
 SUN ALTITUDES FOR SEXTANT PRACTICE
 A Mathcad 8 Prof. Document Prepared October 2000

 Roger L. Mansfield
 E-mail: astroger@worldnet.att.net
 Webpage: home.att.net/~astroger/

Given a list of times of interest, together with your geographical location, i.e., your geodetic latitude,
longitude, and height above mean sea level, this worksheet will calculate the sun's apparent altitude
at each time in the list. Thus, if you have taken a sequence of "sun shots" with a sextant at
precisely known Greenwich mean times and you input the times to this worksheet, the worksheet
will tell you what your sextant-measured sun altitudes should be.

For each time of interest, the basic steps in the calculation are as follows:

1. Calculate the sun's apparent geocentric equatorial (also called "Earth-centered, inertial" or ECI)
cartesian coordinates, referred to the true equator and equinox of date.

2. Calculate your own ECI cartesian coordinates.

3. Calculate the sun's topocentric, local horizon-referenced cartesian coordinates.

4. Convert the sun's topocentric, horizon-referenced cartesian coordinates to apparent azimuth,
altitude, and topocentric distance.

5. Correct the sun's apparent altitude for atmospheric refraction.

The procedure which follows requires that a sequence of local times of interest be supplied via a text
file named "TIMES.PRN". One sun altitude will be computed for each time point in the sequence, in
sequential order, but the times themselves need not be in increasing temporal order. See the end of
the worksheet for a discussion of accuracy.

We will need to define some basic conversion factors to go from degrees to radians, from degrees to
arc-seconds, and from revolutions to arc-seconds. We will need Earth's mean equatorial radius in
meters, and the Gaussian constant.

DegPerRad
180
π

:= SecPerDeg 3600.0:=

SecPerRev 360.0 SecPerDeg⋅:= ae 6378135.0:=

k 0.01720209895:= We will need the Gaussian constant associated
with motion of a planet around the sun.

ORIGIN 1≡ We set the Mathcad ORIGIN to 1 so that vector
and matrix subscripts start with unity rather than
with zero.

sunalts.mcd 2008.07.05. 1

We now define the observer's geographical location. Using the fact that a Mathcad worksheet is
"live", you can, of course, change this location to any latitude, longitude, and height of interest.

OBSERVER'S GEOGRAPHICAL LOCATION

 We set the geodetic latitude to 33 degrees, 57
arc-minutes, and 24 arc-seconds (see Comments
immediately below).

φ

33
57
60

+
24.0
3600

+

DegPerRad
:=

 We set the longitude to 118 degrees, 27 arc-minutes,
and 6 arc-seconds, west, but then subtract this quantity
from 360 degrees (2π radians) to convert the longitude
from west to east. East longitude will work better in the
calculations of Step 2, below.

λ

118
27
60

+
06.0
3600

+

DegPerRad
:=

λ 2 π⋅ λ−:=

 We set the height above sea level to 8.0 feet, and multiply
by the conversion factor 0.3048 meters per foot to convert
the height to meters. (Later on we will divide by ae to
convert the height to Earth radii.)

H 8.0 0.3048⋅:=

Comments In celestial navigation, the figure of Earth is assumed to be spherical.
However, we assume an oblate spheroidal Earth in our calculation of sun altitudes
because the resulting altitudes are then more accurate, i.e., simulate realworld
measurements with greater fidelity. Geodetic latitude can be defined as the angle that a
line, normal to the oblate spheroid and passing through the observer, makes with Earth's
equator. The angle of this definition is subtended at the geocenter only when the observer
is at a pole or at the equator, whereas on a spherical Earth, all latitude-defining lines
normal to Earth's surface pass thorugh the geocenter.

Speaking of realworld measurements, the test location and times chosen for this
worksheet are indeed realworld: they are based upon actual sun shots taken by Richard
R. Shiffman and documented in his Mathcad worksheet, "Sextant Noon-Day Sun
Sightings" [1].

sunalts.mcd 2008.07.05. 2

GMT GMTCalc Times n,():=

GMTCalc Times k,()

ti

Timesi 1,

Timesi 2,

Timesi 3,

60
+

60
+

24












←

i 1 k..∈for

t Offset+

:=

We define, then invoke a procedural function to convert each of the local times to a Greenwich
mean time on the date of interest. Note that each of the times in array GMT is a fraction of a day
that lies between zero and unity.

n 30=

We use Mathcad's length function to count the number of
times/measurements.

n length Times 1〈 〉():=

Offset
7.0
24

:=
We convert the time zone offset from GMT from hours to days,
which will work better in our calculations below.

Day 18:=

Month 4:=

We assume for this example that the date of the sextant
sightings was 1993 April 18, and that they were taken from a
location keeping Pacific Daylight Time, 7 hours slow on
Greenwich mean time (GMT). (See again [1].)

