Home | Electronics| Graphics, Film & Animation | E-cards| Other Linux stuff | Photos| Online-Shop

Content: o
S A digital DC powersupply -- part 2: the

- A word of warning software

« The structure of the
software

« Which file contains
what

« New functionallity:

store settings
« References/Download

Abstract:

Thisisthe second part in the series about the digital powersupply. You
might want to read the first part first.

There will be athird part where we add i2c communication to control the
powersupply viacommand from the pc and maybe a fourth part where
more fancy things are added. | am thinking of not only producing DC
voltage but also DC + pulses and spikes. Thisway you can test circuits to
make sure that they are resistant to noise and variations in power.

The hardware is available from shop.tuxgraphics.org.

| ntroduction

Using a clever microcontroller based design we can build a power supply which has more featuresand is a
lot cheaper than traditional powersupplies. Thisis possible because functions which are traditinally
implemented in hardware are moved into software.

In this article we will do two things:

lof 5

« | will explain how the different parts of the software work.
« Code to store settings permanently will be added.

A word of warning

This article will give you insigths as to how the software works and you can use the knowledge to do
modifications. However be aware that the short circuit protection is also only software. If you make a
mistake somewhere then this protection may not work. If you then cause a short circuit on the output your
hardware will go off in acould of smoke. To avoid this you should use a powerful resistor (e.g bulb from a
car front light) which will draw enough current to trigger the protection (e.g 6A) but not enough to destroy
the hardware. Thisway you can test a short circuit without any danger to loose the hardware.

The structur e of the softwar e

When you look at the main program (file ddcp.c) you will see that there are only afew lines of

initialisation code executed at power on and then the software enters an endless |oop.

There are 2 endless loops in this software for the powersupply. One the main loop ("while(1){ ...}" infile

ddcp c) and the other one is the periodic interrupt from the Analog the Digital Converter (function
"SIGNAL(SIG_ADC)...}" infileanaog.c). During initialiation interrupt is configured to execute every

100u Sec. All functions and code that is executed runs in the context of one of those tasks (task the name

for aprocess or thread of execution in areal time OS).

High priority

Main loop

Low priority

The interrupt task can stop the execution of the main loop at any time. It will then execute without beeing
interrupted and then execution continues again in the main loop at the place where it was interrupted. This
has two consequences:

1. The codein theinterrupt must not be too long as it must finish before the next interrupt comes. What
counts here are the amount of instructions in machine code. A mathematical formula, which can be
written as just one line of C-code may result in hundreds of lines of machine code.

2. Variablesthat you share between interrupt code and code in the main task may suddenly changein

20of 5

the middle of execution. Thisis also valid when you hand more than one byte of data from the
interrupt to the main task. To copy two bytes will require more than one instruction and then in can
happen that the first byte is copied before the interrupt while the second byte is copied after the
interrupt. What to do? In most cases it is not a problem because the measurement results from the
ADC will not differ too much between two interrupts. In cases where you can not affort this type of
occasional fault (it may happen only once every hour) you have to use a flag which you can check to
seeif your code was interrupted during the copying.

All this means that complex things like updating of the display, checking of push buttons, conversion of
ampere and volt valuesto internal units etc ... must be done in the main task. In the interrupt we execute
only things that are time critcal: Current and voltage control, overload protection and setting of the DAC.
To avoid complex mathematics all calculationsin the interrupt are donein ADC units. That isthe same
units that the ADC produces (integer values from 0...1023).

Hereisthe exact logical flow of operations that we do in the main task:

1) Copy the latest ADC results fromthe interrupt task
2) Convert theminto display values (anpere and volt)
3) Convert the wanted anpere and volt values (what the user has set)
to internal equival ent ADC val ues
4) Copy the want ed equi val ent ADC val ues to vari al bl es such that
the interrupt taks can use them
5) Cear the LCD display
6) Convert the nunbers which we want to display on the LCD into
strings.
7) Wite voltage values to the display.
8) Check if the interrupt taks regulates currently voltage or current
(current limtation active)
9) If voltage is the limting factor then wite an arrow behind
vol tage on the display
10) Wite anpere values to the display
11) Check if the interrupt taks regulates currently voltage or current
(current limtation active)
12) If current is the limting factor then wite an arrow behind
current on the display
13) Check if a button was pressed. If not what 100ns and check agai n.
If a button was pressed then wait 200ns. This is to have a good
response of the buttons and not too fast scrolling if they are
per manent |y pressed.
14) Go to step 1).

