shows the bump of
the local AM station (each horizontal
division is 0.8 MHz).

Next I wrote a quick shell script and
arranged for it to be called
every 15 min. The output was
saved in a data file that had a

timestamp of the form yymmddhhmm.
out for the filename. After a day of testing,
I had a directory full of spectrum data.

Photo 5 is the result of a typical (noon
to noon) scan of the 0–8 MHz spectrum.
The lower portion (left side) is rather con-
stant and shows the clatter of the AM
stations and low-frequency noise (mostly
EMI). The various clusters of activity during
the nigh are shortwave broadcast bands.

STAY TUNED
Next time, I’ll discuss digital radios, digi-

tal filters, and implementation techniques.
I’ll show you how to enhance the radio’s
frequency range to include the Jupiter
emission bands by using aliasing (a tech-
nique used in digital receivers). RPC.EPC

www.analog.com
www.burr-brown.com
www.xilinx.com
www.derivation.com

A
PC

CIRCUIT CELLAR MAY 199952 www.circuitcellar.com

Applied PCs

Fred Eady

To get your embedded device on the Internet, you have to be able to write
TCP/IP-enabled code. This month, Fred lays down the networking knowledge
you’ll need to install the kernel, build the system, and pass the data.

Believe it or not, I have friends who
aren’t on the Internet in any way. To them,
an URL is royalty in some foreign land. But
the URL is probably an integral part of
your everyday life and so is its well-known
companion, TCP/IP.

Many of us use TCP/IP in some manner
every day. We send and receive e-mail,
gather needed information, maybe even
play on the Internet. In fact, if you use the
Internet at all, you eventually use network-
ing principles based on TCP/IP.

The purpose of this discussion is not to
teach you TCP/IP but to take it to the
embedded level so you can write TCP/IP-
enabled code. Let’s begin by investigating
the parts of TCP/IP and their relationship
to the embedded platform model.

EMBEDDED TCP/IP
TCP/IP was designed from the ground

up to be platform independent. This col-
lection of protocols is standardized across
the networking world. Although it’s not the
total solution to all networking problems,

TCP/IP stands as a model of what all
internetworking should be.

To implement an embedded model of
TCP/IP, you must use a TCP/IP stack. Phar
Lap’s Realtime Embedded ToolSuite kernel
includes a version of the TCP/IP stack. This
stack is accessed using a set of APIs.

Bringing up a TCP/IP embedded ap-
plication without a network is like owning
a surfboard in Tennessee. You can stand
on it, but you can’t surf. Every machine on
a TCP/IP-based network is called a host.
That includes clients as well as servers.

The idea is that all hosts can communi-
cate with each other, which implies that
all hosts on all networks can communicate
host-to-host across differing networks. Im-
practical? Maybe, but it’s the vision. These
hosts communicate by passing messages,
accessing data, and transferring files. If
that sounds like you on the Internet, it is.

I mentioned the host-to-host and net-
work-to-network impracticality of such a
system. If you really wanted to accomplish
that task outside a small local network like

the one in the Circuit Cellar Florida Room,
the wire would have to be rather long.

Distance between host machines and
the number of hosts presents a problem
when attempting to communicate on any
network. Now add multiple networks to the
equation. In the TCP/IP scheme of things,
it’s nonsense to string a dedicated wire
between a host in Florida to one in Canada.

First of all, you’d have to string a wire
to every host on every network you wanted
to communicate with. To compound the
confusion, every host you directly wired to
would have to do the same for every other
host and network it wanted to talk to. Some
networks out there do just that, but they’re
expensive to operate and are usually
proprietary as to who owns them, who talks
on them, and what protocols they possess.

Fortunately, in the world of TCP/IP
there’s an easier way to internetwork. The
Internet uses gateways or routers to trans-
fer data between hosts on differing net-
works. A gateway is a network machine
that is physically connected to each net-

Embedded Internet
Part 1: On the Network

A
PC

MAY 1999 EMBEDDEDPC 53www.circuitcellar.com

dots is a binary number that the
embedded host sees as a host ID
and network ID.

Which of the bits within the four
octets determine the host and net-
work IDs depends on the class of
the network being addressed. I won’t
go into network classes here. Suf-
fice it to say that the dot code is
something only a host machine
could love or remember.

Physical addresses are hard-
ware addresses assigned to network
cards installed in host machines.
These physical addresses are set at
the factory.

Here’s where it gets interesting.
The host network card can only
recognize its physical address, not

its Internet address. So, how do you get
data to a host with a network card that
doesn’t know what an Internet address is?

A low-level protocol address resolution
protocol (ARP) enables a host to discover
the physical address of another host on
the same network by broadcasting a
general query. Data from the originating
host is passed from gateway to gateway
until it arrives at the destination gateway
attached to the destination network.

The destination gateway uses ARP to
determine the destination host’s physical
address and deliver data to it. The ad-
dressing data captured as a result of the
ARP is stored in cache for later use. This
process, in effect, enables the physical
address to be concealed. Thus, the send-
ing host need only address the target host
by its Internet address.

To make it easier for humans, TCP/IP
associates that dot address with a name.
(e.g., circuitcellar.com). You’ll soon see
that TCP/IP does a lot of concealing,
which, for the embedded network devel-
oper, is a good thing.

RELIABLE UNRELIABLE DELIVERY
Matter and antimatter—stuff that Star

Trek episodes are made of. The same can
be said for TCP/IP. The combination of
transmission control protocol and Internet
protocol wasn’t done by accident but by
design.

IP is the antimatter or unreliable com-
ponent of the pair. IP is termed unreliable
because there’s no way to guarantee that
a data packet will actually be delivered to
its destination. All of the hosts in the

Internet give their best
effort to deliver an IP data
packet. But, nobody cares how
it looks when it gets there.

I spend more time in airports
than I like, and it’s funny how you notice
things when you’re bored out of your mind.
For example, I liken an IP data packet to a
piece of freight in the hands of the people
loading freight onto an airplane.

They get the package (IP datagram)
from a baggage cart (the host) and sling
it towards the moving-belt ramp (Internet
and gateways). Sometimes, the package
hits the ramp hard and lands on the tarmac.
Someone helping the freight handlers
(other gateways in the Internet) picks up
the damaged package (corrupted IP data-
gram) and either slings it back on the
ramp (pass it on to the next gateway) or
puts it directly on the plane (deliver the
damaged IP datagram to the receiving host).

The plane (receiving host), although
being loaded with a damaged parcel,
never reported back to the cart (sending
host) that the package (IP datagram) was
damaged in transit. I spend too much time
in airports. Anyway, let’s continue.

My little story also implies that each
piece of freight or each IP datagram is
independent of any other IP datagram.
Datagrams aren’t connected in any logi-
cal or physical way. They are connection-
less. IP is a connectionless protocol.

Before you characterize IP as a useless,
unreliable means of data packet transpor-
tation, realize that it does have a helper—
Internet control message protocol (ICMP).
ICMP is a software component that en-
ables gateways along the chain to report
back to the originating host as to the
health of the data packet in transport.

ICMP sends control messages to the
Internet software on a host. Any host can
use ICMP, but routers usually employ it.

work it serves. Because each gateway has
an address, it’s relatively simple to connect
a new network and its gateway device to
an existing network superstructure.

A typical gateway or router is a stand-
alone box driven by an embedded en-
gine that’s programmed to sit between
networks and examine every message
passed on the networks it is connected to.
The router determines if a message should
remain on the local network or be routed
to another network.

Routers aren’t designed to keep up
with every host on every network, but they
are programmed to map all of the routers
and thus networks that they find electroni-
cally. Just as hosts seek out and communi-
cate with other hosts, routers seek out and
communicate with other routers. In the pro-
cess, network-to-network communication
is effected.

Network-to-network communications
doesn’t have to be across continents, either.
Having found that it’s best to experience
the hardware and software I write about,
I deployed routers between the living-room
network and the Circuit Cellar Florida Room
network. OK, now that you’ve changed
your perception of me from nerdy to just
plain weird, let’s talk about addressing in
an embedded network.

In the TCP/IP world, messages are
usually short packets of data. Each data
packet is addressed to reach a particular
host on a particular network. An address
may be an Internet or a physical address.

The Internet address is the familiar four
bytes divided by dots scheme (e.g.,
193.34.56.5). Each integer between the

Figure 1—The ISO model is refined, but the TCP/IP
layers still hold their own.

Physical
(cables and hardware)

Network interface
(Ethernet or modem)

Internet (IP)

Transport
(TCP or UDP)

Application
(e.g., ftp or telnet)

Physical
(cables and hardware)

Data link
(hardware interface)

Network

Transport

Session

Presentation

Application7

6

5

4

3

2

1

Layer

5

4

3

2

1

Layer

ISO model

TCP/IP model

Table 1—Most of these applications are famil-
iar, especially http.

Application TCP Port UDP Port

Echo 7 7
Daytime 13 13
ftp 21 –
Telnet 23 –
Simple Mail Transfer 25 –
Time 37 37
Whois 43 –
Trivial File Transfer – 69
Finger 79 –
http 80 –

CIRCUIT CELLAR MAY 199954 www.circuitcellar.com

the Internet. The Internet layer encapsu-
lates messages passed from the transport
layer and produces datagrams. Internet
layer protocols include IP, ICMP, and ARP.

Between the application layer and the
Internet layer lies the transport layer, which
passes data between the application and
Internet layers using TCP or UDP protocols.
Again, matter and antimatter, with TCP (a
connection-based reliable protocol) be-
ing matter and UDP (an IP-like connection-
less unreliable protocol) as the antimatter.

TCP is what makes the transport layer
famous. Unlike UDP, TCP uses a virtual
connection to ensure that data arrives at
its destination intact and in order. It ac-
complishes this connection via handshaking
and special codes in each data segment.

The topmost layer—the application
layer—is where the programmer reigns.
There are more protocols used in this layer
than I care to mention.

In simple terms, data flows from the
application layer of the originating host
through the TCP/IP stack and out the
physical layer across to the physical layer
of the destination host. Once the data
enters the destination host’s physical layer,
the process reverses and data flows to the
application layer, where it’s processed.

One more subject stands between us
and sorting out a TCP/IP application—
ports. As you know, a host can run
multiple Internet applications at once.
How does the stack know where to
route the messages?

