CCS C Compiler Manual
PCB, PCM, PCH, and PCD

) ol b
ot st 0

January 2019

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2019

CCS C Compiler
TABLE OF CONTENTS

(@Y= TSR
PCB, PCM, PCH and PCD...
Installation............
Technical Support
Directories............
L1 L= 0 4 = £ S
Invoking the Command Lin€ COMPIIETuuiiiiiiieiiiie ettt
MENU....coiiiiiieieeeee e
Editor Tabs...........
Slide Out Windows ..

Debugging Windows
STALTUS Biiieieeeeiitt ettt ettt e e et e e e et e e e e e e et e e e e b a et e e e e e nnnrn e e e e e e e e nnnrnee
OULPUL MESSBGESeiiiiiiie ittt e e bbb e e e e s s s e e e e e e s e s st bb e e e e e e s s e anabees
Program Syntax.........
Overall Structure ..
(7071911010 | AP P PP PPPTUPRTPTTI
THIGraPN SEQUENCES ...ttt ettt ettt ettt et e e e bt e e e sa b e e e e bb e e e e bt e e e snbeeeansbeeeans
Multiple Project Files
Multiple Compilation Units.....
Full Example Program..........
Statements
if

goto...
label ..

EXPDIESSIONS ...ttt ettt et e e
(0] 0153 1= | £ PPN
Identifiers

Operators................
Operator Precedence..
Data Definitions.............
Basic Types
LN S TSI LU 111 1= £ S SSRSPI
ENUMEIALEA TYPESeeeeieeiiiet ettt ettt e e e ekttt e e e e e st b e e e e e e e e anbeb e e e e e e e s nbnnneeeeas
Structures and Unions..........
typedef......ccoveiiiiiii

Non-RAM Data Definitions ...
Using Program Memory for Data
Named Registersccccoeeennns
FUNCLON DEfINItION ...
(@YY ¢ (o F=To [=To I =V g Vot [0 E OSSPSR PRSPPI
Reference Parameters
Default Parameters
Variable ArQUMENE LISESuviiiiiiiiiiieee e ecie et e e e sttt e e e e st e e e e e s et e e e e e s e sntateeeee e s s nntneeaeeesesnnnees

Table of Contents

Analog Comparator.
CAN Bus..

Data Signal Modulator...........
EXEENAEA RAM ...ttt ettt e et
EXEEINAI MEIMOIY ...ttt ettt sttt e e
General Purpose /0
Input Capture.
INEEINEAI LCD ...ttt ettt et e bt e et e ettt e et es
INEEINAI OSCIIALOT ...ttt ree e
Interrupts.................
Low Voltage Detect
Output Compare/PWM Overview ...
Motor Control PWM....................

PMP/EPMP

TimerOQ...
Timerl...
Timer2
Timer3
Timer4...
Timer5...
TimerA ..
TimerB ..

VOIAGE RETEIEINCE.oi it e e e e e e e e e e e e e e e
WDT OF WALCH DOG TIMET ...ttt ettt ettt e ettt e e eeeas
Stream 1/O....coovveiviiiiiiiene

PreProcessor..........
__address___
_attribute_x........

#endasm ..
#asm asis....

CCS C Compiler

#bank_dma
#bankx ..

#device
_device___
#if #else #elif #endif.

ES (o To] (o] o] ([o] 4) TN O T TP T PP PP PP P PP OPPPPPPPPRION
S {1 PSPPI PR
__filename__
#fill_rom

FEONIT e et e e
#ignore_warnings.
#import(options) ...
#include.

#ocs ..
#opt...

FHPIN_SIECT ...ttt e e e e e e e e e e e e eeeas
B o 1o « T OO P PP PU P OUPPPPPPTROE
__pcd__

_pem__ ..
_pch__...
#pragma...
#priority
22 0] 0) 11 [T PO PO PP PUTTOPPTPP
FETECUISIVE ...ttt oot oot e e bttt e e a et e et e e et e e na et e n b e e

#separate....

Table of Contents

__Uunicode__
#use capture
FEUSE_AEIAY ...eei ittt ettt e e e e et e e e e e e e b et e e e e e e bareeaae s

#use dynamic_memory ...193
#use fast_i0........cccvveeeeeenns ...194
#use fixed_io ...194
#use i2c............. ...195
#use profile() ... 197
FEUSE PWIMI() .ttt ettt ekt e et e e bt e et e bt a et et e e et e e e e n e e 197
FHUSE I'S232 .ottt e e e e e e 199
use rtos

#use spi
FEUSE SEANGAIT_ID....ei ittt ettt et e e 205
E T Y (1001 S PSPPSR OUPPPPPPTROE 206
#use touchpad... ..208

#warning

#zero_local_ram...
#zero_ram............
BUII-IN FUNCHIONS ...ttt s et

atof64()....
strtof48()..

atoi48()....
atoi64()
at_clear_interrupts()
at_disable_interrupts()

at_enable_interrupts() ..224
oo < o= 11 0 (=] () PP P U OUPPPPRPPR TPt 225
at_get._ miSSING_PUISE_AEIAY() ... urreeiiiieeiii et 226
at_get_period()....ccccoeeuvreeeenn.

at_get_phase_counter()

at_get_resolution()

CCS C Compiler

= Lo [Y= A 1oL L(() TP PP TS PPP PR 228
F Lo (= Y=l o To o =1 (o () PP OPPPRPP 229
at_get_status()ccceeeeeernnns .
at_interrupt_active()
at_set_compare_time()........... ...232
at_set_missing_pulse_delay()
at_set_resolution()..........ccceee.
F L= Y= 1oL L{ () T PP OPPRRPP
at_setup_cc()
bit_clear()
bit_first().....
bit_last().....
bit_set()......
bit_test()....ccccoeene
BrOWNOUL_ENADIE() ..eiiieiiiiiiiie e
DSEAICI() ..ttt
calloc() .oeevevnnnn.

ceil()
(o o3 Y= (T o o = L =T (O PP O T PP PP OT PP PPPPPPP
(o (oY= (T o o F= LY () PP OPPRPP
clc3_setup_gate()...
ClCA_SEEUP_GALE() .eierieiiiiiieiiiee ettt e
clcl_setup_input() clc2_setup_input() clc3_setup_input() clc4_setup_input()
ClEAT_INTEITUPL() vttt ettt ettt e et e e e e sbe e e e eaeeees 245
clear_pwm1_interrupt() clear_pwm2_interrupt() clear_pwm3_interrupt() clear_pwm4_interrupt()
clear_pwmb5_interrupt() clear_pwme6 _INEITUPL().eeeiurieeiieieiiiiee e 246
(oo s I (=51 = () DT PP T TP P PSP T PP PPPPPPPI
cog2_restart()...
cog3_restart()...
cog4_restart()...
cog_status()
cog2_status() ...
(ool IS = LU L] (O PP S T TP PP O PP PPPPPPPI
(ool S = LU L] (PO PP PP PP PPPPPTPP
crc_calc(mode)....
crc_init(mode)
[(o (= To [P TSP PO PP OT PP PPPPPPPI
(o (o 1 (=T (O I PP OPPRRP
cwg_restart()....
cwg2_restart()
cwg3_restart()
cwg_status().....
cwg2_status()...
[T o T =1 U1 () TSP P T UPPPPPUTTON
[o F Lo 11 (=T () TSP P PP OPPPPPP
dci_data_received()
dei_read()......ccvvvee. ...255
dei_start()...cccooeeeen. ...256
dci_transmit_ready()...
dei_write() ..oooeeveeeee.
[0 = Eo Y o Yol (2] (T OO PP PPPPPUTTON
(o =] N 11 (O PSP PP OPPPPPP
delay_us().....ccoeeee. . .
disable_interrupts()

Table of Contents
disable_pwm1_interrupt() disable_pwm2_interrupt() disable_pwm3_interrupt()

disable_pwm4_interrupt() disable_pwm5_interrupt() disable_pwm6_interrupt()..........ccccceuvee. 262
(o117 G S PO S TPR U R PP PRPR 264
(o117 G TSSOSO UT TR PUROTRN
dma_start().........

dma_status()
enable_interrupts()
€rase_Program_MEMOTY() ..e . .uee o ueeeiteeeeateeearuteeeaateeeeasteeeasbeeesabaeeeasbeeeaabeeeaabaeeesnbeeesabeeeeaneneas
enable_pwm1_interrupt().....
enable_pwm2_interrupt().....
enable_pwm3_interrupt().....
enable_pwm4_interrupt().....
enable_pwmb5_interrupt().....
enable_pwm6_interrupt().....
erase_eeprom().......cceeeeunee.
erase_program_memory()...

printf() ...
fPrintf() oveerieii
putc() putchar() fputc()...
puts() fputs().....ccoeevveennnnn
free() .oovveeenieeenns
frexp() ...
scanf()...
fscanf().....coeeenee
get_adc_ports()..
[o < o= o0 (=T (O P PP ST TP PP OT PP PPPPPPP
[PCD] GO CAPIUIE() «uteieeiiiee ettt ettt ettt ettt ettt et e e et e e ettt e e smb e e e e bb e e e e nbb e e e snbeeeaanaeaeans
get_capture32_ccpl()
get_capture_ccpl().........
get_capture_ccp2()
get_capture_ccp3()
get_capture_ccp4()
get_capture_ccp5()
[PCD] get_capture32_ccpl()
L CAPLUME32_COP2(() «uvveeemrtee et et ettt ettt ettt ettt et e e st e e bt e e et e et e e es
get_capture32_ccp3()
get_capture32_ccp4()
get_capture32_ccp5()
get_capture_event()........
get_capture_time()..........
[PCD] get_capture32()....
get_hspwm_capture()......
get_motor_pwm_count()..
[o 1=y g [T TR Toto1 U] 0 U1 =1 (o) () TSRS

CCS C Compiler

[o = e (oo N o (o 1 1= PP TP PPUTTN 294
get_ticks()
get_timerA()
get_timerB()
get_timerx()........
get_timerxy()
get_timer_ccpl()
get_timer_ccp2()
get_timer_ccp3()
get_timer_ccp4()
get_timer_ccp5() ...
get_tris_X().........
get_ wdt()............
getenv()....cooeennee

high_speed_adc_done()..
12C_INI() o
(Ao S) =] () SO RUPPPT PPN
T2 POII() ettt et e e
i2c_read()...........
i2c_slaveaddr()...
(o] o1=TTo [I P TP P T P PP PP PR OT P PPPPPPPUPPN
T2 STAIT() -vveeeetee ettt e e
i2c_stop() ..ccenvee.
i2c_transfer()......
i2c_transfer_in()
i2c_transfer_out() ...

input_change_x() ...
input_state()....
INPUE_X() coeveeeiieene
interrupt_active()
interrupt_enabled()ccccooviiiiiiin
isalnum(char) isalpha(char) iscntrl(x) isdigit(char)
isgraph(x) islower(char) isspace(char)

isupper(char) isxdigit(char) isprint(x) ispunct(x)
ISAMONQG() -vveeenireeerrrie ettt

Kbhit()..ccooovveennnnn
label_address() ..
(=1 o L] (O TP PO PP PPPPPPPN
(oo [l oTo a1 1= 1) () OO PO TP PUPPPPPUPPN
led_load()
lcd_symbol().......
ldexp() .ccooveeennnnn.

make8()......cc.ee...
makel6()............
LT 1 CCTC 722 () PSSR

Table of Contents

output_low()
output_toggle()...
perror()coceeennee.

pin_select()
pll_locked()
pmp_address(address)
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout()cccuvveee 357
L] oI (L= To [PSPPSR UTPR

pPMp_Write() ..oocveeiiiiiennns
port_a_current_source()..

printf() ..ooooeeennnn.
fprintf()
profileout()..........
psmc_blanking()
PSMC_AEAADANU() .vveeeeiie ettt
oS 10 (o (V11 (O TP PP PUPPT PPN
psmc_freq_adjust()
psmc_modulation()
o] (o o] 1 £ (O ISP U T OUPPPPUPP PPNt
PSMC_SHULAOWN() 1.ttt et ettt e e e e nb e e e
PSMC_SYNC() vveeeeireeeeieie ettt
psp_output_full() psp_input_full() psp_overflow()..
O] I == Lo [() TSP TP TP T P PUPPPPPPPPN
OS] I L1 (=T OO OO U PO P T OUPPPRPUPPN
putc_send() fputc_send()....

pwm_off()
pwm_set_duty_percent) .. .
PWIM_SEE_FTEQUEINICY) 1.ttt ettt e e et e e e e e eiaee e
pwml_interrupt_active() pwmz2_interrupt_active() pwm3_interrupt_active()
pwm4_interrupt_active() pwmb5_interrupt_active() pwm6_interrupt_active()
[PCD] Q€I_gt CAPIUME() .. euteeeeiteeeiiei ettt ettt e e e et eanaaee e

CCS C Compiler

10

(o =TI o [o010 o TP PR UPPPPPUTTN
[PCD] qei_get_index_count()
[PCD] gei_get iNterval_COUNT()....c.eeiiuirritieei ettt iee e e ettt e e ettt e e e e st e e e e e e ssabereaa e e s e snennees 384
[PCD] gei_get VElOCItY COUNT() ..eerieiiiiiiiiiieeiaiiitiiee e ettt ettt e et e e e e e s s e e e e e s e nnnaees 385
gei_set_count()ccoceeeerieeeiinnennns

[PCD] gei_set_index_count()
(o =TI - (1] (O TP P PP TR PPP PR
[o Yo 4 () ISP OPPRRPP
rand() ccooooeveiiiieneenn.
rcv_buffer_bytes() ..
rev_buffer_full()
read_adc()....ccoeeeeeriiniinnns
[PCD] read_adc2()
read_bank().......ccceeeeennns
read_calibration()
read_calibration_memory()...........
read_config_info() ...cccocoeeeviiiennnns
read_configuration_memory()
read_device_info().......cocevevreinnns
=T To [T=T o] (01001 TR SO RUPPPTUOPPRN
FEA_EXIENAEA_TAM() 1.utiiiiiiiie ittt ettt e et e s e e
read_program_memory().
read_high_speed_adc().......
rEAA_PrOgramM_ITIEIMOIY(). cuuieeiiuriteiiite ettt ettt e ettt st e et et a bt e e st e e sebe e e s ebaneeens
rEAd_PrOgramM_IMEIMOIY(). c.uite ittt iiite ettt ettt ettt e ettt ettt e e et e e nebe e e s aianeeens
read_program_memory8()...403
read_rom_memory()............
read_sd_adc().......coceernnnn
realloc()....cccc......
release_io()........
reset_cpu().........
restart_cause()...
restart_wdt().......
rotate_left().........
rotate_right().......
rtc_alarm_read().....
rtc_alarm_write()
(o (=T Lo [T SO RPUPPT PPN
[PCD] rtc_status()........... ... 413
[PCD] rtc_tsx_read()
(o 1 (=T () PP O O UPPPPUPP TPt
TEOS_BWAIE() +. ettt ettt ettt a e b et e e e
rtos_disable()
rtos_enable()
TEOS_IMSG_ PO)+ttt 417
(o S 1 Yo (= Lo [() O T PO PUPPPPPUPPN 418
rtos_msg_send()....
rtos_overrun()......... ... 419
rtos_run()
rtos_signal()
rtos_stats().........
rtos_terminate()..
rtos_wait()
rtos_yield()
LY A= Vo [o] =V o =Y [USSP 424

Table of Contents

set_adc2_channel()
[A= o (ol i o o 1= (O PP PO PROPPRRPP
set_analog_pins()... .

[PCD] sent_getd()..
[PCD] sent_putd()..
[PCD] SENE_STALUS()+ euvvteeitreeeritie e ettt e ettt e ettt et e st e e et e et e e aab et e e be e e e enbb e e e snbeeesabaneeens
set_ccpl_compare_time()
set_ccp2_compare_time()...
set_ccp3_compare_time()...
set_ccp5_compare_time()...
set_ccp5_compare_time()...
set_cog_blanking().............
Set_€og_dead _DANU()veoiiiiiiiie e
SEL_COG_PNASE() +eiietiieiiiie ettt
set_compare_time()cccee.n.
set_dedicated_adc_channel().
[PCD] SEt_NSPWIM_EVENT() ...ttiieriieiiiieeeiite ettt ettt e et sbaee e
S NSPWIM_AULY() e eteeeiitiie ettt ettt ettt ettt e sttt e e ekt e e sab e e e et b e e e enb e e e snbbeeeanneeas
set_hspwm_override().........

set_hspwm_phase()......
set_input_level_X()
set_motor_pwm_duty()........
set_motor_pwm_event()
L= A T (o] (U 01 { () TP OPPRPP
SEt_NCO_ACCUMUIBION() 1.ettieiiiit ettt e ettt et e e e et e e aaenees
set_nco_inc_value()............
set_open_drain_x(value).........
set_power_pwm_override()
set_power_pwmx_duty()
set_pulldown()........ccceeennen.
SEE PUITUD() ettt ettt
set_pwml_duty() set_pwm2_duty() set_pwm3_duty() set_pwm4_duty() set_pwm5_duty() .. 450
set_pwml_offset() set_pwm?2_offset() set_pwm3_offset() set_pwm4_offset() set_pwm5_offset(
) SEL_PWMB_OFFSEE() ..veeeiiiieiiiii e 451
set_pwml_period() set_pwm2_period() set_pwm3_period() set_pwm4_period()
set_pwmb5_period() set_pwm6_period()

set_pwmx_phase()cccccveerireinniiieeninnens
S HIMIEIX() 1rteenttt ettt ettt ekttt eas
set_rtcc() set_timerO() set_timerl() set timer2() set timer3() set_timer4() set_timer5() 454
L= A (o3 () PP U PO OPPPPPP
setup_sd_adc_calibration()

set_sd_adc_channel()
SEL_SIOW_SIEW_ X() 1.ttt
set_timerA()
set_timerB()
set_timerxy()
1= A (100 1T o () T PO TP TP OPPPPPP
set_rtcc() set_timerO() set_timerl() set timer2() set timer3() set_timer4() set_timer5() 460
set_timer_ccpl() set_timer_ccp2() set_timer_ccp3() set_timer_ccp4() set_timer_ccp5() 461
1= A 00 =] A ote] o 1] () PP P PP OPPPPPP 461
set_timer_period_ccpl() set_timer_period_ccp2() set_timer_period_ccp3()
set_timer_period_ccp4() set_timer_period_ccp5()
set_timer_period_CCPB(). ..ccorurrerrrreeiiiieeiiieeerieee e

CCS C Compiler

12

L1 A 1S TP PPP PR
set_uart_speed()....
L1101 o1 () TP PP PPPPUTTN
L1 (0o = ot () TP PPP PR
setup_adc(mode)
[PCD] setup_adc2(mode)....
1 (U] o= o (o o To 4 ¢ () [P PP PPPPPUTTN
[PCD] SELUP_AAC_POIS2(() .vreeiuteeeiuieieeaiiieearitee e ettt e e ettt et e st e e e bt e e asb et e abb e e e e bb e e e sabeaeabaeeeeas
setup_adc_reference()
setup_adc_reference2() ..
setup_adc_reference()....
setup_adc_reference2() ..
setup_at()....ooovvvvveeeeennnnne

=0 T o= o] 10 =T () PSP P PRPPPRRINY

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5() setup_ccpb() 473
SEEUP_CCPT() teuvrrteiurtte ettt ettt ettt ettt ettt et e e et et e st e e et e e ... 473
setup_ccp8() 473
setup_ccp9() 473
setup_ccpl0() ... 473
setup_clcl() setup_clc2() setup_clc3() SETUP_CICA() ..veeevririiieieiiiiie et 476

L (U o oo 00T o L= = L (o] () PR SPPPPPRTTN
setup_comparator_filter()
setup_comparator_mask()... e
SELUP_COMPATALOT_X() 1etvteeirtie ettt ettt e ettt ettt ettt e e bt et e st e e s e e e sbe e e e aannees
SELUP_COMIPAE() 1o teteeeietit ettt ettt etttk e et ee et e skt et e ekt e e et e s bb e e e e e e e sbe e e e eaneees
setup_counters()
setup_crc(mode)
setup_cog()
setup_cwg()
setup_cwg2()......
SEtUP_CWO3()eevvveeeririieiiiieeiiieeeas
[PCD] setup_current_source()
setup_dac() .
setup_dci()
setup_dedicated_adc()....
setup_dma()cooeeevvneenne
SEEUP_ASIMI() ¢ttt ettt ettt h e ees
SELUP_EXEEIMNAL_MEIMOTY(). tttiiiiiiiee ittt ettt e st e e bt e e st e et e e e abe e e anbeeeeaneeeas
setup_high_speed_adc()..............

setup_high_speed_adc_pair() .
SetuP_NSPWM_DIANKING().rreeeieiiiiiiiiiie et e et e e e e et e e e e e e
Setup_NSPWM_CHOP_CIOCK() .vreiiitiieiiii et
setup_hspwm_trigger()
setup_hspwm_unit() .
SEEUP _NSPWITI().ttt ettt e ettt
SEtUP_NSPWM_SECONUAIY() 1oeeiiiiiiiiieeeeieiieiit e e e e e ettt e e e e e ettt e e e e e s snnteeeeeeesessnraeeeeeeaannsneeeeeananes

setup_hspwm_unit_chop_clock().. ..499
Setup_lcd() covveveeeenee e ..500
setup_low_volt_detect()... ..501
setup_motor_pwm()502
SELUP_NCO() coevvrreeeeee ettt e e e e et e e e e e503
setup_opampl() setup_opamp2() setup_opamp3()..504
SEtUP_OPAMPA() weeeeeeeiiiiieiee ettt504
setup_oscillator()....504
1= 0 oI oo - T PO P PO OPPPPPP 506

Table of Contents

ST (U] o I oo [TP PPP PR
setup_pmp(option,address_mask).
SELUP_POWET _PWIMI() ettt ee e e e ettt et e e e e ettt et e e e e e sattb et e e e e e sabb bt e e e e e e aabbbe e e e e e e aaambabeeeeeeesannbbbeeaeeaaanes
setup_PowWer_PWM_FAUIES() «ooeiiiiiei ettt e e e e s e e e e e e
setup_power_pwm_pins()

setup_prox()....occeveeeeeeriininnes

ST (U] T 0] 1 o1 () TP PP PPPPPUTTN
setup_psp(option,addreSS_MASK)........uiiiiiiiiiiii e
setup_pwm1() setup_pwm?2() setup_pwm3() setup_pwm4()515
(ST (U] o o =1 [P PP UPT T UUPPPPTN516
setup_rc() coeerenenn. .517
setup_rtc_alarm()518
setup_sd_adc() .eeeeeenne519
[PCD] setup_sent()520
Setup_SMtX() ..oooveerrvneenne ...521
setup_spi()522
setup_spi2()522
setup_timerx()523
setup_timerA().... .524

=0 T 1 =T 4 = (O TSP OPPRPP 525
setup_timer0()
setup_timerl()....
setup_timer2()....
setup_timer3()
setup_timer4()
setup_timer5()....

setup_uart()........

setup_vref()........

setup_wdt()

setup_zcd()

shift_left()...........

SHIFE FIGIT() +eeteeiee et
sin() cos() tan()
SIEEP() ettt ettt
sleep_ulpwu()
smtx_read()......coeeercuneenne
smtx_reset_timer()
[01 S - T () I PP PPRTRP
smtx_status()
smtx_stop()
S 1 11 T (O TP PPPPPUTTON
LS 101 e U oo = L= (O IO PP T PP OPPPPPP
spi_data_is_in()......
spi_data_is_in2()....
L] o TIPSO PP OPPPRPP
LS oI o1 (11 (T (O TP P PO PR OPPPPPP
spi_read() spi_read2()..
spi_read3()....ccccceeeeruneenne549
spi_read4d()....cccooeeeencunnenne549
spi_set_txcnt()....
spi_speed()couveeeeeriiiinnns
[PCD] spi_transfer_write() ...
spi_write() spi_write2()
spi_write3()
spi_write4()

CCS C Compiler

STANDARD STRING FUNCTIONS memchr() memcmp() strcat() strchr() strcmp() strcoll()
strespn() strerror(') stricmp() strlen() striwr() strncat() strncmp() strncpy() strpbrk() strrchr()
strspn() strstr() strxfrm() 558

LS (o1 0/ () TR PPPPPUTTN
strcopy()...
strtod() .oeeeveeeennes
[PCD] strtof().....
[PCD] strto48() ..
strtod() ..eeevveeennne
[PCD] strto48() ..

strtol()....
strtoul()..
swap()
tolower()
(10T o] o 1= (O I PP PP P TP T PP PP OT PP PPPPPPPI
touchpad_getc() .
touchpad_hit()

touchpad_state()
BOIOWET() 1ttt ettt ekttt ettt

toupper() «.ocoveereeeenieeenne
tx_buffer_available()570
tx_buffer_bytes()570

tx_buffer_full()....

....574
write_bank()cooovveiriiiiiniiiein574
write_configuration_memory()575
Write_eeprom() ...cccceevveeerveeennnnnen.576
write_external_memory(). ... 577
WHE_@XEENAEA_TAMI() +eeieiiiieiitee ettt ettt ettt e et e e re e e sbaeeeeaene 578
N I oo 1o = L =TT o] (o] .1 PRSP PUPPTROE 579
write_program_memory()580
write_program_memory8()582
FAolo IS €21 (01 () IO PP PP PP PPPUTTON

Standard C Include Files
ermo.h ..o
float.h.....
110 011 31 o O PP PP PP POPPPN 585
JOCAIELN L.
setjmp.h
stddef.h.....

stdio.h ...
stdlib.h e
Software License Agreement

14

Overview

OVERVIEW

PCB, PCM, PCH and PCD

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for 14-
bit opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many similarities, all
three compilers are covered in this reference manual. Features and limitations that apply to
only specific microcontrollers are indicated within. These compilers are specifically designed to
meet the unique needs of the PIC® microcontroller. This allows developers to quickly design
applications software in a more readable, high-level language.

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which include the
dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed to meet the
unique needs of the dsPIC® microcontroller. This allows developers to quickly design
applications software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and bit
twiddling operations. All normal C data types are supported along with pointers to constant
arrays, fixed point decimal, and arrays of bits.

pco] Special built in functions to perform common functions in the MPU with ease.

rco] Extended constructs like bit arrays, multiple address space handling and effective
implementation of constant data in Rom make code generation very effective.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated
development environment for compiling, analyzing and debugging in real-time. Other features
and integrated tools can be viewed here.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some limitations.
As an example of the limitations, function recursion is not allowed. This is due to the fact that
the PIC® has no stack to push variables onto, and also because of the way the compilers
optimize the code. The compilers can efficiently implement normal C constructs, input/output
operations, and bit twiddling operations. All normal C data types are supported along with
pointers to constant arrays, fixed point decimal, and arrays of bits.

PIC® MCU, MPLAB® IDE, MPLAB ICD2 MPLAB® ICD3 and dsPIC® are registered trademarks of Microchip Technology Inc. in the U.S. and
other countries. REAL ICE™, ICSP™ and In-Circuit Serial Programmlng are trademarks of Microchip Technology Inc. in the U.S. and other
countries.

Installation

Insert the CD ROM, select each of the programs you wish to install and follow the on-screen
instructions.

If the CD does not auto start run the setup program in the root directory.
For help answering the version questions see the "Directories" Help topic.

15

http://www.ccsinfo.com/content.php?page=ideoverview

CCS C Compiler

Key Questions that may come up:
Keep Settings - Unless you are having trouble select this

Link Compiler Extensions - If you select this the file extensions like .c will start
the compiler IDE when you double click on files with that extension. .hex files start
the CCSLOAD program. This selection can be change in the IDE.

Install MP LAB Plug In - If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

Install ICD2, ICD3...drivers-select if you use these microchip ICD units.
Delete Demo Files - Always a good idea

Install WIN8 APP- Allows you to start the IDE from the Windows8 and Windows10
Start Menus.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently. It is recommended
to send an email to: support@ccsinfo.com or use the Technical Support Wizard in
PCW. Include the version of the compiler, an outline of the problem and attach any files with
the email request. CCS strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
e Directories listed on the command line
e Directories specified in the .CCSPJT file (edit in the IDE under
Options>Project>Include)
e Directories specified in the ccs.ini file found using Start>All Programs>PICC>User
Data Dir
e The same directory as the source.directories in the ccsc.ini file

16

http://www.ccsinfo.com/downloads.php

Overview

By default, the compiler files are put in C:\Program Files\PICC and the example programs are
in \PICC\EXAMPLES. The include files are in PICC\drivers. The device header files are in
PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default
in \PICC\DLL\5.xxx.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was
tested with a specific version, but newer projects use a newer version. When installing the
compiler you are prompted for what version to keep on the PC. IDE users can change
versions using Help>about and clicking "other versions." Command Line users use start>all
programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in %APPDATA%\PICC

File Formats
.c - This is the source file containing user C source code.
.h - These are standard or custom header files used to define pins, register, register bits,

functions and preprocessor directives.

.pjt - This is the older pre- Version 5 project file which contains information related to the
project.

.ccspjt - This is the project file which contains information related to the project.

st - This is the listing file which shows each C source line and the associated assembly
code generated for that line.

The elements in the .LST file may be selected in PCW under
Options>Project>Output Files

CCS Basic - Standard assembly

with Opcodes - Includes the HEX opcode for each instruction
Symbolic - Shows variable names instead of addresses
Mach code - Includes the HEX opcode for each instruction

SRF names - Instead of an address, a name is used. For example, instead of 044,
will show CORCON

Symbols - Shows variable names instead of addresses

Interpret - Adds a pseudo code interpretation to the right of assembly instruction
to help understand the operation. For example: LSR
W4 #8W5 | W5=W4>>8

17

CCS C Compiler

.sym - This is the symbol map which shows each register location and what program variables
are stored in each location.

.sta - The statistics file shows the RAM, ROM, and STACK usage. It provides information on
the source codes structural and textual complexities using Halstead and McCabe
metrics.

tre - The tree file shows the call tree. It details each function and what functions it calls
along with the ROM and RAM usage for each function.

.hex - The compiler generates standard HEX files that are compatible with all
programmers. The compiler can output 8-bet hex, 16-bit hex, and binary files.

.cof - This is a binary containing machine code and debugging information. The debug files
may be output as Microchip .COD file for MPLAB 1-5, Advanced Transdata .MAP file,
expanded .COD file for CCS debugging or MPLAB 6 and up .xx .COF file. All file
formats and extensions may be selected via Options File Associations option in
Windows IDE.

.cod - This is the binary file containing debug information.

.rtf - The output of the Documentation Generator is exported in a Rich Text File format which
can be viewed using the RTF editor or Wordpad.

.rvf - The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text
File.

.dgr - The .DGR file is the output of the flowchart maker.

.esym or .xsym - These files are generated for the IDE users. The file contains Identifiers and
Comment information. This data can be used for automatic documentation generation
and for the IDE helpers.

.0 - Relocatable object file.

.osym - This file is generated when the compiler is set to export a relocatable object file. This
file is a .sym file for just the one unit.

.err - Compiler error file.
.ccsload - Used to link Windows Apps to CCSLoad
.ccssiow - Used to link WindowsApps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCscC [options] [cfilename]
Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS | Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM | .MAP format debug file
+YX Optimization level x (0-9) +DC | Expanded .COD format debug file
+FD Select PCD (dsPIC30/ +DF | Enables the output of an COFF debug file.

18

Overview

dsPIC33/PIC24)

+FS Select SXC (SX) +EO | Old error file format

+ES Standard error file -T Do not generate a tree file

+T Create call tree (.TRE) -A Do not create stats file (.STA)

+A Create stats file (.STA) -EW | Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error

+EA

Show all error messages
and all warnings

Error/warning message format uses GCC's
+EX | "brief format" (compatible with GCC editor
environments)

The xxx in the following are optional. If included it sets the file extension:

+L NXXX Normal list file +0O8xxX 8-bit Intel HEX output file
+L SXXX MPASM format list file +OW XXX 16-bit Intel HEX output file
+LOXXX Old MPASM list file +OBxxx Binary output file
+L Y XXX Symbolic list file -O Do not create object file
-L Do not create list file
+P Keep compile status window up after compile
+Pxx Keep status window up for xx seconds after compile
+PN Keep status window up only if there are no errors
+PE Keep status window up only if there are errors
+Z Keep scratch files on disk after compile
+DF COFF Debug file
|4z Same as I="..." Except the path list is appended to the current list
Set include directory search path, for example:
= I="c:\picc\examples;c:\picc\myincludes"
If no 1= appears on the command line the .PJT file will be used to supply the
include file paths.

out="dir" Use this directory for output files
-P Close compile window after compile is complete
+M Generate a symbol file (.SYM)
-M Do not create symbol file
+J Create a project file (.PJT)
-J Do not create PJT file
+ICD Compile for use with an ICD

n " Set a global #define for id xxx with a value of , example:
HXXX=TYYY #debugg:"true" 7
+GXxXX="yyy" Same as #xxx="yyy"
+? Brings up a help file
-? Same as +?
+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)

19

CCS C Compiler

sourceline= Allows a source line to be .injected at the sta(t of the source file.
Example: CCSC +FM myfile.c sourceline="#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A/ character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters
are read from that file before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

The PCW IDE provides the user an easy to use editor and environment for developing
microcontroller applications. The IDE comprises of many components, which are summarized
below. For more information and details, use the Help>PCW in the compiler..

Many of these windows can be re-arranged and docked into different positions.

Menu

All of the IDE's functions are on the main menu. The main menu is divided into separate
sections, click on a section title ('Edit', 'Search’, etc) to change the section. Double clicking on
the section, or clicking on the chevron on the right, will cause the menu to minimize and take
less space.

Editor Tabs

All of the open files are listed here. The active file, which is the file currently being edited, is
given a different highlight than the other files. Clicking on the X on the right closes the active
file. Right clicking on a tab gives a menu of useful actions for that file.

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects' shows all the recent projects
worked on. 'ldentifiers' shows all the variables, definitions, prototypes and identifiers in your
current project.

Editor

The editor is the main work area of the IDE and the place where the user enters and edits
source code. Right clicking in this area gives a menu of useful actions for the code being
edited.

20

Overview

Debugging Windows

Debugger control is done in the debugging windows. These windows allow you set
breakpoints, single step, watch variables and more.

Status Bar

The status bar gives the user helpful information like the cursor position, project open and file
being edited.

Output Messages

Output messages are displayed here. This includes messages from the compiler during a
build, messages from the programmer tool during programming or the results from find and
searching.

21

CCS C Compiler
PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
Statements
Expressions

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose and
the functions could be called from main or the sub-functions. In a large project functions can
also be placed in different C files or header files that can be included in the main C file to group
the related functions by their category. CCS C also requires to include the appropriate device
file using #include directive to include the device specific functionality. There are also some
preprocessor directives like #fuses to specify the fuses for the chip and #use delay to specify
the clock speed. The functions contain the data declarations,definitions,statements and
expressions. The compiler also provides a large number of standard C libraries as well as
other device drivers that can be included and used in the programs. CCS also provides a large
number of built-in functions to access the various peripherals included in the PIC
microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The
compiler recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template
to export these comments and create a formatted output document in Rich Text File Format.
This utility is only available in the IDE version of the compiler. The source code markups are as
follows.

Global Comments

These are named comments that appear at the top of your source code. The comment hames
are case sensitive and they must match the case used in the documentation template.

For example:

/I*PURPQOSE This program implements a Bootloader.

/*AUTHOR John Doe

22

Program Syntax

A''/l' followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the
documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration. For
example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For
example:

/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global Comments.
These comments appear before the function, and the names are exported as-is to the
documentation generator.

For example:

/IPURPOSE This function displays data in BCD format

void display_BCD(byte n)

{

}

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not

available on all keyboards as follows:

Sequence Same as
?7?= #

23

CCS C Compiler

?2?2(
?2?/
?7?)
?7?"
?27?<
??!
?2?7>
??-

l [~ —l| > — |

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the
main file or the sub-files to use the automatic linker included in the compiler. All the header
files, standard libraries and driver files can be included using this method to automatically link
them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you can
say in:

main.c:
#include <device header file>
#include<x.c>
#include<y.c>
#include <z.c>

X.C:
#include<x.h>

y.Cc:
#include<y.h>

z.C:
#include<z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the
symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH, PCHWD
and PCDIDE. When using multiple compilation units, care must be given that pre-processor
commands that control the compilation are compatible across all units. Itis recommended that

24

Program Syntax

directives such as #FUSES, #USE and the device header file all put in an include file included
by all units. When a unit is compiled it will output a relocatable object file (*.0) and symbol file
(*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these methods and
example projects are included in the MCU.zip in the examples directory of the compiler.