The interrupt task is much simpler:

1) Copy the results fromthe ADC to vari abl es

2) Toggl e the ADC neasurenent channel between current and voltage

3) Check if exessive current is neasured. If so set the DAC i nmmedi atly
to a low value (It does not have to be zero since the voltage
anplifier circuit works only from 0.6V on wards (0.6 volt input
produce still O volt output)).

4) Check if voltage or current needs to regul ated

5) Check if the DAC (digital to anal og converter) needs updating
according to the decission from4).

Thisisthe basic idea of the software. | will also explain what you find in which files an then you should be
able to understand the code (given that you are familiar with C).

30of 5

Which file contains what

ddcp.c -- this file contains the main program Al initialisation is
done from here. here.
The main loop is also inplenented here.

analog.c -- the analog to digital converter and everything that
runs in the context of the interrupt task can be found here.

dac.c -- the digital to analog converter. Initalized from ddcp.c but
used exclusively from anal og. c

kbd.c -- the keyboard driver

lcd.c -- the LCD driver. This is a special version which will not need
the rwpin of the display. It uses instead an internal timer
whi ch shoul d be | ong enough for the display to finish its task.

New functionallity: store settings

The new functionallity we add in this article is not much since | spent already a major part of thisarticle to
explain how the software works and | don’t what to make the article too long.

Still the function we add now is essential: Store the setting such that the voltage and current must not be set
again after the next power on. We store those values in the eeprom of the microcontroller. All eeproms
(including usb-sticks) have limit as to how often a eeprom storage cell can be written. For the Atmega 8
thisis 100000 times. After that the eeprom is waren out and may not keep the values any longer. A trick to
get longer lifetimeisto write over several cellsbut lets first calculate what this means for us. 100000 wite
cycles corresponds to storing 10 times a hew setting per day for 25 years. This is more than enough. We
can therefore just use the ssimplest solution and store into one eeprom address.

So how do you store/read something to/from the eeprom? There are two instructions eeprom_read word
and eeprom_write word to read or write 16bit integers into the eeprom. eeprom addresses start from zero
and counted on bytes.

One compication is that the eeprom is erased when we upload new software. So we to be able to know if
we have read some garbage from the eeprom (because the software was previously flashed) or if we have
valid ampre and voltage values in the eeprom. We do this by writing a magic number into the eeprom. In
other words we store everytime 3 things: ampere limit, voltage limit, magic number. If we read after power
on the eeprom then we check first for the magic number. If it is our number then the values for ampere and
volt are used. The magic number can be anything which is not likely to be there by default (e.g 19). To see
the exact code look at the function

store_permanent() in ddcp.c (download at the end of this article).

The software for this article is digitaldcpower-0.3.X where X isthe revision which | plan to step if there
are updates needed. (software for the previous article was (digitaldcpower-0.2.X).

Have fun! ... The next article will add I12C communication to the powersupply from the PC. So you can not
only press a button on the powersupply to change something but you can do it viacommand.

40f 5

| am looking for people who can port the i2c host programs to different operating system. Let me know if
you can help here. Y ou need some knowledge about control of the rs232 interface and a compiler. The
actual change affects only one line of code.

The whole circuit with all parts and a printed circuit board is available from shop.tuxgraphics.org (see
below).

Refer ences/Download

Download pagéor this article (updates and corrections will also be available from here).
How to program the atmega8 with gé&vember2004 article 352

Tuxgraphics electronics section, a collection of all articlesin this series.

Tuxaraphics online shop, microcontroller section, Y ou can order all parts (transistors, passive
components, LCD display, PCB, microcontroller, ...) from here.

<--, tuxgraphics Home Go to the index of this section

© Guido Socher, tuxgraphics.org

2005-07-17, generated by tuxgrparser version z

50f 5