TCP/IP assigns each network con-
nection its own protocol port, an inter-
nal TCP or UDP address that is passed
down the stack in the header of each
data packet. IP sends host addresses;
TCP and UDP send protocol port ad-
dresses. You may know of well-known
ports like the standard reserved proto-
col port addresses in Table 1.

STACK IT UP
The TCP/IP stack is

composed of five layers,
(see Figure 1). The physical
layer is the simplest layer,
with the application layer
chiming in as the most
complex. Each layer of
the stack has a job to do.

Confusion between lay-
ers is eliminated by en-
capsulation. Each layer
passes only properly for-
matted output to the next layer for process-
ing. Encapsulation also enables each layer
to treat data the way it prefers without
affecting how the data is treated in other
layers. For example, the transport layer
likes to pretend that data enters in a constant
stream but the Internet or IP layer sees data
as separate connectionless datagrams.

To write a successful embedded TCP/
IP application, you need to understand
each layer’s function. Physical layer is
another way of saying hardware layer.
This is the wire and cable and the network
glue (routers) that connect the networks.

The network interface layer is the net-
work interface card (NIC), modem, or serial
interface that physically connects the host
to the physical layer. This layer takes data
from IP and formats it into network-specific
frames. The frames are then transmitted to
other hosts via the physical layer.

The network interface layer is where
the address-resolution processes take place.
Address resolution, in this sense, is map-
ping the IP address used by other layers of
the TCP/IP stack to physical addresses
used by the network cards. Protocols spoken
at this level are Ethernet, PPP, and SLIP.

As we get further into embedding TCP/
IP, you’ll see that the IP datagram is the
fundamental information that flows over

Table 2—Thank goodness! Calls that almost read like English!

Figure 2—In this logical diagram, note the Ethernet
NIC at the network interface layer.

Stream (TCP)
sockets

Datagram (UDP)
sockets

Raw sockets

WinSock API

TCP UDP

IP

Ethernet or SLIP/PPP driver

accept() getservbyport() select()
bind() getsockopt() send()
closesocket() htonl() sendto()
connect() htons() setsockopt()
gethostbyaddr() inet_addr() shutdown()
gethostbyname() inet_ntoa() socket()
gethostname() ioctlsocket() WSACleanup()
getpeername() listen() WSAGetLastError()
getprotobyname() ntohl() WSASetLastError()
getprotobynumber() ntohs() WSAStartup
getservbyname() recv()
getsockname() recvfrom()

A
PC

MAY 1999 EMBEDDEDPC 55www.circuitcellar.com

SOCKET TO ME
The TNT Embedded ToolSuite supports

the Berkeley subset of the WinSock 1 API.
Remember that I spoke of the TCP/IP stack
being accessed via APIs? Well, here we
are. Table 2 lists the WinSock APIs sup-
ported by the Realtime Embedded Tool-
Suite kernel. Let’s talk a bit about sockets.

A socket is Softwarese for network
connection. A program creates a socket
handle by calling socket(). Each socket
handle forces the network stack to main-
tain connection information like protocol
(TCP, UDP, IP), port numbers, and IP
addresses (local and remote).

An application program can create three
socket types. Because TCP resides in the
transport layer and we know this layer likes
to manipulate data as a stream of packets,
the TCP socket is also called a stream socket.

Although UDP is in the transport layer,
it associates with IP, which implies data-
gram activity. Thus, the UDP socket can be
termed a datagram socket. Leave out TCP
and UDP, and the socket is raw. Figure 2
depicts how a socket is created and what
layers of the TCP/IP stack affect it.

A port number identifies a socket gener-
ated by an application, and an IP address
identifies a physical host machine on a
network. Together, they form a network
address. The port number is generated when
the server application invokes the network
API bind(). The same is true for a client
when the network API connect() is called.

Server apps tend to specify a well-
known port so clients can easily connect,
and the client apps let the network API
assign a random port number. Take a look
at Figure 3 as we build our application.

First, a client or server TCP/IP program
must create a socket by calling socket().
socket() creates a data structure con-
taining all of the necessary fields for data
to maintain a network connection.

For example, hsock = socket(AF_
INET, SOCK_STREAM, IPPROTO_TCP);
creates a client socket handle called
hsock. The AF_INET tells the Realtime
Embedded ToolSuite kernel to use a spe-
cific address family. The final two param-
eters are self-explanatory: this socket is a
stream socket using TCP.

The server-side call is hListen Sock
= socket(AF_INET, SOCK_STREAM,
IPPROTO_TCP);. No difference except
the handle name, which implies that the
server will be listening.

Next, initialize the client socket data
structure with the IP address and port
number of the server you want to contact.
pHostEnt = gethostbyname (pHost
Name); can be used to perform a DNS
lookup for remote host IP address.

 If a DNS server is active on the net-
work and pHostName is found, the IP
address and port number are returned
and put into the correct fields of the
structure pointed to by pHostEnt.

On the other hand, if this call fails,
pServEnt = get servbyname ("fin-
ger", "tcp"); will get the well-known

port and protocol from
a local table or file.

On the server side, at this
point it’s only necessary to bind
a well-known port number to the
new socket. Once the server bind is
complete, the server goes into a passive
listening mode, where incoming connec-
tions are queued for the application to
process.

The bind and listen code is bind
(hListenSock, (PSOCKADDR) &Local
Addr, sizeof(LocalAddr)) listen
(hListenSock, SOMAXCONN).

A
PC

MAY 1999 EMBEDDEDPC 57www.circuitcellar.com

SOURCE
Realtime Embedded ToolSuite
Phar Lap Software
(617) 661-1510
Fax: (617) 876-2972
www.pharlap.com

Fred Eady has over 20 years’ experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems design
and communications. Fred may be reached
at fred@edtp.com.

hListenSock is the handle returned
from the server socket() call.
LocalAddr is the address structure for a
local well-known port. SOMAXCONN is a
WinSock-defined constant.

Waits until data
is received

Waits until data
is received

socket()

socket()

bind()

bind()

sendto()

sendto()

recvfrom()

recvfrom()

Process request
from client

Process server
response

Client using
datagram sockets

Server using datagram sockets

Figure 3—There’s quite a bit more going on
behind the scenes than this diagram tells us.

 The client, after finding the remote
network address parameters, connects
with the network API connect() func-
tion. connect() puts the client socket
and remote network address together and
assigns an arbitrary local port number for
this connection. The code is connect
(hSock, (PSOCK ADDR)&Remote Addr,
sizeof (RemoteAddr)).

The first parameter is the socket handle
returned from socket(). RemoteAddr
is the structure describing the remote host
followed by the size of the structure.

Remember that the server had to bind
the port address to the new socket. Well,
the client connect() performs the same
kind of bind. The address information that
resulted from connect() is used by the
recipient to point back to the originator so
that a reply may be sent.

Client requests are removed from the
listen queue by hConnectSock = ac-
cept (hListenSock, (PSOCKADDR)
&RemoteAddr, &RemoteLen);.

accept() creates a new socket with
the IP address and port number of the
pending connection to keep the original
socket free to service other requests. All

that’s left to do is gen-
erate a query on the client
side, process the queries on
the server side, and reply to the
client.

WE’RE NOT DONE YET…
But, I’ve run out of allotted buffer space.

I’ve laid a solid networking knowledge
that I’ll build on next time as we install the
Realtime Embedded ToolSuite kernel and
pass some datagrams.

TCP/IP is a large subject and it can be
confounding. But, TCP/IP doesn’t have to
be complicated to be embedded. APC.EPC

www.pharlap.com

58 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

MICRO
SERIES

Mike Zerkus, John Lusher,
& Jonathan Ward

u

USB Primer

P
ar

t

of 4
1

 58

70

76

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

niversal serial
bus (USB) promises

to be the next major
advance in PC function-

ality, completing the PC’s transition to
a plug-and-play system. But, for all its
possibilities, USB is bit of a mystery.

For the average engineer with an
idea for a USB product or who has been
commanded to convert an existing
system, the journey to enlightenment
can be an arduous struggle. Rather than
merely providing information on USB,
we want to show you how to get your
USB device up and running.

As a high-speed bus for connecting
external devices to the PC, USB is the
next step for external peripherals on
Windows and Macintosh computers. By
allowing hot-plug installation, recon-
figuration becomes less of a hassle.

USB enables 127 devices to be on
the bus simultaneously. This arrange-
ment solves the problem of limited
serial ports.

USB operates at 12 Mbps (there is a
low-speed mode of 1.5 Mbps for some
devices), and it supports isochronous
and asynchronous data transfers. Be-
cause USB devices can be bus powered,
the transformer ganglion behind the
computer can be reduced.

PC users now have a simple user-
friendly peripheral bus that supports up
to 127 devices and that can be installed
without configuring or altering their

1

Practical Design Guide

Before
getting into
the nitty-

gritty of working on
Universal Serial Bus
projects, you need to
know the basics. But
Mike, John, and Jon
offer more than an
intro to USB. Their
demo gets you ready
to work on your own.

4

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 59

current system. Gone are the days of
figuring out which interrupt settings
and I/O addresses were available and
altering the device’s settings to fit the
available resources.

With USB, you just plug the device
into the port. The OS takes care of the
rest. There are no jumpers, power
packs, powerdowns, resets, or taking
the case off. The PC automatically
installs the appropriate driver and
configures the device as needed.

HOW DOES USB WORK?
RS-232 serial communication with

UARTs, transfer rates, stop bits, and
so on traces its heritage back to me-
chanical devices in the days of teletype.
In the heyday of TTY, you could repair
a UART with a wrench. Adjusting the
transfer rate was more like tuning a
car than working on electronics.

USB doesn’t represent an electronic
analog of a mechanical system. In a
USB system, the line between hard-
ware and software function is blurred.
USB exploits the full potential of a
computerized communication system.

The two sides of a USB system are
the device and the host. The device side
consists of the USB device (e.g., modem
or printer), which usually contains a
USB microcontroller (e.g., the Intel
’930) and the code to properly initiate
USB communication to the host. The
host side is the PC running an OS that
supports USB. The device and host
communicate over the USB cable.

USB devices can be self-powered or
bus powered, so they can be produced
without including a bulky wall-mount
transformer. The device gets its power
from the host computer or USB hub.