 Year 1993:=

Times READPRN "TIMES.PRN"():=

We input the sequence of times of interest via text file "TIMES.PRN". The format of the times is HH
MM SS, and for convenience, the times are specified as local. Thus we need to specify the date on
which the sextant measurements were taken, and the time zone offset in hours, so as to be able
to convert the times to Greenwich mean times.

TIMES OF SEXTANT SIGHTINGS OF THE SUN ("SUN SHOTS")

sunalts.mcd 2008.07.05. 3

Our astronomical model of the sun's apparent motion in the sky (actually, ECI space) will require
that time be input in Julian days of Terrestrial Time, abbreviated "TT" (and previously known as
Ephemeris Time, or "ET"). We thus define and invoke below a procedural function that converts
days since 1900 January 0.0 to a Julian days.

DayCount specifies the count of days from the beginning of the year, up through the last day of the
previous month of any non-leap year. JED19 calculates the number of Julian days corresponding to
Year, Month, and Day. Note that JED19 is intended to be used with any Gregorian calendar date
since 1900 January 0.0, having JED = 2415019.5.

DayCount 0 31 59 90 120 151 181 212 243 273 304 334()T:=

JED19 Year Month, Day,() JED 2415019.5←

JED JED 365+← mod Y 4,() 0≠if

JED JED 366+← mod Y 400,() 0=if

JED JED 365+← otherwise

mod Y 100,() 0=if

JED JED 366+← otherwise

otherwise

Y Year<if

JED JED DayCountMonth+ Day+←

JED JED 0+← mod Y 4,() 0≠if

JED JED 1+← mod Y 400,() 0=if

JED JED 0+← otherwise

mod Y 100,() 0=if

JED JED 1+← otherwise

Month 2>if

JED JED 0+← otherwise

otherwise

otherwise

Y 1900 Year..∈for

JED

:=

JDTCalc Y M, D, k,()

JDTi JED19 Y M, D,()←

i 1 k..∈for

JDT

:=

JDT JDTCalc Year Month, Day, n,() GMT+:=

sunalts.mcd 2008.07.05. 4

What we have now are n Julian dates, but the times are still GMTs, or in more modern terminology,
Universal times (UTs). We need to convert these UTs to TTs. To do this we need to know the time
difference TT-UT, which is also known as the "Reduction to Terrestrial Time", which we will add to
each JDT in the JDT array to make it a TT rather than a UT.

Now the quantity TT - UT is composed of two parts:

 (a) the difference between Terrestrial Time and International Atomic Time (TAI), which is a fixed
difference of 32.184 seconds,

 (b) the difference between TAI and UT, which is known precisely for times in the past, but must
be estimated for future dates,

i.e.,

 TT - UT = (TT - TAI) + (TAI - UT) = 32.184 + (TAI - UT) seconds.

TAI - UT for the past eleven years is

Date, Jan 1.0 UT

 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000

TAI - UT, in seconds

 25.0
 26.0
 26.0
 27.0
 28.0
 29.0
 30.0
 30.0
 31.0
 32.0
 32.0

(See [2], p. K9 for the full table.)

Since there are 86400 seconds in a day, we thus have on 1993 January 1.0 UT that TT - UT, which
we will denote as TTUT, is

TTUT
32.184 27.0+

86400.0
:=

For the example at hand we convert all of the times of the sextant measurements to Julian days of
Terrestial Time by adding TTUT to each element of JDT.

JDT JDT TTUT+:=

Given the precise Terrestrial times of the sextant measurements, we will be able to compute
accurate sun altitudes using the solar ephemeris model that we now develop.

sunalts.mcd 2008.07.05. 5

1. Calculate the sun's apparent ECI cartesian coordinates, referred to the true equator and equinox
of date.

This step has the following parts:

a. Calculate the sun's coordinates referred to the mean equator and equinox of the J2000.0 epoch.

b. Convert the sun's coordinates from true to astrometric by correcting for aberration or "light-time",
i.e., the amount of time it takes for the sun's light to travel from the sun to Earth.

c. Apply a precession matrix to refer the coordinates to the mean equator and equinox of date.

d. Apply a nutation matrix to refer the coordinates to the true equator and equinox of date.

To accomplish Step 1a, we will use a procedural function, GSUN, which will calculate the sun's
ECI position and velocity, given mean orbital elements at an arbitrary epoch. GSUN will invoke
E2PV, a function which calculates position and velocity given the elements of an elliptical orbit and
the time elapsed since periapsis. E2PV is similar to the function U2PV, which is defined in the
worksheet, "Ephemeris of a Comet via Uniform Path Mechanics" [3]. But note that while U2PV
works for elliptical, parabolic, and hyperbolic paths, E2PV only works for elliptical orbits.