Full Example Program
Here is a sample program with explanation using CCS C to read adc samples over RS232:

#include <16F877A.h> // Loads chip
specific definitions

#fuses NOPROTECT // Turn off code
protection

#use delay(clock=20000000) // Specifies clock
speed

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7) // Creates RS232
libraries

void main () {
unsigned int8 i, value, min, max;
printf ("Sampling:"); // Printf from the
RS232 library
setup adc_ports (ANO) ; // Make ANO a analog
pin
setup_ adc (ADC_CLOCK_INTERNAL) ; // Start up the
ADC
set_adc_channel (0) ; // Set ADC channel to
ANO
do {
min=255;
max=0;
for (i=0; 1i<=30; ++1i) {
delay ms(100); // delay function from
the delay library
value = read adc(); // Built-in A/D read
function

if (value<min)
min=value;
if (value>max)
max=value;

}

printf ("\r\nMin: %2X Max: %2X\n\r",min,max) ;
} while (TRUE);

25

CCS C Compiler

// This version of the example uses the C++ cout instead of printf
// and it also shows data streaming through the ICD instead of using
// an RS232 port

#include <16F877A.h> // Loads chip specific
definitions

#fuses NOPROTECT // Turn off code protection
fuse delay(clock=20000000) // Specifies clock speed
#use rs232(ICD) // Creates RS232 libraries

(using the ICD)

#include <ios.h>

void main () {
unsigned int8 i, value, min, max;
cout << "Sampling:" << endl;

setup adc_ports (ANO); // Make ANO a analog pin
setup adc (ADC_CLOCK_ INTERNAL) ; // Start up the
ADC
set_adc_channel (0) ; // Set ADC channel to ANO
do {
min=255;
max=0;
for (i=0; 1<=30; ++1i) {
delay ms(100); // delay function from the
delay library
value = read adc(); // Built-in A/D read function

if (value<min)
min=value;
if (value>max)
max=value;
}
cout << hex << "Min: " << min << " Max: " << max << endl;
} while (TRUE);

26

Statements

STATEMENTS
STATEMENT Example
if (x==25)
if (expr) stmt; [else stmt;] el Sz=0 ’
x=x+1;

while (expr) stmt;
do stmt while (expr);
for (expri;expr2;expr3) stmt;

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]

2}

return [expr];
goto label;
label: stmt;
break;
continue;
expr,;

{Istmt]}

Zero or more
declaration;

while (get rtcc() !=0)
putc('n’);

do {
putc (c=getc());

} while (c!=0);

for (i=1;1i<=10;++1)
printf (“su\r\n”,i);

switch (cmd) {
case 0: printf(“cmd 0”);bre
case 1l: printf(“cmd 1”);brea
default: printf (“bad

cmd”) ;break;

}

return (5);

goto loop;

loop: i++;

break;

continue;

i=1;

{a=1;

b=1;}

int 1i;

Note: Itemsin [] are optional

if

if-else

The if-else statement is used to make decisions.

The syntax is:
if (expr)
stmt-1;
[else

27

CCS C Compiler
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:
if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement associated

with it is executed and it terminates the chain. If none of the conditions are satisfied the last
else part is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

while

Used as a loop/iteration statement.

The syntax is:
while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in which
case the execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

Differs from while and for loop in that the termination condition is checked at the bottom of the
loop rather than at the top and so the body of the loop is always executed at least once. The
syntax is:

28

Statements

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when it
becomes false the loop terminates.

Also See: Statements , While

for

Also used as a loop/iteration statement.
The syntax is:
for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is the
termination check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++1)
printf ("$ul\r\n",1i);

Also See: Statements

switch

Also a special multi-way decision maker.
The syntax is
switch (expr) {
case constl: stmt sequence;
break;

.[-ciefault:stmt]
}

This tests whether the expression matches one of the constant values and branches
accordingly.

If none of the cases are satisfied the default case is executed. The break causes an immediate
exit, otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");
break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd");

29

CCS C Compiler
break; }

Also See: Statements

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:
return(expr);

Example:
return (5);

Also See: Statements

goto

The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's are used
sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

The label a goto jumps to.
The syntax is:
label: stmnt;

Example:
loop: i++;

Also See: Statements

break

The break statement is used to exit out of a control loop. It provides an early exit from while,
for ,do and switch.
The syntax is

30

Statements

break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to
begin.
The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control
passes the
re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

stmt

Zero or more semi-colon separated.
The syntax is:

{[stmt]}

Example:
{a=1;
b=1;}
Also See: Statements
31

CCS C Compiler
EXPRESSIONS

Constants
123 - Decimal
123L - Forces type to & long (UL also allowed)

123LL - Forces type to & int32;
tpco] 123LL - Forces type to & 64 for PCD ULL also allowed

0123 - Octal

0x123 - Hex

0b010010 - Binary

123.456 - Floating Point

123F - Floating Point (FL also allowed)
123.4E-5 - Floating Point in Scientific Notation

'X' - Character
\010' - Octal Character
"\XA5' - Hex Character

"\C' - Special Character. Where ¢ is one of:
\n Line Feed - Same as \x0a
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07
\v Vertical Space - Same as \xOb
\? Question Mark - Same as \x3f
\' Single Quote - Same as \x22
\" Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5c¢

"abcdef" - String (null is added to the end)

Identifiers

ABCDE - Up to 32 characters beginning with a non-numeric. Valid characters are A-Z, 0-9
and _ (underscore). By default not case sensitive Use #CASE to turn on.

ID[X] - Single Subscript
ID[X][X] - Multiple Subscripts
ID.ID - Structure or union reference

ID->ID - Structure or union reference
32

Expressions

Operators

+ | Addition Operator

+= | Addition assignment operator, x+=y, is the same as x=x+y

[1 | Array subscrip operator

= | Bitwise and assignment operator, x&=y, is the same as x=x&y

& | Address operator

& Bitwise and operator

A= | Bitwise exclusive or assignment operator, x =y, is the same as x=x"y

N Bitwise exclusive or operator

= | Bitwise inclusive or assignment operator, xl=y, is the same as x=xly

I Bitwise inclusive or operator

?: | Conditional Expression operator

- - Decrement

/= | Division assignment operator, x/=y, is the same as x=x/y

/ Division operator

== | Equality

> | Greater than operator

>= | Greater than or equal to operator

++ | Increment

* Indirection operator

1= | Inequality

<<=| Left shift assignment operator, x<<=y, is the same as x=x<<y

< Less than operator

<< | Left Shift operator

<= | Less than or equal to operator

&& | Logical AND operator

! Logical negation operator

Il Logical OR operator

Member operator for structures and unions

%= | Modules assignment operator x%=y, is the same as x=x%y

% | Modules operator

= | Multiplication assignment operator, x=y, is the same as x=x*y

* Multiplication operator

~ | One's complement operator

>>=| Right shift assignment, x>>=y, is the same as x=x>>y

>> | Right shift operator

-> | Structure Pointer operation

-= | Subtraction assignment operator, x-=y, is the same as x=x-y

33

CCS C Compiler

- Subtraction operator

size| Determines size in bytes of operand

See also: _Operator Precedence

Operator Precedence

PIn Descending Precedence

Associativity

(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - =expr expr - - Left to Right
lexpr ~expr +expr -expr Right to Left
(type)expr *expr &value sizeof(type) Right to Left
expr*expr exprlexpr expry%expr Left to Right
expr+expr expr-expr Left to Right
expr<<expr expr>>expr Left to Right
expr<expr expr<=expr expr>expr expr>=expr Left to Right
expr==expr expri=expr Left to Right
expr&expr Left to Right
expriexpr Left to Right
expr | expr Left to Right
expr&& expr Left to Right
expr || expr Left to Right
expr ? expr: expr Right to Left
lvalue = expr Ivalue+=expr Ivalue-=expr Right to Left
Ilvalue*=expr Ivalue/=expr Ivalue%=expr Right to Left
lvalue>>=expr Ivalue<<=expr Ivalue &=expr Right to Left
Ilvalue®=expr Ivalue|=expr Right to Left
expr, expr Left to Right

(Operators on the same line are equal in precedence)

34

Data Definitions

DATA DEFINITIONS

This section describes what the basic data types and specifiers are and how variables can be
declared using those types. In C all the variables should be declared before they are used.
They can be defined inside a function (local) or outside all functions (global). This will affect the
visibility and life of the variables.

A declaration consists of a type qualifier and a type specifier, and is followed by a list of one or
more variables of that type.
For example:
int a,b,c,d;
mybit e, £;
mybyte g[3][2];
char *h;
colors j;
struct data record data[1l0];
static int 1i;
extern long j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,j,k; // colors is the enum type
and 1,73,k
//are variables of
that type

SEE ALSO:

Type Specifiers/ Basic Types
Type Qualifiers

Enumerated Types
Structures & Unions

typedef
Named Reqisters

Basic Types

Type-
Specifier Size Unsigned Signed Digits

intl 1 bit number Otol N/A 1/2

ints 8 bitnumber | 0'to 255 A28 12y 2-3

int16 | 16 bit number | 0 to 65535 -32768 to 32767 4-5

35

CCS C Compiler

int32 | 32 bit number | 0 to 4294967295 | ~214748364810 2147483647 | o

. . 0to 1140737488355328 to
Int48 | 48 bitnumber | 551 171976710655 | 140737488355327 14-15
: . 20223372036854775808 t0
int64 64 bit number N/A 0223372036854775807 18-19

float32 | 32 bit float -1.5x10" to 3.4x10° 7-8
48 bit float (hight 39
float48 precision) -29x10 to 1.7x10 (rcop -2.9x10°° to 1.7 x1(11-12
:50x10 to 1.7x10 rpco] -5.0x 10 3% to 1.7x1C

float64 | 64 bit float 15-16

C Standard Default Type Default Type - PCD
short intl signed int8

char unsigned int8 signed int8

int int8 signed int16

long intl6 signed int32

long long int32 signed int64

float float32 float32

double N/A float64

Note: All types, default are unsigned. [pco; All types, except float char, by default are

signed. However, may be preceded by unsigned or signed (Except int64 may only be signed) .
Short and long may have the keyword INT following them with no effect. Also see #TYPE to
change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and

1/0. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not
permitted. The device header files contain defines for BYTE as an int8 and BOOLEAN as an
intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float formats are
described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,
typedef, Named Reqisters

Type Qualifiers

static - Variable is globally active and initialized to 0. Only accessible from this compilation
unit.

auto - Variable exists only while the procedure is active. This is the default and AUTO need
not be used.

36

Data Definitions
double - A reserved word but is not a supported data type.

extern - External variable used with multiple compilation units. No storage is allocated. Is
used to make otherwise out of scope data accessible. there must be a non-extern
definition at the global level in some compilation unit.

register - Is allowed as a qualifier however, has no effect.
rco] Is possible a CPU register instead of a RAM location.

_ fixed(n) - Creates a fixed point decimal number where n is how many decimal places to
implement.

unsigned - Data is always positive.

signed - Data can be negative or positive.
rep] This is the default data type if not specified.

volatile - Tells the compiler optimizer that this variable can be changed at any point during
execution.

const - Data is read-only. Depending on compiler configuration, this qualifier may just make
the data read-only -AND/OR- it may place the data into program memory to save
space. (see #DEVICE const=)

rom - Forces data into program memory. Pointers may be used to this data but they can not
be mixed with RAM pointers.

pco] roml - Same as rom except only the even program memory locations are used.

void - Built-in basic type. Type void is used to indicate no specific type in places where a type
is required.

readonly - Writes to this variable should be dis-allowed.
_bif - Used for compiler built in function prototypes on the same line.

__attribute__ - Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions,
typedef, Named Registers

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] {[id[=cexpr]] }

One or more comma separated

37

CCS C Compiler

The id after enum is created as a type large enough to the largest constant in the list. The ids
in the list are each created as a constant. By default the first id is set to zero and they
increment by one. If a = cexpr follows an id that id will have the value of the constant
expression an d the following list will increment by one.

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be
2 and
// blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions,
typedef, Named Reqgisters

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of different types,
grouped together as a single unit.

stuet*1 1d) 4 be_qualifier [+ id | [bits]; }lid]
One or more, 2
semi-colon or more
separated

For example:
struct data record {
int al2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data_var; //data_record is a structure
type
//data var is a variable

rep) Field Allocation:

Fields are allocated in the order they appear.

The low bits of a byte are filled first.

Fields 16 bits and up are aligned to a even byte boundary. Some Bits may by unused.

No Field will span from an odd byte to an even byte unless the field width is a multiple
of 16 bits.

38

Data Definitions

Union type: holds objects of different types and sizes, with the compiler keeping track of size
and alignment requirements. They provide a way to manipulate different kinds of data in a
single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; } [id]
One or more, Zero
semi-colon or more
separated

For example:

union u_tab {
int ival;

long 1lval;

float fval;

}s //u_tag 1is a wunion type that can hold a
float

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types,
typedef, Named Reaqisters

typedef

If typedef is used with any of the basic or special types it creates a new type name that can be
used in declarations. The identifier does not allocate space but rather may be used as a type
specifier in other data definitions.

typedef - [type-qualifier] [type-specifier] [declarator];

For example:

typedef int mybyte; // mybyte can be used in
declaration to

// specify the int type
typedef short mybit; // mybyte can be used in
declaration to

// specify the int type
typedef enum {red, green=2,blue}colors; //colors can be used to
declare

//variable of this enum type

39

CCS C Compiler

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions,
Enumerated Types, Named Registers

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to define a
memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :
addressmod
(name, read function,write function,start address,end address, share);

Where the read_function and write_function should be blank for RAM, or for other memory
should be the following prototype:

// read procedure for reading n bytes from the memory starting at location
addr
//

void read function(int32 addr,int8 *ram, int nbytes) {

}

//write procedure for writing n bytes to the memory starting at location
addr

void write function(int32 addr,int8 *ram, int

nbytes) {

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

Example:
void DataEE Read(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

}

void DataEE Write(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0; i<bytes;i++, ram++, addr++)
write eeprom(addr, *ram);

}
addressmod (DataEE,DataEE read,DataEE write,5,0xff);

// would define a region called DataEE between
// 0x5 and Oxff in the chip data EEprom.

40

Data Definitions

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the variables
assigned in the memory region defined by the addressmod can be treated as a regular
variable in all valid expressions. Any structure or data type can be used with an addressmod.
Pointers can also be made to an addressmod data type. The #type directive can be used to
make this memory region as default for variable allocations.

The syntaxis :

#type default=addressmodname // all the variable declarations
that
// follow will use this memory region
#type default= // goes back to the default mode
For example:
Type default=emi //emi is the addressmod name defined

char buffer([8192];
#include <memoryhog.h>
#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different
ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is used
before the identifier, the identifier is treated as a constant. Constants should be initialized and
may not be changed at run-time. This is an easy way to create lookup tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The
address used for ROM data is not a physical address but rather a true byte address. The &
operator can be used on ROM variables however the address is logical not physical.

The syntaxis: const type id[cexpr] = {value}

For example:
Placing data into ROM: const int table[16]={0,1,2...15}

Placing a string into ROM: const char cstring[6]={"hello"}

Creating pointers to constants: const char *cptr;
41

CCS C Compiler
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, 0x1COF
CONST CHAR ID[10]= {"123456789"};
Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant
variable can be accessed in the code. This is a great way of storing constant data in large
programs. Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code
at the start of the structure as does constant.

For example:
char rom commands[] = {“put|get|status]|shutdown”};

irco] ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable length
strings.
The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.
For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.
The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
Writes data to program memory
write program eeprom(address,data);

Writes count bytes of data from dataptr to address in program memory.

write program memory (address, dataptr, count);
rco] Every fourth byte of data will not be written, fill with 0x00.

42

Data Definitions

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement
the functionality.

The data placed in program memory using the methods listed above can be read from width
the following functions:
Reads count bytes from program memory at address to RAM at dataptr.
read program memory (address, dataptr, count)
rco] Every fourth byte of data is read as 0x00

irco] Reads count bytes from program memory at the logical address to RAM at dataptr.
read rom memory ((address, dataptr, count)

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a processor
register. This syntax is being proposed as a C extension for embedded use. The same
functionality is provided with the non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

43

CCS C Compiler
FUNCTION DEFINITION

The format of a function definition is as follows:

alifier] id [type-specifier id]) { [stmt]}

Optional See Below Zero or more comma Zero or more Semi-colon
separated. separated. See Statemer

See Data Types

The qualifiers for a function are as follows:
e VOID
o type-specifier
e #separate
e #inline
o #int_..

When one of the above are used and the function has a prototype (forward declaration of the
function before it is defined) you must include the qualifier on both the prototype and function
definition.

A (non-standard) feature has been added to the compiler to help get around the problems
created by the fact that pointers cannot be created to constant strings. A function that has one
CHAR parameter will accept a constant string where it is called. The compiler will generate a
loop that will call the function once for each character in the string.

Example:
void lcd putc(char c) {

}

lcd putc ("Hi There.");

SEE ALSO:
Overloaded Functions
Reference Parameters
Default Parameters
Variable Parameters

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they
must accept different parameters.

44

Function Definition

Here is an example of function overloading: Two functions have the same name but differ in
the types of parameters. The compiler determines which data type is being passed as a
parameter and calls the proper function.

This function finds the square root of a long integer variable.
long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.
float FindSquareRoot (float n) {

}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot()
example. If variable is of float type, it will call the second FindSquareRoot() example.
result=FindSquareRoot (variable) ;

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of
code and the efficiency of some inline procedures. The following two procedures are the
same. The one with reference parameters will be implemented with greater efficiency when it
is inline.

funct a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;

}

funct a(&a, &b);

funct b (inté&x, intéy) {
/*Reference params*/
if(x!=5)
y=x+3;
}

funct b(a,b);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when
called.
int mygetc(char *c, int n=100) {

45

CCS C Compiler
}
This function waits n milliseconds for a character over RS232. If a character is received, it
saves it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

mygetc (&c) ; //gets a char, waits 100ms for timeout

mygetc (&c, 200); //gets a char, waits 200ms for a timeout

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI
requirements except that it does not require at least one fixed parameter as ANSI does. The
function can be passed any number of variables and any data types. The access functions are
VA_START, VA_ARG, and VA_END. To view the number of arguments passed, the NARGS
function can be used.

/*
stdarg.h holds the macros and va list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis
(...), which must be the last parameter of the function. The ellipsis represents the variable
argument list. Second, it requires one more variable before the ellipsis (...). Usually you will
use this variable as a method for determining how many variables have been pushed onto the
ellipsis.

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va_ list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_start(al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += x;
}
//stop using the list
va_end(al);
return (sum) ;

46

Function Definition

Some examples of using this new function:
x=Sum(5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

47

CCS C Compiler
FUNCTIONAL OVERVIEW

12C

I2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-based
[2C™ and a software-based master I2C™ device. (For more information on the hardware-
based 12C module, please consult the datasheet for you target device; not all PICs support
[2C™.)

Relevant Functions:
i2c_start() - Issues a start command when in the I12C master mode

i2c_write(data) - Sends a single byte over the 12C interface

i2c_read() - Reads a byte over the 12C interface

i2c_stop() - Issues a stop command when in the 12C master mode
i2c_poll() - Returns a TRUE if the hardware has received a byte in the buffer

i2c_transfer(address, wData, wCount, rData, rCount) - Performs an I2C transfer to and
from a device, function does start, restart, write, read, and stop 12C operations; when
in 12C master mode.

i2c_transfer_out(Address, wData, wCount) - Performs an 12C transfer to a device, function
does start, write, and stop 12C operations; when in I2C master mode.

Relevant Preprocessor:
#USE 12C - Configures the compiler to support I2C™ to your specifications

Relevant Interrupts:
#INT_SSP - 12C or SPI activity

#INT_BUSCOL - Bus Collision

#INT_I2C - 12C Interrupt (Only on 14000)

#INT_BUSCOL?2 - Bus Collision (Only supported on some PIC18's)
#INT_SSP2 - 12C or SPI activity (Only supported on some PIC18's)
ipco] #INT_mi2c - Interrupts on activity from the master 12C module

trco] #INT_si2c¢ - Interrupts on activity form the slave 12C module

Relevant Include Files:
None - All functions built-in

48

Functional Overview

Relevant getenv() Parameters:
I2C_SLAVE - Returns a 1 if the device has 12C slave H/W

[2C_MASTER - Returns a 1 if the device has a I2C master H/W

Example Code:

#define Device SDA PIN C3 // Pin defines
#define Device SLC PIN C4

#use 1i2c(master, sda=Device SDA, scl=Device SCL) // Configure Device

as Master
"

BYTE data; // Data to be
transmitted
i2c_start(); // Issues a start

command when in
// the I2C master mode.

i2c_write (data); // Sends a single byte
over the I2C interface.
i2c_stop(); // Issues a stop command

when in the I2C master mode

ADC

These options let the user configure and use the analog to digital converter module. They are
only available on devices with the ADC hardware. The options for the functions and directives
vary depending on the chip and are listed in the device header file. On some devices there are
two independent ADC modules, for these chips the second module is configured using
secondary ADC setup functions (Ex. setup_ADC2).

Relevant Functions:
setup_adc(mode) - Sets up the a/d mode like off, the adc clock etc.

setup_adc_ports(value) - Sets the available adc pins to be analog or digital.
set_adc_channel(channel) - Specifies the channel to be use for the a/d call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control the
functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

pcp] setup_adc2(mode) - Sets up the ADC2 module, for example the ADC clock and ADC
sample time.

pcp] setup_adc_ports2(ports, reference) - Sets the available ADC2 pins to be analog or
digital, and sets the voltage reference for ADC2.

49

CCS C Compiler
rep) set_adc_channel2(channel) - Specifies the channel to use for the ADC2 input.

reo) read_adc2(mode) - Starts the sample and conversion sequence and reads the value
The mode can also control the functionality.

rep) adc_done() - Returns 1 if the ADC module has finished its conversion.
Relevant Preprocessor:
#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with a

10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will return the
full A/D reading of 10 bits.

Relevant Interrupts:
INT_AD - Interrupt fires when A/D conversion is complete.

INT_ADOF - Interrupt fires when A/D conversion has timed out.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
ADC_CHANNELS - Number of A/D channels.

ADC_RESOLUTION - Number of bits returned by read_adc

Example Code:
#DEVICE ADC=10

long value;
\
setup adc (ADC_CLOCK_ INTERNAL) ; // enables the a/d module

and sets the clock to
// internal adc clock

setup_adc_ports (ALL ANALOG) ; // sets all the adc pins to
analog

set_adc_channel (0); // the next read adc call
will read channel O

delay us(10); // a small delay is required

after setting channel

// and before read
value=read adc(); // starts the conversion and
reads the result and

// store it in value
read adc (ADC_START ONLY) ; // only starts the
conversion

50

Functional Overview

value=read adc (ADC_ READ ONLY) ; // reads the result of the
last conversion

// and store it in value.
Assuming the device had

// alObit ADC module, value
will range between

// 0-3FF. If #DEVICE ADC=8
had been used instead

// the result will yield O-
FF. If #DEVICE ADC=16

// had been used instead the
result will yield

// 0-FFCO

Analog Comparator

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:
setup comparator() - Enables and sets up the analog comparator module. The options
vary depending on the device; refer to the device's header file for details.

rco] setup _comparator_filter() - Enables and sets up the analog compartor's digital
filter. The options vary depending on the device; refer to the device's header file for
details. Not all devices have a digital filter; refer to the device's header file to
determine if available.

[pco] Setup comparator_mask() - Enables and sets up the analog comparator's output
blanking function. The options vary depending on the device; refer to the device's
header file for details. Not all devices have an output blanking function; refer to the
device's header file to determine if available.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP - Interrupt fires on a comparator change of state.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
COMP - Returns 1 if the device has a comparator.

Example Code:

setup comparator (A4 A5 NC NC);
if (C10UT)

51

CCS C Compiler

output low (PIN DO);
else
output high(PIN D1);

[PCD]
setup comparator (1, CXINB CXINA);
if (C10OUT)
output low (PIN DO);
else
output high (PIN DI1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features included
with the MCP2515 CAN interface chip and the PIC18 MCU. These functions will only work with
the MCP2515 CAN interface chip and PIC microcontroller units containing either a CAN or an
ECAN module. Some functions are only available for the ECAN module and are specified by
the work (ECAN) at the end of the description. The listed interrupts are no available to the
MCP2515 interface chip.

rco] These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC24, dsPIC30 and dsPIC33 MCUs.
These functions will only work with the MCP2515 CAN interface chip and PIC microcontroller
units containing either a CAN or an ECAN module. Some functions are only available for the
ECAN module and are specified by the word (ECAN) at the end of the description. The listed
interrupts are not available to the MCP2515 interface chip.

Relevant Functions:

can_init(void); - Initializes the CAN module and clears all the filters and masks so that all
messages can be received from any ID.
pep] Initializes the module to 62.5k baud for ECAN and 125k baud for CAN and
clears all the filters and masks so that all messages can be received from any ID.

can_set_baud(void); - Initializes the baud rate of the CAN bus to125kHz, if using a 20 MHz
clock and the default CAN-BRG defines, it is called inside the can_init() function so
there is no need to call it.

can_set_mode(CAN_OP_MODE mode); - Allows the mode of the CAN module to be
changed to configuration mode, listen mode, loop back mode, disabled mode, or
normal mode.

can_set_functional_mode (CAN_FUN_OP_MODE mode); - Allows the functional mode of
ECAN modules to be changed to legacy mode, enhanced legacy mode, or first in
firstout (fifo) mode. (ECAN)

can_set_id(int* addr, int32 id, intl ext); - Can be used to set the filter and mask ID's to the
value specified by addr. It is also used to set the ID of the message to be sent.

52

Functional Overview

pco] can_set_id(intl6 *addr, int32 id, intl ext) - Can be used to set the filter and mask
ID's to the value specified by addr. It is also used to set the ID of the message
to be sent on CAN chips.

rcp] can_set_buffer_id(BUFFER buffer,int32 id,intl ext) - Can be used to set the ID of
the message to be sent for ECAN devices. (ECAN)

rco] can_get_id(BUFFER buffer,intl ext) - Returns the ID of a received message.
can_get_id(int * addr, intl ext); - Returns the ID of a received message.

can_putd (int32id, int * data, int len, int priority, intl ext, intl rtr); - Constructs a CAN
packet using the given arguments and places it in one of the available transmit
buffers.

pco] can_putd(int32 id, int8 *data, int8 &len, struct rx_stat &stat) - Contructs a CAN packet
using the given arguments and places it in one of the available transmit buffers.

can_getd (int32 & id, int * data, int & len, struct rx_stat & stat); - Retrieves a received
message from one of the CAN buffers and stores the relevant data in the referenced
function parameters.

[pco] can_getd(int32id, int8 *data, int8 &len, struct rx_stat &stat) - Retrieves a received
message from one of the CAN buffers and stores the relevant data in the referenced
function parameters.

can_enable_rtr(PROG_BUFFER b); - Enables the automatic response feature which
automatically sends a user created packet when a specified ID is received. (ECAN)

can_disable_rtr(PROG_BUFFER b); - Disables the automatic response feature. (ECAN)

pep] can_kbhit() - Returns a TRUE if valid CAN messages are available to be retrieved from
one of he receive buffers.

can_load_rtr (PROG_BUFFER b, int * data, int len); - Creates and loads the packet that will
automatically transmitted when the triggering ID is received. (ECAN)

can_enable_filter(long filter); - Enables one of the extra filters included in the ECAN module.
(ECAN)

can_disable_filter(long filter); - Disables one of the extra filters included in the ECAN
module. (ECAN)

can_associate_filter_to_buffer(CAN_FILTER_ASSOCIATION_BUFFERS
buffer, CAN_FILTER_ASSOCIATION filter); - Used to associate a filter to a specific
buffer. This allows only specific buffers to be filtered and is available in the ECAN
module. (ECAN)

can_associate_filter_to_mask(CAN_MASK_FILTER_ASSOCIATE
mask,CAN_FILTER_ASSOCIATION filter); - Used to associate a mask to a specific
buffer. This allows only specific buffer to have this mask applied. This feature is
available in the ECAN module.

53

CCS C Compiler
can_fifo_getd(int32 &id,int * data,int &len,struct rx_stat & stat); - Retrieves the next buffer

[PCD]

[PCD]
[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

54

in the fifo buffer. Only available in the ECON module while operating in fifo mode.
(ECAN)

can_fifo_getd(int32 &id,,int8 * data,int8 &len, rx_stat & stat); - Retrieves the next
buffer in the fifo buffer. Only available in the ECON module while operating in fifo
mode. (ECAN)

can_tbe() - Returns TRUE if a transmit buffer is available to send more data.
can_abort() - Aborts all pending transmissions.

can_enable_b_transfer(BUFFER b) - Sets the specified programmable buffer to be a
transmit buffer. (ECAN)

can_enable_b_receiver(BUFFER b) - Sets the specified programmable buffer to be a
receive buffer. By default, all programmable buffers are set to be receive
buffers. (ECAN)

can_enable_rtr(BUFFER b) - Enables the automatic response feature. (ECAN)
can_disable_rtr(BUFFER b) - Disables the automatic response feature. (ECAN)

can_load_rtr(BUFFER b, int8 *data, int8 len) - Creates and loads the packet that will
automatically be transmitted when the triggering ID is received. (ECAN)

can_set_buffer_size(int8 size) - Set the number of buffers to use. Size can be 4, 6, 8,
12, 16, 24 and 32. By default can_init() sets size to 32. (ECAN)

can_enable_filter(CAN_FILTER_CONTROLYfilter) - Enables one of the acceptance
filters included in the ECAN module. (ECAN)

can_disable_filter(CAN_FILTER_CONTROLfilter) - Disables one of the acceptance
filters included in the ECAN module. (ECAN)

can_trb0_putd(int32 id, int8 *data, int8 len, int8 pri, intl ext, int rtr) - Contructs a CAN
packet using the given arguments and places it in transmit buffer 0. Similar functions
available for all transmit buffers 0-7. Buffer must be made a transmit buffer with
can_enable_b_transfer() function before function can be use. (ECAN)

can_enable_interrupts(INTERRUPT setting) - Enables specified interrupt conditions
that cause the #INT_CANL1 interrupt to be tirggered. Available options:

TB - Transmit Buffer interrupt (ECAN)

RB - Receive Buffer interrupt (ECAN)

RXOQOV - Receive Buffer Overflow interrupt (ECAN)
FIFO - FIFO Almost Full interrupt (ECAN)

ERR - Error interrupt (ECAN)

WAK - Wake-Up interrupt (ECAN)

IVR - Invalid Message Received interrupt (ECAN)
RXO0 - Receive Buffer 0 interrupt

RX1 - Receive Buffer 1 interrupt

TXO - Transmit Buffer 0 interrupt

Functional Overview

TX1 - Transmit Buffer 1 interrupt
TX2 - Transmit Buffer 2 interrupt

reo) can_disable_interrupts(INTERRUPT setting) - Disable specified interrupt conditions so
they do not cause the #INT_CANL1 interrupt to be triggered. Available options are the
same as for the can_enable_interrupts() function. By default, all conditions are
disabled.

reo] can_config_DMA(void) - Configures the DMA buffers to use with the ECAN module. It
is called inside the can_init() function so there is no need to call it. (ECAN)

For PIC microcontrollers that have two CAN or ECAN modules, all the above functions are
available for the second module, and they begin with can2 instead of can.
can2_init(); or can2_kbhit();

Relevant Preprocessor:
None

Relevant Interrupts:
#int_canirx - This interrupt is triggered when an invalid packet is received on the CAN.

#int_canwake - This interrupt is triggered when the PIC is woken up by activity on the CAN.
#int_canerr - This interrupt is triggered when there is an error in the CAN module.
#int_cantx0 - This interrupt is triggered when transmission from buffer 0 has completed.
#int_cantx1 - This interrupt is triggered when transmission from buffer 1 has completed.
#int_cantx2 - This interrupt is triggered when transmission from buffer 2 has completed.
#int_canrx0 - This interrupt is triggered when a message is received in buffer 0.
#int_canrx1 - This interrupt is triggered when a message is received in buffer 1.

pco] #int_canl - Interrupt for CAN or ECAN module 1. This interrupt is triggered when one of
the conditions set by can_enable_interrupts() is met.

pco] #int_can?2 - Interrupt for CAN or ECAN moduel 2. This interrupt is triggered when one of
the conditions set by the can2_enable_interrupts() is met. This interrupt is only available on
devices that have two CAN or ECAN modules.

Relevant Include Files:

can-mcp2510.c - Drivers for the MCP2510 and MCP2515 interface devices.
can-18xxx8.c - Drivers for the built-in CAN module.

can-18F4580.c - Drivers for the built-in ECAN module.

ipep] can-dsPIC30.c - Drivers for the built-in CAN module on dsPIC30F devices.

55

CCS C Compiler

ipco] can-PIC24.c - Drivers for the built-in ECAN mdoule on PIC24HF and dsPIC33FJ
devices.

Relevant getenv() Parameters:
None

Example Code:
can_init(); // initializes the CAN bus
can _putd(0x300,data, 8,3, TRUE,FALSE); // places a message on the CAN
bus with ID=0x300
// and eight bytes of data
pointed to by "data",
// the TRUE create an extended
ID, the FALSE
// creates
can getd(ID,data, len,stat); // retrieves a message from the
CAN bus storing the
// ID in the ID variable, the
data in the array
// pointed to by "data", the
number of data bytes
// in len, and statistics about
the data in
// the stat structure.

CcCpP

These options lets to configure and use the CCP module. There might be multiple CCP
modules for a device. These functions are only available on devices with CCP hardware. They
operate in 3 modes: capture, compare and PWM. The source in capture/compare mode can
be timerl or timer3 and in PWM can be timer2 or timer4. The options available are different for
different devices and are listed in the device header file. In capture mode the value of the timer
is copied to the CCP_X register when the input pin event occurs. In compare mode it will
trigger an action when timer and CCP_x values are equal and in PWM mode it will generate a
square wave.

Relevant Functions:
setup_ccpl(mode) - Sets the mode to capture, compare or PWM.

set_pwm1_duty(value) - The value is written to the pwm1 to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CCP1 - Interrupt fires when capture or compare on CCP1.

56

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
CCP1 - Returns 1 if the device has CCP1

Example Code:
#int ccpl
void isr ()

{

rise=CCP_1; // CCP_1 is the time the pulse went
high

fall=CCP2; // CCP_2 is the time the pulse went
low

pulse width=fall-rise; // pulse width
}
setup ccpl (CCP_CAPTURE RE) ; // Configure CCPl to capture rise
setup ccp2 (CCP_CAPTURE FE); // Configure CCP2 to capture fall
setup timer 1(T1 INTERNAL) ; // Start timer 1

Some devices also have fuses which allows to multiplex the ccp/pwm on different pins.
Be sure to check the fuses to see which pin is set by default, as well as fuses to enable/disable
pwm outputs.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information
while the program is running and provides statistics, logging and tracing of it's execution. This
is accomplished by using a simple communication method between the processor and the ICD
with minimal side-effects to the timing and execution of the program. Another benefit of code
profile versus in-circuit debugging is that a program written with profile support enabled will run
correctly even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be
included in the project being compiled and profiled. Doing this adds the proper code profile
run-time support on the microcontroller.

See the help file in the Code Profile tool for more help and usage examples.

Relevant Functions:
profileout() - Send a user specified message or variable to be displayed or logged by the
code profile tool.

Relevant Preprocessor:
#use profile() - Global configuration of the code profile run-time on the microcontroller.

#profile - Dynamically enable/disable specific elements of the profiler.
57

CCS C Compiler

Relevant Interrupts:

The profiler can be configured to use a microcontroller's internal timer for more accurate timing
of events over the clock on the PC. This timer is configured using the #profile pre-processor
command.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#include <18F4520.h>
#use delay(crystal=10MHz, clock=40MHz)
#profile functions, parameters
void main (void)
{
int adc;
setup adc (ADC CLOCK INTERNAL) ;
set adc_channel (0);

for(;;)

{
adc = read adc();
profileout (adc) ;
delay ms(250);

Configuration Memory

The Configuration Memory is readable and writable on all PIC18, PIC24, dsPIC30 and
dsPIC33 devices. Enhanced 16 devices have the configuration memory that is readable and
the user ID is readable and writable..

reo] The Configuration Memory contains the configuration bits for items such as the oscillator
mode, watchdog timer enable, etc. These configuration bits are set by the CCS C Compiler
usually through a #fuse. CCS provides an API that allows for these bits to be changed in run-
time.

Relevant Functions:
write_configuration_memory(ramaddress, count) - Writes count bytes, no erase
needed.

write_configuration_memory(offset,ramaddress, count) - Writes count bytes, no
erase needed starting at byte address offset.

58

Functional Overview

write_configuration_memory(ramPtr, n); - Writes n bytes to configuration from ramPtr, no
erase needed.

pco] write_configuration_memory(offset, ramPtr, n); - Read n bytes of configuration
memory, save to ramPtr.

read_configuration_memory(ramaddress,count) - Read count bytes of configuration
memory.

tpco] read_configuration_memory(ramPtr, n); - Read n bytes of configuration memory is set
through a #FUSE.

read_device_info() - Read count bytes from Device Information Area memory.

read_config_info() - Read count bytes from Device Configuration Information memory.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#intl6 data=0xc32;

write configuration memory(data,2); // writes 2 bytes to the config
memory

CRC

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC
checksum generator in select PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The
checksum is a unique number associated with a message or a block of data containing several
bytes. The built-in CRC module has the following features:

e Programmable bit length for the CRC generator polynomial. (up to 32 bit length)
Programmable CRC generator polynomial.