BUS TOPOLOGY
USB uses a tiered/star bus topology

in which each device plugs into a hub.
The hub is a traffic cop that enforces
the low-level rules of the bus. Figure 1
shows the physical arrangement of a
USB system. For the most part, hubs
are transparent.

Classes are the device categories
that share common I/O requirements.
In USB there are currently 11 classes:
common class, audio, communications,
hub, human interface device (HID),
image, monitor, physical interface
device (PID), power, printer, and storage.

Classes introduce a set of standard
drivers native to the OS (Windows 98)
and enable you to use them as is, write
your own driver, or have a mini-driver.

PACKETS
A packet is a combination of special

fields. All packets begin with the Sync
field to synchronize the phase-locked
loop and have a packet identifier (PID)
that helps USB devices determine the
kind of packet being sent. The packet is
followed by address information, a frame
number, or data. There are four types
of packets; each has several subtypes.

The first packet type—the token,
shown in Figure 2a—is a 24-bit data

packet that represents what is happen-
ing over the bus. The first eight bits
represent the packet identifier. The
next seven bits are the address of the
device that the host is communicat-
ing with. The next four bits are the
endpoint address, which is where the
data is going in the device. And, the
last five bits are the CRC to check the
token for errors.

There are four types of tokens—In,
Out, Start of Frame (SOF), and Setup.
Check the glossary of terms in Design
Forum for more details. An SOF
packet is illustrated in Figure 2b.

As you see in Figure 2c, data pack-
ets contain PIDs for further data error-
checking. Data packets alternate
between DATA0 and DATA1. The
only exception to this format is the
Setup packet, which always uses the
DATA0 packet.

Data packets have a format of the
DATA0/1 PID followed by the data,
which ranges in length from 0 to 1023

bytes. The packet is
checked with a 16-bit
CRC field.

The handshake packet
is shown in Figure 2d.
These packets inform the
sender of the data as to

Figure 1 —This diagram shows the physical arrange-
ment of a USB system.

Device 3
“keyboard”

Device 1
“joystick”

USB host
“root hub”

Device 6
“mouse”

Device 4
“telephone”

Device 2
“USB hub”

Device 5
“USB hub”

Device 7
“modem”

Packet identifier
OUT: b0001
IN: b1001

SETTUP: b1101
Address of

device

SYNC
00000001

PID
0123,0123

Address
0123456

End point
0123

CRC
01234

Synchronizes
PLL

Endpoint field
“0–15”

Cyclic
redundancy

check

Packet identifier
SOF:b0101

SYNC
00000001

PID
0123,0123

Frame number
012345678910

CRC
01234

Frame number
“0–2047”

Packet identifier
DATA0: b0011
DATA1: b1011

SYNC
00000001

PID
0123,0123

Data
01234567,01234567,...

CRC

Cyclic
redundancy

check
16 bits

Data
0–1023 bytes

Packet identifier
ACK: b0010
NAK: b1010

STALL: b1110

SYNC
00000001

PID
0123,0123

a)

c)

b)

Figure 2 —These diagrams show
four different types of packets: token
(a), SOF (b), data (c), and hand-
shake (d).

d)

60 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 3— This diagram and the accompanying list illustrate the enumeration of a USB device.

DESCRIPTORS
The descriptor includes general

information about the device. The
Vendor ID and Product ID fields play
the key role in the enumeration of the
device. The descriptor also informs the
host about the number of configurations
of the device.

the condition of the received data
packet. Handshake packets are ACK,
NAK, and STALL.

The special preamble packet estab-
lishes low-speed communication on
the bus. This token is sent full speed
to the hubs, and the hubs then enable
their low-speed outputs.

Configuration descriptors tell the
host the number of interfaces, the
device’s power requirements, and its
attributes. Interface descriptors are the
number of endpoints and what class
they belong to as well as the interface
protocol.

Endpoint descriptors describe the
direction and attributes of the end-
points belonging to a specific interface,
including the address of endpoint,
direction of endpoint, attribute of
endpoint, and maximum packet size.

DATA TRANSFERS
A transfer or transaction consists

of a number of packets moving back
and forth along the bus between the
host and a device. There are four types
of data transfers in a USB system:

• control—controls the bus, bidirection-
al, setup, data, status

• bulk—asynchronous data, bidirec-
tional, CRC

• isochronous—time-critical data, no
CRC, unidirectional, up to 1023 bytes
per frame, guaranteed bandwidth
per frame

• interrupt—receives data at timed
intervals, input only, 1–255-ms
intervals

Enumeration is the bus-configura-
tion process, which takes place any-
time the bus is started or a device is
plugged into or unplugged from the bus.
This process is shown in Figure 3.

USB device
Vendor ID: ABCD

Product ID: AA
Assigned address: 3

USB device
Vendor ID: 2332

Product ID: 1
Assigned address: 4

USB device
Vendor ID: 123
Product ID: AA

Assigned address: 5

USB device
Vendor ID: 0452

Product ID: 3
Assigned address: 6

USB device

Device
ports

USB
port

Root
hub

Embedded
software

Application

USB Code
Vendor ID: C251

Product ID: 1
Assigned address: 2

Host PC

Application

Mini-driver

WDM driverUSB driver

WIN '95
OSR 2.1

Host gets
device descriptor

and assigns address

Host informs hub
to activate port and

reset the device

Hub informs host

Device plugged
into hub port

1. Device is attached to a hub port.
2. Hub notifies host of change-of-port status when

polled for status updates.
3. Host queries the hub as to the change in port

status.
4. Host issues a port enable and reset command

for the port.
5. Device now in powered state and replies to the

default address.
6. Host retrieves the device descriptor and deter-

mines the maximum packet size for endpoint
zero. It also retrieves the VID and PID to know
what device driver to use with the device.

7. Host assigns unique address to USB device.
8. Host retrieves the configuration descriptors.

Based on available power and bandwidth, the
host assigns a configuration to the device.

9. The device is now addressed, configured, and
ready to use.

62 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The whole USB system is not pro-
vided by any one vendor. The OS
provides some parts; other parts come
from third parties and the developer.

For the next few years, most USB
development projects will have to func-
tion with both Windows 95 and 98.
There are some key items to be aware
of when using USB with Windows 95.

Windows 95 doesn’t have native USB
support. You must have OSR 2.1 build
1214 or better installed on the system.

Windows 95 also has some minor
bugs. One such bug is when the USB
device has no alternate settings. If this
occurs, Windows 95 freezes up when
the device is unplugged.

Windows 98 handles USB right out
of the box and resolves the above-
mentioned bug. It also has a program
to assist in developing USB peripherals.
usbview.exe enables you to monitor
the activity on the USB bus as well as
get the device descriptors.

END-TO-END EXAMPLE
As promised, here’s an example of

how to get a USB device working.

Using a commercially available evalu-
ation board, the goal of this system is
to blink LEDs on the eval board from
the PC and to blink indicators on the
PC screen from the eval board.

For this project, you need the An-
chor Chips EZ-USB evaluation kit V.C
or better, the USB specification, Win-
dows PC with USB support, Windows
95 (OSR 2.1 build 1214 or better) or
Windows 98, and Visual C++ or Visual
Basic (V.5.0 or better). To produce
drivers, you need Windows 98 and the
Windows 98 DDK.

We hooked up Port A of the Anchor
Chips device to a switch/LED circuit
and created a DLL using the driver’s
IOCTL functions. A VB program calls the
DLL and gets the data from the driver.
Basically, VB requests device descriptors
by calling the DLL (passes an empty
pointer to buffer) and the DLL calls the
driver using IOCTL_Ezusb_GET_
DEVICE_DESCRIPTOR.

Data is passed to a buffer, and the
buffer is filled and returned to VB. The
driver calls the USBD.SYS driver to
communicate with the device and OS.

HARDWARE TESTING
When you get your development

board, you want to make sure the
hardware works. First, install the
software, which puts the EZ-USB
driver into the Windows system and
the install information (INF) file into
the INF directory.

The INF file informs Windows as
to what driver to load for the particu-
lar vendor ID (VID) and product ID
(PID) combination. The USB Imple-
menters Forum provides the VID; you
assign the PID.

Once the software is installed, plug
in the USB device with the included
USB cable. It’s impossible to hook up
the cable backwards because the cable
has two different connectors (A and B).

When the device is connected, the
red light lights up, signaling that the
board has power. Windows informs
you that it has found new hardware,
finds the appropriate INF file, and
installs the driver for the new device.

All information concerning driver
and VID/PID combinations are in the
Windows system registry. If, during

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 65

Private Type UnsignedInt � Type define to overcome VB's limitation
� in not having unsigned 16-bit numbers

 lobyte As Byte
 hibyte As Byte
End Type

Private Type LongData
 Number As Long
End Type

Private Type USB_DD � Type define for USB Device Descriptor
Descriptor_Length As Byte
Descriptor_Type As Byte
Spec_Release As UnsignedInt
Device_Class As Byte
Device_SubClass As Byte
Device_Protocol As Byte
Max_Packet_Size As Byte
Vendor_ID As UnsignedInt
Product_ID As UnsignedInt
Device_Release As UnsignedInt
Manufacturer As Byte
Product As Byte
Serial_Number As Byte
Number_Configurations As Byte

End Type

'DLL functions used to communicate with USB device
Private Declare Function ReadBulkByte Lib "lusher_USB.dll" (ByRef InByte As Byte,

ByVal PipeNumber As Byte, ByVal DeviceDriver As String) As Integer
Private Declare Function WriteBulkByte Lib "lusher_USB.dll" (ByVal OutByte As

Byte, ByVal PipeNumber As Byte, ByVal DeviceDriver As String) As IntegerPrivate
Declare Function GetDeviceDescriptor Lib "lusher_USB.dll" (ByRef DevDes As USB_DD,

ByVal DeviceDriver As String) As Integer
� get device descriptor and parse it into appropriate fields
Private Sub Get_USB_Device_Descriptor()

� Gets device descriptor from the USB device as well as verify
� that USB is communicating correctly and that correct
� source code is running
Dim CheckData As Byte
Dim ProdID As LongData
Dim VendID As LongData
Dim SpecRel As LongData
Dim DevRel As LongData
Dim USB_Device_Descriptor As USB_DD
Dim Result As Integer

Result = GetDeviceDescriptor(USB_Device_Descriptor, "\\.\ezusb-0")