Note also that functions PQEQ, E2PV, and GSUN have ORIGIN = 1 subscripts, but the
corresponding functions in [3] have ORIGIN = 0 subscripts.

PQEQ i Ω, ω, p, q,() P1 cos Ω() cos ω()⋅ sin Ω() cos i()⋅ sin ω()⋅−←

P2 sin Ω() cos ω()⋅ cos Ω() cos i()⋅ sin ω()⋅+←

P3 sin i() sin ω()⋅←

Q1 cos Ω() sin ω()⋅ sin Ω() cos i()⋅ cos ω()⋅+()−←

Q2 sin Ω() sin ω()⋅ cos Ω() cos i()⋅ cos ω()⋅−()−←

Q3 sin i() cos ω()⋅←

p P⋅ q Q⋅+

:=

Function PQEQ performs the Euler angle rotations needed to transform position and velocity in the
orbit plane reference frame (also called the perifocal, or PQW reference frame) to position and
velocity in the ECI reference frame. The orbital inclination, i, the right ascension of ascending node,
Ω, and the argument of periapsis, ω, are the three Euler angles. We have broken out function
PQEQ because function E2PV performs the Euler angle transformation twice: first it transforms the
position, then the velocity.

sunalts.mcd 2008.07.05. 6

E2PV K q, e, i, Ω, ω, ∆t,() a
q

1 e−()
←

n K a

3−

2
⋅←

p q 1 e+()⋅←

M n ∆t⋅←

E M←

∆E E←

f E e sin E()⋅− M−←

Df 1 e cos E()⋅−←

Enew E
f

Df
−←

∆E Enew E−←

E Enew←

∆E 0.00000001≥while

rcosv a cos E() e−()⋅←

rsinv a 1 e2
−⋅ sin E()⋅←

r PQEQ i Ω, ω, rcosv, rsinv,()←

r r r⋅←

rdot
K−

p

rsinv
r

⋅←

rvdot
K

p
e

rcosv
r

+





⋅←

v PQEQ i Ω, ω, rdot, rvdot,()←

augment r v,()

:=

The rationale for the name E2PV is that "E2PV transforms Elliptical orbital elements and time since
periapsis to (2) Position and Velocity". E2PV employs the classical notation of two-body orbit
propagation, while U2PV in [3] employs the notation of Uniform Path Mechanics (UPM), as
described in [3].

Define function GSUN to calculate the geocentric ecliptic position and velocity of the sun as a
function of the Julian date, with epoch at 2000 January 1.5 TT (JD = 2451545.0). Note that k and
DegPerRad, both as defined above, are "global" arguments of this function, i.e., they are defined in
the worksheet outside of the function, and prior to its definition. So also are SecPerDeg and
SecPerRev. The solar model constants in GSUN were taken from [4].

sunalts.mcd 2008.07.05. 7

GSUN JD() JDo 2451545.0←

Tc
JD JDo−

36525.0
←

a 1.00000011 0.00000005 Tc⋅−←

e 0.01671022 0.00003804 Tc⋅−←

q a 1 e−()⋅←

µ 1.00000304←

K k µ⋅←

n K a

3−

2
⋅←

ω

102.94719
1198.28 Tc⋅

SecPerDeg
+

DegPerRad
←

i
0.00005

46.94 Tc⋅

SecPerDeg
−

DegPerRad
←

Ω 0.0←

L
100.46435

1293740.63 99 SecPerRev⋅+

SecPerDeg
Tc⋅+

DegPerRad
←

T JD
mod L ω− 2 π⋅,()

n
−←

∆t JD T−←

PV E2PV K q, e, i, Ω, ω, ∆t,()←

rEM PV 1〈 〉
←

vEM PV 2〈 〉
←

LM
mod 218.0 481268.0 Tc⋅+ 360.0,()

DegPerRad
←

augment

rEM1
0.0000312 cos LM()⋅−

rEM2
0.0000312 sin LM()⋅−

rEM3














vEM,













−

:= GSUN is based
upon HGEO in [3]. It
takes advantage of the
fact that the
geocentric ecliptic
cartesian coordinates
of the sun are the
negatives of the
heliocentric ecliptic
cartesian coordinates
of the geocenter. Note
that the minus sign is
applied in the very last
line of GSUN.

sunalts.mcd 2008.07.05. 8

Define function ECEQ to convert from geocentric ecliptic coordinates to geocentric equatorial
coordinates at the J2000 epoch.

ECEQ r() ε
23.4392911
DegPerRad

←

M

1

0

0

0

cos ε()
sin ε()

0

sin ε()−

cos ε()










←

M r⋅

:=

We have now defined what we need to compute the ECI cartesian coordinates of the sun, referred
to the mean equator and equinox of J2000.0, at the specified times.

To accomplish Step 1b, we need a function that performs the light-time correction. (For a reference,
see [5], p. 320.)