Interrupt output.

4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.
Programmed bit lenght for data input. (32-bit CRC Modules Only)

Relevant Functions:
setup_crc(polynomial) - This will setup the CRC polynomial.

59

CCS C Compiler
crc_init(data) - Sets the initial value used by the CRC module.

crc_calc(data) - Returns the calculated CRC value.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CRC - On completion of CRC calculation.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
intle datal[8];
intl6 result;

setup crc(l5, 3, 1); //CRC Polynomial is X16+X15+X3+X1 +1
//or polynomial=8005h

crc_init (OXFEEE); //Starts the CRC accumulator outo f

OXFEEE

result=crc_calc(&data[0],8): //Calculates the CRC

DAC

These options let the user configure and use the digital to analog converter module. They are
only available on devices with the DAC hardware. The options for the functions and directives
vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_dac(divisor) - Sets up the DAC e.g. Reference voltages.

dac_write(value) - Writes the 8-bit value to the DAC module.

irco)] setup_dac(mode, divisor) - Sets up the d/a mode e.g. Right enable, clock divisor.
rco) dac_write(channel, value) - Writes the 16-bit value to the specified channel.
Relevant Preprocessor:

#USE DELAY - Must add an auxiliary clock in the #use delay preprocessor.
For example: #USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)

60

Functional Overview

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
int8 1i=0;
setup dac (DAC_VSS VDD);
while (TRUE) {
itt;
dac write(i);

}

[PCD]
intle i = 0;
setup dac (DAC_RIGHT ON, 5); // enables the d/a module with

right channel

// enabled and a division of the
clock by 5
While (1) {
i++;
dac write (DAC RIGHT, 1i); // writes i1 to the right DAC
channel

}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the user
read and write to the data eeprom memory. These functions are only available in flash chips.

Relevant Functions:
read _eeprom(address) - Reads the data EEPROM memory location

write_eeprom(address, value) - Erases and write value to data EEPROM location
address. Except for PCB devices with EEPROM, such as PIC12F519; it only writes the value.

erase_eeprom(address) - Erases a row of the EEPROM of Flash memory. Only available
on PCB devices with EEPROM, such as PIC12F599.

read _eeprom(address, [N]) - Reads N bytes of data EEPROM starting at memory location
address. The maximum return size is int64.

read eeprom(address, [variable]) - Reads from EEPROM to fill variable starting at address.
read eeprom(address, pointer, N) - Reads N bytes, starting at address, to pointer.
write _eeprom(address, value) - Writes value to EEPROM address.

61

CCS C Compiler
write eeprom(address, pointer, N) - Writes N bytes to address from pointer

Relevant Preprocessor:
#ROM address={list} - Can also be used to put data EEPROM memory data into the hex file.
write eeprom = noint - Allows interrupts to occur while the write_eeprom() operations is

polling the done bit to check if the write operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

Relevant Interrupts:
INT EEPROM - Interrupt fires when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in.

Relevant getevn() Parameters:
DATA EEPROM - Size of data EEPROM memory.

-Example Code:

For 18F452
#rom 0xf00000={1,2,3,4,5} //inserts this data into the hex
file.
//The data eeprom address differs for
different
// family of devices. Please refer to
the

//programming specs to find the value
for the device.

write eeprom(0x0,0x12); //write 0x12 to data eeprom location
0

value-read eeprom (0x) // reads data eeprom location 0x0
returns 0x12

#ROM 0x007FFC00={1,2,3,4,5} //Inserts this data into the hex
file. The data

//EEPROM address differs between
PICs.

//Please refer to the device editor
for device

//specific values.

write eeprom(10,0x1337) //Writes 0x1337 to data EEPROM
location 10.
value=read eeprom(10); //Reads data EEPROM location 10

returns 0x1337

62

Functional Overview
DCI

DCl is an interface that is found on several dsPIC devices in the 30F and the 33FJ families. It
is a multiple-protocol interface peripheral that allows the user to connect to many common
audio codecs through common (and highly configurable) pulse code modulation transmission
protocols. Generic multichannel protocols, 12S and AC’97 (16 & 20 bit modes) are all
supported.

Relevant Functions:
setup_dci(configuration, data size, rx config, tx config, sample rate);- Initializes the DCI
module.

setup_adc_ports(value) - Sets the available ADC pins to be analog or digital.
set_adc_channel(channel) - Specifies the channelt o be used for the A/D call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control the
functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

Relevant Preprocessor:

#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with a 10
bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will return the full
A/D reading of 10 bits.

Relevant Interrupts:
INT_DCI - Interrupt fires on a number (user configurable) of data words received.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
signed intl6 left channel, right channel;

dci initializes((I2S MODE|DCI MASTER|DCI CLOCK OUT|

SAMPLE RISING EDGE |UNDERFLOW LAST|MULTI DEVICE BUS),DCI 1WORD FRAME |
DCI 16BIT WORD|DCI 2WORD INTERRUPT, RECEIVE SLOTO|RECEIVE SLOTI1,
TRANSMIT SLOTO|TRANSMIT SLOT1, 6000);

dci start();

while (1)

{
dci read(&left channel, &right channel);
dci write(&left channel, &right channel);

}
63

CCS C Compiler

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the CPU
and its peripherals without the CPU's assistance. The transfer takes place between peripheral
data registers and data space RAM. The module has 8 channels and since each channel is
unidirectional, two channels must be allocated to read and write to a peripheral. Each DMA
channel can move a block of up to 1024 data elements after it generates an interrupt to the
CPU to indicate that the lock is available for processing. Some of the key features of the DMA
module are:

e Eight DMA Channels.
Byte or word transfers.
CPU interrupt after half or full block transfer complete.
One-Shot or Auto-Repeat block transfer modes.
Ping-Pong Mode (automatic switch between two DSPRAM start addresses after each
block transfer is complete).

Relevant Functions:
setup_dma(channel, peripheral,mode) - Configures the DMA module to copy data from
the specified peripheral to RAM allocated for the DMA channel.

dma_start(channel, mode,address) - Starts the DMA transfer for the specified channel in
the specified mode of operation.

dma_status(channel) - This function will return the status of the specified channel in the
DMA module.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_DMAX - Interrupt on channel X after DMA block or half block transfer.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_dma (1,DMA IN SIP1,DMA BYTE); // Setup channel 1 of the DMA
module to
// read the SPI1 channel in byte
mode .
dma_start (1, DMA_CONTINUOUS|DMA PING_PONG, 0x2000);
// Start the DMA channel with the

64

Functional Overview

DMA
// RAM address of 0x2000

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the “modulator
signal”) with a carrier signal to produce a modulated output. Both the carrier and the modulator
signals are supplied to the DSM module, either internally from the output of a peripheral, or
externally through an input pin. The modulated output signal is generated by performing a
logical AND operation of both the carrier and modulator signals and then it is provided to the
MDOUT pin. Using this method, the DSM can generate the following types of key modulation
schemes:

e Frequency Shift Keying (FSK)

e Phase Shift Keying (PSK)

e On-Off Keying (OOK)

Relevant Functions: (8 bit or 16 bit depending on the device)
setup_dsm(mode,source,carrier) - Configures the DSM module and selects the source
signal and carrier signals.

setup_dsm(TRUE) - Enables the DSM module.
setup_dsm(FALSE) - Disables the DSM module.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
Setup_dsm(DSM_ENABLED\DSM_OUTPUT_ENABLED,DSM_SOURCE_UARTI,
DSM_CARRIER HIGH VSS|DSM_CARRIER LOW _OC1);

//Enables DSM module with the output enabled and selects UART1
//as the source signal and VSS as the high carrier signal and OCl's
//PWM output as the low carrier signal.

if (input (PIN_BO)) //Disable DSM module
setup dsm(FALSE) ;

else
setup_dsm(TRUE) ; //Enable DSM module

65

CCS C Compiler

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method is
required to access the RAM above 30K. This extended RAM is organized into pages of 32K
bytes each, the first page of extended RAM starts on page 1.

Relevant Functions:
write_extended_ram(p,addr,ptr,n); - Writes n bytes from ptr to extended RAM page p
starting at address addr.

read_extended_ram(p,addr,ptr,n); - Reads n bytes from extended RAM page p starting a
address addr to ptr.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:

write extended ram(1l,0x100,WriteData,8); //Writes 8 bytes from
WriteData to

//addresses 0x100 to 0x107
of

//extended RAM page 1.
read extended ram(1l,0x100,ReadData,8); //Reads 8 bytes from
addresses 0x100

//to 0x107 of extended RAM
page 1

//to ReadData.

External Memory

Some PIC18 devices have the external memory functionality where the external memory can
be mapped to external memory devices like (Flash, EPROM or RAM). These functions are
available only on devices that support external memory bus.

66

Functional Overview
General Purpose I/0

These options let the user configure and use the 1/O pins on the device. These functions will
affect the pins that are listed in the device header file.

Relevant Functions:
output_high(pin) - Sets the given pin to high state.

output_low(pin) - Sets the given pin to the ground state.

output_float(pin) - Sets the specified pin to the input mode. This will allow the pin to float
high to represent a high on an open collector type of connection.

output_x(value) - Outputs an entire byte to the port.
output_bit(pin,value) - Outputs the specified value (0,1) to the specified I/O pin.
input(pin) - The function returns the state of the indicated pin.

input_state(pin) - This function reads the level of a pin without changing the direction of the
pin as INPUT() does.

set_tris_x(value) - Sets the value of the 1/O port direction register. A '1' is an input and '0' is
for output.

input_change_x() - This function reads the levels of the pins on the port, and compares
them to the last time they were read to see if there was a change, 1 if there was, O if
there was not.

set_open_drain_x(value) - This function sets the value of the 1/0 port Open-Drain register. A
| makes the output open-drain and 0 makes the output push-pull.

set_input_level_x(value) - This function sets the value of the 1/O port Input Level Register. A
1 sets the input level to ST and 0 sets the input level to TTL.

pco] set_open_drain_x() - Sets the value of the I/O port Open-Drain Control register. A '1'
sets it as an open-drain output, and a '0' sets it as a digital output.

Relevant Preprocessor:

#USE STANDARD_IO(port) - This compiler will use this directive be default and it will
automatically inserts code for the direction register whenever an 1/O function like
output_high() or input() is used.

#USE FAST_IO(port) - This directive will configure the 1/O port to use the fast method of
performing 1/O. The user will be responsible for setting the port direction register
using the set_tris_x() function.

#USE FIXED_lO (port_outputs=;in,pin?) - This directive set particular pins to be used an
input or output, and the compiler will perform this setup every time this pin is used.

67

CCS C Compiler

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PIN:pb ----Returns a 1 if bit b on port p is on this part

Example Code:
#use fast _io(b)\

Int8 Tris value= 0xO0F;

intl Pin value;

set _tris b(Tris value); //Sets B0:B3 as input and B4:B7 as output

output high (PIN B7); //Set the pin B7 to High

If (input (PIN BO)) { //Read the value on pin BO, set B7 to low if
//pin BO is high

output high (PIN B7);

}

Input Capture

These functions allow for the configuration of the input capture module. The timer source for
the input capture operation can be set to either Timer 2 or Timer 3. In capture mode the value
of the selected timer is copied to the ICXBUF register when an input event occurs and
interrupts can be configured to fire as needed.

Relevant Functions:
setup_capture(x, mode) - Sets the operation mode of the input capture module x

get_capture(x, wait) - Reads the capture event time from the ICXBUF result register. If wait
is true, program flow waits until a new result is present. Otherwise the oldest value in
the buffer is returned.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_ICx - Interrupt fires on capture event as configured

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

68

Functional Overview

Example Code:
setup timer3 (TMR INTERNAL|TMR DIV BY 8);
setup capture (2, CAPTURE FE|CAPTURE TIMER3) ;
while (TRUE) {
timerValue=get capture (2, TRUE) ;
printf ("A module 2 capture event occured: $LU", timerValue);

}

Internal LCD

Some families of PIC microcontrollers can drive a glass segment LCD directly, without the
need of an LCD controller. For example, the PIC16C92X, PIC16F91X, and PIC16F193X series
of chips have an internal LCD driver module.

Relevant Functions:

setup_lcd(mode, prescale, [segments]) - Configures the LCD Driver Module to use the
specified mode, timer prescaler, and segments. For more information on valid modes
and settings, see the setup_lcd() manual page and the *.h header file for the PIC
micro-controller being used.

lcd_symbol(symbol, segment_b7 ... segment_b0) - The specified symbol is placed on
the desired segments, where segment_b7 to segment_b0 represent SEGXX pins on
the PIC micro-controller. For example, if bit 0 of symbol is set, then segment_b0 is
set, and if segment_b0 is 15, then SEG15 would be set.

Ilcd_load(ptr, offset, length) - Writes length bytes of data from pointer directly to the LCD
segment memory, starting with offset.

Icd_contrast (contrast) - Passing a value of 0 — 7 will change the contrast of the LCD
segments, 0 being the minimum, 7 being the maximum.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_LCD - LCD frame is complete, all pixels displayed

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
LCD - Returns TRUE if the device has an Internal LCD Driver Module.

Example Code:
// How each segment of
the LCD is set
// (on or off) for the
ASCII digits to 9.

69

CCS C Compiler

byte CONST DIGIT MAP[10]={0xFC, 0x60, OxDA, OxF2, 0x66, 0xB6, OxBE,
0xEO, OXFE, OxE6};

// Define the segment
information for the
//first digit of the LCD
#define DIGITL COM1+20, COM1+18, COM2+18, COM3+20, COM2+28,
COM1+28, COM2+20, COM3+18
// Displays the digits
0 to 9 on the first
//digit of the LCD.

for(i = 0; 1 <= 9; i++) {

lcd symbol (DIGIT_MAP[i], DIGIT1);
delay ms(1000);

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal oscillator.
Some chips have a constant 4 Mhz factory calibrated internal oscillator. The value is stored in
some location (mostly the highest program memory) and the compiler moves it to the osccal
register on startup. The programmers save and restore this value but if this is lost they need to
be programmed before the oscillator is functioning properly. Some chips have factory
calibrated internal oscillator that offers software selectable frequency range(from 31Kz to 8
Mhz) and they have a default value and can be switched to a higher/lower value in software.
They are also software tunable. Some chips also provide the PLL option for the internal
oscillator.

pco] Two internal oscillators are present in PCD compatible devices, a fast RC and slow RC
oscillator circuit. In many cases (consult the target datasheet or family datasheet for target
specifics). The fast RC oscillator may be connected to a PLL system, allowing a broad range
of frequencies to be selected. The Watchdog timer is derived from the slow internal oscillator.

Relevant Functions:
setup_oscillator(mode, finetune) - Sets the value of the internal oscillator and also tunes
it. The options vary depending on the chip and are listed in the device header files.

setup_oscillator() - Explicitly configures the oscillator.

Relevant Preprocessor:
rep] (#FUSES - Specifies the values loaded in the device configuration memory. May be used
to setup the oscillator configuration.

Relevant Interrupts:
INT_OSC_FAIL or INT_OSCEF - Interrupt fires when the system oscillator fails and the
processor switches to the internal oscillator.

tpeo] #INT_OSCFAIL - Interrups on oscillator failure
70

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
trco] CLOCK - Returns the clock speed specified by #use delay()

o) FUSE_SETxxx - Returns 1 if the fuse xxxx is set.

Example Code:

For PIC18F8722
setup oscillator (OSC _32MHZ); //sets the internal oscillator to 32Mhz
(PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is specified in
the #use delay(clock=xxx) directive the compiler automatically sets up the oscillator. The #use
delay statements should be used to tell the compiler about the oscillator speed.

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller.
With these functions, interrupts can be enabled, disabled, and cleared. With the preprocessor
directives, a default function can be called for any interrupt that does not have an associated
ISR, and a global function can replace the compiler generated interrupt dispatcher.

Relevant Functions:
disable_interrupts() - Disables the specified interrupt.
enable_interrupts() - Enables the specified interrupt.

ext_int_edge() - Enables the edge on which the edge interrupt should trigger. This can be
either rising or falling edge.

clear_interrupt() - This function will clear the specified interrupt flag. This can be used if a
global isr is used, or to prevent an interrupt from being serviced.

interrupt_active() - This function checks the interrupt flag of specified interrupt and returns
true if flag is set.

interrupt _enabled() - This function checks the interrupt enable flag of the specified interrupt
and returns TRUE if set.

Relevant Preprocessor:
#DEVICE HIGH_INTS= - This directive tells the compiler to generate code for high priority
interrupts.

#INT_XXX fast - This directive tells the compiler that the specified interrupt should be treated
as a high priority interrupt.

71

CCS C Compiler
reo] #INT_XXX level=x - x is an int 0-7, that selects the interrupt priority level for that interrupt.

reo] #INT_XXX fast - This directive makes use of shadow registers for fast register save. This
directive can only be used in one ISR

Relevant Interrupts:

#int_default - This directive specifies that the following function should be called if an interrupt
is triggered but no routine is associated with that interrupt.

#int_global - This directive specifies that the following function should be called whenever an
interrupt is triggered. This function will replace the compiler generated interrupt
dispatcher.

#int_xxx - This directive specifies that the following function should be called whenever the
xxX interrupt is triggered. If the compiler generated interrupt dispatcher is used, the
compiler will take care of clearing the interrupt flag bits.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#int timer0
void timerOinterrupt () //#int_timer associates the following
function with
//the interrupt service routine that
should be called.
enable interrupts(TIMERO); //enables the timer0 interrupt
disable interrupts (TIMERO); //disables the timer0 interrupt
clear interrupt (TIMERO) ; //clears the timerO interrupt flag.

Low Voltage Detect

These functions configure the high/low voltage detect module. Functions available on the chips
that have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode) - Sets the voltage trigger levels and also the mode (below
or above in case of the high/low voltage detect module). The options vary depending on the
chip and are listed in the device header files.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_LOWVOLT - Interrup fires on low voltage detect

72

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
For PIC18F8722
setup low volt detect (LVD 36|LVD TRIGGER ABOVE) ;
// sets the trigger level as 3.6
volts and
// trigger direction as above.
The interrupt
// if enabled is fired when the
voltage is
// above 3.6 volts.

Qutput Compare/PWM Overview

The following functions are used to configure the output compare module. The output compare
has three modes of functioning. Single compare, dual compare, and PWM. In single compare
the output compare module simply compares the value of the OCxR register to the value of the
timer and triggers a corresponding output event on match. In dual compare mode, the pin is
set high on OCxR match and then placed low on an OCXRS match. This can be set to either
occur once or repeatedly. In PWM mode the selected timer sets the period and the OCxRS
register sets the duty cycle. Once the OC module is placed in PWM mode the OCxR register
becomes read only so the value needs to be set before placing the output compare module in
PWM mode. For all three modes of operation, the selected timer can either be Timer 2 or
Timer 3.

Relevant Functions:
setup_comparex (x, mode) - Sets the mode of the output compare / PWM module x

set_comparex_time (x, ocr, [ocrs]) - Sets the OCR and optionally OCRS register values
of module x.

set_pwm_duty (X, value) - Sets the PWM duty cycle of module x to the specified value
Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCXx - Interrup fires after a compare event has occurred.

Relevant Include Files:
None, all functions are built-in

73

CCS C Compiler

Relevant getenv() Parameters:
None

Example Code:
//Outputs a 1 second pulse on

the 0OC2 pin
//using dual compare mode on a

PIC with

//an instruction clock of
(20Mhz/4)
intl6 OCR 2=0x1000; //Start pulse when timer is at
0x1000
intl5 OCRS_2=0x5C4B; //End pulse after 0x04C4B timer
counts

// (0x1000+0x04C4B

// (lsec)/[(4/20000000*256]=0x04C4
B

//256-timer prescaler value (set
in code)

set compare time (2, OCR 2,0CRS 2);
setup compare (2, COMPARE SINGLE PULSE|COMPARE TIMER3) ;
setup_ timer3(TMR INTERNAL|TMR DIV BY 256);

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator (MCPWM)
module. The MCPWM is used to generate a periodic pulse waveform which is useful is motor
control and power control applications. The options for these functions vary depending on the
chip and are listed in the device header file.

Relevant Functions:
setup_motor_pwm(pwm,options, timebase); - Configures the motor control PWM
module.

set_motor_pwm_duty(pwm,unit,time) - Configures the motor control PWM unit duty.

set_motor_pwm_event(pwm,time) - Configures the PWM event on the motor control
unit.

set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime); -
Configures the motor control PWM unit.

get_motor_pwm_event(pwm); - Returns the PWM event on the motor control unit.

Relevant Preprocessor:
None

74

Functional Overview

Relevant Interrupts:
#INT_PWML1 - PWM Timebase Interrupt

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
//Sets up the motor PWM module
setup motor pwm(1l,MPWM FREE RUN|MPWM SYNC OVERRIDES, timebase);

//Sets the PWM1l, Group 1 duty cylce value
to 0x55
set motor pwm duty(1l,1,0x55);

//Sets the motor PWM event
set_motor_pwm_event(pwm,time);

//Enable pwm pair
set motor unit(l,1,mpwm ENABLE,O0,O0);

//Enables pwml, Group 1 in complementary
mode,

//no deadtime.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-bit/16-bit
I/0 module specifically designed to communicate with a wide variety of parallel devices. Key
features of the PMP module are:

e 8or 16 Data lines

Up to 16 or 32 Programmable Address Lines
Up to 2 Chip Select Lines

Programmable Strobe option

Address Auto-Increment/Auto-Decrement
Programmable Address/Data Multiplexing
Programmable Polarity on Control Signals
Legacy Parallel Slave(PSP) Support
Enhanced Parallel Slave Port Support
Programmable Wait States

Relevant Functions:
setup_psp (options,address_mask) - This will setup the PSP module for various mode
and specifies which address lines to be used.

75

CCS C Compiler

setup_pmp_csx(options,[offset]) - Sets up the Chip Select X Configuration, Mode and Base
Address registers.

pco] Setup_pmp (options,address_mask) - This will setup the PMP/EPMP module for
various mode and specifies which address lines to be used.

setup_psp_cs(options) - Sets up the Chip Select X Configuration and Mode registers.
psp_output_full() - This will return the status of the output buffers.

irco] pmp_address(address) - Configures the address register of the PMP module with the
destination address during Master mode operation.

rpeo) pmp_input_full () - This will return the status of the input buffers.

repy psp_input_full() - This will return the status of the input buffers.

reo] pmp_output_full() - This will return the status of the output buffers.

rco] pmp_overflow () - This will return the status of the output buffer underflow bit.
irco] pmp_read() - Reads a byte of data.

pco) psp_read(address)/ psp_read() - psp_read() will read a byte of data from the next
buffer location and psp_read (address) will read the buffer location address.

rco] pmp_write (data) - Write the data byte to the next buffer location.

pco] PSp_write(address,data)/ psp_write(data) - This will write a byte of data to the next
buffer location or will write a byte to the specified buffer location.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PMP - Interrupt on read or write strobe

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_pmp (PAR ENABLE | // Sets up Master mode with
// address lines PMAO:PMA7
PAR MASTER MODE 1|
PAR STOP IN IDLE, OxOFF);

if (pmp_output full())
76

Functional Overview
{
pmp write (next byte);
}

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are only
available on devices equipped with PWM. The options for these functions vary depending on
the chip and are listed in the device header file.

Relevant Functions:
setup_power_pwm(config) - Sets up the PWM clock, period, dead time etc.

setup_power_pwm_pins(module x) - Configure the pins of the PWM to be in
Complementary, ON or OFF mod.

set_power_pwmx_duty(duty) - Stores the value of the duty cycle in the PDCXL/H
register. This duty cycle value is the time for which the PWM is in active state.

set_power_pwm_override(pwm,override,value) - This function determines whether the
OVDCONS or the PDC registers determine the PWM output .

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWMTB - PWM Timebase Interrupt (Only available on PIC18XX31)

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
long duty cycle, period;

// Configures PWM pins to be ON,OFF
// or in Complimentary mode.

setup_power pwm pins (PWM COMPLEMENTARY ,PWM OFF, PWM OFF, PWM OFF ;
// Sets up PWM clock , postscale and
// period. Here period is used to
set the
// PWM Frequency as follows:
// Frequency=Fosc/ (4* (period+1)
// *postscale)

77

CCS C Compiler

setup power pwm(PWM CLOCK DIV 4|PWM FREE RUN,1,0,period,0,1,0);
set power pwmO duty(duty cycle)); // Sets the duty cycle of the
PWM 0,1 in

// Complementary mode

Program EEPROM

The Flash program memory is readable and writable in some chips and is just readable in
some. These options allows the user to read and write to the Flash program memory. These
functions are only available in Flash chips.

Relevant Functions:
read_program_eeprom(address) - Reads the program memory location (16-bit or 32-bit
depending on the device).

write_program_eeprom(address, value) - Writes value to program memory location
address.

erase_program_eeprom(address) - Erases FLASH_ERASE_SIZE bytes in program memory.

write_program_memory(address,dataptr,count) - Writes count bytes to program memory from
dataptr to address. When address is a mutiple of FLASH_ERASE_SIZE an erase is
also performed.
o) When address is a mutiple of FLASH_ERASE_SIZE an erase is also performed.

read_program_memory(address,dataptr,count) - Read count bytes from program memory
at address to dataptr.

read_calibration_memory(cal_word) - Read one of the calibration words from calibration
memory on MCP191xx devices.

[pcpl read_rom_memory(address,dataptr,count) - Reads count bytes from program memory
from address.

Relevant Preprocessor:
#ROM address={list} - Can be used to put program memory data into the hex file.

#DEVICE(WRITE_EEPROM=ASYNC) - Can be used with #DEVICE to prevent the write
function from hanging. When this is used make sure the eeprom is not written both inside and
outside the ISR.

Relevant Interrupts:
INT_EEPROM - Interrupts fire when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in

78

Functional Overview

Relevant getenv() Parameters:
PROGRAM_MEMORY - Size of program memory.

READ_PROGRAM - Returns 1 if program memory can be read.
FLASH_WRITE_SIZE - Smallest number of bytes written in Flash.
FLASH_ERASE_SIZE - Smallest number of bytes erased in Flash.

irco] MIN_FLASH_WRITE - Smallest number of bytes that can be written to Flash with
write_program_memory() function.

Example Code:
For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5} //inserts this data into the hex
file.

erase program eeprom(0x1000) ; //erases 64 bytes starting
at 0x1000

write program eeprom(0x1000,0x1234); //writes 0x1234 to 0x1000
value=read program eeprom(0x1000); //reads 0x1000 returns
0x1234

write program memory (0x1000,data,8); //of 64 and writes 8 bytes
from data to 0x1000

read program memory (0x1000,value, 8); //reads 8 bytes to value
from 0x1000

erase_program_ eeprom(0x1000) ; //erases 64 bytes starting
at 0x1000

write program memory (0x1010,data,8); //writes 8 bytes from data
to 0x1000

read program memory (0x1000,value, 8); //reads 8 bytes to value from
0x1000

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes,does not erase (use
ERASE_PROGRAM_EEPROM)

WRITE_PROGRAM_MEMORY - Writes any number of bytes,will erase a block whenever
the first (lowest) byte in a block is written to. If the first address is not the start of a block that
block is not erased.

ERASE_PROGRAM_EEPROM - Will erase a block. The lowest address bits are not used.

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, no erase is needed.

WRITE_PROGRAM_MEMORY - Writes any humber of bytes, bytes outside the range of the
write block are not changed. No erase is needed.

ERASE_PROGRAM_EEPROM - Not available.

[PCD]

79

CCS C Compiler
#rom0x1000=(1,2,3,4)
hex file
erase program memory (0x1000) ;
address

write program memory (0x1000,data,12);
program memory

if address

flash erase

done first.

read program memory (0x1000,value,12);
program

0x1000.

WRITE_PROGRAM_MEMORY

that is a

MIN FLASH WRITE. Will

//Inserts this data into the
//Erases flash page containing
//0x1000, erase size depends on
//FLASH ERASE SIZE

//Write 12 bytes from data
//starting at address 0x1000,
//0x1000 is the start of a
//block, then erase will be
//Reads 12 bytes to value from
//memory starting at address

//Writes any number of bytes

//multiple of

//erase a block whenever the

first (lowest)

to. If the

//byte in a block is written

//first address is not the start

of a block

ERASE PROGRAM MEMORY
FLASH ERASE SIZE.

not used.

//i.e.

function will

//that block is not erased.
//Erases a block of size

//The lowest address bit are

any address passed to

//cause block it is contained in

to be erased.

PSP

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:

setup_psp(mode) - Enables/disables the psp port on the chip.

psp_output_full() - Returns 1 if the output buffer is full(waiting to be read by the external

bus).

80

Functional Overview
psp_input_full() - Returns 1 if the input buffer is full(waiting to read by the cpu).

psp_overflow() - Returns 1 if a write occurred before the previously written byte was read.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_PSP - Interrupt fires when PSP data is in

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PSP - Returns 1 if the device has PSP

Example Code:

while (psp_output full()); //waits till the output buffer is
cleared
psp_data=command; //writes to the port

while (!input buffer full()); //waits till input buffer is cleared
if (psp_overflow())

error=true //1if there is an overflow set the error
flag
else

data=psp data; //if there is no overflow then read the
port

QEl

The Quadrature Encoder Interface (QEI) module provides the interface to incremental
encoders for obtaining mechanical positional data.

Relevant Functions:
setup_qei(options, filter,maxcount) - Configures the QEI module.

gei_status() - Returns the status of the QEI module
gei_set_count(value) - Writes a 16-bit value to the position counter.

gei_get_count() - Reads the current 16-bit value of the position counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_QEI - Interrupt on rollover or underflow of the position counter

81

CCS C Compiler

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
intle6 value;
setup gei (QEI_MODE X2 | //Setup the QEI module
QEI TIMER INTERNAL,
QEI FILTER DIV 2,QEI FORWARD) ;

Value=gei get count(); //Read the count

RS232 1/0

These functions and directives can be used for setting up and using RS232 1/O functionality.

Relevant Functions:

getc() or getch() / getchar() or fgetc() - Gets a character on the receive pin (from the
specified stream in case of fgetc, stdin by default). Use KBHIT to check if the
character is available.

gets() or fgets() - Gets a string on the receive pin (from the specified stream in case of fgets,
STDIN by default). Use getc to receive each character until return is encountered.

putc() or putchar() or / fputc() - Puts a character over the transmit pin (on the specified
stream in the case of fputc, stdout by default).

puts() or fputs() - Puts a string over the transmit pin (on the specified stream in the case of
fputc, stdout by default). Uses putc to send each character.

printf() or fprintf() - Prints the formatted string (on the specified stream in the case of fprintf,
stdout by default). Refer to the printf help for details on format string.

kbhit() - Return true when a character is received in the buffer in case of hardware RS232 or
when the first bit is sent on the RCV pin in case of software RS232. Useful for polling
without waiting in getc.

setup_uart(baud,[stream]) or setup_uart_speed(baud,[stream]) - Used to change the baud
rate of the hardware UART at run-time. Specifying stream is optional. Refer to the
help for more advanced options.

assert(condition) - Checks the condition and if false prints the file name and line to STDERR.
Will not generate code if #DEFINE NODEBUG is used.

perror(message) - Prints the message and the last system error to STDERR.

putc_send() or fputc_send() - When using transmit buffer, used to transmit data from
buffer. See function description for more detail on when needed.

82

Functional Overview

rcv_buffer_bytes() - When using receive buffer, returns the number of bytes in buffer that still
need to be retrieved.

tx_buffer_bytes() - When using transmit buffer, returns the number of bytes in buffer that still
need to be sent.

tx_buffer_full() - When using transmit buffer, returns TRUE if transmit buffer is full.
receive_buffer_full() - When using receive buffer, returns TRUE if receive buffer is full.

tx_buffer_available() - When using transmit buffer, returns number of characters that can be
put into transmit buffer before it overflows.

#useRS232 - Configures the compiler to support RS232 to specifications.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RDA - Interrupt fires when the receive data available.

INT_TBE - Interrup fires when the transmit data empty.

*Some devices have more than one hardware UART, hence more interrupts.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
UART - Returns the number UARTSs on this device.

AUART - Returns TRUE if this UART is an advanced UART.

UART_RX - Returns the receive pin for the first UART on this device (see PIN_XX)
UART_TX - Returns the transmit pin for the first UART on this device.

UART2_RX - Returns the receive pin for the second UART on this device.

UART2-TX - Returns the transmit pin for the second UART on this device.

Example Code:
/*configure and enable uart, use first hardware UART on PIC*/
#use rs232(uartl, baud=9600)

/* print a string*/
printf ("enter a character");

/* get a character*/
if (kbhit()) //check if a character has
been received

83

CCS C Compiler
c=getc(); //read character from UART

RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where
accurate time must be maintained for extended periods of time with minimum or no
intervention from the CPU. The key features of the module are:

e Time: Hour, Minute and Seconds.

24-hour format (Military Time)

Calendar: Weekday, Date, Month and Year.
Alarm Configurable.

Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:
setup_rtc (options, calibration); - This will setup the RTCC module for operation and
also allows for calibration setup.

rtc_write(rtc_time_t datetime) - Writes the date and time to the RTCC module.

rtc_read(rtctime_t datetime) - Reads the current value of Time and Date from the RTCC
module.

setup_rtc_alarm(options, mask, repeat); - Configures the alarm of the RTCC module.

rtc_alarm_write(rtctime_t datetime); - Writes the date and time to the alarm in the RTCC
module.

rtc_alarm_read(rtctime_t datetime); - Reads the date and time to the alarm in the RTCC
module.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RTC - Interrupt on Alarm Event on half alarm frequency.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup rtc (RTC_ENABLE|RTC_OUTPUT SECONDS, 0x00); //Enable RTCC module
with seconds
//clock and no
calibration.
rtc_write(datetime); //Write the value of Date

84

Functional Overview
and Time
//to the RTC module.
rtc read(datetime); //Reads the value to a
structure time t.

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS). This
operating system is cooperatively multitasking and allows for tasks to be scheduled to run at
specified time intervals. Because the RTOS does not use interrupts, the user must be careful
to make use of the rtos_yield() function in every task so that no one task is allowed to run
forever.

Relevant Functions:
rtos_run() - Begins the operation of the RTOS. All task management tasks are implemented
by this function.

rtos_terminate() - This function terminates the operation of the RTOS and returns operation
to the original program. Works as a return from the rtos_run()function.

rtos_enable(task) - Enables one of the RTOS tasks. Once a task is enabled, the rtos_run()
function will call the task when its time occurs. The parameter to this function is the
name of task to be enabled.

rtos_disable(task) - Disables one of the RTOS tasks. Once a task is disabled, the
rtos_run() function will not call this task until it is enabled using rtos_enable(). The
parameter to this function is the name of the task to be disabled.

rtos_msg_poll() - Returns true if there is data in the task's message queue.
rtos_msg_read() - Returns the next byte of data contained in the task's message queue.

rtos_msg_send(task,byte) - Sends a byte of data to the specified task. The data is placed
in the receiving task's message queue.

rtos_yield() - Called with in one of the RTOS tasks and returns control of the program to the
rtos_run() function. All tasks should call this function when finished.

rtos_signal(sem) - Increments a semaphore which is used to broadcast the availability of a
limited resource.

rtos_wait(sem) - Waits for the resource associated with the semaphore to become available
and then decrements to semaphore to claim the resource.

rtos_await(expre) - Will wait for the given expression to evaluate to true before allowing the
task to continue.

rtos_overrun(task) - Will return true if the given task over ran its allotted time.

rtos_stats(task,stat) - Returns the specified statistic about the specified task. The statistics
include the minimum and maximum times for the task to run and the total time the
task has spent running.

85

CCS C Compiler

Relevant Preprocessor:

#USE RTOS(options) - This directive is used to specify several different RTOS attributes
including the timer to use, the minor cycle time and whether or not statistics should be
enabled.

#TASK (options) - This directive tells the compiler that the following function is to be an
RTOS task.

#TASK - Specifies the rate at which the task should be called, the maximum time the task
shall be allowed to run, and how large its queue should be.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in.

Relevant getenv() Parameters:
None

Example Code:
#USE RTOS (timer=0,minor cycle=20ms) // RTOS will use timer zero,
minor cycle

// will be 20ms

int sem;

#TASK (rate=1s,max=20ms, queue=5) // Task will run at a rate
of once per second
void task name(); // with a maximum running

time of 20ms and
// a 5 byte queue

rtos_run(); // begins the RTOS
rtos_terminate(); // ends the RTOS
rtos_enable (task name); // enables the previously
declared task.

rtos_disable (task name); // disables the previously
declared task

rtos msg send(task name,5); // places the value 5 in
task names queue.

rtos_yield(); // yields control to the
RTOS

rtos_signal (sem); // signals that the

resource represented by
// sem is available.

For more information on the CCS RTOS please

86

Functional Overview
SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most
PIC devices support most common SPI™ modes. CCS provides a support library for taking
advantage of both hardware and software based SPI™ functionality. For software support, see
#USE SPI.