� If all transactions met with success, then set up screen and
� allow user interaction
� Else alert user to the fact that no USB device is present and
� do not allow user interaction
If Result = 0 Then

Call USBError � Informs user of error and set form attributes
� to offline mode

Exit Sub
End If

Status.Caption = "USB Device Connected"
Status.ForeColor = &HFF00&
LSet ProdID = USB_Device_Descriptor.Product_ID
LSet VendID = USB_Device_Descriptor.Vendor_ID
LSet SpecRel = USB_Device_Descriptor.Spec_Release
LSet DevRel = USB_Device_Descriptor.Device_Release
DesForm.Type.Caption = USB_Device_Descriptor.Descriptor_Type
DesForm.Spec.Caption = SpecRel.Number
DesForm.Class.Caption = USB_Device_Descriptor.Device_Class
DesForm.SubClass.Caption = USB_Device_Descriptor.Device_SubClass
DesForm.Protocol.Caption = USB_Device_Descriptor.Device_Protocol
DesForm.PacketSize.Caption =

USB_Device_Descriptor.Max_PAacket_Size
DesForm.VendorID.Caption = VendID.Number
DesForm.ProductID.Caption = ProdID.Number
DesForm.DevRel.Caption = DevRel.Number
ProductID.Caption = ProdID.Number
VendorID.Caption = VendID.Number

End Sub

� Example calls to read and write functions
Result = WriteBulkByte(Data_Out, 0, "\\.\ezusb-0")
Result = ReadBulkByte(Data_In, 7, "\\.\ezusb-0")

Listing 1 —This Visual Basic code calls a DLL to get the device descriptor.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 67

development, you need to delete these
entries, they are located at HKEY_
LOCAL_MACHINE\Enum\USB and HKEY_
LOCAL_MACHINE\System\Current-
ControlSet\Services\Class\USB.

You can use regedit.exe to edit
and browse the registry entries on your
computer. You can now unplug and
replug the device as much as you need.
Until you delete the registry entries,
Windows remembers what driver to
load and doesn’t inform you of any
hardware detection again. This step is
called enumeration.

Enumeration is when the OS recog-
nizes that there is new hardware on
the bus and determines its particular
needs. The appropriate driver is then
loaded and it gives the device a unique
address. Enumeration takes place each
time you plug a device on the bus and
on bootup of Windows.

At this point you should try the
software package that comes with the
evaluation kit. EZ-USB Control Panel
lets you get the descriptors from the
USB device, download firmware to the
device, and run the Keil debugger.

THE GOAL
Our goal is to build a demo of a

working USB device. The concept is
that a user application sends data to a
USB device and vice versa. Our USB
device is the Anchor Chips development
board running firmware we created.

On the host side, we have an appli-
cation made using Visual Basic. The
program communicates with the device
via the general-purpose driver (GPD)
from Anchor Chips and a DLL we
created to implement a bridge between
the user interface (VB) and the GPD.

The user interface is an experiment
board with four DIP switches and four
LEDs. The user selects a four-digit
binary combination that appears on
the LEDs and vice versa for the DIP
switches.

In our VB program, we call functions
in a DLL that communicates with the
GPD. Listing 1 shows how to call the
DLL that communicates with the USB
device. It also shows how to parse up
the device descriptor and read and
write a byte from the USB device.

A DLL was written to communicate
between the Visual Basic program and

// ReadBulkData(BYTE *OutBuffer, BYTE NumberOfBytes, BYTE PipeNumber,
// LPSTR DeviceDriver)
// Function reads data from specific pipe over USB port for device in question
int _stdcall ReadBulkData(BYTE *OutBuffer, BYTE NumberOfBytes, BYTE PipeNumber,
 LPSTR DeviceDriver)
{

HANDLE hUSB_DeviceHandle; // Declare variables
DWORD nBytes = 0;
BOOL bResult;
BULK_TRANSFER_CONTROL bulkControl;
BYTE Input[64];
BYTE index;

bulkControl.pipeNum = (ULONG)PipeNumber;
if (NumberOfBytes > 64 || NumberOfBytes < 1)

 // Limit ammount of transfer to 64 bytes maximum
 // If greater than 64 or less than 1 then return an error

{
 return 0;
}

 // Get handle to USB device in question
hUSB_DeviceHandle = CreateFile(DeviceDriver, GENERIC_WRITE,

 FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
if(hUSB_DeviceHandle == INVALID_HANDLE_VALUE)
{
return 0; // If not a good handle then abort!

}

// Else it is a good handle; read data to USB pipe by calling system driver
 bResult = DeviceIoControl(hUSB_DeviceHandle,IOCTL_EZUSB_BULK_READ, &bulkControl,
 sizeof(BULK_TRANSFER_CONTROL), &Input[0], NumberOfBytes, &nBytes, NULL);
 CloseHandle(hUSB_DeviceHandle); // Close handle
 // Fill result with that of input array
 for (index = 0; index < NumberOfBytes; index++)
 {
 *OutBuffer = Input[index];
 OutBuffer++;
 }
 return (int)bResult; // Return our result: success or failure
}

// WriteBulkData(BYTE *InBuffer, BYTE PipeNumber, LPSTR DeviceDriver)
// Function writes data from specific pipe over USB port for device in question

int _stdcall WriteBulkData(BYTE *InBuffer, BYTE NumberOfBytes, BYTE PipeNumber,
 LPSTR DeviceDriver)
{

HANDLE hUSB_DeviceHandle; // Declare variables
DWORD nBytes = 0;
BOOL bResult;
BULK_TRANSFER_CONTROL bulkControl;
BYTE Output[64];
BYTE index;

bulkControl.pipeNum = (ULONG)PipeNumber;
// Limit ammount of transfer to 64 bytes maximum
// If greater than 64 or less than 1, return an error
if (NumberOfBytes > 64 || NumberOfBytes < 1)
{

return 0;
}
// Fill output array with that of input buffer
for (index = 0; index < NumberOfBytes; index++)
{

Output[index] = *InBuffer;
InBuffer++;

}
// Get handle to USB device in question
hUSB_DeviceHandle = CreateFile(DeviceDriver, GENERIC_WRITE,

 FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
if(hUSB_DeviceHandle == INVALID_HANDLE_VALUE)
{

return 0; // If not a good handle, abort!
}
// Else it is a good handle; write data from USB pipe by calling system driver

 bResult = DeviceIoControl(hUSB_DeviceHandle,IOCTL_EZUB_BULK_WRITE,&bulkControl,
 sizeof(BULK_TRANSFER_CONTROL), &Output[0], NumberOfBytes, &nBytes, NULL);
 CloseHandle(hUSB_DeviceHandle); // Close handle
 return (int)bResult; // Return our result: success or failure
}

Listing 2 —This example DLL handles calling the EZ-USB driver.

68 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

;FILE: EXAMPLE.INF

[Version]
signature="$CHICAGO$"
Class=USB
Provider=%Exanoke%
LayoutFile=LAYOUT.INF

[Manufacturer]
%Example%=Example

[PreCopySection]
HKR,,NoSetupUI,,1

[DestinationDirs]
DefaultDestDir=11

[LusherTech]
;
%USB\VID_06E5&PID_8000.DeviceDesc%=FIRMWARE, USB\VID_06E5&PID_8000
%USB\VID_06E5&PID_8001.DeviceDesc%=USBDEV01, USB\VID_06E5&PID_8001

[ControlFlags]
ExcludeFromSelect=* //removes all devices from device installer list

[FIRMWARE]
AddReg=FIRMWARE.AddReg

[FIRMWARE.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,firmdown.sys

[USBDEV01]
AddReg=USBDEV01.AddReg

[USBDEV01.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,ezusb.sys

[Strings]
Example="Example USB"
USB\VID_06E5&PID_8000.DeviceDesc="USB Firmware Download"
USB\VID_06E5&PID_8001.DeviceDesc="USB Actual Device"

Listing 4 —This code shows you an example INF file.

void TD_Poll(void) // Called repeatedly while device is idle
{
 OUTA = byte_in; // Place byte retrieved from endpoint on port A
 byte_out = 0xF0 & PINSA; // Read port A and mask to get only upper 4 bits
}
void ISR_Ep1out(void) interrupt 0
{
 if (OUT1BUF[0] == 0x80) // If READ COMMAND (0x80) then send data to host
 {
 IN1BUF[0] = byte_out;
 IN1BC = 1; // Inform processor it has a byte to send out to host
 }
 else // Else set variable to the input byte
 {
 byte_in = OUT1BUF[0];
 }
 OUT1BC = 0; // Arm OUT so it can receive next packet
 EZUSB_IRQ_CLEAR(); // Clear the IRQ
 OUT07IRQ = bmEP1;
}

Listing 3 —Here are a couple of sample routines from PERIPH.C.

the GPD. The DLL gets a device handle
to the device driver in question.

We want to communicate to the
first instance of the device driver (i.e.,
the first device to use this driver). If
we get a valid handle, we can commu-
nicate to it. Otherwise, the device

isn’t on the bus and the driver isn’t
loaded. We communicate to the driver
via DeviceIOControl. This function
passes data to and from the device
driver and it returns success or failure.

Listing 2 shows how a DLL can be
used to communicate with the GPD.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 106 May 1999 69

Mike Zerkus has 15 years of experi-
ence working on devices and inven-
tions ranging from space devices to
consumer products. Mike is the presi-
dent of CM Research, a development
company that specializes in bringing
products from concept through proto-
type to production. You may reach
him at mzerkus@cmresearch.com.

John Lusher is an electrical engineer and
has been involved with USB develop-
ment for the last two years. You may
reach him at jlusher@lushertech.com.

Jonathan Ward is president of Keil
Software and has been involved in the
design, implementation, and docu-
mentation of embedded systems since
the early 1980s. You may reach him
via (972) 735-8052.

The DLL does the necessary commu-
nicating with the system driver and if
there is an error, responds to the calling
application with an error status. This
arrangement provides an easy-to-use
interface to the GPD.

FIRMWARE
For your USB microcontroller, we

recommend you have the full version
of the C compiler because the example
files may exceed the evaluation limit
of most evaluation-level compilers.
Most of the code needed to communi-
cate with the host is already written.
Just fill in your peripheral and I/O code.