LTIM PV() r PV 1〈 〉
←

v PV 2〈 〉
←

∆ r r⋅←

r 0.00578 ∆⋅ v⋅−

:=

sunalts.mcd 2008.07.05. 9

To accomplish Step 1c, we need a precession matrix function, PRECSS, defined as follows. (For a
reference, see [5], p. 318.)

PRECSS r JD,() T
JD 2451545.0−()

36525.0
←

P1 1, 1.0 0.00029724 T2
⋅− 0.00000013 T3

⋅−←

P1 2, 0.02236172− T⋅ 0.00000677 T2
⋅− 0.00000222 T3

⋅+←

P1 3, 0.00971717− T⋅ 0.00000207 T2
⋅+ 0.00000096 T3

⋅+←

P2 1, P1 2,−←

P2 2, 1.0 0.00025002 T2
⋅− 0.00000015 T3

⋅−←

P2 3, 0.00010865− T2
⋅←

P3 1, P1 3,−←

P3 2, P2 3,←

P3 3, 1.0 0.00004721 T2
⋅−←

P r⋅

:=

To accomplish Step 1d, we need a nutation matrix function, NUTATE, as defined follows. (For a
reference, see [5], p. 320.)

NUTATE r JD,() d JD 2451545.0−←

ε
23.4392911
DegPerRad

←

∆ψ 0.0048− sin
125.0 0.05295 d⋅−

DegPerRad






⋅ 0.0004 sin
200.9 1.97129 d⋅+

DegPerRad






⋅−←

∆ψ
∆ψ

DegPerRad
←

∆ε 0.0026 cos
125.0 0.05295 d⋅−

DegPerRad






⋅ 0.0002 cos
200.9 1.97129 d⋅+

DegPerRad






⋅+←

∆ε
∆ε

DegPerRad
←

N

1.0

∆ψ cos ε()⋅

∆ψ sin ε()⋅

∆ψ− cos ε()⋅

1.0

∆ε

∆ψ− sin ε()⋅

∆ε−

1.0










←

N r⋅

:=

sunalts.mcd 2008.07.05. 10

We now accomplish Steps 1b, 1c, and 1d by defining and invoking procedural function APPSUN.

APPSUN JDT() n length JDT()←

JD JDTi←

PV GSUN JD()←

r LTIM PV()←

r ECEQ r()←

r NUTATE PRECSS r JD,() JD,()←

α angle r1 r2,() DegPerRad
15

⋅←

δ asin
r3

r1()2 r2()2
+ r3()2

+











DegPerRad⋅←

Table JD α δ()← i 1=if

Table stack Table JD α δ(), ← otherwise

i 1 n..∈for

Table

:=

M APPSUN JDT():=

sunalts.mcd 2008.07.05. 11

To see what the apparent ECI equatorial coordinates of the sun turn out to be, we define a
formatting function, FMT, and apply it to the solar ephemeris generated via APPSUN.

FMT M N,()

hr Mj 2,
0.5

36000
+←

h floor hr()←

m 60 hr h−()⋅←

s
floor 600 m floor m()−()⋅[]

10
←

m floor m()←

Hj 1, h←

P j 1, m←

Sj 1, s←

j 1 N..∈for

A augment H P,()←

A augment A S,()←

dr Mj 3,
0.5

3600
+←

d floor dr()←

m 60 dr d−()⋅←

s floor 60 m floor m()−()⋅[]←

m floor m()←

Hj 1, d←

Hj 1, d−← Mj 3, 0<if

P j 1, m←

Sj 1, s←

j 1 N..∈for

A augment A H,()←

A augment A P,()←

A augment A S,()←

A augment M 1〈 〉
A,()←

:=

sunalts.mcd 2008.07.05. 12

In the formatted array, note that the right ascensions are rounded to the nearest tenth of a time
second and the declinations are rounded to the nearest whole arc-second.

FMT M n,()

2449096.319701

2449096.320384

2449096.320963

2449096.321622

2449096.322282

2449096.323266

2449096.324065

2449096.324771

2449096.32528

2449096.326264

2449096.326958

2449096.327629

2449096.328231

2449096.329041

2449096.329562

2449096.330257

2449096.330916

2449096.331472

2449096.332236

2449096.332965

2449096.333613

2449096.334308

2449096.336541

2449096.337329

2449096.337965

2449096.338602

2449096.339261

2449096.339771

2449096.340291

2449096.340824

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

46

46

46

46

46

46

46

46

46

46

46

46

46

47

47

47

47

47

47

47

47

47

47

47

47

47

47

47

47

47

58

58.1

58.3

58.4

58.5

58.8

58.9

59.1

59.2

59.4

59.6

59.7

59.9

0.1

0.2

0.3

0.5

0.6

0.8

0.9

1.1

1.2

1.7

1.9

2.1

2.2

2.3

2.5

2.6

2.7

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

20

21

22

23

24

25

26

27

27

29

29

30

31

32

33

34

34

35

36

37

38

39

41

42

43

44

45

45

46

47





















































































=

This completes Step 1. But since the accuracy of our computed sun altitudes depends so critically
upon our solar ephemeris model, we should take the time at this point to see how good our solar
ephemeris model really is. We define a new time array, Apr1993, consisting of the Julian date at
the beginning of each day of April 1993, Terrestrial Time, then calculate the sun's apparent right
ascension and declination at each of these times. We compare the results with those obtained
using the U.S. Naval Observatory's MICA program [6].