Relevant Functions:

setup_spi(mode), setup_spi2(mode) - Configure the hardware SPI to the specified mode.
The mode configures setup_spi2(mode) thing such as master or slave mode, clock
speed and clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to
configure the second interface.

spi_data_is_in(), spi_data_is_in2() - Returns TRUE if the SPI receive buffer has a byte
of data.

spi_write(value), spi_write2(value) - Transmits the value over the SPI interface. This will
cause the data to be clocked out on the SDO pin.

spi_read(value), spi_read2(value) - Performs an SPI transaction, where the value is
clocked out on the SDO pin and data clocked in on the SDI pin is returned. If you just
want to clock in data then you can use spi_read() without a parameter.

spi_set_txcnt(value) - Sets the number of SPI transfers to drive SS1 pin to active level. Only
available on PIC18 devices with a dedicated SPI peripheral.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_ssp, #int_ssp2 - Transaction (read or write) has completed on the indicated peripheral.

tpco] #int_spil - Interrupts on the activity from the first SPI module.
[pco] #int_spi2 - Interrupts on the activity from the second SPI module.

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI - Returns TRUE if the device has an SPI peripheral.

Example Code:

//configure the device to be a
master,

//data transmitted on H-to-L
clock transition

87

CCS C Compiler
setup spi (SPI_MASTER|SPI H TO L|SPI CLK DIV 16);

spi write (0x80); //write 0x80 to SPI
device

value=spi read(); //read a value from
the SPI device

value=spi read(0x80); //write 0x80 to SPI

device the same

//time reading a
value.
spi_set txcnt(3); //drives SS1 pin to
active level

//for 3 SPI transfers

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low power
32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16-bit timer. It is the only timer that may not be concatenated into a hybrid 32-bit
timer. However, it alone may use a synchronous external clock. This feature may be used with
a low power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16-bit timers. They may use external clock sources only
asynchronously and they may not act as low power real time clock sources. They may
however be concatenated into 32-bit timers. This is done by configuring an even numbered
timer (timer 2, 4, 6 or 8) as the least significant word, and the corresponding odd numbered
timer (timer 3, 5, 7 or 9, respectively) as the most significant word of the new 32-bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OxFFFF. The period value may be changed when
using setup_timer_X.

Relevant Functions:
setup_timer_X() - Configures the timer peripheral. X may be any valid timer for the target
device. Consult the target datasheet or use getenv to find the valid timers.

get_timerX() - Retrieves the current 16-bit value of the timer.

get_timerXY() - Gets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

set_timerX() - Sets the value of timerX.

set_timerXY() - Sets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

88

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:

#int_timerX - Interrupts on timer overflow (period match). X is any valid timer number.

*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be used
(i.e. when using 32-bit Timer 23, #int_timer3).

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERX - Returns 1 if the device has the timer peripheral X. X may be 1-9.

Example Code:
/*Setup timerl as an external realtime clock that increments every
16 clock cycles*/
setup_ timerl (Tl EXTERNAL RTC|T2 DIV BY 16);

/*Setup timer2 as a timer that increments on every instruction cycle
and has

a period of 0x0100*/

setup timer2 (TMR_ INTERNAL, 0x0100);

byte value=0x00

value=get timer2(); //retrieve the current value of
timer?2

TimerO

These options lets the user configure and use timer0. It is available on all devices and is
always enabled. The clock/counter is 8-bit on PIC16and 8 or 16 bit on PIC18s. It counts up
and also provides interrupt on overflow. The options available differ and are listed in the device
header file.

Relevant Functions:
setup_timer_0O(mode) - Sets the source, prescale etc for timer0

set_timerO(value) or set_rtcc(value) - Initializes the timer0 clock/counter. Value may be a
8-bit or 16-bit depending on the device.

value=get_timer0 - Returns the value of the timer0 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERO or INT_RTCC - Interrupt fires when timer0 overflows.

89

CCS C Compiler

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERO - Returns 1 if the device has timer0

Example Code:
For PIC18F452:
setup timer O (RTCC INTERNAL|RTCC DIV Q|RTCC 8 BIT);
//sets the internal clock as source
//and prescale 2. At 20Mhz timer0
//will increment every 0.4us in this
//setup and overflows every 102.4us

set_timer0(0); //this sets timer0 register to 0
time-get timerO(); this will read the timer0O register
value

Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on PIC16s
and PIC18s. It counts up and also provides interrupt on overflow. The options available differ
and are listed in the device header file.

Relevant Functions:
setup_timer_1(mode) - Disables or sets the source and prescale for timerl.

set_timerl(value) - Initializes the timerl clock/counter.

value=get_timer1 - Returns the value of the timerl clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERL1 - Interrupt fires when timerl overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERL - Returns 1 if the device has timerl

Example Code:
For PIC18452:

setup timer 1(T1 DISABLED) //disables timerl
setup_timer 1(T1_INTERNAL|T1 DIV _BY 8); //sets the internal clock as
source

//and prescale as 8. At
90

Functional Overview

20Mhz timerl
//will increment every 1.6us

in this

//setup and overflows every
104.896ms
set_timerl (0); //this sets timerl register
to 0
time=get timerl(); //this will read the timerl

register value

Timer?2

These options lets the user configure and use timer2. The clock/counter is 8-bit on PIC16s and
PIC18s. It counts up and also provides interrupt on overflow. The options available differ and
are listed in the device header file.

Relevant Functions:
setup_timer_2(mode,period,postscale)) - Disables or sets the prescale, period and a
postscale for timer2.

set_timer2(value) - Initializes the timer2 clock/counter.

value=get_timer2 - Returns the value of the timer2 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER?2 - Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMER2 - Returns 1 if the device has timer2

Example Code:
For PIC18452:
setup_timer 2 (T2 DISABLED) ; //disables timer2
setup timer 2 (T2 INTERNAL|T2 DIV BY 4,0xc0,2); //sets the prescale
as 4, period
//as 0xc0 and
postscales as 2.
//At 20Mhz timer?2
will increment
// very .8us in this
setup
// and overflows

91

CCS C Compiler

every 154.4us
//and interrupt every

308.2us

set_timer2(0); //this sets timer?2
register to O

time=get timer2(); //this will read timer?2

register value

Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is
available only on 18Fxx31 devices. It counts up and also provides interrupt on overflow. The
options available differ and are listed in the device header file.

Relevant Functions:
setup_timer_5(mode) - Disables or sets the source and prescale for timer5s.

set_timer5(value) - Initializes the timer5 clock/counter.
value=get_timer5 - Returns the value of the timer5 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERS - Interrupt fires when timer5 overflows.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERS - Returns 1 if the device has timer5.

Example Code:
For PIC18F4431
setup timer 5(T5 DISABLED); //disables timer5
setup_timer 5(T5 INTERNAL|TS5 DIV BY 1); //sets the internal clock as
source and
//prescale as 1. At 20Mhz

92

Functional Overview

timer5 will
//increment every .2us in

this setup

//and overflows every
13.1072ms
set_timer5(0); //this sets timer5 register
to 0
time=get timer5(); //this will read the timer5

register value

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer A
hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:
setup_timer_A(mode) - Disable or sets the source and prescale for timerA.

set_timerA(value) - Initializes the timerA clock/counter.

value=get_timerA() - Returns the value of the timerA clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERA - Interrupt fires timerA overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERA - Returns 1 if the device has timerA

Example Code:
setup timer A(TA OFF); //disable timerA
setup_timer A(TA INTERNAL|TA DIV 8); //sets the internal clock as
source
//and prescale as 8. At 20Mhz

timerA

//will increment every l.6us in
this

//setup and overflows every
409.6us
set_timerA(0): //this sets timerA register to
0

93

CCS C Compiler

time=get timerA(); //this will read the timerA
register value

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB
hardware. The clock/counter is 8-bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:
setup_timer_B(mode) - Disable or set the source and prescale for timerB.

set_timerB(value) - Initializes the timerB clock/counter.
value=get_timerB() - Returns the value of the timerB clock/counter.
Relevant Preprocessor:

None

Relevant Interrupts:
INT_TIMERB - Interrupt fires when timerB overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERB - Returns 1 if the device has timerB

Example Code:

setup timer B(TB OFF); //disable timer
setup_ timer B(TB_INTERNAL|TB DIV 8); //sets the internal clock as
source

//and prescale as 8. At 20Mhz
timerB

//will increment every l.6us in
this

//setup and overflows every
409. 6us
set_timerB(0): //this sets timerB register to
0
time=get timerB(); //this will read the timerB

register value

94

Functional Overview
USB

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to and talk
to a personal computer. CCS provides libraries for interfacing a PIC to PC using USB by using
a device with an internal USB peripheral (like the PIC16C765 or the PIC18F4550 family) or by
using any device with an external USB peripheral (the National USBN9603 family).

Relevant Functions:

usb_init() - Initializes the USB hardware. Will then wait in an infinite loop for the USB
peripheral to be connected to bus (but that doesn't mean it has been enumerated by
the PC). Will enable and use the USB interrupt.

usb_init_cs() - The same as usb_init(), but does not wait for the device to be connected to the
bus. This is useful if your device is not bus powered and can operate without a USB
connection.

usb_task() - If you use connection sense, and the usb_init_cs() for initialization, then you must
periodically call this function to keep an eye on the connection sense pin. When the
PIC is connected to the BUS, this function will then perpare the USB peripheral.
When the PIC is disconnected from the BUS, it will reset the USB stack and
peripheral. Will enable and use the USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection sense
pin.

usb_detach() - Removes the PIC from the bus. Will be called automatically by usb_task() if
connection is lost, but can be called manually by the user.

usb_attach() - Attaches the PIC to the bus. Will be called automatically by usb_task() if
connection is made, but can be called manually by the user.

usb_attached() - If using connection sense pin (USB_CON_SENSE_PIN), returns TRUE if
that pin is high. Else will always return TRUE.

usb_enumerated() - Returns TRUE if the device has been enumerated by the PC. If the
device has been enumerated by the PC, that means it is in normal operation mode
and you can send/receive packets.

usb_put_packet(endpoint, data, len, tgl) - Places the packet of data into the specified
endpoint buffer. Returns TRUE if success, FALSE if the buffer is still full with the last
packet.

usb_puts(endpoint, data, len,timeout) - Sends the following data to the specified
endpoint. usb_puts() differs from usb_put_packet() in that it will send multi packet
messages if the data will not fit into one packet.

usb_kbhit(endpoint) - Returns TRUE if the specified endpoint has data in it's receive buffer

usb_get_packet(endpoint, ptr, max) - Reads up to max bytes from the specified endpoint
buffer and saves it to the pointer ptr. Returns the number of bytes saved to ptr.

95

CCS C Compiler

usb_gets(endpoint, ptr,max, timeout) - Reads a message from the specified endpoint. The
difference usb_get_packet() and usb_gets() is that usb_gets() will wait until a full
message has received, which a message may contain more than one
packet. Returns the number of bytes received.

Relevant CDC Functions:
A CDC USB device will emulate an RS-232 device, and will appear on your PC as a COM port.
The follow functions provide you this virtual RS-232/serial interface.

Note: When using the CDC library, you can use the same functions above, but do not use the
packet related function such as: usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit() - The same as kbhit(), returns TRUE if there is 1 or more character in the
receive buffer.

usb_cdc_getc() - The same as getc(), reads and returns a character from the receive buffer. If
there is no data in the receive buffer it will wait indefinitely until there a character has
been received.

usb_cdc_putc(c) - The same as putc(), sends a character. It actually puts a character into the
transmit buffer, and if the transmit buffer is full will wait indefinitely until there is space
for the character.

usb_cdc_putc_fast(c) - The same as usb_cdc_putc(), but will not wait indefinitely until there
is space for the character in the transmit buffer. In that situation the character is lost.

usb_cdc_puts(*str) - Sends a character string (null terminated) to the USB CDC port. Will
return FALSE if the buffer is busy, TRUE if buffer is string was put into buffer for
sending. Entire string must fit into endpoint, if string is longer than endpoint buffer
then excess characters will be ignored.

usb_cdc_putready() - Returns TRUE if there is space in the transmit buffer for another
character.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_usb - A USB event has happened, and requires application intervention. The USB library
that CCS provides handles this interrupt automatically.

Relevant Include Files:
pic_usb.h - Hardware layer driver for the PIC16C765 family PICmicro controllers with an
internal USB peripheral.

pic18_usb.h - Hardware layer driver for the PIC18F4550 family PICmicro controllers with an
internal USB peripheral.

usbn960x.h - Hardware layer driver for the National USBN9603/USBN9604 external USB
peripheral. You can use this external peripheral to add USB to any microcontroller.

96

Functional Overview
usb.h - Common definitions and prototypes used by the USB driver.

usb.c - The USB stack, which handles the USB interrupt and USB Setup Requests on
Endpoint 0.

usb_cdc.h - A driver that takes the previous include files to make a CDC USB device, which
emulates an RS232 legacy device and shows up as a COM port in the MS Windows
device manager.

Relevant getenv() Parameters:
USB - Returns TRUE if the device has an integrated internal USB peripheral.

Example Code:
Due to the complexity of USB example code will not fit here. But you can find the following
examples installed with your CCS C Compiler:
ex_usb_hid.c - A simple HID device
ex_usb_mouse.c - A HID Mouse, when connected to the PC, the mouse cursor will go in
circles.
ex_usb_kbmouse.c - An example of how to create a USB device with multiple interfaces
by creating a keyboard and mouse in one device.
ex_usb_kbmouse2.c - An example of how to use multiple HID report IDs to transmit
more than one type of HID packet, as demonstrated by a keyboard and mouse on
one device.
ex_usb_scope.c - A vendor-specific class using bulk transfers is demonstrated.
ex_usb_serial.c - The CDC virtual RS232 library is demonstrated with this RS232 < - >
USB example.
ex_usb_serial2.c - Another CDC virtual RS232 library example, this time a port of the
ex_intee.c example to use USB instead of RS232.

Voltage Reference

These functions configure the votlage reference module. These are available only in the
supported chips.

Relevant Functions:
setup_vref(mode | value) - Enables and sets up the internal voltage reference
value. Constants are defined in the device's .h file.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

97

CCS C Compiler
Relevant getenv() Parameters:
VREF - Returns 1 if the device has VREF

Example Code:
#INT COMP //comparator interrupt handler

void isr() {
safe conditions = FALSE;
printf ("WARNING!!!! Voltage level is above 3.6V. \r\n");

}

setup_ comparator (Al VR OUT ON A2)//sets 2 comparators (Al and VR and
A2 as output)
{
setup vref (VREF HIGH | 15);//sets 3.6(vdd * value/32 + vdd/4) if
vdd is 5.0V
enable interrupts (INT COMP); // enable the comparator interrupt
enable interrupts (GLOBAL); //enable global interrupts

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:
setup_wdt() - Enables/disables the wdt or sets the prescalar.

restart_wdt() - Restarts the wdlt, if wdt is enables this must be periodically called to prevent a
timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH
device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using
fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232 statements
like this #USE DELAY(clock=20000000, restart_wdt) will cause the wdt to restart if it times out
during the delay or I2C_READ or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWNDT - Enables/Disables WDT in PCB/PCM devices.

#FUSES WDT16 - Sets up the timeout/timein in PCH devices.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

98

Functional Overview

Relevant getenv() Parameters:
None

Example Code:
For PIC16F877
#fuses wdt setup wdt (WDT 2304MS) ;
while (true) {
restart wdt();
perform activity();

{

For PIC18F452
#fuse WDT1
setup wdt (WDT ON) ;
while (true) {
restart wdt();
perform activity():

}

Some of the PCB chips are share the WDT prescalar bits with timerO so the WDT prescalar
constants can be used with setup_counters or setup_timerO or setup_wdt functions.

Stream 1/0

Syntax:

#include <ios.h> is required to use any of the ios identifiers.
Ouptut:

output:

stream << variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default stream
use cout.

stream may also be the name of a char array. In this case the data is written to the array with
a 0 terminator.

stream may also be the name of a function that accepts a single char parameter. In this case
the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are output as
strings and all other types are output as an address of the variable.

Manipulators:
hex -Hex format numbers

99

CCS C Compiler
dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and O (default)

fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings

endl -Output CR/LF

ends- Outputs a null (\000")

Examples:
cout << "Value is " << hex << data << endl;
cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;
lecdpute << '"\f' << setw(3) << count << " " << min << " "<
max;

stringl << setprecision(l) << sum / count;
string2 << x << ',' << y;

Input:
stream >> variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default stream
use cin.

stream may also be the name of a char array. In this case the data is read from the array up
to the O terminator.

stream may also be the name of a function that returns a single char and has no
parameters. In this case the function is called for each character to be input. Make
sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are input as
strings. Floats may use the E format. Reading of each item terminates with any
character not valid for the type. Usually items are separated by spaces. The
termination character is discarded. At the end of any stream input statement
characters are read until a return (\r) is read. No termination character is read for a
single char input.

100

Functional Overview

Manipulators:
hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)

iosdefault -All manipulators to default settings

Examples:

cout << "Enter number: ";

cin >> value;

cout << "Enter title: ";

cin >> strspace >> title;

cin >> datal[i].recordid >> data[i].xpos >> datal[i].ypos >>

datal[i].sample ;

stringl >> data;

lcdpute << "\fEnter count";

lcdputc << keypadgetc >> count; // read from keypad, echo to lcd
// This syntax only works with
// user defined functions.

101

CCS C Compiler
PREPROCESSOR

address

Syntax:
A predefined symbol _ _address_ _ may be used to indicate a type that must hold a program
memory address.

Examples:
__address__ testa = 0x1000 //will allocate 16 bits for test
a and
//initialize to 0x1000

attribute x

Syntax:
__attribute__x

Elements:
x is the attribute you want to apply. Valid values for x are as follows: ((packed))

By default each element in a struct or union are padded to be evenly spaced by the size of
‘int'. This is to prevent an address fault when accessing an element of struct. See the
following example:
struct
{
int8 a;
intl6 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24 microcontrollers), 'test’ would
take 4 bytes even though it is comprised of3 bytes. By applying the ‘packed' attribute to this
struct then it would take 3 bytes as originally intended:
struct __attribute__ ((packed))
{
int8 a;
intl6 b;
} test;

Care should be taken by the user when accessing individual elements of a packed struct —
creating a pointer to 'b' in 'test' and attempting to dereference that pointer would cause an
address fault. Any attempts to read/write 'b' should be done in context of ‘test' so the compiler
knows it is packed:

test.b =5;

102

PreProcessor

((aligned(y)) - By default the compiler will allocate a variable in the first free memory
location. The aligned attribute will force the compiler to allocate a location for the specified
variable at a location that is modulus of the y parameter. For example:

int8 array[256] __attribute__((aligned(0x1000)));

This will tell the compiler to try to place ‘array' at either 0x0, 0x1000, 0x2000, 0x3000, 0x4000,

etc.

Description:

To alter some specifics as to how the compiler operates.

Examples:

struct attribute ((packed))

{
int8 a;
int8 b;
} test;

int8 array[256] _ attribute ((aligned(0x1000)));

See Also:

#asm
#endasm
#asm asis

Syntax:

#ASM or #ASM ASIS code #ENDASM

Elements:

Code is a list of assembly language instructions.

Description:

12 Bit and 14 Bit

ADDWE f,d ANDWE f,d
CLRFf CLRW
COMF f,d DECEF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWF f,d
MOVF f,d MOVPHW
MOVPLW MOVWE f
NOP RLF f,d
RRF f,d SUBWE f,d
SWAPF f,d XORWE f,d
BCF f,b BSF f,b

103

CCS C Compiler

BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable
d may be a constant (0 or 1) or W or F
fb may be a file (as above) and a constant (0-7) or it may be just a bit variable
' reference.
k may be a constant expression

*Note that all expressions and comments are in C like syntax.

PIC 18

ADDWF f,d ADDWFC f,d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSzZ f,d DCFSNZ f,d INCF f,d
INFSNZ f.d IORWF f,d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f,d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB f.d SUBWF f,d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f.b BSF f,b BTFSC f,b
BTFSS f.b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE S RETLW k RETURN S
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k

104

PreProcessor

SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *- TBLRD +*
TBLWT * TBLWT *+ TBLWT =
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before

it. And if it is an expression it must be a valid C expression that evaluates to a constant (no &

here). In C an un-subscripted array name is a pointer and a constant (no need for &).

[PCD]

PIC24 and dsPIC

ADD Wa,Wb,Wd Wd = Wa+Wb

ADD f,W WO = f+Wd

ADD litl0,wd Wwd = litl10+Wd

ADD Wa,lit5,Wwd Wd = lit5+Wa

ADD f,F f = f+Wd

ADD acc Acc = AccA+AccB

ADD Wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litl0,wd Wd = lit10+Wd (byte)
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit1o,wd wWd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)

ADD.B Wa,Wb,Wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd wd = lit5+Wa (byte)
ADD.B f,W WO = f+Wd (byte)
ADDC f,W Wd = f+Wa+C

ADDC litlo,wd Wd = lit10+Wd+C
ADDC Wa,lit5,Wd Wd = lit5+Wa+C

ADDC f,F wd = f+Wa+C

ADDC Wa,Wb,Wd Wd = Wa+Wb+C
ADDC.B litlo,wd wd = lit10+Wd+C (byte)
ADDC.B Wa,Wb,Wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wd = lits+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Wb,Wd Wd = Wa.& Wb

AND litlo,wd Wd = it10.&.Wd

AND f,W WO = f.&Wa

AND f,F f=f&Wa

AND Wa,lit5,Wd Wd = lit5.& Wa

AND.B f,W WO = f.& Wa (byte)
AND.B Wa,Wb,Wd Wd = Wa.&Wb (byte)
AND.B litl0,wd wd = 1it10.&.Wd (byte)
AND.B f,F f = f.& Wa (byte)

105

CCS C Compiler

AND.B Wa,lit5,wd wd = lit5.&.Wa (byte)

ASR fW WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,wWd Wd =Wa>>1 arithmetic

ASR Wa,lit4,Wd Wd =Wa >> [it4 arithmetic

ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic

ASR.B f,F f=1>>1 arithmetic (byte)

ASR.B fW WO =f>>1 arithmetic (byte)

ASR.B Wa,Wd Wd=Wa>>1 arithmetic (byte)

BCLR f,.B f.bit=0

BCLR Wd,B Wa.bit = 0

BCLR.B Wd,B Wa.hit = 0 (byte)

BRA a Branch unconditionally

BRA wd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal

BRA GEU a Branch if unsigned greater than or
equal

BRA GT a Branch if greater than

BRA GTU a Branch if unsigned greater than

BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal

BRALT a Branch if less than

BRALTU a Branch if unsigned less than

BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRA NOV a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow

BRA OB a Branch if Accumulator B overflow

BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate

BRA SB a Branch if Accumulator B Saturate

BRA Z a Branch if Zero

BREAK ICD Break

BSET Wd,B Wa.bit=1

BSET f,.B f.bit=1

BSET.B Wd,B Wa.bit = 1 (byte)

BSW.C Wa,wd WaWb =C

BSW.Z Wa,wd WaWb=2

BTG Wd,B Wa.bit = ~Wa.bit

BTG f,.B f.bit = ~f.hit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)

106

PreProcessor

BTSC f,B Skip if f.bit =0

BTSC Wd,B Skip if Wa.bit4 = 0

BTSS f,.B Skip if f.bit =1

BTSS Wd,B Skip if Wa.bit = 1

BTST f,.B Z = f.bit

BTST.C Wa,wd C =WaWb

BTST.C Wd,B C = Wa.bit

BTST.Z Wd,B Z = Wa.bit

BTST.Z Wa,Wd Z=WaWb

BTSTS f,.B Z =f.bit; f.bit=1

BTSTS.C Wd,B C = Wa.bit; Wa.bit= 1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit = 1

CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0

CLR f,W W0 =0

CLR wd Wwd=0

CLR.B f,W WO = 0 (byte)

CLR.B wd Wd = 0 (byte)

CLR.B f,F f =0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM f,W WO = ~f

COM Wa,wd wd = ~Wa

COM.B f,W WO = ~f (byte)

COM.B Wa,wd Wd = ~Wa (byte)

COM.B f,F f=~f (byte)

CP W, f Status set for f - WO

CP Wa,wd Status set for Wb &4€“ Wa

CP Wd,lit5 Status set for Wa &€" lits

CP.B W, f Status set for f - WO (byte)
CP.B Wa,Wd Status set for Wb &€* Wa (byte)
CP.B Wd,lit5 Status set for Wa a€" lit5 (byte)
CPO wd Status set for Wa 8€“ 0

CPO W, f Status set for f € 0

CP0.B wd Status set for Wa a€" 0 (byte)
CP0.B W, f Status set for f 4€" 0 (byte)
CPB Wd,lits Status set for Wa &€“ lit5 8€“ C
CPB Wa,Wd Status set for Wb &€“ Wa a€“ C
CPB W, f Status set for f 4€“ WO - C
CPB.B Wa,Wwd Status set for Wb &€“ Wa a€" C (byte)
CPB.B Wd,lit5 Status set for Wa &€° lits 4€“ C (byte)
CPB.B W, f Status set for f 4€“ WO - C (byte)
CPSEQ Wa,wd Skip if Wa = Wb

107

CCS C Compiler

CPSEQ.B Wa,Wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B Wa,Wd Skip if Wa > Wb (byte)

CPSLT Wa,wd Skip if Wa < Wb

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa != Wb

CPSNE.B Wa,Wd Skip if Wa != Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wd Wd = Wa &€“ 1

DEC f,W WO =fa€“ 1

DEC f,F f=fa€E" 1

DEC.B f,F f=1fa€" 1 (byte)

DEC.B f,W WO = f 8€" 1 (byte)

DEC.B Wa,Wd Wd = Wa &€* 1 (byte)

DEC2 Wa,Wd Wd = Wa &€ 2

DEC2 f,W WO =f3a€“ 2

DEC2 f,F f=fa€"“2

DEC2.B Wa,Wd Wd = Wa a€“ 2 (byte)

DEC2.B f,W WO = f 8€" 2 (byte)

DEC2.B f,F f=fa€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles

DIV.S Wa,Wd Signed 16/16-bit integer divide

DIV.SD Wa,Wd Signed 16/16-bit integer divide (dword)

DIV.U Wa,wd UnSigned 16/16-bit integer divide

DIV.UD wawd UnSigned 16/16-bit integer divide
(dword)

DIVF Wa,wd Signed 16/16-bit fractional divide

DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)

EDAC Wd*Wd,acc,da,db Euclidean Distance

EXCH Wa,Wwd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side

FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side

FF1R Wa,Wd Find first one from right (Lsb) side

GOTO a GoTo

GOTO wd GoTo [Wa]

INC f,W WOo=f+1

INC Wa,Wd Wd=Wa+1

INC f,F f=f+1

INC.B Wa,Wd Wd = Wa + 1 (byte)

INC.B f,F f=f+1 (byte)

INC.B f,W WO =f + 1 (byte)

INC2 f,W WO =f+2

108

PreProcessor

INC2 Wa,Wd Wd =Wa + 2

INC2 f,F f=f+2

INC2.B f,W WO =f + 2 (byte)
INC2.B fFE f=1f+ 2 (byte)

INC2.B Wa,wd Wd = Wa + 2 (byte)
IOR litl0,wd wd = 1it10 | Wd

IOR f,F f=f|Wa

IOR f,W W0 =f|Wa

IOR Wa,lit5,Wd Wd = Wa.|.lit

IOR Wa,Wb,Wd Wd =Wa.|.Whb

IOR.B Wa,Wb,Wd Wd = Wa.|.Wb (byte)
IOR.B f,W WO =f | Wa (byte)
IOR.B lita0,wd Wd = 1it10 | Wd (byte)
IOR.B Wa,lit5,Wd Wd = Wa.|.lit5 (byte)
IOR.B f,F f=f] Wa (byte)

LAC Wd,{lit4},acc Acc = Wa shifted slit4
LNK litl4 Allocate Stack Frame
LSR f,W WOo=Ff>>1

LSR Wa,lit4,Wd Wd =Wa >> lit4

LSR Wa,Wd Wd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,wd wWd = Wb >>Wa
LSR.B f,W WO = f >> 1 (byte)
LSR.B f,F f=1>>1 (byte)
LSR.B Wa,Wwd Wd = Wa >> 1 (byte)
MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*We,acc,da,dc,pi ﬁ;‘;f;tﬁﬁ}c o U g W] = AT
MOV W, f f=Wa

MOV f,W WO = f

MOV f,F f=f

MOV Wwd,? F =Wa

MOV Wa-lit, Wd Wd = [Wa +SIit10]
MOV ?,.wWd wWd = f

MOV litl6,wWd Wd = lit1l6

MOV Wa,Wd Wd = Wa

MOV Wa,Wd+lit [wd + SIit10] = Wa
MOV.B 1it8,wd Wd = Iit8 (byte)
MOV.B W f f = Wa (byte)

MOV.B f,W WO = f (byte)

MOV.B f,F f =f (byte)

MOV.B Wa-lit,wd Wd = [Wa +SIit10] (byte)
MOV.B Wa,Wd+lit [wd + SIit10] = Wa (byte)
MOV.B Wa,Wd Wd = Wa (byte)
MOV.D Wa,wd Wd:Wd+1 = Wa:Wa+1

109

CCS C Compiler

MOV.D Wa,wWd Wd:Wd+1 = Wa:Wa+1

MOVSAC acc,da,dc,pi Move ? to ? and ? To ?

MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Wb)

MSC Wd*Wc,acc,da,dc,pi Acc = Acc a€“ Wa*Wb

MUL W, f W3:W2 =f*Wa

MUL.B W, f W3:W2 = f * Wa (byte)

MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wb)

MUL.SU Wa,Wd {wd+1,wWd} = sign(Wa) * unsign(Wb)

MUL.SU Wa,lit5,Wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)

MUL.US Wa,Wd {Wd+1,Wd} = unsign(Wa) * sign(Wb)

MUL.UU Wa,Wd {Wd+1,Wd} = unsign(Wa) * unsign(Wb)

MUL.UU Wa,lit5,wd {wd+1,Wd} = unsign(Wa) * unsign(lit5)

NEG f,F f=-f

PUSH wd Push Wato TOS

PUSH.D Wwd PUSH double Wa:Wa + 1 to TOS

PUSH.S PUSH shadow registers

PWRSAV litl Enter Power-saving mode lit1

RCALL a Call (relative)

RCALL wd Call Wa

REPEAT lit14 Repeat next instruction (litl4 + 1) times

REPEAT wWd Repeat next instruction (Wa + 1) times

RESET Reset

RETFIE Return from interrupt enable

RETLW lit10,Wd Return; Wa = lit10

RETLW.B lit10,wd Return; Wa = [it10 (byte)

RETURN Return

RLC Wa,Wd W(d = rotate left through Carry Wa

RLC f,F f = rotate left through Carry f

RLC f,W WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)

RLC.B f,W WO = rotate left through Carry f (byte)

RLC.B Wawd Wd = rotate left through Carry Wa
(byte)

RLNC Wa,Wd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC f,W WO = rotate left (no Carry) f

RLNC.B f,W WO = rotate left (no Carry) f (byte)

RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)

RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,Wd Wd = rotate right through Carry Wa

RRC f,W WO = rotate right through Carry f

RRC.B fW WO = rotate right through Carry f (byte)

110

PreProcessor

RRC.B f,F f = rotate right through Carry f (byte)

RRC.B wawd Wd = rotate right through Carry Wa
(byte)

RRNC f,F f = rotate right (no Carry) f

RRNC fW WO = rotate right (no Carry) f

RRNC Wa,Wd Wd = rotate right (no Carry) Wa

RRNC.B f,F f = rotate right (no Carry) f (byte)

RRNC.B Wa,Wd Wd = rotate right (no Carry) Wa (byte)

RRNC.B fW WO = rotate right (no Carry) f (byte)

SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,Wd Wd = sign-extended Wa

SETM wd Wd = OxFFFF

SETM f,F WO = OXxFFFF

SETM.B wd Wd = OXFFFF (byte)

SETM.B fW WO = OxFFFF (byte)

SETM.B f,F WO = OxFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)

SFTAC acc,lits Arithmetic shift Acc by Slit6

SL f,W WOo=f<<1

SL Wa,Wb,Wd Wd = Wa << Wb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd=Wa<<1

SL f,F f=f<<1

SL.B f,W WO = f << 1 (byte)

SL.B Wa,Wd Wd =Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=fa€" Wo

SUB f,W WO = f a€* WO

SUB Wa,Wb,wd Wd = Wa &€" Wb

SUB Wa,lit5,Wd Wd = Wa a€“ lits

SUB acc Acc = AccA a€" AccB

SUB lita0,wd Wd = Wd &€" lit10

SUB.B Wa,lit5,Wd Wd = Wa &€" lit5 (byte)

SUB.B lita0,wd Wd = Wd &€ lit10 (byte)

SUB.B f,W WO = f 8€" WO (byte)

SUB.B Wa,Wb,wd Wd = Wa &€“ Wb (byte)

SUB.B f,F f=fa€" WO (byte)

SUBB f,W WO = f 8€“ W0 a€“ C

SUBB Wa,Wb,wWd Wd =Wa &€“Wb 3€“ C

SUBB f,F f=fa€"W03a€“C

SUBB Wa,lit5,Wd Wd =Wa &€“lits - C

SUBB lita0,wd Wd =Wd &€* 1it10 4€“ C

SUBB.B litl0,wd Wd = Wd &€° lit10 4€* C (byte)

111

CCS C Compiler

SUBB.B Wa,Wb,Wd Wd = Wa &€“ Wb &€“ C (byte)
SUBB.B f,F f=fa€" W0 a€" C (byte)

SUBB.B Wa,lit5,Wd Wd = Wa &€ lits - C (byte)
SUBB.B f,W WO = f 3€" WO a€" C (byte)

SUBBR Wa,lit5,Wd Wd = lit5 8€" Wa - C

SUBBR f,W W0 =WO0 &€“f a€“ C

SUBBR f,F f=WO0a€“fa€“C

SUBBR Wa,Wb,wd Wd =Wa a€"Wb - C

SUBBR.B f,F f=WO0 &€“ f 3€" C (byte)

SUBBR.B f,W WO0 =W0 &€“f 4€“ C (byte)
SUBBR.B Wa,Wb,Wd Wd = Wa &€“ Wb - C (byte)
SUBBR.B Wa,lit5,wd Wd = lit5 8€" Wa - C (byte)

SUBR Wa,lit5,Wd Wd = lit5 8€“ Wb

SUBR f,F f=WO0a€"f

SUBR Wa,Wb,Wd Wd = Wa a€“ Wb

SUBR f,W WO = W0 a€" f

SUBR.B Wa,Wb,Wd Wd =Wa a&€“ Wb (byte)

SUBR.B f,F f=WO0a€“f (byte)

SUBR.B Wa,lit5,Wd Wd = lit5 8€* Wb (byte)

SUBR.B f,W W0 =WO0 &€“f (byte)

SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH Wa,Wd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B Wa,Wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,Wd ROM[Wa] = Wd for odd ROM
TBLWTH.B Wa,wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,wd ROM[Wa] = Wd for even ROM
TBLWTL.B Wa,wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

XOR Wa,Wb,Wd Wd =Wa Wb

XOR f,F f=f~WO0

XOR fW WO =f~WO0

XOR Wa,lit5,Wd wd =Wa " Iits

XOR lita0,wd Wd =Wd ~ lit10

XOR.B lit10,Wd Wd = Wd ~ 1it10 (byte)

XOR.B f,W WO = f A WO (byte)

XOR.B Wa,lit5,Wd wWd =Wa " lit5 (byte)

XOR.B Wa,Wb,Wd Wd = Wa ~ Wb (byte)

XOR.B fF f=f~AWO (byte)

ZE Wa,Wd Wd =Wa & FF

112

Example Files:
FFT.c

Examples:
int find parity(int

int count;
#asm

MOV #0x08, WO
MOV WO, count
CLR WO

loop:

XOR.B data, WO
RRC data, W0
DEC count, F
BRA NZ, loop
MOV #0x01,wWO0
ADD count, F
MOV count, WO
MOV WO. RETURN
#endasm

}

See Also:

#asm
#endasm
#asm asis

Syntax:

data) {

#ASM or #ASM ASIS code #ENDASM

Elements:

Code is a list of assembly language instructions.

PreProcessor

Description:
12 Bit and 14 Bit

ADDWE f,d ANDWE f,d
CLRFf CLRW
COMF f,d DECEF f.d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWE f

113

CCS C Compiler

NOP RLF f,d
RRF f,d SUBWEF f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable
d may be a constant (0 or 1) or W or F
fb may be a file (as above) and a constant (0-7) or it may be just a bit variable
’ reference.
k may be a constant expression

*Note that all expressions and comments are in C like syntax.

PIC 18

ADDWF fd ADDWFC f,d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSzZ f,d DCFSNZ f,d INCF f,d
INFSNZ fd IORWF f,d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f,d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB fd SUBWF f,d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f,b BSF f,b BTFSC f,b
BTFSS f.b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -

114

PreProcessor

RETFIE S RETLW k RETURN S
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *- TBLRD +*
TBLWT * TBLWT *+ TBLWT =
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before

it. And if it is an expression it must be a valid C expression that evaluates to a constant (no &

here). In C an un-subscripted array name is a pointer and a constant (no need for &).