The development kit has two firm-
ware files called PERIPH.C and FW.C.
These files (supplied by Anchor Chips)
contain the framework for the whole
8051-based USB control code. The
PERIPH.C source file contains the poll-
ing loop code segment, as well as the
endpoint interrupts for communicating
with the host. You merely write your
peripheral code in the poll loop.

When data is to be exported, a set
of ISRs is called (seven in and seven
out). These are the endpoints of the
communication pipes. In the initial-
ization section of the code, you need
to set the direction of the port pins.
For our example, port A is used. The
upper nibble is input and the lower
nibble is output. Listing 3 shows ex-
ample routines from PERIPH.C.

In USB the host initiates all com-
munications. If the device has some-
thing to tell the host, it must place the
data into an output array (IN1BUF[0]).

After the firmware is finished, it
must download to the chip because
Anchor Chips’ USB paradigm calls for
the device-side application code to be
transferred on startup of the processor.
There are two methods for downloading
the firmware—B0 load and B2 load. We
describe B0 here.

The micro is basically a state ma-
chine that does simple USB tasks
without 8051 code. Using the B0 pro-
tocol, the firmware is sent over the USB
to the chip and an external EEPROM
contains the device descriptor (VID and
PID). This information tells Windows
to load a driver.

The driver was made using the
ezloader.sys driver source file,

which lets you implement your firm-
ware as part of the driver. The device
is enumerated to download the firm-
ware to the micro’s RAM.

The micro reenumerates and reports
a new device descriptor. We used the
same VID but different PIDs (x8000 for
download, x8001 for device). The new
VID/PID combination tells Windows
to load the real driver (EZUSB.SYS).

An INF file tells Windows which
VID/PID combination goes with each
driver. Listing 4 is a typical INF file
entry for the VID/PID combo. Our VID
is 0x06E5, and the PIDs are 0x8000
and 0x8001. The sample INF file tells
Windows which drivers to load accord-
ing to the VID and PID information that
the system retrieves from the device.

READY TO GO
Basically, you treat most of the

firmware code as if you were in regu-
lar 8051 development, except that the
code resides in the POLL loop, not MAIN.
There are ample instructions in the kit
manuals. The GPD is well documented,
and their program handles the rest. I

RESOURCES

A glossary of USB terms, a checklist
for building a USB device, and a list
of USB suppliers are available on-
line in Design Forum in May.

70 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Dallas 1-Wire Devices

If you’re
looking
for a
needle in
a hay-

stack, maybe you
could use a Dallas
1-wire device. Well,
maybe not, but Jeff
shows how its unique
addressing systems
enable multiple devices
to run off one I/O pin.

e didn’t have to
be in Boston until

Saturday evening, but
Kristafer (my youngest)

and I left home Friday to spend the night
in Waltham where my oldest son lives.

That gave the three of us a whole
day to bum around Boston before Kris
and I were scheduled to meet the rest
of the Cub Scouts at the Boston Mu-
seum of Science for a special camp-out,
er, camp-in.

Getting around Boston isn’t too
tough. The Mass Transit Authority
(MTA) offers multiple subway routes
into and out of the city. The four main
lines converge at a hub of four midtown
stops where you can switch between
the red, blue, orange, and green lines.

We spent a lot of time looking at
the MTA maps, and Kris had the task
of determining our route between
destinations. He quickly learned the
importance of knowing which direction
to head and where to switch lines. All
of this got me thinking about network-
ing and the importance of addressing.

Before you could say “Paul Revere,”
it was time for us to head over to the
museum. Just imagine hundreds of
Cub Scouts funneling into the mu-
seum, all carrying armfuls of sleeping
paraphernalia! Not a pretty sight, but
well choreographed on the part of the
museum. Apparently, these sleep-ins
are a common occurrence.

You might think that coordinating
so many kids would be a nightmare,
but we were quickly split into small
groups and whisked away to our own
little corner of the facility. Scheduled
events kept us busy until midnight.
When they say, “lights out at midnight,”
that’s what they mean. Everything goes
off; the lights, the exhibits. It’s eerie,
camping under a black sky with no stars.

As I drifted off to sleep thinking
about the number of people staying
here, I wondered how they would ever
be able to find anyone. Just then a
small light appeared and a voice asked,
“Is there a Josh Nixon here? I found a
bottle of medication with your name
on it.” Josh piped up that he was in-
deed here, but what intrigued me was
how we were located so easily.

It seems that at registration each
visitor was given an identification slot.
The schedule for the whole weekend
was preprogrammed into a computer
to identify where each visitor would
be (or at least should be) during that
time. With the comforting notion that
big brother was watching over us, I fell
fast asleep dreaming of buses driving
around with large hexadecimal addresses
painted on them.

THE BUS STOPS HERE
Park those buses in an infinite loop

for now. I want to continue where I
left off last month, talking about the
1-wire Dallas devices. In their play for
easy expansion, Dallas created a poten-
tial monster by enabling multiple 1-wire
devices to share the same single I/O bit.

Many of these devices might be the
same, like the multiple thermometers
that monitor equipment temperatures,
or they might be different, like the 1-
wire weather station Dallas offers for
about $80 on their web site (see Photo 1).

The plastic enclosure contains the
electronics and hardware for measur-
ing temperature, wind speed, and wind
direction. All of this is done via Dallas
1-wire devices. How is it possible, using
a single wire?

There are two levels of commands
to talk with 1-wire devices—ROM
functions and memory functions. All
1-wire devices are familiar with all
ROM functions, which are bus-level
functions used to communicate with

w

Part 2: All on One

CIRCUIT CELLAR ® Issue 106 May 1999 71www.circuitcellar.com

have conflicting bits at this position
are disabled until you issue another
RESET. These devices are now off the
bus for the rest of this path search.

Repeat this combination of double
reads with a decision path write until
all 64 bits are searched. You now know
that there is a device on the bus with
the 64-bit address of the path you just
completed.

Now, you must reset the bus and
do a new search to resolve any conflicts
you found along the way. To keep track
of where you’ve been, try this method.

Always take the lower path of any
conflict first. Keep track of the last
conflict in a path and resolve that con-
flict on the next path. When you get
to the 64th bit of each search, if you’ve
had no conflicts on the present search,
you’re finished.

The program in Listing 1 uses the
assembly routines from last month to
search for all the devices on the 1-wire
bus. The program follows the flow-
chart in the Dallas 1-wire databook.

The 1-wire weather station has a
few unique points that are worth dis-

short distance from the trunk,
it splits off into two branches;
one bends upward, the other
downward.

A little further on, those
two branches split again, which
is the second bit division in
our search. And so it goes for
64 (bit) divisions (8 bytes worth).

This scenario gives you an
idea of the massive number of
possibilities. To keep things
straight, at every division, label
the branch paths that bend up
1, and the branches that bend
down 0. Following the bottom
path, all the branches are la-
beled 0. This is the path we
take to identify a 1-wire device
with all 0s for its family byte,
six ID bytes, and CRC.

To help determine who’s
there, Dallas takes advantage
of the open-collector architec-
ture of the 1-wire bus. When
SEARCH-ROM is issued (follow-
ing a RESET timeslot), you must
read a time slot twice. All 1-
wire devices that are not dis-
abled (hold that thought) answer
first with their present address bit (ad-
dress first) and then with the comple-
ment of that address bit.

There are four possible outcomes
to these two reads: 11, 10, 01, and 00.
Two 1s indicate that no devices were
present. There must be complementary
bits if a single device answers 01 or 10.

When multiple devices are present,
they may both have the same or oppo-
site address bits in the present position.
If they are the same, you won’t be able
to differentiate between them at this
present bit position. Don’t worry about
that now. It will all work out later. If
they are different, each one forces a 0
on the bus and you know that there is
an address conflict at this fork.

From this information, you must
choose a path to take. Naturally, if there
are no address conflicts, you choose
that path on the tree. If there is a con-
flict, you can choose either path, but
remember to come back to this branch
later and follow it to find the complete
address for the conflicting device.

Choose a path by sending a write-1
or write-0 time slot. All devices that

all 1-wire devices. (See Part 1 for 1-wire
timing and communication specs.)

Following a bus reset, all slave
devices patiently listen for a ROM
function. After a device is selected via
a ROM function, it is ready to respond
to a memory function. Each 1-wire
device family has its own list of mem-
ory functions that support the special
qualities of that device. In other words,
ROM functions are general commands
and memory functions are specific.

The READ-ROM command instructs
all devices to forget about the ROM
functions and respond with their ID
(family code + serial number + CRC).
Obviously, multiple devices will an-
swer and the colliding data is worth-
less, making READ-ROM only good for
use with single devices on the bus.

SKIP-ROM instructs all devices to
forget about the ROM functions and
respond to the following memory
function. Again, good for single devices.

MATCH-ROM contains a unique ID
(family code + serial number + CRC)
of the device you’re looking for. All 1-
wire devices that don’t match the ID
you requested are disabled. Only a
single device (if it is actually there)
pays attention to the following mem-
ory function commands. MATCH-ROM
is good to use with multiple devices—
that is, if you know who’s connected.

56-BIT ADDRESSING
If you paid attention last month,

you know how each 1-wire device has
its own ID number. Each device has
its own 1-byte family code (e.g., 10h
for all DS1820 thermometers). The
following six bytes hold a unique
serial number for each manufactured
device. No two devices within a fam-
ily have the same serial number.

A single-byte CRC check byte offers
some semblance of correctness. To
determine what devices are connected
to the 1-wire bus, you must search all
264 combinations to see who’s home.
But, that task could take years! Luck-
ily, Dallas included a search function
to help narrow down the possibilities,
but you need to know how to use it.

CLIMBING THE TREE
Think first of a tree on its side with

the base of the trunk on the left. A

Photo 1 —Dallas’s 1-wire demo weather station comes with a PC
serial interface. Ditching the interface provides a good platform for
investigating the 1-wire bus for use with a microcontroller.