sunalts.mcd 2008.07.05. 13

Apr1993 JD 2449078.5←

JDTi 1+ JD i+←

i 0 29..∈for

JDT

:=

M APPSUN Apr1993():=

 Compare APPSUN values with R.A. and
Dec. as generated by the U.S. Naval
Observatory's MICA 1990-2005 program:

 Sun

 Apparent Geocentric Positions,
 True Equator and Equinox of Date

 Date, Right Declina-
 TDT Ascension tion

 h m s o ' "
1993 Apr 01.0 0 41 28.421 + 4 27 41.70
1993 Apr 02.0 0 45 07.085 + 4 50 49.15
1993 Apr 03.0 0 48 45.850 + 5 13 51.31
1993 Apr 04.0 0 52 24.738 + 5 36 47.83
1993 Apr 05.0 0 56 03.769 + 5 59 38.40
1993 Apr 06.0 0 59 42.970 + 6 22 22.72
1993 Apr 07.0 1 03 22.365 + 6 45 00.47
1993 Apr 08.0 1 07 01.980 + 7 07 31.35
1993 Apr 09.0 1 10 41.837 + 7 29 55.07
1993 Apr 10.0 1 14 21.958 + 7 52 11.28
1993 Apr 11.0 1 18 02.362 + 8 14 19.66
1993 Apr 12.0 1 21 43.067 + 8 36 19.86
1993 Apr 13.0 1 25 24.089 + 8 58 11.54
1993 Apr 14.0 1 29 05.446 + 9 19 54.34
1993 Apr 15.0 1 32 47.151 + 9 41 27.93
1993 Apr 16.0 1 36 29.220 + 10 02 51.93
1993 Apr 17.0 1 40 11.667 + 10 24 06.02
1993 Apr 18.0 1 43 54.506 + 10 45 09.84
1993 Apr 19.0 1 47 37.751 + 11 06 03.05
1993 Apr 20.0 1 51 21.413 + 11 26 45.30
1993 Apr 21.0 1 55 05.504 + 11 47 16.25
1993 Apr 22.0 1 58 50.036 + 12 07 35.56
1993 Apr 23.0 2 02 35.017 + 12 27 42.89
1993 Apr 24.0 2 06 20.457 + 12 47 37.90
1993 Apr 25.0 2 10 06.363 + 13 07 20.25
1993 Apr 26.0 2 13 52.742 + 13 26 49.61
1993 Apr 27.0 2 17 39.599 + 13 46 05.63
1993 Apr 28.0 2 21 26.942 + 14 05 07.99
1993 Apr 29.0 2 25 14.774 + 14 23 56.35
1993 Apr 30.0 2 29 03.102 + 14 42 30.38

FMT M 30,()

2449078.5

2449079.5

2449080.5

2449081.5

2449082.5

2449083.5

2449084.5

2449085.5

2449086.5

2449087.5

2449088.5

2449089.5

2449090.5

2449091.5

2449092.5

2449093.5

2449094.5

2449095.5

2449096.5

2449097.5

2449098.5

2449099.5

2449100.5

2449101.5

2449102.5

2449103.5

2449104.5

2449105.5

2449106.5

2449107.5

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

41

45

48

52

56

59

3

7

10

14

18

21

25

29

32

36

40

43

47

51

55

58

2

6

10

13

17

21

25

29

28.7

7.4

46.2

25.1

4.1

43.3

22.8

2.4

42.3

22.4

2.8

43.5

24.5

5.9

47.6

29.7

12.1

55

38.3

21.9

6

50.6

35.6

21

6.9

53.3

40.2

27.5

15.3

3.7

4

4

5

5

5

6

6

7

7

7

8

8

8

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

27

50

13

36

59

22

45

7

29

52

14

36

58

19

41

2

24

45

6

26

47

7

27

47

7

26

46

5

24

42

44

52

54

51

41

26

4

35

58

14

23

23

14

57

30

54

8

12

5

48

19

38

46

41

24

53

9

11

0

34





















































































=

 We see that the right ascensions agree to
within about one second of time, while the
declinations can be off by up to about four
seconds of arc. Sampling of other 30-day
dates typically yields agreement to within
about a second of R.A. and about six
arc-seconds (i.e., about a tenth of an
arc-minute) of Dec.

sunalts.mcd 2008.07.05. 14

We need the number of Earth radii in one astronomical
unit (A.U.), so that we can convert the observer's ECI
cartesian coordinates to A.U. before we subtract them
from the sun's coordinates in A.U.