[PCD]

PI1C24 and dsPIC

ADD Wa,Wb,Wd Wd = Wa+Whb

ADD f,W WO = f+Wd

ADD lita0,wd wd = lit10+Wd

ADD Wa,lit5,Wd Wd = lit5+Wa

ADD f,F f = f+wd

ADD acc Acc = AccA+AccB

ADD Wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litl0,wd wd = lit10+Wd (byte)
ADD Wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litlo,wd Wd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)

ADD.B Wa,Wb,Wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd Wd = lit5+Wa (byte)
ADD.B f,W WO = f+Wd (byte)
ADDC f,W Wwd = f+Wa+C

ADDC litlo,wd wd = lit10+Wd+C
ADDC Wa,lit5,Wd Wd = lit5+Wa+C

ADDC f,F Wwd = f+Wa+C

ADDC Wa,Wb,Wd Wd = Wa+Wh+C
ADDC.B litl0,wd wd = lit10+Wd+C (byte)
ADDC.B Wa,Wb,Wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd wd = lits+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Wb,Wd Wd = Wa.& Wb

AND litlo,wd Wd = 1it10.&.Wd

AND f,W WO = f.&Wa

AND f,F f=f&Wa

AND Wa,lit5,Wd Wd = lit5.& Wa

115

CCS C Compiler

AND.B fW WO = f.& Wa (byte)

AND.B Wa,Wb,wd Wd = Wa.&.Wb (byte)

AND.B liti0,wd Wd = it10.&.Wd (byte)

AND.B f,F f =f.&Wa (byte)

AND.B Wa,lit5,wd Wd = lit5.&.Wa (byte)

ASR fW WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,Wd Wd =Wa>>1 arithmetic

ASR Wa,lit4,Wd Wd = Wa >> lit4 arithmetic

ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic

ASR.B f,F f=1f>>1 arithmetic (byte)

ASR.B f,W WO =f>>1 arithmetic (byte)

ASR.B Wa,wd wd =Wa>>1 arithmetic (byte)

BCLR f,.B f.bit=0

BCLR wd,B Wa.bit =0

BCLR.B Wd,B Wa.bit = 0 (byte)

BRA a Branch unconditionally

BRA Wwd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal

BRA GEU a Branch if unsigned greater than or
equal

BRA GT a Branch if greater than

BRA GTU a Branch if unsigned greater than

BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal

BRALT a Branch if less than

BRA LTU a Branch if unsigned less than

BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRA NOV a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow

BRA OB a Branch if Accumulator B overflow

BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate

BRA SB a Branch if Accumulator B Saturate

BRA Z a Branch if Zero

BREAK ICD Break

BSET Wd,B Wa.bit =1

BSET f,.B f.bit =1

BSET.B Wd,B Wa.bit = 1 (byte)

BSW.C Wa,Wwd WaWb=C

116

PreProcessor

BSW.Z Wa,wd WaWb=27

BTG Wd,B Wa.bit = ~Wa.bit

BTG f,.B f.bit = ~f.bit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f,.B Skip if f.bit=0

BTSC Wd,B Skip if Wa.bit4 = 0

BTSS f,.B Skip if f.bit =1

BTSS Wd,B Skip if Wa.bit = 1

BTST f,B Z = f.bit

BTST.C Wa,Wd C =Wa.Wb

BTST.C Wd,B C = Wa.hit

BTST.Z Wd,B Z = Wa.bit

BTST.Z Wa,wd Z=WaWb

BTSTS f,.B Z = f.bit; f.bit =1

BTSTS.C Wd,B C =Wa.bit; Wa.bit=1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit =1

CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0

CLR f,W W0=0

CLR wd Wd=0

CLR.B fW WO = 0 (byte)

CLR.B wd wd = 0 (byte)

CLR.B fE f =0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM fW WO = ~f

COM Wa,Wd Wd = ~Wa

COM.B fW WO = ~f (byte)

COM.B Wa,wd Wd = ~Wa (byte)

COM.B f,F f=~f (byte)

CP W, f Status set for f - WO

CP Wa,Wd Status set for Wb 4€“ Wa

CP Wd,lit5 Status set for Wa &€ lits
CP.B W, f Status set for f - WO (byte)
CP.B Wa,wd Status set for Wb a€" Wa (byte)
CP.B Wd,lit5 Status set for Wa &€“ lit5 (byte)
CPO Wd Status set for Wa a€“ 0

CPO W, f Status set for f &€ 0

CP0.B wd Status set for Wa &€° 0 (byte)
CPO0.B W, f Status set for f 8€" 0 (byte)
CPB Wd,lit5 Status set for Wa &€" |it5 4€“ C
CPB Wa,Wd Status set for Wb &4€“ Wa a€“ C
CPB W, f Status set for f &€“ W0 - C

117

CCS C Compiler

CPB.B Wa,Wd Status set for Wb &€ Wa a€“ C (byte)

CPB.B Wd,lit5 Status set for Wa &€ lits 4€“ C (byte)

CPB.B W, f Status set for f 8€“ WO - C (byte)

CPSEQ Wa,Wd Skip if Wa = Wb

CPSEQ.B Wa,Wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B Wa,Wd Skip if Wa > Wb (byte)

CPSLT Wa,wd Skip if Wa < Wb

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa !'= Wb

CPSNE.B Wa,Wd Skip if Wa != Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wd Wd = Wa a€“ 1

DEC f,W WO =f a€" 1

DEC f,F f=fa€" 1

DEC.B f,F f=fa€" 1 (byte)

DEC.B f,W WO = f 8€" 1 (byte)

DEC.B Wa,Wd Wd = Wa &€“ 1 (byte)

DEC2 Wa,Wd Wd = Wa &€° 2

DEC2 f,W WO =fa€" 2

DEC2 f,F f=fa€" 2

DEC2.B Wa,wd Wd = Wa &€“ 2 (byte)

DEC2.B f,W WO = f 8€" 2 (byte)

DEC2.B f,F f=f&€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles

DIV.S Wa,wd Signed 16/16-bit integer divide

DIV.SD Wa,Wwd Signed 16/16-bit integer divide (dword)

DIV.U Wa,wd UnSigned 16/16-bit integer divide

DIV.UD wawd UnSigned 16/16-bit integer divide
(dword)

DIVF Wa,wd Signed 16/16-bit fractional divide

DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)

EDAC Wd*Wd,acc,da,db Euclidean Distance

EXCH Wa,Wd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side

FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side

FF1R Wa,Wd Find first one from right (Lsb) side

GOTO a GoTo

GOTO wd GoTo [Wa]

INC f,W Wo=f+1

INC Wa,Wd Wd=Wa+1

INC f,F f=f+1

118

PreProcessor

INC.B Wa,wd Wd = Wa + 1 (byte)
INC.B fF f=f+1 (byte)

INC.B fW WO = f + 1 (byte)
INC2 f,W WOo=f+2

INC2 Wa,Wd Wd=Wa + 2

INC2 f,F f=f+2

INC2.B fW WO =f + 2 (byte)
INC2.B f,F f=1f+ 2 (byte)
INC2.B Wa,wd Wd = Wa + 2 (byte)
IOR lit1o,wd wd = it10 | wd

IOR fF f=f|Wa

IOR f,W W0 =f|Wa

IOR Wa,lit5,wd wd = Wa.|.lit5

IOR Wa,Wb,Wd Wd =Wa.|.Wb

IOR.B Wa,Wb,Wd Wd = Wa.|.Wb (byte)
IOR.B f W WO = f | Wa (byte)
IOR.B lit10,Wd wd = it10 | wd (byte)
IOR.B Wa,lit5,wd Wd = Wa.l.lit5 (byte)
IOR.B f,F f=f| Wa (byte)

LAC Wd,{lit4},acc Acc = Wa shifted slit4
LNK lit14 Allocate Stack Frame
LSR f,W WOo=f>>1

LSR Wa,lit4,Wd Wd = Wa >> lit4

LSR Wa,wd Wd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,wd Wd = Wb >>Wa
LSR.B f,W WO =f>>1 (byte)
LSR.B f,F f=1f>>1 (byte)
LSR.B Wa,Wd Wd =Wa >> 1 (byte)
MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc,pi '{Apcr(;f;tﬁr?f > TR aE (A= A
MOV W, f f=Wa

MOV f,W WO = f

MOV f,F f=f

MOV wd,? F=Wa

MOV Wa+lit, Wd Wd = [Wa +Slit10]
MOV ?,Wd Wd = f

MOV lit16,wd wd = lit16

MOV Wa,Wd Wd =Wa

MOV Wa,Wd+lit [wd + Slit10] = Wa
MOV.B 1it8,wd wd = lit8 (byte)
MOV.B W, f f = Wa (byte)

MOV.B f,W WO = f (byte)

MOV.B f,F f = f (byte)

119

CCS C Compiler

MOV.B Wa+lit, Wd Wd = [Wa +SIit10] (byte)

MOV.B Wa,Wd+lit [wd + SIit10] = Wa (byte)

MOV.B Wa,Wd Wd = Wa (byte)

MOV.D Wa,wd Wd:Wd+1 = Wa:Wa+1

MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1

MOVSAC acc,da,dc,pi Move ? to ? and ? To ?

MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Wb)

MSC Wd*Wc,acc,da,dc,pi Acc = Acc a€" Wa*Wb

MUL W, f W3:W2 =f*Wa

MUL.B W, f W3:W2 = f * Wa (byte)

MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wh)

MUL.SU Wa,wd {wd+1,wd} = sign(Wa) * unsign(Wb)

MUL.SU Wa,lit5,Wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)

MUL.US Wa,Wd {Wd+1,wWd} = unsign(Wa) * sign(Wb)

MUL.UU Wa,Wd {Wd+1,Wd} = unsign(Wa) * unsign(Wb)

MUL.UU Wa,lit5,Wd {Wd+1,Wd} = unsign(Wa) * unsign(lit5)

NEG f,F f=-f

PUSH wd Push Wa to TOS

PUSH.D wd PUSH double Wa:Wa + 1 to TOS

PUSH.S PUSH shadow registers

PWRSAV litl Enter Power-saving mode lit1

RCALL a Call (relative)

RCALL wd Call Wa

REPEAT lit14 Repeat next instruction (lit14 + 1) times

REPEAT wd Repeat next instruction (Wa + 1) times

RESET Reset

RETFIE Return from interrupt enable

RETLW litilo,Wd Return; Wa = lit10

RETLW.B lit10,wd Return; Wa = lit10 (byte)

RETURN Return

RLC Wa,Wd Wd = rotate left through Carry Wa

RLC f,F f = rotate left through Carry f

RLC f,W WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)

RLC.B f,W WO = rotate left through Carry f (byte)
Wd = rotate left through Carry Wa

RLC.B Wa,wd (byte)

RLNC Wa,Wd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC f,W WO = rotate left (no Carry) f

RLNC.B f,W WO = rotate left (no Carry) f (byte)

RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)

RLNC.B f,F f = rotate left (no Carry) f (byte)

120

PreProcessor

RRC f,F f = rotate right through Carry f

RRC Wa,Wd W(d = rotate right through Carry Wa

RRC f,W WO = rotate right through Carry f

RRC.B fW WO = rotate right through Carry f (byte)

RRC.B f,F f = rotate right through Carry f (byte)
Wd = rotate right through Carry Wa

RRC.B Wa,wd (byte)

RRNC f,F f = rotate right (no Carry) f

RRNC fW WO = rotate right (no Carry) f

RRNC Wa,Wd Wd = rotate right (no Carry) Wa

RRNC.B f,F f = rotate right (no Carry) f (byte)

RRNC.B Wa,Wd W(d = rotate right (no Carry) Wa (byte)

RRNC.B fW WO = rotate right (no Carry) f (byte)

SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,Wd Wd = sign-extended Wa

SETM Wwd Wd = OxFFFF

SETM f,F WO = OxFFFF

SETM.B wd Wd = OxFFFF (byte)

SETM.B fW WO = OxFFFF (byte)

SETM.B f,F WO = OxFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)

SFTAC acc,lits Arithmetic shift Acc by Slit6

SL f,W WOo=f<<1

SL Wa,Wb,wWd Wd = Wa << Wb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd=Wa<<1

SL f,F f=f<<1

SL.B fW WO = f << 1 (byte)

SL.B Wa,Wd Wd =Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=f&a€"Wo

SUB f,W WO = f 8€“ WO

SUB Wa,Wb,wWd Wd = Wa &€“ Wb

SUB Wa,lit5,Wd Wd = Wa a€" lits

SUB acc Acc = AccA a€" AccB

SUB lita0,wd Wd = Wd &€" it10

SUB.B Wa,lit5,Wd Wd = Wa &€ lit5 (byte)

SUB.B lita0,wd Wd = Wd &€" lit10 (byte)

SUB.B fW WO = f 46 WO (byte)

SUB.B Wa,Whb,Wd Wd = Wa &€“ Wb (byte)

SUB.B f,F f = &€" WO (byte)

SUBB f,W WO = f 8€“ W0 a8€“ C

SUBB Wa,Wb,wd Wd =Wa &€“ Wb &€“ C

121

CCS C Compiler

SUBB f,F f=fa€E" W0 a€“C

SUBB Wa,lit5,Wd Wd =Wa &€ Iit5 - C

SUBB lita0,wd Wd = Wd &€" it10 a€“ C

SUBB.B litl0,wd Wd = Wd &€° Iit10 4€* C (byte)
SUBB.B Wa,Wb,Wd Wd = Wa &€“ Wb &€“ C (byte)
SUBB.B f,F f=f&€" W0 &€ C (byte)

SUBB.B Wa,lit5,Wd Wd = Wa &€“ lits - C (byte)
SUBB.B f,W WO = f 4€“ WO &€" C (byte)

SUBBR Wa,lit5,Wd Wd = lit5 8€" Wa - C

SUBBR f,W W0 =WO0 &€“fa€“ C

SUBBR f,F f=WO0a€" fa€“C

SUBBR Wa,Wb,wd Wd =Wa &€“Wb-C

SUBBR.B f,F f=WO0 a€“f 4€“ C (byte)

SUBBR.B f,W W0 =WO0 &€"f 8€“ C (byte)
SUBBR.B Wa,Wb,Wd Wd = Wa &€“ Wb - C (byte)
SUBBR.B Wa,lit5,Wwd Wd = lits 4€“ Wa - C (byte)

SUBR Wa,lit5,Wd Wd = lit5 8€“ Wb

SUBR f,F f=WO0 a€" f

SUBR Wa,Wb,Wd Wd = Wa a€“ Wb

SUBR f,W W0 =WO0 a€" f

SUBR.B Wa,Wb,Wd Wd =Wa a€“ Wb (byte)

SUBR.B f,F f=WO0a€“f (byte)

SUBR.B Wa,lit5,Wd Wd = Iit5 8€“ Wb (byte)

SUBR.B f,W W0 =WO0 &€“f (byte)

SWAP wWd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH Wa,wd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B Wa,wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,wd ROM[Wa] = Wd for odd ROM
TBLWTH.B Wa,Wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,Wd ROM[Wa] = Wd for even ROM
TBLWTL.B Wa,Wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

XOR Wa,Wb,Wd Wd =Wa Wb

XOR f,F f=f WO

XOR f,W W0 =fAWO0

XOR Wa,lit5,Wd Wd =Wa"lits

XOR lita0,wd Wd =Wd A litl0

XOR.B litlo,wd Wd =Wd " itl0 (byte)

XOR.B f,W WO = f A WO (byte)

XOR.B Wa,lit5,wd Wd =Wa " lit5 (byte)

XOR.B Wa,Wb,wd Wd = Wa " Wb (byte)

122

PreProcessor

XOR.B

fF f =~ WO (byte)

ZE

Wa,Wd Wd =Wa & FF

Example Files:

FFT.c

Examples

int find parity(int data) {

int

count;

#asm

MOV
MOV
CLR

#0x08, WO
WO, count
WO

loop:

XOR
RRC
DEC
BRA
MOV
ADD
MOV
MOV

.B data, W0
data, W0
count, F

NZ, loop
#0x01,W0
count, F
count, WO
WO0. RETURN

#endasm

}

See Also:

#asm

#endasm
#asm asis

Syntax:

#ASM or #ASM ASIS code #ENDASM

Elements:

Code is a list of assembly language instructions.

Description:
12 Bit and 14 Bit
ADDWEF f,d ANDWEF f,d
CLRFf CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d

123

CCS C Compiler

INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWF f
NOP RLF f,d
RRF f,d SUBWEF f,d
SWAPF f,d XORWF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable
d may be a constant (0 or 1) or W or F
fb may be a file (as above) and a constant (0-7) or it may be just a bit variable
’ reference.
k may be a constant expression

*Note that all expressions and comments are in C like syntax.

PIC 18

ADDWF f,d ADDWFC f,d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSzZ f,d DCFSNZzZ f,d INCF f,d
INFSNZ f,d IORWF f,d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f,d RLNCF f,d
RRCF f.d RRNCF f,d SETF f
SUBFWB f,d SUBWF f,d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f,.b BSF f,b BTFSC f,b
BTFSS f.b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s

124

PreProcessor

CLRWDT - DAW - GOTO n
NOP - NOP = POP =
PUSH - RCALL n RESET -
RETFIE S RETLW k RETURN S
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *- TBLRD +*
TBLWT * TBLWT *+ TBLWT =
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before
it. And if it is an expression it must be a valid C expression that evaluates to a constant (no &
here). In C an un-subscripted array name is a pointer and a constant (no need for &).

[PCD]

PI1C24 and dsPIC

ADD Wa,Wb,Wd Wd = Wa+Wb

ADD f,W WO = f+wd

ADD lita0,wd wd = lit10+Wd

ADD Wa,lit5,wd Wwd = lit5+Wa

ADD f,F f = f+wd

ADD acc Acc = AccA+AccB

ADD Wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd Wd = lit10+Wd (byte)
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit1o,wd Wd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)

ADD.B Wa,Wb,Wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd wd = lit5+Wa (byte)
ADD.B f,W WO = f+Wd (byte)
ADDC f,W wd = f+Wa+C

ADDC lit10,wd Wd = litl0+Wd+C
ADDC Wa,lit5,Wd Wd = lit5s+Wa+C

ADDC f,F Wd = f+Wa+C

ADDC Wa,Wb,Wd Wd = Wa+Wb+C
ADDC.B lit10,wd wd = lit10+Wd+C (byte)
ADDC.B Wa,Wb,Wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wd = lits+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Wb,Wd Wd = Wa.&Wb

AND litlo,wd wd = [it10.&.Wd

125

CCS C Compiler

AND fW WO = f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,Wd Wd = lit5.&Wa

AND.B f,W WO = f.& Wa (byte)

AND.B Wa,Wb,wd Wd = Wa.& Wb (byte)

AND.B liti0,wd Wd = 1it10.&.Wd (byte)

AND.B f,F f = f.& Wa (byte)

AND.B Wa,lit5,wd wd = lit5.&.Wa (byte)

ASR fW WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,wWd Wd=Wa>>1 arithmetic

ASR Wa,lit4,Wd Wd =Wa >> [it4 arithmetic

ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic

ASR.B f,F f=1>>1 arithmetic (byte)

ASR.B f,W WO =f>>1 arithmetic (byte)

ASR.B Wa,Wd Wd=Wa>>1 arithmetic (byte)

BCLR f,.B f.bit=0

BCLR wd,B Wa.bit = 0

BCLR.B Wd,B Wa.bit = 0 (byte)

BRA a Branch unconditionally

BRA wd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal

BRA GEU a Branch if unsigned greater than or
equal

BRA GT a Branch if greater than

BRA GTU a Branch if unsigned greater than

BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal

BRALT a Branch if less than

BRALTU a Branch if unsigned less than

BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRA NOV a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow

BRA OB a Branch if Accumulator B overflow

BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate

BRA SB a Branch if Accumulator B Saturate

BRA Z a Branch if Zero

BREAK ICD Break

BSET Wd,B Wa.bit = 1

126

PreProcessor

BSET f,B f.bit=1

BSET.B Wd,B Wa.bit = 1 (byte)

BSW.C Wa,wd WaWb=C

BSW.Z Wa,Wd WaWb=Z

BTG Wd,B Wa.bit = ~Wa.bit

BTG f,.B f.bit = ~f.bit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f,B Skip if f.bit =0

BTSC Wd,B Skip if Wa.bit4 = 0

BTSS f,.B Skip if f.bit =1

BTSS Wd,B Skip if Wa.bit = 1

BTST f,.B Z = f.bit

BTST.C Wa,Wd C =Wa.Wb

BTST.C Wd,B C = Wa.bit

BTST.Z Wd,B Z = Wa.bit

BTST.Z Wa,Wd Z=WaWb

BTSTS f,.B Z =f.bit; f.bit=1
BTSTS.C Wd,B C = Wa.bit; Wa.bit=1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit = 1
CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0

CLR f,W W0 =0

CLR wd wd=0

CLR.B f,W WO = 0 (byte)

CLR.B wd Wd = 0 (byte)

CLR.B f,F f =0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM f,W WO = ~f

COM Wa,Wwd wd = ~Wa

COM.B f,W WO = ~f (byte)

COM.B Wa,Wd Wd = ~Wa (byte)

COM.B f,F f=~f (byte)

CP W, f Status set for f - WO

CP Wa,Wwd Status set for Wb 4€“ Wa
CP Wd,lits Status set for Wa &€ lit5
CP.B W, f Status set for f - WO (byte)
CP.B Wa,Wd Status set for Wb &€“ Wa (byte)
CP.B Wd,lit5 Status set for Wa a€" lit5 (byte)
CPO wd Status set for Wa 8€“ 0
CPO W, f Status set for f € 0
CP0O.B wd Status set for Wa &€°“ 0 (byte)
CPO0.B W, f Status set for f 4€" 0 (byte)

127

CCS C Compiler

CPB Wd,lit5 Status set for Wa &€° lit5 4€“ C

CPB Wa,Wd Status set for Wb &€“ Wa a€“ C

CPB W.f Status set for f 4€“ W0 - C

CPB.B Wa,Wd Status set for Wb &€ Wa &€* C (byte)

CPB.B Wd,lit5 Status set for Wa &€° lit5 4€“ C (byte)

CPB.B W, f Status set for f 4€“ WO - C (byte)

CPSEQ Wa,wd Skip if Wa = Wb

CPSEQ.B Wa,Wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B Wa,Wd Skip if Wa > Wb (byte)

CPSLT Wa,wd Skip if Wa < Wb

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa != Wb

CPSNE.B Wa,wd Skip if Wa = Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wwd Wd = Wa &€“ 1

DEC f,W WO =f a€“ 1

DEC f,F f=fa€E" 1

DEC.B f,F f=1fa€" 1 (byte)

DEC.B f,W WO = f 8€" 1 (byte)

DEC.B Wa,wd Wd = Wa &€* 1 (byte)

DEC2 Wa,Wd Wd =Wa &€“ 2

DEC2 f,W WO =f a€" 2

DEC2 f,F f=fa€"2

DEC2.B Wa,wd Wd = Wa a€“ 2 (byte)

DEC2.B f,W WO = f 8€" 2 (byte)

DEC2.B f,F f=fa€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles

DIV.S Wa,Wd Signed 16/16-bit integer divide
Signed 16/16-bit integer divide

DIV.SD Wa,wd (d\?vord) g

DIV.U Wa,wd UnSigned 16/16-bit integer divide

DIV.UD wawd UnSigned 16/16-bit integer divide
(dword)

DIVF Wa,Wd Signed 16/16-bit fractional divide

DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)

EDAC Wd*Wd,acc,da,db Euclidean Distance

EXCH Wa,Wd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side

FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side

FF1R Wa,Wd Find first one from right (Lsb) side

GOTO a GoTo

128

PreProcessor

GOTO Wwd GoTo [Wa]

INC f,W WOo=f+1

INC Wa,wd Wd=Wa+1

INC f,F f=f+1

INC.B Wa,wd Wd = Wa + 1 (byte)

INC.B f,F f=1+1 (byte)

INC.B f,W WO = f + 1 (byte)

INC2 f,W WO="f+2

INC2 Wa,Wd Wd =Wa + 2

INC2 f,F f=f+2

INC2.B fW WO = f + 2 (byte)

INC2.B fE f=1f+ 2 (byte)

INC2.B Wa,Wd Wd = Wa + 2 (byte)

IOR litio,wd Wwd = Iit10 | wd

IOR f,F f=f|Wa

IOR f,W W0 =f|Wa

IOR Wa,lit5,wd Wd = Wa.|.lit

IOR Wa,Wb,wd wWd = Wa.|.Wb

IOR.B Wa,Wb,wd Wd = Wa.|.Wb (byte)

IOR.B f,W WO = f | Wa (byte)

IOR.B litio,wd Wd = it10 | Wd (byte)

IOR.B Wa,lit5,Wd Wd = Wa.|.lit5 (byte)

IOR.B f,F f=f| Wa (byte)

LAC Wd,{lit4},acc Acc = Wa shifted slit4

LNK lit14 Allocate Stack Frame

LSR f,W WOo=Ff>>1

LSR Wa,lit4,Wd Wd = Wa >> lit4

LSR Wa,Wd Wd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,Wd Wd = Wb >>Wa

LSR.B f,W WO =f>>1 (byte)

LSR.B f,F f=f>>1 (byte)

LSR.B Wa,wd Wd = Wa >> 1 (byte)

MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa, {prefetch}
- *\Wh- - :

MAC Wd*Wc,acc,da,dc,pi ﬁ)ﬁzf etﬁﬁf = e FaE IRLE]) S AeEs

MOV W f f=Wa

MOV f,W WO = f

MOV f,F f=f

MOV Wwd,? F=Wa

MOV Walit, Wd Wd = [Wa +Slit10]

MOV ?2,.wd Wd = f

MOV lit16,Wd wd = lit16

MOV Wa,wd Wd = Wa

MOV Wa,Wd+lit [wd + Slit10] = Wa

129

CCS C Compiler

MOV.B lit8, wd Wd = Iit8 (byte)

MOV.B W, f f = Wa (byte)

MOV.B f,W WO = f (byte)

MOV.B fF f = f (byte)

MOV.B Walit, wd Wd = [Wa +SIit10] (byte)

MOV.B Wa,Wd+lit [wd + Slit10] = Wa (byte)

MOV.B Wa,Wd Wd = Wa (byte)

MOV.D Wa,wd Wd:Wd+1 = Wa:Wa+1

MOV.D Wa,wWd Wd:Wd+1 = Wa:Wa+1

MOVSAC acc,da,dc,pi Move ? to ? and ? To ?

MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Wb)

MSC Wd*Wc,acc,da,dc,pi Acc = Acc 4€“ Wa*Wb

MUL W, f W3:W2 =f*Wa

MUL.B W, f W3:W2 =f *Wa (byte)

MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wb)

MUL.SU Wa,Wd {Wd+1,Wd} = sign(Wa) * unsign(Wb)

MUL.SU Wa,lit5,Wd {Wd+1,Wdj}= sign(Wa) * unsign(lit5)

MUL.US Wa,Wd {Wd+1,Wd} = unsign(Wa) * sign(Wb)

MUL.UU wawd MR ey S WSt)
unsign(Wb)

MUL.UU Wa,lits,Wd {wd+1,Wd} = unsign(Wa) *
unsign(lit5)

NEG f,F f=-f

PUSH wd Push Wa to TOS

PUSH.D wWd PUSH double Wa:Wa + 1 to TOS

PUSH.S PUSH shadow registers

PWRSAV litl Enter Power-saving mode lit1

RCALL a Call (relative)

RCALL Wd Call Wa

REPEAT lit14 Repeat next instruction (lit14 + 1)
times

REPEAT Wd Repeat next instruction (Wa + 1)
times

RESET Reset

RETFIE Return from interrupt enable

RETLW litl0,wd Return; Wa = lit10

RETLW.B 1it10,Wd Return; Wa = 1it10 (byte)

RETURN Return

RLC Wa,Wd Wd = rotate left through Carry Wa

RLC f,F f = rotate left through Carry f

RLC f,W WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)

RLC.B f,W WO = rotate left through Carry f (byte)

130

PreProcessor

Wd = rotate left through Carry Wa

RLC.B Wa,wd (byte)

RLNC Wa,Wd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC fW WO = rotate left (no Carry) f

RLNC.B fW WO = rotate left (no Carry) f (byte)

RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)

RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,Wd Wd = rotate right through Carry Wa

RRC f,W WO = rotate right through Carry f
WO = rotate right through Carry f

RRC.B fW (byte)

RRC.B f,F f = rotate right through Carry f (byte)

RRC.B wWawd Wd = rotate right through Carry Wa
(byte)

RRNC f,F f = rotate right (no Carry) f

RRNC f,W WO = rotate right (no Carry) f

RRNC Wa,Wd Wd = rotate right (no Carry) Wa

RRNC.B f,F f = rotate right (no Carry) f (byte)

RRNC.B Wa,Wd W(d = rotate right (no Carry) Wa (byte)

RRNC.B f,W WO = rotate right (no Carry) f (byte)

SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,Wd Wd = sign-extended Wa

SETM wd Wd = OxFFFF

SETM f,F WO = OXFFFF

SETM.B wd Wd = OxFFFF (byte)

SETM.B fW WO = OXxFFFF (byte)

SETM.B f,F WO = OxFFFF (byte)

SFTAC acc,Wd Arithmetic shift Acc by (Wa)

SFTAC acc,lits Arithmetic shift Acc by Slit6

SL fW WOo=f<<1

SL Wa,Wb,Wd Wd =Wa <<Whb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd =Wa<<1

SL f,F f=f<<1

SL.B f,W WO = f << 1 (byte)

SL.B Wa,Wd Wd = Wa << 1 (byte)

SL.B f,F f=1f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=fa€"Wo

SUB fW WO = f 8€" W0

SUB Wa,Wb,Wd Wd = Wa &€* Wb

SUB Wa,lit5,Wd Wd = Wa a€“ lits

131

CCS C Compiler

SUB acc Acc = AccA a€" AccB

SUB lit10,wd Wd = Wd &€" lit10

SUB.B Wa,lit5,wd Wd = Wa &€“ lit5 (byte)

SUB.B lit10,wd Wd = Wd &€ lit10 (byte)

SUB.B f,W WO = f 4€“ WO (byte)

SUB.B Wa,Wb,wd Wd = Wa &€“ Wb (byte)

SUB.B f,F f =fa€“ Wo (byte)

SUBB f,W WO = f 8€“ W0 &€“ C

SUBB Wa,Wb,Wd Wd =Wa &€“Wb 4€“ C

SUBB f,F f=fa€"W0a€“C

SUBB Wa,lit5,wd Wd=Wa &€“lits - C

SUBB lit10,wd Wd = Wd &€° 1it10 4€* C

SUBB.B lit10,wWd Wd = Wd &€° lit10 4€* C (byte)
SUBB.B Wa,Wb,wd Wd = Wa &€“ Wb &€“ C (byte)
SUBB.B f,F f=f&€E“ WO &€“ C (byte)

SUBB.B Wa,lit5,Wd Wd = Wa &€“1its - C (byte)
SUBB.B f,W WO = f 3€" WO &€" C (byte)

SUBBR Wa,lit5,Wd Wd = it € Wa - C

SUBBR f,W W0 =WO0 &€"fa€“ C

SUBBR f,F f=WO0a€E“fa€“C

SUBBR Wa,Wb,wd Wd =Wa &€“Wb - C

SUBBR.B f,F f=WO0 &€“fa€*“ C (byte)

SUBBR.B f,W WO0 =W0 &€“f 4€“ C (byte)
SUBBR.B Wa,Wb,wd Wd = Wa &€“ Wb - C (byte)
SUBBR.B Wa,lit5,Wd Wd = lit5 4€“ Wa - C (byte)

SUBR Wa,lit5,Wwd Wd = it &4€“ Wb

SUBR f,F f=WO0 a€" f

SUBR Wa,Wb,wd Wd = Wa a€“ Wb

SUBR f,W W0 =WO0 &€*f

SUBR.B Wa,Wb,wd Wd = Wa a€“ Wb (byte)

SUBR.B f,F f=WO0 a€“f (byte)

SUBR.B Wa,lit5,Wwd Wd = lit5 4€“ Wb (byte)

SUBR.B f,W WO = W0 &€“f (byte)

SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH Wa,Wwd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B Wa,Wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,Wwd ROM[Wa] = Wd for odd ROM
TBLWTH.B Wa,wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,Wd ROM[Wa] = Wd for even ROM
TBLWTL.B Wa,Wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

132

PreProcessor

XOR Wa,Wb,Wd Wd = Wa » Wb

XOR f,F f=fAWO0

XOR W WO = fAWO0

XOR Wa,lit5,wd wd = Wa ~ Iits

XOR litLo,wd wd = Wd * [it10
XOR.B lit10,Wd wd = Wd ~ 1it10 (byte)
XOR.B W WO = f AWO (byte)
XOR.B Wa,lit5,wd Wd = Wa ~ Iit5 (byte)
XOR.B Wa,Wb,Wd Wd = Wa ~ Wb (byte)
XOR.B f,F f=fAWO (byte)

ZE Wa,wd Wd = Wa & FF

Example Files:
FFT.c

Examples:
int find parity(int data) {

int count;
#asm

MOV #0x08, WO
MOV W0, count
CLR WO

loop:

XOR.B data, WO
RRC data, W0
DEC count, F
BRA NZ, loop
MOV #0x01,WO0
ADD count, F
MOV count, WO
MOV WO. RETURN
#endasm

}

See Also:
#bank dma

Syntax:
#bank_dma

Elements:
None

133

CCS C Compiler

Description:
Informs the compiler to assign the data for the next variable, array or structure into DMA bank.

Examples:
#bank dma
struct {
int r w;
int c_w;
long unused :2;
long data: 4;
}a_port; //the data for a port will be forced into
memory bank DMA

#bankx

Syntax:
#bankx

None

Description:
Informs the compiler to assign the data for the next variable, array or structure into BankX.

Examples:
#bankx
struct {
int r w;
int c_d;
long unused : 2;
long data : 4;
} a port;
// The data for a port will be forced into memory
bank x

#banky

Syntax:
#banky

None

Description:
Informs the compiler to assign the data for the next variable, array or structure into Banky.

134

PreProcessor

Examples:
#banky
struct {
int r w;
int c_d;
long unused : 2;
long data : 4;
} a port;
// The data for a port will be forced into memory
bank y
See Also:

#bit

Syntax:
#BIT id = x.y

Elements:

id is a valid C identifier,

X is a constant or a C variable,

y is a constant 0-7 (for 8-bit PICs)
[pcp] Y is a constant 0-15

Description:

A new C variable (one bit) is created and is placed in memory at byte x and bity. This is
useful to gain access in C directly to a bit in the processors special function register map. It
may also be used to easily access a bit of a standard C variable.

Example Files:
ex_glint.c

Examples:
#bit TOIF = 0x b.2

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if (result odd)

[pcp]
#bit T1IF = 0x84.3

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

135

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
1f (result odd)

See Also:
#BYTE, #RESERVE, #LOCATE, #WORD

buildcount

Description:
Only defined if Options>Project Options>Global Defines has global defines enabled.

This id resolves to a number representing the number of successful builds of the project.

#build

Syntax:

#BUILD(segment = address)

#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)

#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

pco] #BUILD(segment = size) : For STACK use only
irco] #BUILD(ALT_INTERRUPT)

irco] #BUILD(AUX_MEMORY)

Elements:
segment - is one of the following memory segments which may be assigned a location:
MEMORY, RESET, or INTERRUPT.

[pcp] segment - is one of the following memory segments which may be assigned a location:
RESET, INTERRUPT, or STACK.

address - is a ROM location memory address. Start and end are used to specify a range in
memory to be used.

start - is the first ROM location and end is the last ROM location to be used.

pco] address - is a ROM location memory address. Start and end are used to specify a range
in memory to be used. Start is the first ROM location and end is the last ROM location to be
used.

irco) RESET - will move the compiler's reset vector to the specified location. INTERRUPT will
move the compiler's interrupt service routine to the specified location. This just changes the
location the compiler puts it's reset and ISR, it doesn't change the actual vector of the PIC. If
you specify a range that is larger than actually needed, the extra space will not be used and
prevented from use by the compiler.

136

PreProcessor

o] STACK - configures the range (start and end locations) used for the stack, if not specified
the compiler uses the last 256 bytes. The STACK can be specified by only using the size
parameters. In this case, the compiler uses the last RAM locations on the chip and builds the
stack below it.

treo] ALT_INTERRUPT - will move the compiler's interrupt service routine to the alternate
location, and configure the PIC to use the alternate location.

nosleep - is used to prevent the compiler from inserting a sleep at the end of main()
Bootload - produces a bootloader-friendly hex file (in order, full block size).
NOSLEEP_LOCK - is used instead of A sleep at the end of a main A infinite loop.

rco] AUX_MEMORY - Only available on devices with an auxiliary memory segment. Causes
compiler to build code for the auxiliary memory segment, including the auxiliary reset and
interrupt vectors. Also enables the keyword INT_AUX which is used to create the auxiliary
interrupt service routine.