72 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

// variable definitions
// b0 used in bit tests

symbol temp=b7 // data being passed
symbol templ=b8 // data being passed
symbol temph=b9 // data being passed
symbol cntr=b10 // bit counter
symbol ctemp=b11 // temp counter
symbol rtemp=b12 // temp zero counter
symbol byte0=b21
symbol byte1=b22
symbol byte2=b23
symbol byte3=b24
symbol byte4=b25
symbol byte5=b26
symbol byte6=b27
symbol byte7=b28
symbol bytenum=b29
symbol bitnum=b30
symbol A=b31
symbol B=b32
symbol LD=b33
symbol D=b34
symbol RV=b35
symbol RBI=b36
symbol DM=b37

START: call SEARCH
serout 7,n1200,("That is all",13,10)
pause 10000
goto START

SEARCH: call FIRST
SEARCH1:if RV=0 then SEARCH3
temph=byte0/16 : templ=byte0//16 : call PRNT
temph=byte1/16 : templ=byte1//16 : call PRNT
temph=byte2/16 : templ=byte2//16 : call PRNT
temph=byte3/16 : templ=byte3//16 : call PRNT
temph=byte4/16 : templ=byte4//16 : call PRNT
temph=byte5/16 : templ=byte5//16 : call PRNT
temph=byte6/16 : templ=byte6//16 : call PRNT
temph=byte7/16 : templ=byte7//16 : call PRNT
serout 7,n1200,(13,10)

SEARCH2:
if D=1 then SEARCHX

SEARCH3:
if LD=0 and D=0 then NODEVICE
call SECOND : goto SEARCH1

SEARCHX:return
NODEVICE:
serout 7,n1200,("No Device",13,10)
goto SEARCHX

PRNT: temp=templ : call LOOK
templ=temp : temp=temph : call LOOK
temph=temp : serout 7,n1200,(temph,templ," ") : return

LOOK:
Lookup
temp,(48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70),temp
return

FIRST: LD=0 : D=0
SECOND: RV=0
if D<>1 then RESET
D=0 : return

RESET: call RESET_P

Listing 1 —This program, written in PicBASIC, searches the 1-wire bus and reports every device’s unique ID
number. It uses the assembly routines from Part 1.

(continued)

CIRCUIT CELLAR ® Issue 106 May 1999 73www.circuitcellar.com

if temp=0 then NONE
RBI=1 : DM=0
temp=$F0 : cntr=8 : call W_B

QUERY: cntr=1 : call R_B : b0=temp : A=bit7
cntr=1 : call R_B : b0=temp : B=bit7
if A=B then SAME
call PUT

PICK: call GET
bit0=A : temp=b0 : cntr=1 : call W_B
RBI=RBI+1
if RBI<=64 then QUERY
LD=DM
if LD<>0 then MORE
D=1

MORE: RV=1 : return
SAME:
if A=0 then FIGHT

NONE:
LD=0 : return

FIGHT:
if RBI<>LD then LET0
A=1 : call PUT : goto PICK

LET0:
if RBI<LD then CHK0
A=0 : call PUT

MARK:
DM=RBI : goto PICK

CHK0:
call GET
if A=0 then MARK
goto PICK

PUT: BITNUM=RBI-1
BYTENUM=BITNUM/8
BITNUM=BITNUM//8
call B02BYTE
call BIT2A
call BYTE2B0
return

B02BYTE: branch
BYTENUM,(BNUM0,BNUM1,BNUM2,BNUM3,BNUM4,BNUM5,BNUM6,BNUM7)

BNUM0: b0=BYTE0 : return
BNUM1: b0=BYTE1 : return
BNUM2: b0=BYTE2 : return
BNUM3: b0=BYTE3 : return
BNUM4: b0=BYTE4 : return
BNUM5: b0=BYTE5 : return
BNUM6: b0=BYTE6 : return
BNUM7: b0=BYTE7 : return
BIT2A: branch BITNUM,(NUM0,NUM1,NUM2,NUM3,NUM4,NUM5,NUM6,NUM7)
NUM0: bit0=A : return
NUM1: bit1=A : return
NUM2: bit2=A : return
NUM3: bit3=A : return
NUM4: bit4=A : return
NUM5: bit5=A : return
NUM6: bit6=A : return
NUM7: bit7=A : return
BYTE2B0: branch
BYTENUM,(PNUM0,PNUM1,PNUM2,PNUM3,PNUM4,PNUM5,PNUM6,PNUM7)

PNUM0: BYTE0=b0 : return
PNUM1: BYTE1=b0 : return
PNUM2: BYTE2=b0 : return
PNUM3: BYTE3=b0 : return
PNUM4: BYTE4=b0 : return
PNUM5: BYTE5=b0 : return

Listing 1 —continued

(continued)

74 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

wind direction. You can attempt to
use MATCH-ROM to determine whether
or not each device is attached, or you
can use SEARCH-ROM to determine
which one is there. Figure 1 shows the
output produced by running the search
program in Listing 1.

DON’T TOUCH THAT
Most 1-wire devices come packaged

in a variety of ways. Sometimes, a
device is permanently connected to
the rest of your circuitry, so the plastic-
encapsulated through-hole or surface-
mount package is the style of choice.

PNUM6: BYTE6=b0 : return
PNUM7: BYTE7=b0 : return

GET: BITNUM=RBI-1
BYTENUM=BITNUM/8
BITNUM=BITNUM//8
call B02BYTE
call A2BIT
return

A2BIT: branch
BITNUM,(GBIT0,GBIT1,GBIT2,GBIT3,GBIT4,GBIT5,GBIT6,GBIT7)

GBIT0: A=bit0 : return
GBIT1: A=bit1 : return
GBIT2: A=bit2 : return
GBIT3: A=bit3 : return
GBIT4: A=bit4 : return
GBIT5: A=bit5 : return
GBIT6: A=bit6 : return
GBIT7: A=bit7 : return

Listing 1 —continued
cussing here. The first is a 1-wire device
with controllable I/O bits. The DS2407
has two I/O bits, which can be set or
cleared through the 1-wire bus.

In the weather station, this device
enables or disables eight 1-wire serial
number chips. When it is disabled, all
eight devices are disconnected from
signal ground and unable to communi-
cate. When it is enabled, each device’s
data pin can be connected to the 1-wire
bus when a magnet closes a reed switch.

A wind vane positions a magnet
over one of the reed switches (which
are set in a circle around the vane’s
center of rotation). When the magnet
closes the reed switch, the device is
connected to the 1-wire bus and its
serial number can be read.

Each of the eight devices corresponds
to one of the eight compass directions.
One of these devices is popping on and
off the bus as the wind changes direc-
tion. Of course, you must know which
serial numbers indicate which direction
before the weather station can be used.

With all of this data, you may no-
tice there are two ways to determine

CIRCUIT CELLAR ® Issue 106 May 1999 75www.circuitcellar.com

10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 E1 A1 60 03 00 00 A9
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 D2 A1 60 03 00 00 1D
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 EA A1 60 03 00 00 51
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 E7 A1 60 03 00 00 1B
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 E4 A1 60 03 00 00 42
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 F3 A1 60 03 00 00 9C
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 DB A1 60 03 00 00 8B
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 DE A1 60 03 00 00 60
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 E1 A1 60 03 00 00 A9
1D BF D4 00 00 00 00 A1
That is all
10 23 D3 25 00 00 00 F5
12 12 BD 0A 00 00 00 0C
01 D2 A1 60 03 00 00 1D
01 E1 A1 60 03 00 00 A9
1D BF D4 00 00 00 00 A1
That is all

Figure 1— When Listing 1 is compiled and executed on
the PicStic (16C84), this output is created by rotating
the direction vane to each of the eight cardinal points of
the compass. Notice that after completing one revolu-
tion, I stopped between N and NE. Here, two magnets
were closed, indicating a direction of NNE.

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE

1-wire devices
Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.ibutton.com

But, some applications require
semipermanent or momentary touch-
memory packaging. Touch memory
for these apps is encased in a metal
can about as thick as a nickel. Although
difficult to see, an insulator between
the lid and the body of the can provides
two isolated contacts—ground and data.

Dallas has a variety of receptacles
for use with touch memory—for ex-
ample, keyfobs, plastic cards, and even
jewelry (e.g., as the stone of a ring).

Dallas has been pushing touch mem-
ory for all sorts of security products.
Let’s look at how these devices might
be used. For example, a touch recep-
tacle at your front door can be locally
monitored by a micro.

When your unique ID touches the
receptacle, the micro polls the device,
recognizes your ID, and commands a
DS2407 addressable switch to energize
an electromagnetic door strike, which
unlocks the door. The micro can di-
rectly control the electromagnetic
door strike, but when we expand cov-
erage to multiple doors, you’ll see
how the addressable switch becomes
an integral part of the circuit.

Imagine having multiple entrances
monitored on the same 1-wire bus.
When you touch your ID ring to the
front door, how will the 1-wire bus
know you’re not at the back door?

Because the addressable switch has
two switch outputs, one switch can
control the door strike and the other
can connect the receptacle to the bus.
By turning on only one receptacle at a
time, you know where the touch ID is
coming from.

This setup can be expanded to in-
clude many doors, such as an apart-
ment building where the main door
must give access to many occupants
and each apartment’s door must only
give access to its owner.

SLAVE AS MASTER
The only time a slave 1-wire device

can try to take over the bus is when it
needs to indicate an interrupt event.
Some 1-wire devices are capable of
indicating an alarm condition. The
alarm can be a bit in a device’s register
that indicates a certain condition. The
master might poll devices looking for
these conditions, or if the device is

interrupt enabled, it can issue two
types of master-like bus operations.

A type-1 interrupt enables the slave
to immediately signal an interrupt on
the 1-wire bus as long as the master
has left the bus in a reset state (i.e.,
issued a bus reset with no following
command). A type-2 interrupt is with-
held until the next bus reset.

Interrupts can hold the bus low for
almost 500 ms. It’s easy for the master
to pick up the interrupt without other
1-wire devices being affected because
the master’s reset pulse has no maxi-
mum time limit for holding the bus low.

Using interrupts doesn’t in any way
signal which device initiated the inter-
rupt. It remains the master’s responsi-
bility to poll devices to determine
which device is signaling.

OVERDRIVE
When it comes to speed, the 1-wire

bus won’t win any races. It wasn’t
designed for speed. It was designed as
a minimal cost interface, drawing mini-
mal current while withstanding large
mechanical stresses, with built-in error
checking for data transfer reliability.

But, these people couldn’t leave well
enough alone, so they created devices
capable of overdrive. Overdrive is a
special timing specification that en-
ables particular devices to operate at
10× the speed of standard devices.