 ERPAU 23454.79842:=

ee
2 0.006694=

ee 2 f⋅ f 2
−:=

The quantity ee is the eccentricity of the reference
ellipse associated with Earth's meridional cross-section.

f
1

298.26
:=

To calculate the observer's ECI coordinates we need the
flattening factor associated with Earth's oblateness.

We also need the UTs corresponding to JDT's TTs. GMT JDT TTUT−:=

To implement Newcomb's formula we need the Julian
date corresponding to 2000 January 0.0 UT.

 JDo 2451543.5:=

θG days() mod
98.98215

DegPerRad
360.98564735

DegPerRad
days⋅+ 2 π⋅,





:=

2. Calculate the observer's ECI cartesian coordinates.

This step has the following two parts:

a. Convert geodetic latitude, longitude, and height to Earth-fixed, Greenwich (EFG) coordinates.

b. Apply a simplified model of Earth rotation, based upon the time elapsed since the reference
epoch 2000 January 0.0 UT to the instant of observation, to obtain the observer's ECI cartesian
coordinates

This simplified model is embodied in the following equation, called "Newcomb's formula", which
gives the mean sidereal time at Greenwich as a function of time elapsed in days since 2000
January 0.0 UT.

sunalts.mcd 2008.07.05. 15

 Define and invoke function SENPOS to create a 3xn matrix of ECI observer positions, thereby
effecting Step 2.

SENPOS t φ, λ, H,()
θ θG ti() λ+←

G1
1

1 ee
2 sin φ()2
⋅−

H
ae

+←

G2
1 ee

2
−





1 ee
2 sin φ()2
⋅−

H
ae

+←

R i〈 〉
G1 cos φ()⋅ cos θ()⋅

G1 cos φ()⋅ sin θ()⋅

G2 sin φ()⋅













←

i 1 n..∈for

R
ERPAU

:=

R SENPOS GMT JDo− φ, λ, H,():=

R

1 2 3 4 5
1
2

3

0.0000325095 0.0000324489 0.0000323971 0.0000323375 0.0000322773
0.0000140135 0.0000141532 0.0000142714 0.000014406 0.0000145403

0.0000236799 0.0000236799 0.0000236799 0.0000236799 0.0000236799

=

3. Calculate the sun's topocentric, local horizon-referenced cartesian coordinates.

This step has the following parts:

a. Subtract the observer's ECI coordinates from the sun's ECI coordinates.

b. Apply an orthogonal rotation matrix, based upon the geodetic latitude and the right ascension of
the observer, to convert the sun's topocentric ECI coordinates to topocentric, horizon-referenced
coordinates.

First we define an orthogonal rotation matrix, SEZ, which transforms topocentric horizon-referenced
cartesian coordinates to topocentric ECI coordinates. We will need the transpose.

sunalts.mcd 2008.07.05. 16

SEZ φ θ,()
sin φ() cos θ()⋅

sin φ() sin θ()⋅

cos φ()−

sin θ()−

cos θ()
0

cos θ() cos φ()⋅

sin θ() cos φ()⋅

sin φ()










:=

Note that φ is the geodetic latitude and θ is the right ascension of the observer.

4. Convert the sun's topocentric, horizon-referenced ECI coordinates to altitude, azimuth, and
topocentric distance.

We combine Steps 3 and 4 into a procedural function, ALTSUN, which provides the sun's altitude
and azimuth in degrees, and topocentric distance in A.U. Note that ALTSUN is similar in its loop
structure to APPSUN.

ALTSUN JDT() n length JDT()←

JD JDTi←

PV GSUN JD()←

r LTIM PV()←

r ECEQ r()←

r NUTATE PRECSS r JD,() JD,()←

rtop r R i〈 〉
−←

θ θG GMTi JDo−() λ+←

ρ SEZ φ θ,()()T rtop⋅←

ρ ρ ρ⋅←

Alt asin
ρ3

ρ








DegPerRad⋅ asin
4.6525 10 3−

⋅

ρ








DegPerRad⋅−←

Azi mod 3 π⋅ angle ρ1 ρ2,()− 2 π⋅,() DegPerRad⋅←

Table i Timesi 1, Timesi 2, Timesi 3, Alt Azi ρ()← i 1=if

Table stack Table i Timesi 1, Timesi 2, Timesi 3, Alt Azi ρ(), ← otherwise

i 1 n..∈for

Table

:=

SunData ALTSUN JDT():=

Invoking ALTSUN yields the following table of the sun's altitudes and azimuths in degrees, and
topocentric distances in A.U. Note the use of the array Times to refer the predicted measurements
back to the times of the sun shots.

sunalts.mcd 2008.07.05. 17

Meas.
 #

Time
hh mm ss

Altitude,
deg

Azimuth,
deg

Distance,
A.U.