Description:

PIC18XXX devices with external ROM or PIC18XXX devices with no internal ROM can direct
the compiler to utilize the ROM. When linking multiple compilation units, this directive must
appear exactly the same in each compilation unit.

rco] These directives are commonly used in bootloaders, where the reset and interrupt needs
to be moved to make space for the bootloading application.

Example Files:
ex_glint.c

Examples:

#build (memory=0x20000:0x2FFFF) //Assigns memory
space
#build (reset=0x200, interrupt=0x208) //Assigns start
location

//of reset and
interrupt

//vectors
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

//Assign limited

space

//for reset and
interrupt

//vectors.
#build (memory=0x20000:0x2FFFF) //Assigns memory
space

[PCD]
/* assign the location where the compiler will place the reset
and interrupt vectors */

137

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
#build (reset=0x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#build (stack=0x1E00:0x1FFF)

#build (stack= 0x300) // When Start and End
locations are

//not specified, the
compiler uses

//the last RAM
locations available

//on the chip.

See Also:
#LOCATE, #RESERVE, #ROM, #ORG

#byte

Syntax:
#byte id = x

Elements:
id is a valid C identifier,
X is a C variable or a constant

Description:

If the id is already known as a C variable then this will locate the variable at address x. In this
case the variable type does not change from the original definition. If the id is not known a
new C variable is created and placed at address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other variables may be
located at the same location. In fact when x is a variable, then id and x share the same
memory location.

Example Files:
ex_glint.c

Examples:
#byte status = 3
#byte b port =

|
oy

struct {
short int r w;
short int c d;

138

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor
int unused : 2;
int data : 4; } a port;
#byte a port = 5

a port.c d = 1;

[PcD]
#byte status _register = 0x42
#byte b port = 0x02C8

struct {
short int r w;
short int c d;
int data : 6 ; } E port;
#byte a port = 0x2DA

a port.c d = 1;

See Also:
#bit, #locate, #reserve, #word, Named Reqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#case

Syntax:
#case

Elements:
None

Description:

Will cause the compiler to be case sensitive. By default the compiler is case insensitive. When
linking multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been tested with case
sensitivity turned on.

Example Files:
ex_cust.c

Examples:
#case

int STATUS;

void func () {

139

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

int status;

STATUS = status; // Copy local status to
//global
}

date

Syntax:
__date_

Elements:
None

Description:
This pre-processor identifier is replaced at compile time with the date of the compile in the
form: "31-jan-03".

Example Files:
ex_glint.c

Examples:
printf ("Software was compiled on ");
printf(_ DATE);

#define

Syntax:
#define id text
or
#define id(x,y...) text

Elements:
id is a preprocessor identifier, text is any text, x,y is a list of local preprocessor identifiers, and
in this form there may be one or more identifiers separated by commas.

Description:
Used to provide a simple string replacement of the ID with the given text from this point of the
program and on.

In the second form (a C macro) the local identifiers are matched up with similar identifiers in
the text and they are replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will be the
parameter id concatenated with the string x.

140

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

If the text contains a string of the form #idx#idy then parameter idx is concatenated with
parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
x#tty is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ... and the
local identifier used is __va_args__. In this case, all remaining arguments are combined with
the commas.

Example Files:
ex_stwt.c, ex_macro.c

Examples:
#define BITS 8
a=a+BITS; //same as a=a+8;
#define hi (x) (x<<4)
a=hi (a); //same as a=(a<<4);
#define isequal (a,b) (primary ##a[bl==backup ##al[b])
// usage iseaqual (names,5) 1is the
same as
//
(primary names[5]==backup names[5])
#define str(s) #s
#define part(device) #include str(device##.h)
// usage part (16F887) is the same
as
// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)
See Also:

#UNDEF, #IFDEF, #IEFNDEF

#definedinc

Syntax:
value = definedinc(variable);

Parameters:
variable - is the name of the variable, function, or type to be checked.

141

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

Returns:

A C status for the type of id entered as follows:
0 — not known

1 — typedef or enum

2 — struct or union type

3 — typemod qualifier

4 — defined function

5 — function prototype

6 — compiler built-in function
7 — local variable

8 — global variable

Function:
This function checks the type of the variable or function being passed in and returns a specific
C status based on the type.

Availability:
All Device

Examples:
int x, y = 0;
y = definedinc(x); // y will return 7 - x is a local variable

#device

Syntax:
#DEVICE chip options
#DEVICE Compilation mode selection

Elements:

Chip Options:
chip is the name of a specific processor (like: PIC16C74 or dsPIC33FJ64GP306), To get a
current list of supported devices: START | RUN | CCSC +Q
Options are qualifiers to the standard operation of the device. Valid options are:

*=5 Use 5 bit pointers (for all parts)
*=8 Use 8 bit pointers (14 and 16 bit parts)
*=16 Use 16 bit pointers (for 14 bit parts)
ADC=x Where x is the number of bits read _adc() should return
(pco] ADC=SIGNED Res_ult returned from read_adc() is signed.(Default is
unsigned)

_ Return result from read_adc() is unsigned.(default is

rco] ADC=UNSIGNED UNSIGNED)

Generates code compatible with Microchips ICD

ICD=TRUE debugging hardware.

ICD=n For chips with multiple ICSP ports specify the port

142

PreProcessor

number being used. The default is 1.

WRITE_EEPROM=ASYNC

Prevents WRITE_EEPROM from hanging while writing is
taking place. When used, do not write to EEPROM from
both ISR and outside ISR.

WRITE_EEPROM = NOINT

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

HIGH_INTS=TRUE

Use this option for high/low priority interrupts on the
PIC® 18.

%f=.

No 0 before a decimal pint on %f nhumbers less than 1.

OVERLOAD=KEYWORD

Overloading of functions is now supported. Requires the
use of the keyword for overloading.

OVERLOAD=AUTO

Default mode for overloading.

PASS_STRINGS=IN_RAM

A new way to pass constant strings to a function by first
copying the string to RAM and then passing a pointer to
RAM to the function.

CONST=READ_ONLY

Uses the ANSI keyword CONST definition, making
CONST variables read only, rather than located in
program memory.

CONST=ROM

Uses the CCS compiler traditional keyword CONST
definition, making CONST variables located in program
memory.

NESTED_INTERRUPTS=TRUE

Enables interrupt nesting for PIC24, dsPIC30, and
dsPIC33 devices. Allows higher priority interrupts to
interrupt lower priority interrupts.

NORETFIE

ISR functions (preceded by a #int_xxx) will use a
RETURN opcode instead of the RETFIE opcode. This is
not a commonly used option; used rarely in cases where
the user is writing their own ISR handler.

NO_DIGITAL_INIT

Normally the compiler sets all I/O pins to digital and turns
off the comparator. This option prevents that action.

VECTORL_INTS

For devices with both single and multiple vector
interrupts. This selects multiple vectors.

pco) DUAL_PARTITION

For devices with Dual Partition Flash Modes, this
enables Dual Partition Flash mode by setting the FBOOT
configuration register to the appropriate value. It cuts
the available program memory in half, and moves the
configuration register addresses to the Dual Partition
locations.

[PCD]
DUAL_PARTITION_PROTECT

For devices with Dual Partition Flash Modes this enabled
Protected Dual Partition Flash mode, Partition 1 is write-
protected when inactive, by setting the FBOOT
configuration register to the appropriate value. It cuts
the available program memory in half and moves the
configuration register addresses to the Dual Partition
locations.

143

CCS C Compiler

A value from 0 to 4095 to set the FBTSEQ configuration
register. Only used when either DUAL_PARTITION or
DUAL_PARTITION_PROTECTED is used. The value is
rco] PARTITION_SEQUENCE= used to determine which partition is active on power-

up. The Partition with the lowest value will be the active
partition. If the value is the same for both partitions, then
Partition 1 will be the active partition on power-up.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define the
device. Be warned that a #DEVICE with a chip identifier, will clear all previous #DEVICE and
#FUSE settings.

Compilation mode selection:

The #DEVICE directive supports compilation mode selection. The valid keywords are CCS2,
CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI mode, the
compiler uses the default fuse settings NOLVP, PUT for chips with these fuses. The NOWDT
fuse is default if no call is made to restart_wdt().

This is the default compilation mode. The pointer size in this mode

cesa for PCM and PCH is set to *=16 if the part has RAM over OFF.

Default data type is SIGNED all other modes default is
ANSI UNSIGNED. Compilation is case sensitive, all other modes are case
insensitive. Pointer size is set to *=16 if the part has RAM over OFF.

varl6 = NegConst8 is compiled as: varl6 = NegConst8 & Oxff (no sign
CCS2 CCS3 | extension) Pointer size is set to *=8 for PCM and PCH and *=5 for PCB
. The overload keyword is required.

The default #DEVICE ADC is set to the resolution of the part, all other
modes default to 8.

onebit = eightbits is compiled as onebit = (eightbits != 0)

All other modes compile as: onebit = (eightbits & 1)

CCS2 only

Description:
To alter some specifics as to how the compiler operates

Example Files:
ex_mxram.c, ex_icd.c, 16c74.h

Examples:
Chip Options:
#device PIC16C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10

144

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

#device %f=.

printf("%f",.5); //will print .5, without the directive it will print 0.5
trcp] #device DSPIC33FJ64GP306

tpep] #device PIC24FJ64GA002 ICD=TRUE

pcp] #device ADC=10

trep] #device ICD=TRUE ADC=10

tpep] Float Options-
pco] #device %f=.
tpeop printf(“%f",.5); //will print .5, without the directive it will print 0.5

Compilation mode selection:
#device CCS2 /I This will set the ADC to the resolution of the part

See Also:

read adc()

device

Syntax:
__device__

Elements:
None

Description:

This preprocessor identifier is defined by the compiler with the base number of the current
device (from a #DEVICE). The base number is usually the number after the C in the part
number. For example, the PIC16C622 has a base number of 622.

Examples:
#1f device ==71
SETUP_ADC_PORTS (All DIGITAL);
#endif

See Also:
#DEVICE

#if #else #elif #endif

Syntax:

#if expr
code

#elif expr //Optional, any number may be used
code

145

CCS C Compiler

#else //Optional
code
#endif

Elements:
expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.

Description:
The pre-processor evaluates the constant expression and if it is non-zero will process the lines
up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via
#define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined and O if
it is not.

== and != operators now accept a constant string as both operands. This allows for compile
time comparisons and can be used with GETENV() when it returns a string result.

Example Files:
ex_extee.c

Examples:
#if MAX VALUE > 255
long value;
#else
int value;
#endif
#if getenv (“DEVICE”)=="PIC16F877"”
//do something special for the PIC16F877
#endif

See Also:
#IFDEF, #IFNDEF, getenv()

#error

Syntax:

#ERROR text

#ERROR / warning text
#ERROR / information text

Elements:
text - is optional and may be any text

146

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:

Forces the compiler to generate an error at the location this directive appears in the file. The
text may include macros that will be expanded for the display. This may be used to see the
macro expansion. The command may also be used to alert the user to an invalid compile time
situation.

Example Files:
ex_psp.

Examples:
#if BUFFER SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,y)

See Also:
#WARNING

#export (options)

Syntax:
#export(options)

Elements:

FILE=filename - The filename which will be generated upon compile. If not given, the filname
will be the name of the file you are compiling, with a .0 or .hex extension (depending on output
format).

Output Formats:
C - Indicates the file format is C source code. In this case the object is not exported but rather

a definition that allows another C program in the same memory space to call the exported
functions. It may be used by a bootloader that needs the loaded application to call bootloader
functions.

RELOCATABLE - CCS relocatable object file format. Must be imported or linked before
loading into a PIC. This is the default format when the #EXPORT is used.

HEX - Intel HEX file format. Ready to be loaded into a PIC. This is the default format when no
#EXPORT is used.

Exported Symbols:

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will be visible to modules that
import or link this relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

147

CCS C Compiler

EXCEPT=symbol+symbol+.....+symbol - All symbols except the listed symbols will be visible
to modules that import or link this relocatable object file. If neither ONLY or EXCEPT is used,
all symbols are exported.

Exported Addresses:
RANGE-=start:stop - Only addresses in this range are included in the hex file.

OFFSET=address - Hex file address starts at this address (0 by default)
ODD - Only odd bytes place in hex file.

EVEN - Only even bytes placed in hex file.

Description:

This directive will tell the compiler to either generate a relocatable object file or a stand-alone
HEX binary. A relocatable object file must be linked into your application, while a stand-alone
HEX binary can be programmed directly into the device. The command line compiler and the
PCW IDE Project Manager can also be used to compile/link/build modules and/or

projects. Multiple #EXPORT directives may be used to generate multiple hex files. This may
be used for 18F8722 like devices with external memory.

Examples:
#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc2 (void) { /* some code */ }
void TimerFunc3 (void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but the
object this is being linked to can only see TimerTask()
*/

See Also:
#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation
Unit

file

Syntax:
_ file__

148

PreProcessor

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename of
the file being compiled.

Example Files:
assert.h

Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file:
_ FILE " at line " LINE "\r\n");

See Also:
line

filename

Syntax:
__filename___

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename of
the file being compiled.

Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILENAME " at line " LINE _ "\r\n");

See Also:

line

#fill rom

Syntax:
#fill_rom value

149

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Elements:
value - is a constant 16-bit value

Description:
This directive specifies the data to be used to fill unused ROM locations. When linking multiple
compilation units, this directive must appear exactly the same in each compilation unit.

Example Files:
ex_glint.c

Examples:
#£fill rom 0x36

See Also:
#ROM

#fuses

Syntax:
#fuses options

Elements:
options vary depending on the device. A list of all valid options has been put at the top of each
devices .h file in a comment for reference. The PCW device edit utility can modify a particular
devices fuses. The PCW pull down menu VIEW | Valid fuses will show all fuses with their
descriptions. Some common options are:

e LP,XT,HS,RC

e WDT, NOWDT

e PROTECT, NOPROTECT

e PUT, NOPUT (Power Up Timer)

e BROWNOUT, NOBROWNOUT
Description:

This directive defines what fuses should be set in the part when it is programmed. This
directive does not affect the compilation; however, the information is put in the output files. If
the fuses need to be in Parallax format, add a PAR option. SWAP has the special function of
swapping (from the Microchip standard) the high and low BYTES of non-program data in the
Hex file. This is required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For example, the
oscillator fuses are set up by the #USE delay directive. The debug, No debug and ICSPN
Fuses are set by the #DEVICE ICD=directive.

Some processors allow different levels for certain fuses. To access these levels, assign a
value to the fuse. For example, on the 18F452, the fuse PROTECT=6 would place the value 6
into CONFIG5L, protecting code blocks 0 and 3.

150

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

When linking multiple compilation units be aware this directive applies to the final object file.
Later files in the import list may reverse settings in previous files.

To eliminate all fuses in the output files use: #FUSES none

To manually set the fuses in the output files use: #FUSES 1 = 0xC200 // sets config word 1
to 0xC200

Example Files:
ex_sqw.c

Examples:
#fuses HS,NOWDT

#hexcomment

Syntax:
#HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements:
None

Description:
Puts a comment in the hex file.
Some programmers (MPLAB in particular) do not like comments at the top of the hex file.

Examples:
#hexcommentVersion3.1 - requires 20Mhz crystal

#id

Syntax:

#1D number 16

tpco] #1D number 32

#ID number, number, number, number
#ID "filename"

#|D CHECKSUM

Elements:

Number 16 is a 16 bit number, number is a 4 bit number. [pcoj Number 3 2 is a 32 bit number,
number is a 8 bit number. Filename is any valid PC filename and checksum is a keyword.

151

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Description:
This directive defines the ID word to be programmed into the part. This directive does not
affect the compilation but the information is put in the output file.

The first syntax will take a 16 (pcp) 32)-bit number and put one nibble (jrco) byte) in each of
the four ID words (jrco) bytes) in the traditional manner. The second syntax specifies the exact
value to be used in each of the four ID words (fpcoj bytes).

When a filename is specified the ID is read from the file. The format must be simple text with a
CRI/LF at the end. The keyword CHECKSUM indicates the device checksum should be saved
as the ID.

Example Files:
ex_cust.c

Examples:
#id 0x1234
#id "serial.num"
#id CHECKSUM

([PCD]
#id 0x12345678
#id 0x12, 0x34, 0x45, 0x67
#id "serial.num"
#id CHECKSUM

#ifdef #ifndef #else
#endif

Syntax:
#ifdef id
code
#elif
code
#else /loptional
code
#endif

#ifndef id
code

#elif
code

#else /loptional
code

#endif

152

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
id is a preprocessor identifier, code is valid C source code.

Description:

This directive acts much like the #IF except that the preprocessor simply checks to see if the
specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF checks to see if
defined and #IFNDEF checks to see if it is not defined.

Example Files:
ex_sqw.c

Examples:
#define debug // Comment line out for no debug

#ifdef DEBUG

printf ("debug point a");
#endif

See Also:
HIE

#ignore warnings

Syntax:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements:
warnings is one or more warning numbers separated by commas.

Description:

This function will suppress warning messages from the compiler. ALL indicates no warning will
be generated. NONE indicates all warnings will be generated. If numbers are listed then those
warnings are suppressed

Example Files:
ex_glint.c

Examples:
#ignore warnings 203
while (TRUE) {
#ignore warnings NONE

153

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:
Warning messages

#import(options)

Syntax:
#import(options)

Elements:
FILE=filname - The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will imported from the
specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

EXCEPT=symbol+symbol+.....+symbol - The listed symbols will not be imported from the
specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE - CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF - COFF file format from MPASM, C18 or C30.

HEX - Imported data is straight hex data.

RANGE-=start:stop - Only addresses in this range are read from the hex file.

LOCATION=id - The identifier is made a constant with the start address of the imported data.

SIZE=id - The identifier is made a constant with the size of the imported data.

Description:

This directive will tell the compiler to include (link) a relocatable object with this unit during
compilation. Normally all global symbols from the specified file will be linked, but the EXCEPT
and ONLY options can prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

Example Files:
ex_glint.c

Examples:
#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{
while (TRUE)
TimerTask () ;

154

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor
/*timer.o is linked with this compilation, but only TimerTask() is
visible
in scope from this object.*/

See Also:
#EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation
Unit

#include

Syntax:
#include <filename>
#include <"filename">

Elements:

filename - is a valid PC filename. It may include normal drive and path information. A file with
the extension ".encrypted" is a valid PC file. The standard compiler #include directive will
accept files with this extension and decrypt them as they are read. This allows include files to
be distributed without releasing the source code.

Description:

Text from the specified file is used at this point of the compilation. If a full path is not specified
the compiler will use the list of directories specified for the project to search for the file. If the
filename is in " then the directory with the main source file is searched first. If the filename is
in <> then the directory with the main source file is searched last.

Example Files:
ex_sgw.c

Examples:
#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>
#inline

Syntax:
#inline

Elements:
None

Description:
Tells the compiler that the function immediately following the directive is to be implemented
INLINE. This will cause a duplicate copy of the code to be placed everywhere the function is

155

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

called. This is useful to save stack space and to increase speed. Without this directive the
compiler will decide when it is best to make procedures INLINE.

Example Files:
ex_cust.c

Examples:

#inline

swapbyte (int &a, int &b) {
int t;
t=a
a=b
b=t;

}

See Also:
#SEPARATE

#int XXxX

Syntax:
PCB, PCM, PCH

#INT_AD Analog to digital conversion complete

#INT_ADOF Analog to digital conversion timeout

#INT_BUSCOL Bus collision

#INT_BUSCOL2 Bus collision 2 detected

#INT_BUTTON Pushbutton

#INT_CANERR An error has occurred in the CAN module

#INT_CANIRX An invalid message has occurred on the CAN bus

#INT_CANRXO CAN Receive buffer 0 has received a new message

#INT_CANRX1 CAN Receive buffer 1 has received a new message

#INT_CANTXO CAN Transmit buffer 0 has completed transmission

#INT_CANTX1 CAN Transmit buffer 0 has completed transmission

#INT_CANTX2 CAN Transmit buffer 0 has completed transmission

#INT_CANWAKE | Bus Activity wake-up has occurred on the CAN bus

#INT_CCP1 Capture or Compare on unit 1

156

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#INT_CCP2 Capture or Compare on unit 2
#INT_CCP3 Capture or Compare on unit 3
#INT_CCP4 Capture or Compare on unit 4
#INT_CCP5 Capture or Compare on unit 5
#INT_COMP Comparator detect
#INT_COMPO Comparator 0 detect
#INT_COMP1 Comparator 1 detect
#INT_COMP2 Comparator 2 detect
#INT_CR Cryptographic activity complete
#INT_EEPROM Write complete

#INT_ETH Ethernet module interrupt
#INT_EXT External interrupt

#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_EXT3 External interrupt #3
#INT_I2C 12C interrupt (only on 14000)
#INT_IC1 Input Capture #1
#INT_IC2QEI Input Capture 2 / QEI Interrupt
#IC3DR Input Capture 3 / Direction Change Interrupt
#INT_LCD LCD activity

#INT_LOWVOLT | Low voltage detected
#INT_LVD Low voltage detected
#INT_OSC_FAIL | System oscillator failed
#INT_OSCF System oscillator failed
#INT_PMP Parallel Master Port interrupt
#INT_PSP Parallel Slave Port data in
#INT_PWMTB PWM Time Base

#INT_RA Port A any change on AO_A5
#INT_RB Port B any change on B4-B7
#INT_RC Port C any change on C4-C7

157

CCS C Compiler

#INT_RDA RS232 receive data available
#INT_RDAO RS232 receive data available in buffer 0
#INT_RDA1 RS232 receive data available in buffer 1
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTCC Timer 0 (RTCC) overflow

#INT_SPP Streaming Parallel Port Read/Write
#INT_SSP SPI or 12C activity

#INT_SSP2 SPI or 12C activity for Port 2

#INT_TBE RS232 transmit buffer empty
#INT_TBEO RS232 transmit buffer 0 empty
#INT_TBE1 RS232 transmit buffer 1 empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMERS Timer 3 overflow

#INT_TIMER4 Timer 4 overflow

#INT_TIMERS Timer 5 overflow

#INT_ULPWU Ultra-low power wake up interrupt
#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific devices.
Check the devices .h file for a full list for a given device.

tpco] PCD (PI1C24/dsPIC devices)

#INT_AC1 Analog comparator 1 output change
#INT_AC2 Analog comparator 2 output change
#INT_AC3 Analog comparator 3 output change
#INT_AC4 Analog comparator 4 output change
#INT_ADC1 ADCL1 conversion complete
#INT_ADC2 Analog to digital conversion complete
#INT_ADCPO ADC pair 0 conversion complete
#INT_ADCP1 ADC pair 1 conversion complete
#INT_ADCP2 ADC pair 2 conversion complete

158

PreProcessor

#INT_ADCP3 ADC pair 3 conversion complete
#INT_ADCP4 ADC pair 4 conversion complete
#INT_ADCP5 ADC pair 5 conversion complete

#INT_ADDRERR

Address error trap

#INT_CI1RX ECANL1 Receive Data Ready
#INT_C1TX ECAN1 Transmit Data Request
#INT_C2RX ECAN2 Receive Data Ready
#INT_C2TX ECAN2 Transmit Data Request
#INT_CAN1 CAN 1 Combined Interrupt Request
#INT_CAN2 CAN 2 Combined Interrupt Request
#INT_CNI Input change notification interrupt
#INT_COMP Comparator event

#INT_CRC Cyclic redundancy check generator
#INT_DCI DCI transfer done

#INT_DCIE DCE error

#INT_DMAO DMA channel 0 transfer complete
#INT_DMAL1 DMA channel 1 transfer complete
#INT_DMA2 DMA channel 2 transfer complete
#INT_DMAS DMA channel 3 transfer complete
#INT_DMA4 DMA channel 4 transfer complete
#INT_DMAS DMA channel 5 transfer complete
#INT_DMAG6 DMA channel 6 transfer complete
#INT_DMA7 DMA channel 7 transfer complete
#INT_DMAERR DMAC error trap

#INT_EEPROM Write complete

#INT_EX1 External Interrupt 1

#INT_EX4 External Interrupt 4

#INT_EXTO External Interrupt O

#INT_EXT1 External interrupt #1

#INT_EXT2 External interrupt #2

#INT_EXT3 External interrupt #3

#INT_EXT4 External interrupt #4
#INT_FAULTA PWM Fault A

#INT_FAULTAZ2 PWM Fault A 2

#INT_FAULTB PWM Fault B

#INT_IC1 Input Capture #1

#INT_IC2 Input Capture #2

159

CCS C Compiler

#INT_IC3 Input Capture #3

#INT_IC4 Input Capture #4

#INT_IC5 Input Capture #5

#INT_IC6 Input Capture #6

#INT_IC7 Input Capture #7

#INT_IC8 Input Capture #8

#INT_LOWVOLT | Low voltage detected

#INT_LVD Low voltage detected
#INT_MATHERR | Arithmetic error trap

#INT_MI2C Master 12C activity

#INT_MI2C2 Master2 12C activity

#INT_OC1 Output Compare #1

#INT_OC2 Output Compare #2

#INT_OC3 Output Compare #3

#INT_OC4 Output Compare #4

#INT_OC5 Output Compare #5

#INT_OC6 Output Compare #6

#INT_OC7 Output Compare #7

#INT_OC8 Output Compare #8

#INT_OSC_FAIL System oscillator failed

#INT_PMP Parallel master port

#INT_PMP2 Parallel master port 2

#INT_PWM1 PWM generator 1 time based interrupt
#INT_PWM2 PWM generator 2 time based interrupt
#INT_PWM3 PWM generator 3 time based interrupt
#INT_PWM4 PWM generator 4 time based interrupt
#INT_PWMSEM PWM special event trigger

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave 12C activity

#INT_SI2C2 Slave2 12C activity

#INT_SPI1 SPI1 Transfer Done

#INT_SPI1E SPI1E Transfer Done

#INT_SPI2 SPI2 Transfer Done

#INT_SPI2E SPI2 Error

160

PreProcessor

#INT_SPIE SPI Error
#INT_STACKERR | Stack Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMERS Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG6 Timer 6 overflow
#INT_TIMER7 Timer 7 overflow
#INT_TIMERS Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UARTI1E UARTL error
#INT_UART2E UART2 error

#INT_AUX Auxiliary memory ISR
Elements:

irco] NOCLEAR, LEVEL=n, HIGH, FAST, ALT, CLR_FIRST

Description:

These directives specify the following function is an interrupt function. Interrupt functions may
not have any parameters. Not all directives may be used with all parts. See the devices .h file
for all valid interrupts for the part or in PCW use the pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when the interrupt is detected. It will
generate code to save and restore the machine state, and will clear the interrupt flag. To
prevent the flag from being cleared add NOCLEAR after the #INT_xxxx. The application
program must call ENABLE_INTERRUPTS(INT_xxxx) to initially activate the interrupt along
with the ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

The keywords HIGH and FAST may be used with the PCH compiler to mark an interrupt as
high priority. A high-priority interrupt can interrupt another interrupt handler. An interrupt
marked FAST is performed without saving or restoring any registers. This should be used as
little as possible and save any registers that need to be saved manually. Interrupts marked
HIGH can be used normally. See #DEVICE for information on building with high-priority
interrupts.

tpeo] An interrupt marked FAST uses the shadow feature to save registers. Only one interrupt
may be marked fast. Any registers used in the FAST interrupt beyond the shadow registers is
the responsibility of the user to save and restore.

Level=n - specifies the level of the interrupt. Higher numbers are a higher priority.

161

CCS C Compiler

Enable_interrupts - specifies the levels that are enabled. The default is level 0 and level 7 is
never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:

#INT_xxxx Normal (low priority) interrupt - Compiler saves/restores key registers. This
interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - Compiler does a FAST save/restore of key registers. Only one is allowed
in a program.

#INT_xxxxLevel=3 - Interrupt is enabled when levels 3 and below are enabled.

#INT_GLOBAL - Compiler generates no interrupt code. User function is located at address 8
for user interrupt handling.

#INT_xxxx ALT - Interrupt is placed in Alternate Interrupt Vector instead of Default Interrupt
Vector.

A summary of the different kinds of PIC18 interrupts:

#INT_xxxx - Normal (low priority) interrupt. Compiler saves/restores key registers. This
interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - High priority interrupt. Compiler DOES NOT save/restore key
registers. This interrupt will interrupt any normal interrupt in progress. Only one is
allowed in a program.

#INT_xxxx HIGH - High priority interrupt. Compiler saves/restores key registers. This
interrupt will interrupt any normal interrupt in progress.

#INT_xxxx NOCLEAR - The compiler will not clear the interrupt.

#INT_xxx CLEAR_FIRST - The compiler will clear the interrupt at the beginning of the ISR
instead of the end. The user code in the function should call clear_interrput() to clear
the interrupt in this case.

#INT_GLOBAL - Compiler generates no interrupt code. User function is located at address 8
for user interrupt handling.

Some interrupts shown in the devices header file are only for the enable/disable interrupts. For
example, INT_RB3 may be used in enable/interrupts to enable pin B3. However, the interrupt
handler is #INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the handler is #INT_EXT.

Example Files:
ex_sisr.c and ex_stwt.c

Examples:
#int_ad
adc_handler () {

162

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

adc_active=FALSE;
}

#int_rtcc noclear
isr(){

}

[pcoj
#int ad
adc_handler () {

adc_active=FALSE;
}

#int timerl noclear
isr(){

}

See Also:
enable interrupts(), disable interrupts(), #INT DEFAULT, #INT GLOBAL,
#PRIORITY

#int default

Syntax:
#int_default

Elements:
None

Description:

The following function will be called if the device triggers an interrupt and none of the interrupt
flags are set. If an interrupt is flagged, but is not the one triggered, the #INT_DEFAULT
function will get called.

reo] A #INT_xxx handler has not been defined for the interrupt.

Examples:
#int default
default isr () {
printf ("unexplained interrupt\r\n");

}

See Also:
#INT xxxx, #INT _global

163

CCS C Compiler

#int _global

Syntax:
#int_global

Elements:
None

Description:

This directive causes the following function to replace the compiler interrupt dispatcher. The
function is normally not required and should be used with great caution. When used, the
compiler does not generate start-up code or clean-up code, and does not save the registers.

Example Files:
ex_glint.c

Examples:
#int global
isr () { //Will be located at location 4 for PIC16
devices
#asm
bsf isr flag
retfie
#endasm

See Also:
#HINT XXXX

line
Syntax:
__line__

Elements:
None

Description:

The pre-processor identifier is replaced at compile time with the line number of the file being
compiled.

Example Files:
assert.h

164

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file:" FILE "at line"

_ _LINE_ "\r\n");

See Also:
file

#list

Syntax:
#list

Elements:
None

Description:
#list begins inserting or resumes inserting source lines into the .Ist file after a #NOLIST.

Example Files:
16c74.h

Examples:
#NOLIST //Do not clutter up the list file
#include<cdriver.h>
#LIST

See Also:
#NOLIST

#line

Syntax:
#line number file name

Elements:
Number - is non-negative decimal integer. File name is optional.

Description:

The C pre-processor informs the C Compiler of the location in your source code. This code is
simply used to change the value of __LINE__ and __FILE__ variable.

165

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

Examples:
void main () {
#line 10 //specifies the line number that should be reported
//for the following line of input

#line 7"hello.c" //line number in the source file hello.c and it
sets

//the line 7 as current line and hello.c as current
file

#locate

Syntax:
#locate id=x

Elements:
id - is a C variable
X - is a constant memory address

Description:

#LOCATE allocates a C variable to a specified address. If the C variable was not previously
defined, it will be defined as an INTS.

A special form of this directive may be used to locate all A functions local variables starting at a
fixed location.

Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Example Files:

ex_glint.c
Examples:
//This will locate the float variable at 50-53
//and C will not use this memory for other
//variables automatically located.
float x:

#locate x=0x50
[PCD]

float x:
#locate x=0x800

See Also:
#byte, #bit, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

166

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor
#module

Syntax:
#module

Elements:
None

Description:

All global symbols created from the #MODULE to the end of the file will only be visible within
that same block of code (and files #INCLUDE within that block). This may be used to limit the
scope of global variables and functions within include files. This directive also applies to pre-
processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of variables and
functions as in the standard C methodology. #MODULE does add some benefits in that pre-
processor #DEFINE can be given scope, which cannot normally be done in standard C
methodology.

Examples:
int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g count;
#define G_COUNT MAX 100
int GetCount (void) {return(g_count);}
void SetCount (int newCount) {
if (newCount>G COUNT MAX)
newCount=G_COUNT_ MAX;
g _count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope, but the
variable g count and the #define G _COUNT_MAX only has scope to this
file.
*/

See Also:
#EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

#nolist

Syntax:
#nolist

Elements:
None

167

CCS C Compiler

Description:
Stops inserting source lines into the .Ist file (until a #LST).

Example Files:
16c¢74.h

Examples:
#NOLIST //Do not clutter up the list list
#include<cdriver.h>
#LIST

See Also:
#LIST

#ocs

Syntax:
#0SC X

Elements:
X - is the clock's speed and can be 1 Hz to 100 Mhz.

Description:
Used instead of the #use delay(clock=x)

Examples:
#include<18F4520.h>
#device ICD=TRUE
#0CS 20 Mhz
#use rs232 (debugger)

void () {

’

}

See Also:
#USE DELAY

#opt

Syntax:
#opt n

168

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:

All Devices: n is the optimization level 1-9 or by using the word "compress" for PIC18 and
Enhanced PIC16 families.

reo] All Devices: n is the optimization level 0-9

Description:

The optimization level is set with this directive. This setting applies to the entire program and
may appear anywhere in the file. The default is 9 for normal. When Compress is specified the
optimization is set to an extreme level that causes a very tight ROM image, the code is
optimized for space, not speed. Debugging with this level my be more difficult.

Examples:
#opt5

#org

Syntax:
#ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:
start - is the first ROM location (word address) to use.

end - is the last ROM location.

segment - is the start ROM location from a previous #ORG

Description:

This directive will fix the following function, constant or ROM declaration into a specific ROM
area. End may be omitted if a segment was previously defined if you only want to add another
function to the segment.

Follow the ORG with a {} to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local variables and scratch
variables are placed in low memory. This should only be used if the ORG'd function will not
return to the caller. The RAM used will overlap the RAM of the main program. Add a AUTO=0
at the end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user and
compiler generated from this point in the file until a #ORG DEFAULT is encountered (no

169

CCS C Compiler

address range). If a compiler function is called from the generated code while DEFAULT is in
effect the compiler generates a new version of the function within the specified address range.
#ORG may be used to locate data in ROM. Because CONSTANT are implemented as
functions the #ORG should proceed the CONSTANT and needs a start and end address. For
a ROM declaration only the start address should be specified.

When linking multiple compilation units be aware this directive applies to the final object file. It
is an error if any #ORG overlaps between files unless the #ORG matches exactly.

Example Files:
loader.c

Examples:
#ORG 0x1E00, OxX1FFF
MyFunc () {
//This function located at 1EOQO0
}

#ORG 0x1EO00
Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {} //Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl NO0=12345;

#ORG 0x1C00, O0x1COF //This ID will be at 1CO00
CHAR CONST ID[10}= {"123456789"}; //Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

}

See Also:
#ROM

#pin_select

Syntax:
#PIN_SELECT function=pin_xx

Elements:

function - is the Microchip defined pin function name, such as:
e UIRX(UARTL receive)

170

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

INT1(external interrupt 1)
T2CK (timer 2 clock)

IC1 (input capture 1)
OC1 (output capture 1)

PCB, PCM, PCH

INT1 External Interrupt 1
INT2 External Interrupt 2
INT3 External Interrupt 3
TOCK TimerO External Clock
T3CK Timer3 External Clock
CCP1 Input Capture 1
CCP2 Input Capture 2
T1G Timerl Gate Input
T3G Timer3 Gate Input
U2RX EUSART2 Asynchronous Receive/Synchronous Receive (also named: RXZ
U2CK EUSART2 Asynchronous Clock Input
SDI2 SPI2 Data Input
SCK2IN SPI2 Clock Input
SS2IN SPI2 Slave Select Input
FLTO PWM Fault Input
TOCKI Timer0 External Clock Input
T3CKI Timer3 External Clock Input
RX2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also name
TX2)
NULL NULL
C10UT Comparator 1 Output
C20UT Comparator 2 Output
EUSART2 Asynchronous Transmit/ Asynchronous Clock Output (also nam
U2TX TX2)
u2DT EUSART?2 Synchronous Transmit (also named: DT2)
SDO2 SPI2 Data Output
SCK20UT | SPIC2 Clock Output
SS20UT SPI2 Slave Select Output
ULPOUT Ultra Low-Power Wake-Up Event
P1A ECCP1 Compare or PWM Output Channel A
P1B ECCP1 Enhanced PWM Output, Channel B
P1C ECCP1 Enhanced PWM Output, Channel C
P1D ECCP1 Enhanced PWM Output, Channel D
P2A ECCP2 Compare or PWM Output Channel A
P2B ECCP2 Enhanced PWM Output, Channel B
pP2C ECCP2 Enhanced PWM Output, Channel C
P2D ECCP1 Enhanced PWM Output, Channel D
X2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also name

TX2)

171

CCS C Compiler

DT2 EUSART2 Synchronous Transmit (also named: U2DT)

SCK2 SPI2 Clock Output

SSDMA SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For example: PIN_C7, PIN_BO, PIN_D3, etc.