Here’s how it works. Remember
that once a standard bus reset is given,
all devices are waiting to respond.
When a device is chosen via MATCH-
ROM, all devices without that ID are
essentially turned off (until the next
bus reset).

Only one device can now reply to
further commands, so it doesn’t mat-
ter what the timing is like, as long as
it doesn’t create any timing that re-
sembles a bus reset and as long as the
master and slave agreed on the timing.

The reduced timing parameters for
overdrive let communication increase
by a factor of 10 to devices supporting
the feature. When the bus reset is sent
again (normal timing parameters), the
overdrive device reverts to normal
timing.

LAST STOP
Well, we’ve come to the end of this

bus line. Although we could transfer
to one of many alternative device
discussions, there are too many to
explore with only one token. I hope
I’ve piqued your interest enough so
that you research these 1-wire devices
on your own. I

— N

— NE

— E

— SE

— S

— SW

— W

— NW

— N

>− NNE

www.ibutton.com

76 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

i have the utmost
respect for Steve.

Fact is, he and I go
back about 20 years and

if it weren’t for his drive and vision,
I’d probably still be peddling chips
with nothing more to look forward to
than scratching my way up to VP of
chip peddling.

Instead, I have a really fun job—
poking around Silicon Valley looking
for neat stuff to write about. Believe
me, it’s a lot nicer checking out new
gadgets all the time rather than deliv-
ering the same old pitch day in and
day out.

But, just because I admire Steve,
doesn’t mean we always see eye to eye
when it comes to predicting the future.
In fact, I just got off the phone after a
bit of a flame session with him: does
the embedded Internet hoopla fall
more into the hype or hope category?

At last year’s Embedded Internet
Workshop, I got things rolling with a
brief discussion of the major issues
and challenges. I tend to think that
when it comes to silicon, if it can be
done it will be done (and sometimes
even should be done). Meanwhile,
Steve is a show-me kind of guy.

Anyway, I firmly believe all manner
of appliances will be on the web if the
silicon wizards have their way. That’s
not to say it’s going to be a trivial pro-
cess to get from here to there. I see

progress as more of a two-yards-off
tackle than a long bomb.

But, the long drive starts with the
first snap. Let’s check our field posi-
tion today, contemplate the playbook,
and see what it will take to score.

PEEWEE PC
Although an Internet refrigerator

may seem goofy, I could go to any
computer store and put it together
today with little muss and fuss. The
fact is, the web is still overwhelmingly
a home for PCs rather than appliances.

Thus, the brute-force approach to
embedded Internet devolves to embed-
ded PCs, a technology for which I have
mixed feelings. It’s a good news/bad
news situation. The good news is that
embedded PCs get to leverage the
incredible software tools and know-
how of desktop PCs. But, the bloat-
ware tendencies of the software is the
price to pay.

Just as quickly as hardware prices
drop, software bloat makes up the
difference. It’s difficult to cobble to-
gether an entire EPC hardware and
software solution for less than $100—
where it needs to be in order to boost
appliance designs and volume.

Nevertheless, once you’ve got your
pseudo-PC in place, software’s a breeze.
There is a huge variety of web-enabled
RTOSs and such. Datalight offers a
minimalist TCP/IP stack with direct
support for low-end modems and serial
lines. Don’t forget that Linux (as Ingo’s
recent Real-Time PC columns showed)
is quite a viable embedded option.

The hardware situation’s a bit bet-
ter with Windows CE, but you’re still
going to need a rather hefty pile of
silicon to get on the air. One unique
advantage for CE is that it runs on
other than ’x86 chips, notably the two
most popular RISCs—MIPS and ARM.

The latter has been passing out
licenses left and right and probably
has close to a couple dozen major
players signed up. Even Intel offers an
ARM option (at 200 MHz, quite a
speedy one) with their SA-1100, ac-
quired in a deal to buy DEC’s fab.

Annasoft has Windows CE running
on SA-1100 and knows all the ins and
outs of that port. Meanwhile, Mentor
Graphics also fully supports ARM

Betting On Webware

Tom’s
rooting
for the
future of
embedded

Internet apps, but he
knows it won’t be
easy. There are some
big obstacles to clear
before reaching the
goal. At least
Lawrence Taylor isn’t
blocking the path!

SILICON
UPDATE

Tom Cantrell

CIRCUIT CELLAR ® Issue 106 May 1999 77www.circuitcellar.com

across the board. With the
merger between the original
silicon tool side of Mentor and
the longtime embedded tool
powerhouse Microtec, full
support means silicon IP, de-
velopment tools, and now CE
adaption kits and more, all
wrapped in a “seamless coveri-
fication environment.”

How low can EPC go? One
of the leanest platforms I’ve
come across is the IPump refer-
ence design from Vadem, which
you see in Photo 1.

IPump showcases Vadem’s
latest PC-on-a-chip, the VG330.
This puppy is highly integrated
with a CPU, real-time clock,
8254-compatible timer, dual
82569A interrupt controller,
16450-compatible UART with
HP-infrared support, PCMCIA,
and an LCD controller. It also
has a built-in no-glue memory connec-
tion for SRAM, PSRAM, flash memory,
DRAM, and SDRAM.

The ’330 (based on the NEC V30)
only runs up to 32 MHz, clear recogni-
tion that volume cost-sensitive apps
are the focus rather than the desktop.
Other practical concerns include power
consumption, which the VG330 targets
with extra power managment (e.g.,
hibernate, doze, sleep) and clock con-
trol logic that cuts standby power to
microamps.

Of course, the main criterion for
boosting Internet-appliance volume is
price. According to Vadem, a high-
volume OEM building a minimal
variant (e.g., 14.4-kbps modem) of
their IPump reference design could
probably get unit cost down to $50.

Part of the reason IPump is so inex-
pensive is because it relies on a DOS-
(rather than Windows-) class OS and
bypasses the eye-candy side of the web
(i.e., http and html) in favor of moving
data via simpler e-mail (smtp) and file
transfer (ftp) protocols.

CUT THE FAT
There’s just so far that you can

shrink things if you require your
Internet appliance to carry all that
protocol baggage (SLIP, PPP, IP, TCP,
http, ICMP, ftp, smtp, SNMP, etc.).

For goodness sake, all you want is
to be able to check your fridge from
the office to see if you should stop at
the store on the way home. Seems
like it shouldn’t take more than an
8-bit MCU and a few screens of code.

As you’ve seen before, that’s em-
Ware’s claim to fame. It’s not a mat-
ter of Herculean code optimization.
They just shove all the server bloat
onto a gateway that handles the I-way
on one side and lightweight point-to-
point connections to the appliances.

GoAhead Software uses the same
strategy. Each appliance requires only
an 8-KB MicroAgent that hooks up
with the ’Net via the 400-KB gateway
server. The server itself, known as
Infusion, may be big on bytes but not
on bucks. In fact, it’s free for the taking
(with source code) at www.goahead.com.

Both emWare and GoAhead make
it easy to merge existing apps onto the
I-way. Rather than a complete rewrite,
all that’s necessary is to specify which
of the apps’ existing data items should,
in effect, publish and subscribe to the
’Net. Then, the agent code supplied by
emWare and GoAhead is linked with
your existing application to transpar-
ently (i.e., consuming only a small
percentage of local processing power)
move the data to and from the ’Net
via the gateway.

These distributed configu-
rations that shift the protocol
processing and high-speed
communication burden to a
gateway may represent the
best hope for truly consumer-
class (and price) Internet
appliances.

For instance, imagine the
Internet refrigerator as just
one node in the wired kitchen
of the future. It and the other
appliances could connect to a
local gateway via dedicated
links, perhaps power-line
modem or short-range RF.

Does your refrigerator
really need its own IP address?
Probably not. After all, indi-
vidual appliance data band-
width requirements are low
(you don’t need streaming
video to watch ice freeze) so
these dedicated links can

trade off performance in favor of low-
est possible cost.

IN THE CHIPS
Another trend in the race to “webify”

everything is the emergence of highly
integrated chips dedicated to the cause.

Ethernet may not be the right choice
for the kitchen, but it’s a good match
for office and (in the opinion of many)
factory web gadgets. As for the latter,
I explained in Circuit Cellar 92 about
how companies like HP opine that the
ubiquity of Ethernet will steamroll
nitpicking about whether it’s theoreti-
cally ideal for factory apps. It isn’t ideal,
but it’s here, it’s cheap, and it can usu-
ally be coerced into getting the job done.

If Ethernet works for you, consider
the Net+ARM from NETsilicon. As

CPU interface

CPU host system

Memory
arbiter

S
R

A
M

 interface

E-mail
socket

interface

SRAM
Transport layer

Network layer

Link layer

Physical layer
(and interface)

Serial and parallel ports

Decoder
socket

interface

Decoder
interface

Web
engine

General
socket

interface

Global registers

E-mail
engine

Web socket
interface

i1000 Core

Network
stack

(all blocks
inside

dashed line)

Figure 1— Delivered as IP and through licensees like Toshiba, the iReady i1000
implements protocol stacks in hardware.

E-mail
engine General

purpose
socketsWeb

socket

Web
engine

SMTP
socket

POP/DNS
socket

iAPI

iMAPI iWAPI iSOCK

Simplified iMAPI

User interface

Transport layer (TCP/UDP)

Network layer (IP/ICMP)

Link layer (PPP)

Physical layer (Serial interface)

i1000

S
W

H
W

Figure 2 —From the programmer’s perspective, the i1000
APIs offer high-level mail, web, and socket services.

78 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

the name implies, it combines a 32-bit
ARM7 CPU core with a 10/100 Ether-
net MAC (media access controller).
Included in the price ($32.50 for 10k
units) is a production license for the
complete pSOS RTOS package from
ISI. This package not only provides
real-time hooks for your application
but also includes the complete suite
of ’Net services including web (http),
file (ftp), and mail (smtp).

Besides the CPU and MAC, the
NET+ARM handles local processing
with two UARTs, an IEEE 1284 (also
known as a PC-type or Centronics)
parallel port, and 24 parallel I/O lines.
Of course, more app-specific I/O can
be grafted on to the no-glue memory
bus interface that hosts the external
ROM and RAM, which contain the
RTOS and networking software.

According to NETsilicon, about
80% of the ARM CPU bandwidth is
available for local application process-
ing. As well, they’re planning a num-
ber of variants, including low-cost
versions that break the single-digit
price barrier.