 We should note at this
point that when the
observer sights on the
sun with a sextant, he or
she typically "brings the
lower limb of the sun
down to the horizon" in
the process of making the
altitude measurement.

Since the altitude of the
sun is, by convention, the
altitude of the sun's
center above the sea
horizon, the distance
between the center of the
sun and its limb, called
the "solar semidiameter",
must be added to the
sextant-measured altitude
before the altitude
measurement is reduced.

But, since we are
simulating sun altitude
measurements, we must
subract the semidiameter
from each computed
altitude. This has been
done in ALTSUN, above:
the second term in the
calculation of "Alt" is the
solar semidiameter in
degrees.

SunData

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

13

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

0

3

4

5

6

7

8

9

9

23

22

12

9

6

31

40

41

25

50

50

48

40

50

35

35

32

20

26

29

25

25

38

46

41

36

33

17

2

48

66.6032095

66.63279354

66.65617986

66.68094829

66.70369474

66.73384606

66.7549931

66.77119683

66.78143025

66.79774066

66.80650533

66.81281274

66.81665666

66.81912579

66.81907327

66.81700696

66.81293129

66.80790336

66.79860956

66.78716994

66.77489852

66.75955812

66.69488943

66.66656124

66.6415473

66.6146607

66.58482736

66.56043233

66.53425633

66.50622104

171.42130852

172.03136916

172.54944189

173.14116313

173.73399026

174.61988619

175.34047265

175.97844852

176.43910475

177.32996123

177.95941477

178.56824843

179.1143166

179.84959845

180.32231861

180.952563

181.55114844

182.05503617

182.74749509

183.40793504

183.9944408

184.62215546

186.63522193

187.34180107

187.91209901

188.4812365

189.06976158

189.52309642

189.98581942

190.45782603

1.00431664

1.00431682

1.00431698

1.00431715

1.00431733

1.0043176

1.00431782

1.00431801

1.00431815

1.00431842

1.00431861

1.0043188

1.00431897

1.00431919

1.00431934

1.00431953

1.00431972

1.00431988

1.00432009

1.0043203

1.00432049

1.00432069

1.00432133

1.00432156

1.00432175

1.00432193

1.00432213

1.00432228

1.00432243

1.00432259





















































































=

sunalts.mcd 2008.07.05. 18

5. Correct the sun's altitudes for atmospheric refraction.

 ZT is a table of true zenith
distances and RF is a table of the
corresponding amounts of
refraction that rays of light
experience as they pass through
the atmosphere at these zenith
distances. (For a reference see [7].)

What we will do is to define a
function, RFN, which computes the
atmospheric refraction at 760 mm
Hg and 10 degrees Celsius as a
function of true altitude.

ZT

0.0

10.00277778

20.0058

30.00944444

40.01361111

45.01638889

50.01944444

55.02333333

60.02805556

65.03472222

70.04416667

75.05972222

80.08861111

81.09805556

82.10944444

83.12333333

84.14138889

85.16472222

86.19611111

87.24027778

88.30638889

89.41138889

90.0

90.58972222





































































:= RF

0.0

10.0

21.0

34.0

49.0

59.0

70.0

84.0

101.0

125.0

159.0

215.0

319.0

353.0

394.0

444.0

509.0

593.0

706.0

865.0

1103.0

1481.0

1760.0

2123.0





































































:=

sunalts.mcd 2008.07.05. 19

Procedural function RFN interpolates linearly between two bracketing values of true zenith distance
in order to find the atmospheric refraction.

RFN Alt() n length Alt()←

Z 90.0 Alti−←

Rfni 0.0← Z ZT1≤if

Rfni 0.0← Z ZT24>if

m 2←

m m 1+← Z ZTj>if

j 2 23..∈for

Rfni

RFm 1−

RFm RFm 1−−()
ZTm ZTm 1−−()

Z ZTm 1−−()⋅+






SecPerDeg
←

otherwise

otherwise

i 1 n..∈for

Rfn

:=

Altitude SunData 5〈 〉
:= RefrAlt Altitude RFN Altitude()+:=

N m() n length Altitude()←

Ni i←

i 1 n..∈for

N

:= M N n():=

(See Appendix 1 for validation of function RFN.)