PCD (PIC24/dsPIC devices)

NULL NULL

C10UT Comparator 1 Output
C20UT Comparator 2 Output
C30UT Comparator 3 Output
C40UT Comparator 4 Output
UlTX UART1 Transmit

ULRTS UART1 Request to Send
U2TX UART2 Transmit
U2RTS UART2 Request to Send
U3TX UART3 Transmit
U3RTS UART3 Request to Send
u4TXx UART4 Transmit

U4RTS UART4 Request to Send
SDO1 SPI1 Data Output

SCK10UT SPI1 Clock Output

SS10UT SPI1 Slave Select Output

SDO2 SPI2 Data Output

SCK20UT SPI2 Clock Output

SS20UT SPI2 Slave Select Output

SDO3 SPI3 Data Output

SCK30uUT SPI3 Clock Output

SS30UT SPI3 Slave Select Output

SDO4 SPI4 Data Output

SCK40UT SPI14 Clock Output

SS40UT SPI4 Slave Select Output

OC1 Output Compare 1
OC2 Output Compare 2
OC3 Output Compare 3
OC4 Output Compare 4
OC5 Output Compare 5
OC6 Output Compare 6
OC7 Output Compare 7
OC8 Output Compare 8
OC9 Output Compare 9
OC10 Output Compare 10
OC11 Output Compare 11
OC12 Output Compare 12
0OC13 Output Compare 13
OC14 Output Compare 14

172

PreProcessor

OC15 Output Compare 15

OC16 Output Compare 16

C1TX CANL1 Transmit

C2TX CAN2 Transmit

CSDO DCI Serial Data Output
CSCKOUT | DCI Serial Clock Output
COFSOUT DCI Frame Sync Output
UPDN1 QEI1 Direction Status Output
UPDN2 QEI2 Direction Status Output
CTPLS CTMU Output Pulse
SYNCO1 PWM Synchronization Output Signal
SYNCO2 PWM Secondary Synchronization Output Signal
REFCLKO REFCLK Output Signal
CMP1 Analog Comparator Output 1
CMP2 Analog Comparator Output 2
CMP3 Analog Comparator Output 3
CMP4 Analog Comparator Output 4
PWM4H PWM4 High Output

PWM4L PWM4 Low Output
QEILCCMP | QEI1 Counter Comparator Output
QEI2CCMP | QEI2 Counter Comparator Output
MDOUT DSM Modulator Output
DCIDO DCI Serial Data Output
DCISCKOUT| DCI Serial Clock Output
DCIFSOUT | DCI Frame Sync Output
INT1 External Interrupt 1 Input
INT2 External Interrupt 2 Input
INT3 External Interrupt 3 Input
INT4 External Interrupt 4 Input
T1CK Timer 1 External Clock Input
T2CK Timer 2 External Clock Input
T3CK Timer 3 External Clock Input
T4ACK Timer 4 External Clock Input
TSCK Timer 5 External Clock Input
T6CK Timer 6 External Clock Input
T7CK Timer 7 External Clock Input
T8CK Timer 8 External Clock Input
TOCK Timer 9 External Clock Input
IC1 Input Capture 1

IC2 Input Capture 2

IC3 Input Capture 3

IC4 Input Capture 4

IC5 Input Capture 5

IC6 Input Capture 6

IC7 Input Capture 7

173

CCS C Compiler

IC8 Input Capture 8

IC9 Input Capture 9

IC10 Input Capture 10

IC11 Input Capture 11

IC12 Input Capture 12

IC13 Input Capture 13

IC14 Input Capture 14

IC15 Input Capture 15

IC16 Input Capture 16

C1RX CAN1 Receive

C2RX CAN2 Receive

OCFA Output Compare Fault A Input
OCFB Output Compare Fault B Input
OCFC Output Compare Fault C Input
U1RX UART1 Receive
U1CTS UART1 Clear to Send
U2RX UART2 Receive
U2CTS UART2 Clear to Send
U3RX UART3 Receive
U3CTS UART3 Clear to Send
U4RX UART4 Receive
U4CTS UART4 Clear to Send
SDI1 SPI1 Data Input
SCK1IN SPI1 Clock Input
SS1IN SPI1 Slave Select Input
SDI2 SPI2 Data Input
SCK2IN SPI2 Clock Input
SS2IN SPI2 Slave Select Input
SDI3 SPI3 Data Input
SCK3IN SPI3 Clock Input
SS3IN SPI3 Slave Select Input
SDI4 SPI4 Data Input
SCKA4IN SPI14 Clock Input
SS4IN SPI4 Slave Select Input
CSDI DCI Serial Data Input
CSCK DCI Serial Clock Input
COFS DCI Frame Sync Input
FLTA1 PWM1 Fault Input
FLTA2 PWM2 Fault Input
QEA1 QEI1 Phase A Input
QEA2 QEI2 Phase A Input
QEB1 QEI1 Phase B Input
QEB2 QEI2 Phase B Input
INDX1 QEI1 Index Input
INDX2 QEI2 Index Input

174

PreProcessor

HOME1 QEI1 Home Input

HOME2 QEI2 Home Input

FLT1 PWM1 Fault Input

FLT2 PWM2 Fault Input

FLT3 PWMS3 Fault Input

FLT4 PWM4 Fault Input

FLT5 PWMS5 Fault Input

FLT6 PWM6 Fault Input

FLT7 PWM?7 Fault Input

FLT8 PWMS8 Fault Input

SYNCI1 PWM Synchronization Input 1
SYNCI2 PWM Synchronization Input 2
DCIDI DCI Serial Data Input

DCISCKIN DCI Serial Clock Input

DCIFSIN DCI Frame Sync Input

DTCMP1 PWM Dead Time Compensation 1 Input
DTCMP2 PWM Dead Time Compensation 2 Input
DTCMP3 PWM Dead Time Compensation 3 Input
DTCMP4 PWM Dead Time Compensation 4 Input
DTCMP5 PWM Dead Time Compensation 5 Input
DTCMP6 PWM Dead Time Compensation 6 Input
DTCMP7 PWM Dead Time Compensation 7 Input

Description:

When using PPS chips a #PIN_SELECT must be appear before these peripherals can be used
or referenced.

rcojOn devices that contain Peripheral Pin Select (PPS), this allows the programmer to define
which pin a peripheral is mapped to.

Examples:
#pin select UITX=PIN C6

#pin select UlRX=PIN C7
#pin select INT1=PIN BO

See Also:

pin_select()

pcb

Syntax:
__bcb__

175

CCS C Compiler

Elements:
None

Description:
The PCB compiler defines this pre-processor identifier. It may be used to determine if the PCB
is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef pcb
#device PIC16C54
#endif

See Also:
PCM , PCH , PCD

pcd

Syntax:
_pcd__

Elements:
None

Description:
The PCD compiler defines this pre-processor identifier. It may be used to determine if the PCD
is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef pcd
#device dsPIC33FJ256MC710
#endif

See Also:
PCB , PCM , PCH

176

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

pcm

Syntax:
—_pcm__

Elements:
None

Description:
The PCM compiler defines this pre-processor identifier. It may be used to determine if the
PCM is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef pcm
#device PIC1l6C71
#endif

See Also:
PCB , PCH , PCD

pch

Syntax:
__bch__

Elements:
None

Description:
The PCH compiler defines this pre-processor identifier. It may be used to determine if the PCH
is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef pch
#device PIC18F452
#endif

177

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:
PCM , PCM , PCD

#pragma

Syntax:
#pragma cmd

Elements:
cmd - is any valid pre-processor directive.

Description:
This directive is used to maintain compatibility between C compilers. This compiler will accept
this directive before any other pre-processor command. In no case does this compiler require
this directive.

Example Files:
ex_cust.c

Examples:
#pragma device PIC16C54

#priority

Syntax:
#priority ints

Elements:
ints - is a list of one or more interrupts separated by commas.

exports - makes the functions generated from this directive available to other compilation
units within the link.

Description:

The priority directive may be used to set the interrupt priority. The highest priority items are first
in the list. If an interrupt is active it is never interrupted. If two interrupts occur at around the
same time then the higher one in this list will be serviced first. When linking multiple
compilation units be aware only the one in the last compilation unit is used.

Examples:
#priority rtc c.rb

See Also:
#HINT XXXX

178

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#profile

Syntax:
#profile options

Elements:
options - may be one of the following:
functions - Profiles the start/end of functions and all profileout() messages.

functions, parameters - Profiles the start/end of functions, parameters sent to functions,
and all profileout() messages.

profileout - Only profile profileout() messages.
paths - Profiles every branch code.
off - Disable all code profiling.

on - Re-enables the code profiling that was previously disabled with a #profile off
command. This will use the last options before disabled with the off command.

Description:

Large programs on the microcontroller may generate lots of profile data, which may make it
difficult to debug or follow. By using #profile the user can dynamically control which points of
the program are being profiled, and limit data to what is relevant to the user.

Example Files:
ex_profile.c

Examples:
#profile off
void BigFunction (void)
{
//BigFunction code goes here since #profile off was called above.
//No profiling will happen even for the functions called by
BigFunction () .
}

#profile on

See Also:
#use profile(), profileout(), Code Profile overview

#recursive

Syntax:
#recursive

179

CCS C Compiler

Elements:
None

Description:
Directs the compiler that the procedure immediately following the directive will be recursive.

Examples:
#recursive
int factorial (int num) {
if (num <=1)
return 1;
return num * factorial (num-1);

}

#reserve

Syntax:

#reserve address

#reserve address, address, address
#reserve start:end

Elements:
address - is a RAM address.

start - is the first address.

end - is the last address.

Description:

This directive allows RAM locations to be reserved from use by the compiler. #RESERVE must
appear after the #DEVICE otherwise it will have no effect. When linking multiple compilation
units be aware this directive applies to the final object file.

Example Files:
ex_cust.c

Examples:
fdevice PIC16C74
freserve 0x60:0X6f

[PCD]

ffdevice dsPIC30F2010
#reserve 0x800:0x80B3

See Also:
#ORG

180

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#rom

Syntax:
#rom address = {list}

Elements:
address - is the same address used in the device datasheet (Byte for PIC18 and Word for all
others)

list - is a list of words separated by commas.

Description:
Allows the insertion of data into the .HEX file. For example, this may be used to program the
'84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive creates a
segment for the data, resulting in an error if a #ORG is over the same area. The #ROM data
will also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char as the type
treats each item as 7 bits packing 2 chars into every PCM 14-bit word.

When linking multiple compilation units be aware this directive applies to the final object file.

Some special forms of this directive may be used for verifying program memory:
#ROM address = checksum - This will put a value at address such that the entire
program memory will sum to 0x1248.

#ROM address = crcl16 - This will put a value at address that is a crc16 of all the
program memory except the specified address.

#ROM address = crcl6(start, end) - This will put a value at address that is a crc16 of all
the program memory from start to end.

#ROM address = crc8 - This will put a value at address that is a crc16 of all the program
memory except the specified address.

Example Files:
ex_glint.c

Examples:
#rom getenv ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}

#rom int8 0x1000={"(c)CCS,2010"}

See Also:
#ORG

181

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

#separate

Syntax:
#separate
[pcD] #separate options

Elements:
[pco] options - options include:
STDCALL - Use the standard Microchip calling method, as used in C30. WO-W7 is
used for function parameters, rest of the working registers are not touched,
remaining function parameters are pushed onto the stack.

ARG=Wx:Wy - Use the working registers Wx to Wy to hold function
parameters. Any remaining function parameters are pushed onto the stack.

DND=WHx:WYy - Function will not change Wx to Wy working registers.

AVOID=Wx:WYy — Function will not use Wx to Wy working registers for function
parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.
Use STDCALL with the ARG, DND or AVOID parameters.

If one of these options is not specified, the compiler will determine the best configuration, and
will usually not use the stack for function parameters (usually scratch space is allocated for
parameters).

Description:

Directs the compiler that the procedure immediately following the directive is to be
implemented separately. This is useful to prevent the compiler from automatically making a
procedure inline. This will save ROM space, but it does use more stack space. The compiler
will make all procedures marked separate, separated as requested, even if there is not
enough stack space to execute.

Example Files:
ex_cust.c

Examples:
#separate
swapbyte (int*a, int*b) {
int t;
t=*a
*a:*b;
*b=t;

182

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

[PCD]
#separate ARG=WO:W7 AVOID=W8:W1l5 DND=W8:W15
swapbyte (int*a, int*b) {
int t;

t=*a

*a=*b;

*b=t;

See Also:
#INLINE

#serialize

Syntax:
#SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -

#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" | listfile="filename.txt",
prompt="text", log="filename.txt")

Elements:
id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array.

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address specified.
string=x - The integer x is the number of bytes to be written to address specified.
unicode=n - If nis a 0, the string format is normal unicode. For n>0 n indicates the string
number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number from, and this file is
updated by the ICD programmer. It is assumed this is a one line file with the serial
number. The programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from, and this file is
updated by the ICD programmer. It is assumed this is a file one serial number per
line. The programmer will read the first line then delete that line from the file.

next="x" - The serial number X is used for the first load, then the hex file is updated to
increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial number on each load. If
used with one of the above three options then the default value the user may use is
picked according to the above rules.

183

CCS C Compiler

log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name and
serial number each time the part is programmed. If no id=xxx is specified then this
may be used as a simple log of all loads of the hex file.

Description:
Assists in making serial numbers easier to implement when working with CCS ICD
units. Comments are inserted into the hex file that the ICD software interprets.

Examples:
//Prompt user for serial number to be placed
//at address of serialNumA
//Default serial number = 200int8int8 const serialNumA=100;
//#serialize (id=serialNumh, next="200", prompt="Enter the serial
number")

//Adds serial number log in seriallog.txt

//#serialize (id=serialNumh, next="200", prompt="Enter the serial
number",

//log="seriallog.txt")

//Retrieves serial number from serials.txt
//#serialize (id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte
//#serialize (dataee=0,binary=1,next="45", prompt="Put in Serial
number")

//Place string serial number at EEPROM address 0, reserving 2 bytes

//#serialize (dataee=0, string=2,next="AB",prompt="Put in Serial
number")

#task

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK
directive is needed just before each RTOS task to enable the compiler to tell which functions
are RTOS tasks. An RTOS task cannot be called directly like a regular function can.

Syntax:
#task (options)

Elements:
options are separated by comma and may be:
rate=time - Where time is a number followed by s, ms, us, or ns. This specifies how often
the task will execute.

184

PreProcessor

max=time - Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.

queue=bytes - Specifies how many bytes to allocate for this task's incoming messages.
The default value is 0.

enabled=value - Specifies whether a task is enabled or disabled by rtos_run(). True for
enabled, false for disabled. The default value is enabled.

Description:
This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a multiple
of the minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one execution of
the task. The time specified in max must be equal to or less than the time specified in the
minor_cycle option of the #USE RTOS directive before the project will compile successfully.
The compiler does not have a way to enforce this limit on processor time, so a programmer
must be careful with how much processor time a task uses for execution. This option does not
need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value is 0.

Examples:
ftask (rate=1s, max=20ms, queue=5)

See Also:
#USE RTOS

time

Syntax:
_ time__

Elements:
None

Description:
This pre-processor identifier is replaced at compile time with the time of the compile in the
form: "hh:mm:ss"

Examples:
printf ("Software was compiled on");
printf(TIME);

185

CCS C Compiler
#todo

Syntax:
#todo text

Elements:
text is free text

Description:
This directive documents in the source code items that the developer needs to work on.

Example Files:
None

Examples:
#todo Verify the math works in convert adc values

See Also:
PCW Overview

#type

Syntax:
#TYPE standard-type=size

#TYPE default=area

#TYPE unsigned

#TYPE signed

rco] #TYPE char=signed
rco] #TYPE char=unsigned
pco] #TYPE ARG=Wx:Wy
pco] #TYPE DND=Wx:Wy
pco] #TYPE AVOID=Wx:Wy
irco] #TYPE RECURSIVE
trco] #TYPE CLASSIC

Elements:
standard-type - is one of the C keywords short, int, long, or default

pco] standard-type - is one of the C keywords short, int, long, float, or double

size -is 1,8,16, or 32

186

PreProcessor
pco] Size -is 1,8,16, 48, or 64

area - is a memory region defined before the #TYPE using the addressmod directive
reo] WX:WYy - is a range of working registers (example: W0, W1, W15, etc)

Description:

By default the compiler treats SHORT as one hit/ [pco] 8 bits, INT as 8 / (pco] 16 bits, and
LONG as 16 / [pcp) 32 bits. The traditional C convention is to have INT defined as the most
efficient size for the target processor. This is why it is 8-bit on PIC devices or [pcp] 16-bits on
dsPIC/PIC24 ® . In order to help with code compatibility a #TYPE directive may be used to
allow these types to be changed. #TYPE can redefine these keywords.

Note that the commas are optional. Since #TYPE may render some sizes inaccessible (like a
one bit int in the above) four keywords representing the four ints may always be used: INT1,
INT8, INT16, and INT32.

Note: CCS example programs and include files may not work correctly when using #TYPE in
the program.

rep] Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable storage.
This is done by specifying default=area where area is a addressmod address space.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default data
type.

irco] The ARG parameter tells the compiler that all functions can use those working registers to
receive parameters. The DND parameters tells the compiler that all functions should not
change those working registers (not use them for scratch space). The AVOID parameter tells
the compiler to not use those working registers for passing variables to functions. If you are
using recursive functions, then it will use the stack for passing variables when there is not
enough working registers to hold variables; if you are not using recursive functions, the
compiler will allocate scratch space for holding variables if there is not enough working
registers. #SEPARATE can be used to set these parameters on an individual basis.

ireco) The RECURSIVE option tells the compiler that ALL functions can be recursive.
#RECURSIVE can also be used to assign this status on an individual basis.

Example Files:
ex_cust.c

Examples:
#TYPE SHORT= 8, INT= 16, LONG= 32

#TYPE default=area

187

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in
// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

void main ()

{

int variablel; // variablel can only take values from -128
to 127

}

[PCcD]
#TYPE SHORT=1, INT=8, LONG=16, FLOAT=48

#TYPE default=area
addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in
// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

#TYPE RECURSIVE
#TYPE ARG=WO:W7
#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

void main ()

{

int variablel; // variablel can only take values from -128
to 127

188

PreProcessor

#undef

Syntax:
#undef id

Elements:
id - is a pre-processor id defined via #DEFINE

Description:
The specified pre-processor ID will no longer have meaning to the pre-processor.

Examples:
#1if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

See Also:
#DEFINE

unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string

Description:
This macro will convert a standard ASCII string to a Unicode format string by inserting a \000
after each character and removing the normal C string terminator. For example:
_unicode ("ABCD")
will return: "A\00OB\000C\00OD" (8 bytes total with the terminator)

Since the normal C terminator is not used for these strings you need to do one of the following
for variable length strings:

string = _unicode (KEYWORD) "\000\000";
OR

string = _unicode (KEYWORD) ;

string size = sizeof (unicode (KEYWORD)) ;

Example Files:
usb_desc_hid.h

189

CCS C Compiler

Examples:
#define USB_DESC_STRING TYPE 3

#define USB STRING(x) (sizeof(unicode(x))+2), USB_DESC_STRING TYPE,

__unicode (x)

#define USB_ENGLISH STRING 4,USB_DESC_STRING_TYPE,OXO9,0XO4
//Microsoft defined for

US English

char const USB STRING DESC[]=[
USB_ENGLISH STRING;
USB_STRING ("CCs") ;
USB STRING ("CCS HID DEMO")

}i

#use capture

Syntax:
#use capture (options)

Elements:
ICx/CCPx - Which CCP/Input Capture module to us.

INPUT = PIN_xx - Specifies which pin to use. Useful for device with remappable pins, this will
cause compiler to automatically assign pin to peripheral.

TIMER=x - Specifies the timer to use with capture unit. If not specified default to timer 1 for
PCM and PCH compilers and timer 3 for PCD compiler.

TICK=x - The tick time to setup the timer to. If not specified it will be set to fastest as possible
or if same timer was already setup by a previous stream it will be set to that tick
time. If using same timer as previous stream and different tick time an error will be
generated.

FASTEST - Use instead of TICK=x to set tick time to fastest as possible.
SLOWEST - Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH - PCD only. Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

PRE=x - Specifies number of rising edges before capture event occurs. Valid options are 1, 4
and 16, default to 1 if not specified. Options 4 and 16 are only valid when using

190

PreProcessor

CAPTURE_RISING, will generate an error is used with CAPTURE_FALLING or
CAPTURE_BOTH.

rep] ISR=x - Specifies the number of capture events to occur before generating capture
interrupt. Valid options are 1, 2, 3 and 4, defaults to 1 is not specified. Option 1 is
only valid option when using CAPTURE_BOTH, will generate an error if trying to use
2, 3 or 4 with it.

STREAM=id - Associates a stream identifier with the capture module. The identifier may be
used in functions like get_capture_time().

DEFINE=id - Creates a define named id which specifies the number of capture per
second. Default define name if not specified is CAPTURES_PER_SECOND. Define
name must start with an ASCI| letter 'A' to 'Z', an ASCI| letter 'a’ to 'z’ or an ASCII
underscore ().

Description:

This directive tells the compiler to setup an input capture on the specified pin using the
specified settings. The #USE DELAY directive must appear before this directive can be
used. This directive enables use of built-in functions such as get_capture_time() and
get_capture_event().

Examples:
#USE CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1, FASTEST)

See Also:
get capture time(), get _capture event()

#use delay

Syntax:
#use_delay (options)

Elements:
Options - may be any of the following separated by commas:
clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following denominations:
M, MHZ, K, KHZ. This specifies the clock the CPU runs at. Depending on the PIC
this is 2 or 4 times the instruction rate. This directive is not needed if the following
type=speed is used and there is no frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are valid:
oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal, int (same
as internal) or rc. The compiler will automatically set the oscillator configuration bits
based upon your defined type. If you specified internal, the compiler will also
automatically set the internal oscillator to the defined speed. Configuration fuses are
modified when this option is used. Speed is the input frequency.

191

CCS C Compiler
restart_wdt will restart the watchdog timer on every delay_us() and delay_ms() use.

clock_out when used with the internal or oscillator types this enables the clockout pin to
output the clock.

fast_start some chips allow the chip to begin execution using an internal clock until the
primary clock is stable.

lock some chips can prevent the oscillator type from being changed at run time by the
software.

USB or USB_FULL for devices with a built-in USB peripheral. When used with the
type=speed option the compiler will set the correct configuration bits for the USB
peripheral to operate at Full-Speed.

USB_LOW for devices with a built-in USB peripheral. When used with the type=speed option
the compiler will set the correct configuration bits for the USB peripheral to operate at
Low-Speed.

PLL_WAIT for devices with a PLL and a PLL Ready Status flag to test. When a PLL clock is
specified it will cause the compiler to poll the ready PLL Ready Flag and only
continue program execution when flag indicates that the PLL is ready.

ACT or ACT=type for device with Active Clock Tuning, type can be either USB or SOSC. If
only using ACT type will default to USB. ACT=USB causes the compiler to enable
the active clock tuning and to tune the internal oscillator to the USB
clock. ACT=SOSC causes the compiler to enable the active clock tuning and to tune
the internal oscillator to the secondary clock at 32.768 kHz. ACT can only be used
when the system clock is set to run from the internal oscillator.

irco] AUX: type=speed Some chips have a second oscillator used by specific periphrials and
when this is the case this option sets up that oscillator.

rco) PLL_WAIT when used with a PLL clock, it causes the compiler to poll PLL ready flag and
to only continue program execution when flag indicates that the PLL is ready.

Description:

Tells the compiler the speed of the processor and enables the use of the built-in functions:
delay_ms() and delay_us(). Will also set the proper configuration bits, and if needed configure
the internal oscillator. Speed is in cycles per second. An optional restart_wdt may be used to
cause the compiler to restart the WDT while delaying. When linking multiple compilation units,
this directive must appear in any unit that needs timing configured (delay_ms(), delay_us(),
UART, SPI).

In multiple clock speed applications, this directive may be used more than once. Any timing
routines (delay_ms(), delay_us(), UART, SPI) that need timing information will use the last
defined #USE DELAY (For initialization purposes, the compiler will initialize the configuration
bits and internal oscillator based upon the first #USE DELAY.

Example Files:
ex_sqw.c

192

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
// set timing config to 32KHz, User sets the
fuses
// on delay us() and delay ms()
#use delay (clock=32000, RESTART WDT)

//the following 4 examples all configure the
timing library

//to use a 20Mhz clock, where the source is a
crystal.
#use delay (crystal=20000000)
#use delay (xtal=20,000,000)
#use delay(crystal=20Mhz)
#use delay(clock=20M, crystal)

//application is using a 10Mhz oscillator, but
using the 4x PLL

//to upscale it to 40Mhz. Compiler will set config
bits.
#use delay(oscillator=10Mhz, clock=40Mhz)

//application will use the internal oscillator at
8MHz .

//compiler will set config bits, and set the
internal

//oscillator to 8MHz.
#use delay(internal=8Mhz)

See Also:
delay ms(), delay us()

#use dynamic memory

Syntax:
#use dynamic_memory

Elements:
None

Description:

This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD
object. _DYNAMIC_HEA is the loation where the first free space is allocated.

Example Files:
ex_malloc.c

193

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Examples:
#USE DYNAMIC MEMORY
void main () {

}

#use fast io

Syntax:
#use fast_io (port)

Elements:
port-isA,B,C,D,E, F, G, H,Jor ALL

Description:

Affects how the compiler will generate code for input and output instructions that follow. This
directive takes effect until another #use xxxx_lO directive is encountered. The fast method of
doing 1/0O will cause the compiler to perform I/O without programming of the direction

register. The compiler's default operation is the opposite of this command, the direction 1/0O will
be set/cleared on each I/O operation. The user must ensure the direction register is set
correctly via set_tris_X(). When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

Example Files:
ex_cust.c

Examples:
#use fast io(A)

See Also:
#USE FIXED 10, #USE STANDARD 10, set tris X() , General Purpose 1/0

#use fixed io

Syntax:
#use fixed_io (port_outputs=pin, pin?)

Elements:
value - is a constant 16-bit value

Description:

This directive affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #USE XXX_IO directive is encountered. The
fixed method of doing I/0O will cause the compiler to generate code to make an I/O pin either
input or output every time it is used. The pins are programmed according to the information in

194

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

this directive (not the operations actually performed). This saves a byte of RAM used in
standard 1/0. When linking multiple compilation units be aware this directive only applies to the

current compilation unit.

Examples:

#use fixed io(a_outputs=PIN A2, PIN A3)

See Also:

#USE FAST 10, #USE STANDARD 10, General Purpose 1/O

#use i2c

Syntax:
#use i2c (options)

Elements:

options - are separated by commas and may include the following:

MASTER

Sets to the master mode

MULTI_MASTER

Set the multi_master mode

SLAVE

Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast 12C specification.

FAST=nnnnnn

Sets the speed to nnnnnn hz

SLOW

Use the slow I2C specification

RESTART_WDT

Restart the WDT while waiting in 12C_READ

FORCE_HW

Use hardware 12C functions.

FORCE_SW

Use software 12C functions.

NOFLOAT_HIGH

Does not allow signals to float high, signals are driven from low to
high

SMBUS Bus used is not 12C bus, but very similar
. Associates a stream identifier with this 12C port. The identifier
STREAM=id . . Lo . .
may then be used in functions like i2c_read or i2c_write.
NO_STRETCH Do not allow clock streaching
MASK=nn Set an address mask for parts that support it

195

CCS C Compiler

12C1 Instead of SCL= and SDA= this sets the pins to the first module
12C2 Instead of SCL= and SDA= this sets the pins to the second
module

No initialization of the 12C peripheral is performed. Use

NOINIT I2C_INIT() to initialize peripheral at run time.

Only some chips allow the following:

DATA_HOLD lglrtl)lglA)CK is sent until I2C_READ is called for data bytes (slave
ADDRESS_HOLD glrc])ISCK is sent until 12C_read is called for the address byte (slave
SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes low

Description:

CCS offers support for the hardware-based 12C™ and a software-based master [2C™
device.(For more information on the hardware-based 12C module, please consult the
datasheet for your target device; not all PICs support 12C™.

The 12C library contains functions to implement an 12C bus. The #USE 12C remains in effect for
the I2C_START, 12C_STOP, 12C_READ, 12C_WRITE and 12C_POLL functions until another
USE 12C is encountered. If hardware pins are specified for SDA and SCL, then hardware
functions are generated unless the force_sw is specified; otherwise software functions are
generated. The SLAVE mode should only be used with the built-in SSP. The functions created
with this directive are exported when using multiple compilation units. To access the correct
function use the stream identifier.

rco) - Some devices have an alternate set of 12C pins that may be used with the
hardware 12C peripherals instead of the default pins. If a device has alternative 12C
pins, then they will have the following configuration fuses available for selecting
which pair to use: ALTI2Cx and NOALTI2Cx. x being the 12C peripheral (1-

3). Setting the NOALTI2Cx configuration fuse causes the device to use the ASCLx
and ASDAX pins for the peripheral. Additionally, these configuration fuses determine
which pins #use i2c() determines the hardware 12C pins for each 12C peripheral. By
default, the NOALTI2Cx configuration fuses are set. In order to use the alternative
I2C hardware pins, the ALTI2Cx configuration fuse must be set for that 12C
peripheral.

Example Files:
ex_extee.c with 16c74.h

Examples:
#use i2c(master, sda-PIN BO, sci=PIN Bl

#use i2c(slave, sda=PIN C4, sci=PIN C3
address=0xa0, FORCE HW

196

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

#use i12c (master, sci=PIN BO, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, 12C Overview

#use profile

Syntax:
#use profile (options)

Elements:
option - may be any of the following separated by a comma:
ICD - (Default) configures code profiler to use the ICD connection.

TIMER1 - (optional) if specified, the code profiler run-time on the microcontroller will use
the Timerl peripheral as a timestamp for all profile events. If not specified, the
code profiler tool will use the PC clock, which may be accurate for fast events.

BAUD=x - (optional) if specified, will use a different baud rate between the microcontroller
and the code profiler tool. This may be required on slow microcontrollers to
attempt to use a slower baud rate.

Description:
This directs the compiler to add the code profiler run-time in the microcontroller and configure
the link and clock.

Example Files:
ex_profile.c

Examples:
#profile (ICD, TIMER1, baud=9600)

See Also:
#profile(), profileout(), Code Profile overview

#use pwm()

Syntax:
#use pwm (options)

Elements:
option - may be any of the following separated by a comma:

197

CCS C Compiler

198

PWMx or CCPx - Selects the CCP to use, x being the module to use.

rrco) PWMx or OCx - Selects the Output Compare module, x being the module number to
use.

OUTPUT=PIN_xx - Selects the PWM pin to use, pin must be one of the CCP pins. If
device has remappable pins compiler will assign specified pin to specified
CCP module. If CCP module not specified it will assign remappable pin to first
available module.

treo] OUTPUT=PIN_xx - Selects the PWM pin to use, pin must be one of the OC pins. If
device has remappable pins compiler will assign specified pin to specified OC
module. If OC module not specified it will assign remappable pin to first available
module.

TIMER=x - Selects timer to use the PWM module, default if not specified is Timer2.

FREQUENCY=x - Sets the period of PWM based off specified value, should not be used if
PERIOD is already specified. If frequency can't be achieved exactly compiler will
generate a message specifying the exact frequency and period of PWM. If
neither FREQUENCY or PERIOD is specified, the period defaults to maximum
possible period with maximum resolution and compiler will generate a message
specifying the frequency and period of PWM, or if using same timer as previous
stream instead of setting to maximum possible it will be set to the same as
previous stream. If using same timer as previous stream and frequency is
different compiler will generate an error.

Period=x - Sets the period of PWM, should not be used if FREQUENCY is already
specified. If period can't be achieved exactly compiler will generate a message
specifying the exact period and frequency of PWM. If neither PERIOD or
FREQUENCY is specified, the period defaults to maximum possible period with
maximum resolution and compiler will generate a message specifying the
frequency and period of PWM, or if using same timer as previous stream instead
of setting to maximum possible it will be set to the same as previous stream. If
using same timer as previous stream and period is different compiler will
generate an error.

BITS=x - Sets the resolution of the the duty cycle, if period or frequency is specified will
adjust the period to meet set resolution and will generate an message specifying
the frequency and duty of PWM. If period or frequency not specified will set
period to maximum possible for specified resolution and compiler will generate a
message specifying the frequency and period of PWM, unless using same timer
as previous then it will generate an error if resolution is different then previous
stream. If not specified, then frequency, period or previous stream using same
timer sets the resolution.

DUTY=x - Selects the duty percentage of PWM. Default, if not specified, is 50%.

PWM_ON - Initialize the PWM in the ON state. Default state, if not specified, is
pwm_on or pwm_off.

PWM_OFF - Initialize the PWM in the OFF state.

PreProcessor

STEAM=id - Associates a stream identifier with the PWM signal. The identifier may be
used in functions like pwm_set_duty_percent().

Description:

This directive tells the compiler to setup a PWM on the specified pin using the specified
frequency, period, duty cycle and resolution. The #USE DELAY directive must appear before
this directive can be used. This directive enables use of built-in functions such as
set_pwm_duty_percent(), set_pwm_frequency(), set_pwm_period(), pwm_on() and
pwm_off().

See Also:
pwm_on(), pwm_off(), pwm_set frequency(), pwm set duty percent(),

pwm_set duty()

#use rs232

Syntax:
#use rs232 (options)

Elements:
option - may be any of the following separated by a comma:
STREAM=id - Associates a stream identifier with this RS232 port. The identifier may then
be used in functions like fputc.

BAUD=x - Set baud rate to x.

XMIT=pin - Set transmit pin.

RCV=pin - Set receive pin.

FORCE_SW - Generate software serial I/O routines even when UART pins are specified.
BRGH10K - Allow bad baud rates on devices that have baud rate problems.

ENABLE=pin - The specified pin will be high during transmit. This may be used to enable
485 transmit.

DEBUGGER - Indicates this stream is used to send/receive data through a CCS ICD
unit. The default pin used is B3, use XMIT= and RCV= to change the pain
used. Both should be the same pin.

RESTART_WDT - Causes GETC() to clear the WDT as it waits for a character.

INVERT - Invert the polarity of the serial pins (normally not needed when level converter,
such as MAX232). May not be used with internal UART.

PARITY=x - Where x is N, E, or O.
BITS=x - Where x is 5-9 (5-7 may not be used with the SCI).

FLOAT_HIGH - The line is not driven high. This is used for open collector outputs. Bit 6
in RS232_ERRORS is set if the pin is not high at the end of the bit time.

199

CCS C Compiler

ERRORS - Used for the compiler to keep receive errors in the variable RS232_ERRORS
and to reset errors when they occur, RS232_BUFFER_ERRORS when transmit,
and RECEIVE_BUFFER are used.

SAMPLE_EARLY - A getc() normally samples data in the middle of a bit time. This option
causes the sample to be at the start of a bit time. May not be used with UART.

RETURN=pin - The pin used to read signal back for FLOAT_HIGH and
MULTI_MASTER. The default for FLOAT_HIGH is the XMIT pin, and for
MULTI_MASTER the RCV pin.

MULTI_MASTER - Uses the RETURN pin to determine if another master on the bus is
transmitting at the same time. If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are ignored until bit 6 is cleared. The
signal is checked at the start and end of a bit time. May not be used with the
UART.

LONG_DATA - Makes getc() return an int16 and putc() accept an int16. This is for 9 bit
data formats.

DISABLE_INTS - Will cause interrupts to be disabled when the routines get or put a
character. This prevents character distortion for software implemented 1/O and
prevents interaction between I/O in interrupt handlers and the main program
when using the UART.

STOP=x - Used to set the number of stop bits (default is 1). This works for both UART
and non-UART ports.

TIMEOUT=x - To set the time getc() waits for a byte in milliseconds. If no character comes
in within this time the RS232_ERRORS is set to 0 as well as the return value
form getc(). This works for both UART and non-UART ports.

SYNC_SLAVE - Makes the RS232 line a synchronous slave, making the receive pin a
clock in, and the data pin the data in/out.

SYNC_MASTER - Makes the RS232 line a synchronous master, making the receive pin a
clock out, and the data pin the data in/out.

SYNC_MASTER_CONT - Makes the RS232 line a synchronous master mode in
continuous receive mode. The receive pin is set as a clock out, and the data pin
is set as the data in/out.

UART1 - Sets the XMIT= and RCV= to the device's first hardware UART.
UART2 - Sets the XMIT= and RCV= to the chips second hardware UART.
UARTS3 - Sets the XMIT= and RCV= to the chips third hardware UART.
UART4 - Sets the XMIT= and RCV= to the chips fourth hardware UART.
treo) UARTLA - Uses alternate UART pins.

irco] UART2A - Uses alternate UART pins.