#include "itypes.h"
#include "imapi.h"
#include "ihlp.h"
#include <stdio.h>

void main(void)
{
ihlplnit(0);
imlnit(1000000L);
printf("Talking to Email revision %x\n".imGetEmailRevision());
imSetMailServer ("192.168.2.1");
imInitiateConnection (IMF_SMTP);

imSMTPSetFrom("\"Test User\"testuser@somewhere.com");
imSMTPSetTo("\"Another User\"another@somewhere.com");
imSMTPStartData();
imSMTPSetData("From: Test User\r\n");
imSMTPSetData("To: Another User\r\n");
imSMTPSetData("Subject: Hello there\r\n");
imSMTPSetData("\r\n");
imSMTPSetData("How have you been lately?\r\n\r\n");
imSMTPSetData("Sincerely,\r\n\r\n");
imSMTPSetData("Test User\r\n");
imSMTPEndData();

imSMTPQuit();
}

Listing 1 —As this send–an–e-mail example shows, the i1000 makes it simple for practically any gadget to
get on the ’Net.

80 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

merchant-market chips available at
some point in the future. But for now,
only ASIC designers need apply.

The i1000 virtual chip, unlike the
NET+ARM, doesn’t include a CPU for
application processing. It’s essentially
a dedicated peripheral that can be added
to any design, big or small.

Before you rush off to
call, be advised that the
NET+ARM isn’t targeted to
the experimenter or onesy-
twosy buyers—unless
you’re prepared to cough up
$20k for a development kit.
Of course, the kit includes
everything from a develop-
ment board to a JTAG-
based ICE and telephone
support and training.

ARE YOU READY
The i1000 from iReady

is another take on the web-
chip angle. But, it’s arguably
even less accessible to end
users than the NET+ARM
since the i1000 isn’t really
a chip per se. Rather, it’s a bunch of
intellectual property in the form of
synthesizable logic written in Verilog.
As shown in Figure 1, you can cut and
paste the pieces you need to optimize
gate count for a particular application.

iReady is investigating deals with
licensees that might make standard

The i1000 hooks into a
system using various inter-
faces including a general-
purpose bus that connects to
your CPU and a dedicated
RAM bus for web-related
data structures (64–128 KB,
depending on the number of
protocols and sockets).

A generic physical trans-
port interface lets you have it
your way when it comes to
exactly what kind of wire (or
wireless) medium you prefer.
Or, incoming data can be
preprocessed and routed onto
the chip via a separate decoder
bus (e.g., JPEG, MP3).

At 20 MHz, the i1000 can
move data at up to 10 Mbps

and beyond. But for low-end apps, the
clock rate can be cut significantly.
The chip need only run at 35 kHz or
so to keep up with a 28.8-kbps modem.

It won’t be trivial to craft an i1000
ASIC, not to mention designing the
rest of your appliance hardware. But,
the hardware pain is more than made
up with software gain.

That’s because the i1000 does a lot
more than offer a low-level socket-type
interface. It handles much of the pro-
tocol-dependent processing that calls
for lots of host-CPU headscratching.

For example, the i1000 automatically
detects and processes many html tags
on its own, reducing the burden on
the host CPU. It does so by converting
any recognized tags (unrecognized ones
are passed up the ladder for your code
to deal with) into an iReady command
stream format (iCSF).

Instead of your application having
to parse html tags like “<TITLE>” and
“</TITLE>”, the i1000 delivers a single-
byte code saying in effect, “Here’s a
title,” along with the text in between
the tags. The i1000 does a lot of the
grunt work associated with handling
text, including attributes and fonts, via
the iReady text encoding format (iTEF).

The application software interface
in Figure 2 consists of APIs for e-mail,
web, and socket services as well as
lower-level register access. For example,
using the iMAPI mail interface, it’s a
no-brainer for your app to send e-mail
(see Listing 1).

Photo 1 —The Vadem IPump reference design uses their VG330 PC-on-a-chip to
enable EPCs to get a piece of the Internet-appliance action.

82 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

CIRCUIT CELLAR
Problem 1—What does this circuit demonstrate and,
with the values shown, what is Vout?

Problem 2—Describe the logical function and output
activity of this circuit.

Problem 3a—In the C programming language, if x is a
16-bit integer, what is its range if it is a signed integer?
Unsigned integer?

b) Express the following binary numbers in
hexidecimal:

10101110 11010010

c) What is two’s complement and what is it used for?

Test Your EQ

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

SOURCES

TCP/IP stack
Datalight
(360) 435-8086
Fax: (360) 435-0253
www.datalight.com

SLIGHT MAKES RIGHT
Between peewee PCs, minimalist

micro servers, and dedicated I-way
chips, we’re making pretty good
progress toward a day when “Internet
appliance” isn’t an oxymoron.

Yeah, Steve, I know the two yards
off tackle and a cloud of dust isn’t as
glorious as the long bomb, but I bet
Internet appliances are going to put
points on the board sooner than you
think. I

IPump
Vadem
(408) 467-2100
Fax: (408) 467-2199
www.vadem.com

Net+ARM
NETsilicon
(781) 647-1234
Fax: (781) 893-1338
www.netarm.com

i1000
iReady
(408) 330-9450
Fax: (408) 330-9451
www.ireadyco.com

EMIT
emWare
(801) 256-3883
Fax: (801) 256-9267
www.emware.com

SA-1100 CE adaptation
Annasoft Systems
(619) 673-0870
Fax: (619) 673-1432
www.annasoft.com

SA-1100
Intel Corp.
(602) 554-8080
Fax: (602) 554-7436
www.intel.com

CPUs
ARM Ltd.
(408) 399-5199
Fax: (408) 399-8854
www.arm.com

MIPS Technologies, Inc.
(650) 567-5000
Fax: (650) 567-5150
www.mips.com

pSOS RTOS
Integrated Systems, Inc.
(408) 542-1500
Fax: (408) 542-1956
www.isi.com

Infusion
GoAhead Software
(425) 453-1900
Fax: (425) 637-1117
www.goahead.com

+17.4 V 2N3055

(Unregulated)
1 k

1 k

2N3904

VIN
VOUT

4.3 V
1N4731

1 k

R2

R3

R1

Q1

Q2

A

B

C

D

Problem 4—The following code is in PIC assembly
language. What does TASK do with BYTE?

TASK: movlw 8
movwf COUNT

HERE: rlf BYTE
movlw H'30'
btfsc STATUS,C
addlw 1

WAIT: btfss PIR1,TXIF
goto WAIT
movwf TXREG
decfsz COUNT
goto HERE
return

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune? Each month, Test Your
EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past quizzes and
corrections. If you have any good circuits, programs, or engineering brainteasers, fax or e-mail them to us along with the solutions (editor@circuitcellar.com; fax: (860) 871-0411). The
best submissions will be published monthly here in Test Your EQ. You receive $50 for each half page of your questions that we publish.

This month’s questions were provided by Bob Perrin at Z-World and Circuit Cellar Staff.

www.datalight.com
www.emware.com
www.annasoft.com
www.ireadyco.com
www.netarm.com
www.vadem.com
www.intel.com
www.arm.com
www.mips.com
www.isi.com
www.goahead.com

96 Issue 106 May 1999 CIRCUIT CELLAR ® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

What’s in a Name?

y ou may not have noticed, but we’ve been slowly dropping the INK from our name. No, we aren’t going through

another episode of schizophrenic name reference. We just finally have the right to legally be who and what we’ve
always been. I know that sounds confusing. If you don’t know the story, there’s a little history in the explanation.

Back at the beginning of the personal computer revolution, BYTE magazine was the king of periodicals and I was an

aspiring engineer at Control Data Corp. As you might expect back then, when you mentioned the word “microprocessor” in a big
computer company, the answer was always “micro-what”? My frustration with “big iron” people led me to start writing for BYTE.

To make a long story short, after the first few articles, it was obvious that I was becoming a fixture around the place. One day

Carl Helmers made a joke that each month I went home and built all these projects in my “circuit cellar.” The name stuck and my
column became known as Ciarcia’s Circuit Cellar.

After 11 years of writing for BYTE, I left to start this magazine. But what would I call the new publication—PC Adventures?

Nope. Obviously, if I was going to take advantage of 11 years of publishing reputation, it had to be called Circuit Cellar.
When you start a new periodical, the first priority is to protect the name. When I called my patent attorney and said “Circuit

Cellar,” his answer was that plain language can’t be trademarked. I could file the application but he didn’t think it would fly. Making it

Circuit Cellar INK eliminated the confusion and guaranteed acceptance. For 11 years now, that has been our registered trademark.
Of course, registering a trademark and keeping it are two different things. You have to be prepared to defend your exclusive

ownership. Over the years, we’ve contributed heavily to the legal community in a continuing effort.
Last year, I got a new attorney who basically said, “Hogwash.” Magazines and newspapers are special cases where simple

common-language exclusion isn’t cut and dry. Ever hear of Sports Illustrated, Time, or US News? We filed for Circuit Cellar and it
was granted immediately.

So, what’s in a name? I guess it depends on whether we think our readers and advertisers need to be told the subject of the

magazine in the title. Surely, there's no question what Embedded Systems Programming and Electronic Design are about. Something
like Nuts and Volts might be a little harder to identify. There was a time when I was concerned whether I had to be more explicit about
our purpose. For a while, I shrunk the Circuit Cellar INK logo and called the magazine The Computer Applications Journal. Perhaps

you remember. I still have a ton of stationery with that design.
I had this fantasy that if these PR guys didn’t have such a tough time knowing what Circuit Cellar was, they might be more apt to

advertise in a Computer Applications Journal. This experiment ratified two things for me—the loyalty of the readership and a

recognition of the slow-motion attention in big-company advertising departments. My money would have been better spent on a few
schmooze lunches with Silicon Valley PR people instead of new stationery and cover art. The readers didn’t care. They called it
Circuit Cellar before and Circuit Cellar after. It was neverThe Computer Applications Journal to them.

We’re finally getting it right, and no, this isn’t another bout of name schizophrenia. Yes, I’ve occasionally messed with the name,
but our quality and spirit have prevailed through it all. For over 20 years, we’ve been the Circuit Cellar. Now and in the future, we'll
continue to be the Circuit Cellar.