Note that the sun's altitude, as tabulated below, is by our calculations in ALTSUN the altitude of
the sun's lower limb, as would be measured using a sextant. The second tabulation accounts for
atmospheric refraction so as to simulate as accurately as possible the actual sextant-measured
altitude.

sunalts.mcd 2008.07.05. 20

SUN'S ALTITUDE (LOWER LIMB) SEXTANT-MEASURED ALTITUDE

augment M Altitude,()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

66.60321

66.63279

66.65618

66.68095

66.70369

66.73385

66.75499

66.7712

66.78143

66.79774

66.80651

66.81281

66.81666

66.81913

66.81907

66.81701

66.81293

66.8079

66.79861

66.78717

66.7749

66.75956

66.69489

66.66656

66.64155

66.61466

66.58483

66.56043

66.53426

66.50622





















































































= augment M RefrAlt,()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

66.61027

66.63984

66.66322

66.68798

66.71072

66.74086

66.762

66.77819

66.78842

66.80473

66.81349

66.81979

66.82364

66.82611

66.82605

66.82399

66.81991

66.81489

66.8056

66.79416

66.78189

66.76656

66.70191

66.6736

66.64859

66.62171

66.59189

66.56751

66.54134

66.51331





















































































=

sunalts.mcd 2008.07.05. 21

DISCUSSION OF ACCURACY

The solar ephemeris model herein neglects the perturbations of the Earth-moon system by the
other major planets. It uses a simple, mean-lunar-longitude-based model for the orbit of the
geocenter as it revolves around the Earth-moon barycenter. The errors quantified at the end of Step
1 arise from the assumptions made in these models. The models of precession and nutation have
an error tolerance of about an arc-second according to [5]. The Earth rotation model does not
account for polar wander (the true pole can wander up to about 15m away from the mean pole).

Still, it is believed that the sun altitudes above are accurate to within about an arc-minute, and that
the models and assumptions herein are good enough for sun-sight celestial navigation without
printed tables.

The reader who wishes to improve upon the models in this worksheet might wish to start with
Montenbruck & Pfleger [8] or with Heafner [9]. Montenbruck & Pfleger provide analytical
expressions that account for planetary perturbations. Heafner shows how to access the highly
accurate JPL ephemerides on CD-ROM.

REFERENCES

[1] Richard R. Shiffman, "Sextant Noon-Day Sun Sightings," Math in Action, MathSoft, Inc.
(http://mathsoft.com/appsindex.html).

[2] Alan D. Fiala, et al., Astronomical Almanac for the Year 2000, U.S. Naval Observatory,
Washington, D.C. U.S.A., and Rutherford Appleton Laboratory, Chilton, Didcot U.K., November
1998.

[3] Roger L. Mansfield, "Ephemeris of a Comet via Uniform Path Mechanics," Math in Action,
MathSoft, Inc. (http://mathsoft.com/appsindex.html).

[4] P. Kenneth Seidelmann, et al., Explanatory Supplement to the Astronomical Almanac,
University Science Books, Mill Valley, California (1992).

[5] H.M. Nautical Almanac Office, Royal Greenwich Observatory and Nautical Almanac Office, U.S.
Naval Observatory, Planetary and Lunar Coordinates for the Years 1984-2000, London and
Washington, January 1983.

[6] Nautical Almanac Office, U.S. Naval Observatory, Multi-Year Interactive Computer Almanac
(MICA) 1990-2005, Willmann-Bell, Richmond, VA (http://www.willbell.com).

[7] C. W. Allen, Astrophysical Quantities, Athlone Press, University of London, Third Edition
(1973), pp. 124-125.

[8] Oliver Montenbruck and Thomas Pfleger, Astronomy on the Personal Computer, Fourth Edition
(2000), Springer-Verlag, New York.

[9] Paul J. Heafner, Fundamental Ephemeris Computations , Willmann-Bell, Richmond, VA (1999).

sunalts.mcd 2008.07.05. 22

Appendix 1 - Validation of RFN

We need to verify that RFN interpolates correctly between all of the discrete points in the refraction
table. What we can to is to plot the tabular values of refraction in blue, then define a vector that
samples intermediate values and plot them in red. We will then be able to see, by inspection, that
RFN is working correctly. First we plot the tabular refraction vs. altitude to see what the curve looks
like.

10 0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500
Tabular Refraction vs. Altitude

RF

90 ZT−

Now we define a vector of sample points, TestAlts, with the sample points chosen to be within
each tabular interval, and invoke RFN with argument TestAlts. We multiply each result by
SecPerDeg since RFN converted the result from arc-seconds to degrees.

TestAlts Alt1 0.1←

∆Alt
ZT24

100
←

Alti Alti 1− ∆Alt+←

i 2 101..∈for

Alt

:= RF1 RFN TestAlts() SecPerDeg⋅:=

sunalts.mcd 2008.07.05. 23

10 0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500
Tab. & Interpolated Refr. vs. Altitude

RF

RF1

90 ZT− TestAlts,

We see that the interpolated points, in red, lie very close to the tabular points, in blue, which was
to be expected if the logic of interpolation in procedural function RFN is correct.

sunalts.mcd 2008.07.05. 24