NOINIT - No initialization of the UART peripheral is performed. Useful for dynamic control
of the UART baud rate or initializing the peripheral manually at a later point in the

200

PreProcessor

program's run time. If this option is used, then setup_uart() needs to be used to
initialize the peripheral. Using a serial routine (such as getc() or putc()) before
the UART is initialized will cause undefined behavior.

ICD - Indicates this stream uses the ICD in a special pass through mode to send/receive
serial data to/from the PC. The ICSP clock line is the device's receive pin
(usually B6), and the ICSP data line is the transmit pin (usually B7). The default
transmit pin is the device's ICSPDAT/PGD pin and the default receive pin is the
device's ICSPCLK/PGC pin. Use XMIT= and RCV= to change the pins used.

MAX_ERROR=x - Specifies the max error percentage the compiler can set the RS232
baud rate from the specified baud before generating an error. Defaults to 3% if
not specified.

serial buffer options:

RECEIVE_BUFFER=Xx - Size in bytes of UART circular receive buffer, default if not
specified is zero. Uses an interrupt to receive data, supports RDA interrupt or
external interrupts.

TRANSMIT_BUFFER=x - Size in bytes of UART circular transmit buffer, default if not
specified is zero.

TXISR - If TRANSMIT_BUFFER is greater then zero specifies using TBE interrupt for
transmitting data. Defaultis NOTXISR if TXISR or NOTXISR is not
specified. TXISR option can only be used when using hardware UART.

NOTXISR - If TRANSMIT_BUFFER is greater then zero specifies to not use TBE interrupt
for transmitting data. Default is NOTXISR if TXISR or NOTXISR is not specified
and XMIT_BUFFER is greater then zero.

flow control options:

RTS=PIN_xx - Pin to use for RTS flow control. When using FLOW_CONTROL_MODE
this pin is driven to the active level when it is ready to receive more data. In
SIMPLEX_MODE the pin is driven to the active level when it has data to
transmit. FLOW_CONTROL_MODE can only be use when using
RECEIVE_BUFFER.

RTS_LEVEL=x - Specifies the active level of the RTS pin, HIGH is active high and LOW
is active low. Defaults to LOW if not specified.

CTS=PIN_xx - Pin to use for CTS flow control. In both FLOW_CONTROL_MODE and
SIMPLEX_MODE this pin is sampled to see if it clear to send data. If pinis at
active level and there is data to send it will send next data byte.

CTS_LEVEL=x - Specifies the active level of the CTS pin, HIGH is active high and LOW
is active low. Default to LOW if not specified.

FLOW_CONTROL_MODE - Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to the active level when ready
to receive data. Defaults to FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or SIMPLEX_MODE is specified. If RTS pin is not
specified then this option is not used.

201

CCS C Compiler

SIMPLEX_MODE - Specifies how the RTS pin is used. For SIMPLEX_MODE the RTS
pin is driven to the active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin is not specified then this option is not
used.

Description:

This directive tells the compiler the baud rate and pins used for serial I/O. This directive takes
effect until another RS232 directive is encountered. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in functions such as
GETC, PUTC, and PRINTF. The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream identifier.

When using parts with built-in SCI (frco) UART) and the SCI (jrco) UART) pins are specified,
the SCI will be used. If a baud rate cannot be achieved within 3% of the desired value using
the current clock rate, an error will be generated. The definition of the RS232_ERRORS is as
follows:

No UART:

e Bit 7 is 9th bit for 9 bit data mode (get and put).

e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0is used to indicate a parity error.

Definition of the RS232 BUFFER_ERRORS variable is as follows:
e Bit 0 UART Receive overrun error occurred.

e Bit 1 Receive Buffer overflowed.

e Bit 2 Transmit Buffer overflowed.

Warning: The device UART will shut down on overflow (3 characters received by the
hardware with a GETC() call). The "ERRORS" option prevents the shutdown by detecting the
condition and resetting the UART.

Example Files:
ex_cust.c

Examples:
#use rs232(baud=9600,xmit=PIN A2, rcv=PIN A3)

See Also:

getc(), putc(), printf(), setup uart(), RS2332 I/O overview, kbhit(), puts(), putc_send(),
rcv_buffer bytes(), tx_buffer bytes(), rcv_buffer full(), tx_buffer full(),
tx_buffer_available()

202

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor
use rtos

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run regularly
scheduled tasks without the need for interrupts. This is accomplished by a function
(RTOS_RUNY()) that acts as a dispatcher. When a task is scheduled to run, the dispatch
function gives control of the processor to that task. When the task is done executing or does
not need the processor anymore, control of the processor is returned to the dispatch function
which then will give control of the processor to the next task that is scheduled to execute at the
appropriate time. This process is called cooperative multi-tasking.

Syntax:
#use rtos (options)

Elements:
option - may be any of the following separated by a comma:
timer=X - Where x is 0-4 specifying the timer used by the RTOS.

minor_cycle=time - Where time is a number followed by s, ms, us, ns. This is the
longest time any task will run. Each task's execution rate must be a multiple of
this time. The compiler can calculate this if it is not specified.

statistics - Maintain min, max, and total time used by each task.

Description:

This directive tells the compiler which timer on the PIC to use for monitoring and when to grant
control to a task. Changes to the specified timer's prescaler will effect the rate at which tasks
are executed.

This directive can also be used to specify the longest time that a task will ever take to execute
with the minor_cycle option. This simply forces all task execution rates to be a multiple of the
minor_cycle before the project will compile successfully. If the this option is not specified the
compiler will use a minor_cycle value that is the smallest possible factor of the execution rates
of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum processor
time taken by one execution of each task, the maximum processor time taken by one
execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Examples:
#use rtos(timer=0,minor cycle=20ms)

See Also:
#TASK

203

CCS C Compiler

#use spi

Syntax:
#use spi (options)

Elements:
option - may be any of the following separated by a comma:
MASTER - Set the device as the master. (default).

SLAVE - Set the device as the slave.

BAUD=n - Target bits per second, default is as fast as possible.

CLOCK_HIGH=n - High time of clock in us (not needed if BAUD= is used). (default=0).
CLOCK_LOW=n - Low time of clock in us (not needed if BAUD= is used). (default=0).
Dl=pin - Optional pin for incoming data.

DO=pin - Optional pin for outgoing data.

CLK=pin - Clock pin.

MODE-=n - The mode to put the SPI bus.

ENABLE=pin - Optional pin to be active during data transfer.

LOAD=pin - Optional pin to be pulsed active after data is transferred.
DIAGNOSTIC=pin - Optional pin to the set high when data is sampled.
SAMPLE_RISE - Sample on rising edge.

SAMPLE_FALL - Sample on falling edge (default).

BITS=n - Max number of bits in a transfer. (default=32)

SAMPLE_COUNT=n - Number of samples to take (uses majority vote). (default=1
LOAD_ACTIVE=n - Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n - Active state for ENABLE pin (0, 1). (default=0)

IDLE=n - Inactive state for CLK pin (0, 1). (default=0)

ENABLE_DELAY=n - Time in us to delay after ENABLE is activated. (default=0)
DATA_HOLD-=n - Time between data change and clock change.

LSB_FIRST - LSB is sent first.

MSB_FIRST - MSB is sent first. (default)

STREAM=id - Specify a stream name for this protocol.

SPI1 - Use the hardware pins for SPI Port 1.

204

PreProcessor
SPI2 - Use the hardware pins for SPI Port 2.

rco] SPI3 - Use the hardware pins for SPI Port 3

rco] SPI4 - Use the hardware pins for SPI Port 4

FORCE_SW - Use a software implementation even when hardware pins are specified.
FORCE_HW - Use the pic hardware SPI.

NOINIT - Do not initialize the hardware SPI Port.

irco) XFER16 - Use 16-bit transfers instead of two 8-bit transfers.

Description:

The SPI library contains functions to implement an SPI bus. After setting all of the proper
parameters in #USE SPI, the spi_xfer() function can be used to both transfer and receive data
on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most common
pins present on hardware SPI are: DI, DO, and CLK. These pins don’t need to be assigned
values through the options; the compiler will automatically assign hardware-specific values to
these pins. Consult your PIC’s data sheet as to where the pins for hardware SPI are. If
hardware SPI is not used, then software SPI will be used. Software SPI is much slower than
hardware SPI, but software SPI can use any pins to transfer and receive data other than just
the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to sample
data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and SAMPLE_FALL.
MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1 and SAMPLE_RISE. There
are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to send data
and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as
indicated above.

See Also:

spi_xfer()

#use standard io

Syntax:
#use standard_io (port)

Elements:
port-isA,B,C,D,E, F, G, H,Jor ALL

205

CCS C Compiler

Description:

This directive affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #USE XXX_lO directive is encountered. The
standard method of doing 1/0 will cause the compiler to generate code to make an 1/0 pin
either input or output every time it is used. On the 5X processors this requires one byte of
RAM for every port set to standard 1/0.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

Example Files:
ex_cust.c

Examples:
#use standard io(A)

See Also:
#USE FAST 10, #USE FIXED 10, General Purpose 1/0

#use timer

Syntax:
#use timer (options)

Elements:
TIMER=x - Sets the timer to use as the tick timer. X is a valid timer that the PIC has. Default
value is 1 for Timer 1.

TICK=xx - Sets the desired time for 1 tick. xx can be used with ns(hanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't be
achieved it will set the time to closest achievable time and will generate a warning
specifying the exact tick time. The default value is 1us.

BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for returning
and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits or 32 for 32bits. The
default is 32 for 32 bits.

pco] BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for 32bits or
64 for 64 bits. The default is 32 for 32 bits.

ISR - Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.

206

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

NOISR - The get_ticks() function increments the upper bits of the tick timer. This requires that
the get_ticks() function be called more often then the timer's overflow rate. NOISR is
the default mode of operation.

STREAM=id - Associates a stream identifier with the tick timer. The identifier may be used in
functions like get_ticks().

DEFINE=id - Creates a define named id which specifies the number of ticks that will occur in
one second. Default define name if not specified is TICKS_PER_SECOND. Define
name must start with an ASCII letter 'A' to 'Z', an ASCI! letter 'a' to 'z' or an ASCII
underscore ().

COUNTER or COUNTER=x - Sets up specified timer as a counter instead of timer. x specifies
the prescallar to setup counter with, default is1 if x is not specified specified. The
function get_ticks() will return the current count and the function set_ticks() can be
used to set count to a specific starting value or to clear counter.

Description:

This directive creates a tick timer using one of the PIC's timers. The tick timer is initialized to
zero at program start. This directive also creates the define TICKS_PER_SECOND as a
floating point number, which specifies that number of ticks that will occur in one second.

Examples:
#USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

unsigned intlé tick difference (unsigned intl6 current, unsigned
intl6é previous) {

return (current - previous);

}

void main (void) {
unsigned intl6é current tick, previous tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

See Also:
get ticks(), set ticks()

207

CCS C Compiler
#use touchpad

Syntax:
#use touchpad (options)

Elements:

RANGE=x - Sets the oscillator charge/discharge current range. If x is L, current is nominally
0.1 microamps. If x is M, current is nominally 1.2 microamps. If X is H, current is nominally 18
microamps. Default value is H (18 microamps).

THRESHOLD=x - x is a number between 1-100 and represents the percent reduction in the
nominal frequency that will generate a valid key press in software. Default value is 6%.

SCANTIME=xxXMS - xx is the number of milliseconds used by the microprocessor to scan for
one key press. If utilizing multiple touch pads, each pad will use xx milliseconds to scan for one
key press. Default is 32ms.

PIN=char - If a valid key press is determined on “PIN”, the software will return the character
“char” in the function touchpad_getc(). (Example: PIN_B0O='A’)

SOURCETIME=xxus - (CTMU only) xx is the number of microseconds each pin is sampled
for by ADC during each scan time period. Default is 10us.

Description:

This directive will tell the compiler to initialize and activate the Capacitive Sensing Module
(CSM)or Charge Time Measurement Unit (CTMU) on the microcontroller. The compiler
requires use of the TIMERO and TIMER1 modules for CSM and Timerl ADC modules for
CTMU, and global interrupts must still be activated in the main program in order for the CSM or
CTMU to begin normal operation. For most applications, a higher RANGE, lower
THRESHOLD, and higher SCANTIME will result better key press detection. Multiple PIN's may
be declared in “options”, but they must be valid pins used by the CSM or CTMU. The user may
also generate a TIMERO ISR with TIMERQO's interrupt occuring every SCANTIME milliseconds.
In this case, the CSM's or CTMU's ISR will be executed first.

Examples:
#USE TOUCHPAD (THRESHOLD=5, PIN D5='5", PINiBOZ'C')
vold main (void) {
char c;
enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, c¢ will have 'S5’
See Also:

touchpad state(), touchpad getc(), touchpad hit()

208

PreProcessor

#warning

Syntax:
#warning text

Elements:
text - is optional and may be any text.

Description:

Forces the compiler to generate a warning at the location this directive appears in the file. The
text may include macros that will be expanded for the display. This may be used to see the
macro expansion. The command may also be used to alert the user to an invalid compile time
situation.

To prevent the warning from being counted as a warning, use this
syntax: #warning/information text

Example Files:
ex_psp.c

Examples:
#if BUFFER_SIZE<32
#warning Buffer Overflow may occur
#endif

See Also:
#ERROR

#word

Syntax:
#word id=x

Elements:
id - is a valid C identifier.

X - is a C variable or a constant
Description:
If the id is already known as a C variable then this will locate the variable at address x. In this

case the variable type does not change from the original definition. If the id is not known a new
C variable is created and placed at address x with the type int16

209

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Warning: In both cases memory at x is not exclusive to this variable. Other variables may be
located at the same location. In fact when x is a variable, then id and x share the same
memory location.

Examples:
#word data = 0x0800

struct {
int lowerByte : 8;
int upperByte : 8;
} control word;
#word control word = 0x85

control word.upperByte = 0x42;

[PCD]
#word data = 0x0860
struct {

short C;

short 7;

short 0OV;

short N;

short RA;

short IPLO;

short IPLL1;

short IPL2;

int upperByte : 8;
} status_register;

#word status register = 0x42
short zero = status register.Zz;
See Also:

#bit, #byte, #locate, #reserve, Named Reqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#zero local ram

Syntax:
#zero_local_ram

Elements:
None

210

PreProcessor

Description:

This directive causes the compiler to initialize all local variables with no initializer to zero every
time the function is invoked. Local variables with an initializer (= after the declaration) are not
affected.

Example Files:
None

Examples:
#zero local ram
void sample adc(void {

int raw _data[l-1]; // both raw data and
int sum; // sum zero'ed on each call
}
See Also:

#zero _ram, #fill rom, static

#zero_ram

Syntax:
#zero_ram

Elements:
None

Description:
This directive zero's out all of the internal registers that may be used to hold variables before
program execution begins.

Example Files:
ex_cust.c

Examples:
#zero ram

voild main () {

}

See Also:

211

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC
microcontroller's peripherals. This makes it very easy for the users to configure and use the
peripherals without going into in depth details of the registers associated with the functionality.
The functions categorized by the peripherals associated with them are listed on the next page.
Click on the function name to get a complete description and parameter and return value

descriptions.

abs

Syntax:
value = abs(x)

Parameters:
X is a signed 8, 16, or 32 bit int or a float
[PcD] X is any integer or float type.

Returns:
Same type as the parameter.

Function:
Computes the absolute value of a number.

Availability:
All devices

Requires:
#INCLUDE <stdlib.h>

Examples:
signed int target,actual;

error = abs(target-actual);

See Also:

labs()

sin() cos() tan() asin() acos() atan() sinh()

cosh() tanh()

atan2()

Syntax:

val = sin (rad)
val = cos (rad)
val = tan (rad)

Built-in Functions

rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters:

rad is a float representing an angle in Radians -2pi to 2pi.

reo] rad is any float type representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.

tpco] is any float type with the range -1.0 to 1.0.

Value is a float

rco] Value is any float type

Returns:
rad - is a float representing an angle in Radians -pi/2 to pi/2

val - is a float with the range -1.0 to 1.0.
radl - is a float representing an angle in Radians 0 to pi
rad?2 - is a float representing an angle in Radians -pi to pi

Result is a float
rreo] rad is a float with a precision equal to val representing an angle in Radians -pi/2 to pi/2

tpco] val is a float with a precision equal to rad within the range -1.0 to 1.0.
tpep] radl is a float with a precision equal to val representing an angle in Radians 0 to pi
tpco] rad2 is a float with a precision equal to val representing an angle in Radians -pi to pi

rco] Result is a float with a precision equal to value

Function:

These functions perform basic Trigonometric functions.
sin - returns the sine value of the parameter (measured in radians)
cos - returns the cosine value of the parameter (measured in radians)
tan - returns the tangent value of the parameter (measured in radians)
asin - returns the arc sine value in the range [-pi/2,+pi/2] radians
acos - returns the arc cosine value in the range [0,pi] radians
atan - returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan?2 - returns the arc tangent value of y/x in the range [-pi,+pi] radians
sinh - returns the hyperbolic sine of x
cosh - returns the hyperbolic cosine of x
tanh - returns the hyperbolic tangent of x

213

CCS C Compiler

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability:
All devices

Requires:
#INCLUDE <math.h>

Examples:
float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);;

Examples Files:
ex_tank.c

See Also:
lod(), log10(), exp(), pow(), sqrt()

act status()

Syntax:
status = act_status();

Parameters:

Returns:
Returns the status of the ACT module. See the device's header file for defines that can be
and'ed with result.

214

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
Used to get the status of the Active Clock Tuning (ACT) module.

Availability:
Devices with an ACT module. See the device's header file for availability.

Requires:

Examples:

unsigned int8 Status;

intl ClockLocked;

Status = act status();

if ((Status & ACT CLOCK LOCKED) == 0)
ClockLoced = FALSE;

else
ClockLocked = TRUE;

See Also:

setup_act()

adc _done()
adc2 done()

adc _done2()

Syntax:

value = adc_done();

pco] value = adc_done2();

tpco] value=adc_done([channel])

Parameters:

adc_done(); - Nothing required

irepp adc_done2(); - channel is an optional parameter for specifying the channel to
check if the conversion is done. If not specified will use channel specified in the last
call to set_adc_channel(), read_adc() or adc_done().

Returns:
A short int. TRUE if the A/D converter is done with conversion, FALSE if it is still busy.

Function:
Can be polled to determine if the A/D has valid data.

Availability:
Only available on devices with built in analog to digital converters
trco] Only available for dsPIC33EPxxGSxxx family.

215

CCS C Compiler

Requires:

Examples:
intl6 value;
setup adc ports (sANO|sAN1l, VSS VDD);
setup adc (ADC CLOCK DIV 4|ADC TAD MUL 8);
set adc_channel (0);
read adc (ADC_START ONLY) ;

intl done = adc done();
while (!done) {
done = adc_done() ;

}

value = read adc (ADC_READ ONLY) ;
printf (YA/C value = $LX\n\r”, value);
}

See Also:
setup _adc(), set_adc_channel(), setup _adc ports(), read adc(), ADC Overview

adc _read()

Syntax:
result=adc_read(register)

Parameters:

Register - ADC register to read:
e adc_result
e adc_accumulator
e adc_filter

Returns:
int8 or in16 read from the specified register. Return size depends on which register is being
read. For example, ADC_RESULT register is 16 bits and ADC_COUNT register is 8-bits.

Function:

Reads one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.
Availability:

All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

216

Built-in Functions

Examples:
FilteredResult=adc_ read (ADC_FILTER);

See Also:
ADC Overview, setup _adc(), setup _adc_ports(), set_adc_channel(), read adc(),
#DEVICE, adc_write(), adc_status(), set_adc _trigger()

adc_status()

Syntax:
status=adc_status()

Parameters:
Nothing required

Returns:
int8 value of the ADSTAT register

Function:
Read the current value of the ADSTAT register of the Analog-to-Digital Converter with
Computation (ADC2) Module.

Availability:
All devices with an ADC2 Module

Requires:

Examples:
while ((adc_status() & ADC UPDATING)==0) ;

Average=adc_read (ADC FILTER) ;
See Also:

ADC Overview, setup _adc(), setup_adc_ports(), set_adc_channel(), read adc(),
#DEVICE, adc _read(), adc write(), set _adc trigger()

217

CCS C Compiler
adc_write()

Syntax:
adc_write(register, value)

Parameters:
register - ADC register to write:

e ADC_REPEAT

e ADC_SET_POINT

e ADC_LOWER_THRESHOLD
e ADC_UPPER_THRESHOLD

Returns:
Undefined

Function:
Write one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.

Availability:
All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
adc_write (ADC_SET POINT, 300);

See Also:
ADC Overview, setup _adc(), setup_adc_ports(), set _adc _channel(), read adc(),
#DEVICE, adc_read(), adc_status(), set _adc_trigger()

assert()

Syntax:
assert (condition);

Parameters:
condition is any relational expression

Returns:

Function:
This function tests the condition and if FALSE will generate an error message on STDERR (by
default the first USE RS232 in the program). The error message will include the file and line of

218

Built-in Functions

the assert(). No code is generated for the assert() if you #define NODEBUG. In this way you
may include asserts in your code for testing and quickly eliminate them from the final program.

Availability:
All Devices

Requires:
assert.h and #USE RS232

Examples:
assert (number of entries<TABLE SIZE);

// If number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

See Also:
#USE RS232, RS232 1/0O Overview

atoe()

Syntax:
atoe(string);

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number

Function:

Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined. This function also handles E format
numbers.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float32 x;

strcpy (string, "12E3");
219

CCS C Compiler

x = atoe(string);
// x is now 12000.00

See Also:
atoi(), atol(), atoi32(), atof(), printf()

atof()
atof48()
atof64()
strtof48()

Syntax:

result = atof (string)
[PCD] Or

result = atof48(string)
or
result=atof64(string)
or
result-strtof48(string))

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number
rco] Result is a floating point number in single, extended or double precision format

Function:
Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float x;

strcpy (string, "123.456");

x = atof (string);
// x is now 123.456

220

Built-in Functions

Example Files:
ex_tank.c

See Also:
atoi(), atol(), atoi32(), printf()

atoi()

atol

atoi32()
atol32()
atoi48()
atoi64()

Syntax:

ivalue = atoi(string)

ivalue = atol(string)

i32value = atoi32(string)
i32value = atol32(string)

[pco] i48value = atoi48(string);
[pco] i64value = atoi64(string);

Parameters:
string - is a pointer to a null terminated string of characters.

Returns:

ivalue is an 8 bit int

ivalue is a 16 bit int
i32value is a 32 bit int

pco] i48value is a 48 bit int
(pco] i64value is a 64 bit int

Function:
Converts the string passed to the function into an int representation. Accepts both decimal
and hexadecimal argument. If the result cannot be represented, the behavior is undefined.

Availability:
All devices

Requires:
#INCLUDE<stdlib.h>

Examples:
char string[10];
int x;

221

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

strcpy (string, "123");
x = atoi(string); // X 1s now 123

Example Files:
input.c

See Also:

printf()

at clear interrupts()

Syntax:
at_clear_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants are
defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

Function:

To disable the Angular Timer interrupt flags. More than one interrupt can be cleared at a time
by or'ing multiple constants together in a single call, or calling function multiple times for each
interrupt to clear.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
#INT-AT1
voidl isr(void) {
if (at_interrupt active (AT PERIOD INTERRUPT))
{

handle period interrupt();
222

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

at clear interrupts (AT PERIOD INTERRUPT) ;

}
if (at_interrupt (active (AT _PHASE INTERRUPT) ;

{
handle phase interrupt();
at_clear_interrupts(AT_PHASE_INTERRUPT);

}

See Also:

at_set resolution(), at get resolution(), at_set missing_pulse delay(),
at_get missing pulse delay(), at _get period(), at get phase counter(),
at_set set point(), at get set point(), at get set point error(),
at_enable interrupts(), at disable interrupts(), at_interrupt active(),

at setup cc(), at set compare time(), at get capture(), at get status(),

setup_at()

at disable interrupts()

Syntax:
at_disable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants are
defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CCI1_INTERRUPT

Returns:

Function:

To disable the Angular Timer interrupts. More than one interrupt can be disabled at a time by
or'ing multiple constants together in a single call, or calling function multiple times for eadch
interrupt to be disabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file
223

CCS C Compiler

Examples:
at disable interrupts (AT PHASE INTERRUPT) ;
at disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT) ;

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),
at_get_missing_pulse_delay(), at_get period(), at _get phase counter(),
at_set set point(), at get set point(), at get set point error(),
at_enable interrupts(), at clear interrupts(), at interrupt active(),
at_setup cc(), at set compare time(), at get capture(), at get status(),

setup_at()

at_enable interrupts()

Syntax:
at_enable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to enable. The constants are
defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

Function:

To enable the Angular Timer interrupts. More than one interrupt can be enabled at a time by
or'ing multiple constants together in a single call, or calling function multiple times for each
interrupt to be enabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at _enable interrupts (AT _PHASE INTERRUPT) ;
at enable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);

224

Built-in Functions

See Also:

setup _at (), at set resolution(), at _get resolution(),

at set missing pulse delay(), at get missing pulse delay (),
at get phase counter(), at _set set point(),

at get set point(), at get set point(),

at get set point error(), at disable interrupts(),

at clear interrupts(), at interrupt active(), at_setup cc(),
at set compare time (), at get capture(), at get status()

at get capture()

Syntax:
result=at_get_capture(which);;

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to get the capture time
from, can be 1, 2 or 3.

Returns:
A 16-bit integer

Function:
To get one of the Angular Timer Capture/Compare modules capture time.

Availability:
All Devices with an AT module

Requires:

Examples:
resultl=at get capture(l);
result2=at get capture(2);

See Also:

setup _at (), at set resolution(), at _get resolution(),

at set missing pulse delay (), at get missing pulse delay (),
at get phase counter(), at set set point(),

at get set point (), at get set point(),

at get set point error (), at enable interrupts(),

at disable interrupts(), at clear interrupts(),

at _interrupt active(), at setup cc(), at_set compare time(),
at get status()

225

CCS C Compiler
at_get missing pulse delay()

Syntax:
result=at_get_missing_pulse_delay();

Parameters:

Returns:
A 16-bit integer

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get missing pulse delay();

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get period(), at_ get phase counter(), at set set point(), at_get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare_time(),
at_get capture(), at_get status(), setup_at()

at get period()

Syntax:
result=at_get_period();

Parameters:

Returns:
A 16-bit integer. The MSB of the returned value specifies whether the period counter rolled
over one or more times. 1 - counter rolled over at least once, O - value returned is valid.

226

Built-in Functions

Function:
To get one of the Angular Timer Measure Period.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get period();

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),
at_get missing pulse delay(), at get phase counter(), at set set point(),
at_get set point(), at get set point error(), at enable_interrupts(),
at_disable interrupts(), at clear interrupts(), at_interrupt active(),

at_setup cc(), at set compare time(), at get capture(), at get status(),

setup_at()

at get phase counter()

Syntax:
result=at_get_phase_counter();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Phase Counter.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get phase counter();

227

CCS C Compiler
See Also:
at_set resolution(), at get resolution(), at set missing pulse delay(),
at_get missing pulse delay(), at get period(), at set set point(),
at get set point(), at get set point error(), at enable interrupts(),
at_disable interrupts(), at clear interrupts(), at_interrupt active(),
at setup cc(), at set compare time(), at get capture(), at get status(),

setup_at()

at get resolution()

Syntax:
result=at_get_resolution();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Resolution.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get resolution();

See Also:

at_set _resolution(), at_set_missing_pulse delay(), at_get missing pulse delay(),
at_get period(), at_get phase counter(), at_set set point(), at get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare _time(),
at_get capture(), at_get status(), setup at()

at get set point()

Syntax:
result=at_get_set_point();

228

Built-in Functions

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Set Point.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get set point();

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at_get phase counter(),

at_set _set point(), at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_set compare _time(), at_get capture(), at_get status(), setup_at()

at get set point error()

Syntax:
result=at_get_set_point_error();

Parameters:

Returns:
A 16-bit integer.

Function:

To get one of the Angular Timer Set Point Error, the error of the measured period value
compared to the threshold setting.

Availability:

All Devices with an AT module

229

CCS C Compiler
Requires:

Examples:
result=at get set point error();

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at_set set point(), at get set point(), at enable interrupts(), at disable interrupts(),
at_clear interrupts(), at_interrupt_active(), at setup cc(), at_set compare _time(),
at_get capture(), at_get status(), setup at()

at get status()

Syntax:
result=at_get_status();

Parameters:

Returns:

An 8-bit integer. The possible results are defined in the device's header file as:
AT_STATUS_PERIOD_AND_PHASE_VALID
AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function:
To get one of the Angular Timer module.

Availability:
All Devices with an AT module

Requires:

Examples:
if ((at_get status()&AT STATUS PERIOD AND PHASE VALID)==
AT STATUS PERIOD AND PHASE VALID
{
Period=at get period();
Phase=at get phase();

230

Built-in Functions

See Also:

at_set resolution(), at_get resolution(), at set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set point_error(), at_enable _interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup _cc(),
at_set _compare_time(), at_get capture(), setup_at()

at_interrupt active()

Syntax:
result=at_interrupt_active(interrupt);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to check if its flag is set. The
constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT _CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:
TRUE if the specified AT interrupt's flag is set, interrupt is active, or FALSE if the flag is clear,
interrupt is not active.

Function:
To check if the specified Angular Timer interrupt flag is set.

Availability:
All Devices with an AT module

Requires:

Examples:
#INT-AT1
voidl isr(void)
{
if (at_interrupt active (AT PERIOD INTERRUPT))
{
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;
}
if (at_interrupt (active (AT PHASE INTERRUPT) ;

231

CCS C Compiler

{
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT);

}

See Also:

at_set resolution(), at_get resolution(), at set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at _set set point(), at get set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_setup cc(), at_set compare_time(),
at_get capture(), at_get status(), setup_at()

at set compare time()

Syntax:
at_set_compare_time(which, compare_time);

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to set the compare
time for, can be 1, 2, or 3.

compare_time - a 16-bit constant or variable specifying the value to trigger an interrupt/ouput
pulse.

Returns:

Function:
To set one of the Angular Timer Capture/Compare module's compare time.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at set compare time (1,0x1FF);
at set compare time (3,compare time);}

See Also:

at_set resolution(), at_get resolution(), at set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set point_error(), at_enable _interrupts(),

232

Built-in Functions

at_disable interrupts(), at clear interrupts(), at_interrupt _active(), at_setup cc(),
at_get capture(), at_get status(), setup at()

at_set _missing pulse delay()

Syntax:
at_set_missing_pulse_delay(pulse_delay);

Parameters:
pulse_delay - a signed 16-bit constant or variable to set the missing pulse delay.

Returns:

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
at set missing pulse delay(pulse delay);

See Also:

at_set resolution(), at_get resolution(), at_get _missing_pulse delay(),

at_get period(), at_get phase counter(), at_set _set point(), at get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare _time(),
at_get capture(), at_get status(), setup_at()

at set resolution()

Syntax:
at_set_resolution(resolution);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

Returns:

233

CCS C Compiler

Function:
To setup the Angular Timer Resolution

Availability:
All Devices with an AT module

Requires:

Examples:
at _set resolution(resolution);

See Also:

at_get resolution(), at_set _missing_pulse delay(), at get missing pulse delay(),
at_get period(), at get phase counter(), at set set point(), at get set point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at set compare _time(),
at_get capture(), at_get status(), setup at()

at set set point()

Syntax:
at_set_set_point(set_point);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

Returns:

Function:
To setup the Angular Timer Set Point

Availability:
All Devices with an AT module

Requires:

Examples:
at set set point(set point);

234

Built-in Functions

See Also:

at_set resolution(), at_get resolution(), at set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at_get set point(), at_get_set_point_error(), at_enable _interrupts(),

at_disable interrupts(), at clear interrupts(), at_interrupt active(), at_setup cc(),
at_set compare_time(), at_get capture(), at_get_status(), setup_at()

at setup cc()

Syntax:
at_setup_cc(which, settings);

Parameters:
which - an 8-hit constant specifying which AT Capture/Compare to setup, can be 1, 2 or 3.

settings - a 16-bit constant specifying how to setup the specified AT Capture/Compare
module. See the device's header file for all options. Some of the typical options include:

AT_CC_ENABLED

AT_CC_DISABLED

AT_CC_CAPTURE_MODE

AT_CC_COMPARE_MODE

AT_CAPTURE_FALLING_EDGE

AT_CAPTURE_RISING_EDGE

Returns:

Function:
To setup one of the Angular Timer Capture/Compare modules to the specified settings.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:

at_setup cc(l,AT CC ENABLED|AT CC CAPTURE MODE |
AT CAPTURE FALLING EDGE|AT CAPTURE INPUT ATCAP);

at setup cc(2,AT CC_ENABLED|AT CC_CAPTURE MODE |
AT CC_ACTIVE HIGH);

235

CCS C Compiler

See Also:

at_set resolution(), at_get resolution(), at set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at _set set point(), at get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear interrupts(), at_interrupt _active(),

at_set compare_time(), at_get capture(), at_get_status(), setup_at()

bit clear()

Syntax:
bit_clear(var, bit)

Parameters:
var may be a any bit variable (any Ivalue)
bit is a number 0- 31 63 representing a bit number, 0 is the least significant bit.

Returns:
Undefined

Function:
Simply clears the specified bit (0-7, 0-15 or 0-31) in the given variable. The least significant bit
is 0. This function is the similar to: var &= ~(1<<bit);

Availability:
All Devices

Requires:

Examples:
int x;
x=5;
bit clear(x,2); // x is now 1

Example Files:
ex_patg.c

See Also:
bit_set(), bit_test()

bit first()

Syntax:
N = bit_first (value, var)

236

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
value is a 0 to 1 to be shifted in
var is a 16 bit integer

Returns:
An 8-bit integer

Function:
This function sets N to the 0 based position of the first occurrence of value. The search starts
from the right or least significant bit.

Availability:
24-bit Devices (PIC24, 30F/33F)

Requires:

Examples:
intle var = 0x0033;
Int8 N = 0;
// N =2
N = bit first (0, wvar);

See Also:
shift_right(), shift_left(), rotate right(), rotate left()

bit last()

Syntax:
N = bit_last (value, var)
N = bit_last(var)

Parameters:
value is a 0 to 1 to search for
var is a 16 bit integer

Returns:
An 8-bit integer

Function:

The first function will find the first occurrence of value in the var starting with the most
significant bit.

The second function will note the most significant bit of var and then search for the first
different bit.

Both functions return a 0 based result.

237

CCS C Compiler

Availability:
24-bit Devices (PI1C24, 30F/33F)

Requires:

Examples:
//Bit pattern 11101110 11111111
Intl6 var = OxXEEFF;
Int8 N = 0; //N is assigned 12
N = bit last (0, var); //N is assigned 12
N = bit last (var)

See Also:
shift_right(), shift_left(), rotate right(), rotate left()

bit set()

Syntax:
bit_set(var, bit)

Parameters:
var may be any variable (any Ivalue)
bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Undefined

Function:

Sets the specified bit in the given variable. The least significant bit is 0.
This function is the similar to: var |= (1<<bit);

For example, for a 16-bit variable, the bit number may be 0-15,

Availability:
All Devices

Requires:

Examples:
int x;
x=5;
bit set(x,3); // x is now 13

238

Built-in Functions

Example Files:
ex_patg.c

See Also:
bit_clear(), bit_test()

bit test()

Syntax:
value = bit_test (var, bit)

Parameters:
var may be any variable (any Ivalue)
bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Oorl

Function:

Tests the specified bit in the given variable. The least significant bit is 0.

This function is more efficient than, but otherwise similar to ((var & (1<<bit)) != 0)
For example, for a 16-bit variable, the bit number may be 0-15,

Availability
All Devices
Requires:
Examples:
if(bit test(x,3) || !bit test (x,1)){ //either bit 3 is 1
//or bit 1 is 0
}
if (data!=0)
for (i=31; !bit test(data, i);i--) ; // 1 now has the
most
//significant bit in
data
// that is set to a
1

Example Files:
ex_patqg.c

239

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:
bit_clear(), bit_set()

brownout enable()

Syntax:
brownout_enable (value)

Parameters:
value — TRUE or FALSE

Returns:
Undefined

Function:
Enable or disable the software controlled brownout. Brownout will cause the PIC to reset if the
power voltage goes below a specific set-point.

Availability:
This function is only available on devices with a software controlled brownout. This may also
require a specific configuration bit/fuse to be set for the brownout to be software controlled.

Requires:

Examples:
brownout enable (TRUE) ;

See Also:

restart _cause()

bsearch()

Syntax:
ip = bsearch (&key, base, num, width, compare)

Parameters:

key - Object to search for

base - Pointer to array of search data

num - Number of elements in search data

width - Width of elements in search data

compare - Function that compares two elements in search data

240

Built-in Functions

Returns:

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key is not
found, the function returns NULL. If the array is not in order or contains duplicate records with
identical keys, the result is unpredictable.

Function:
Performs a binary search of a sorted array.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int nums[5]1={1,2,3,4,5};
int compar (const void *argl,const void *arg2);

void main () {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof (int), compar);
}
int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

See Also:

gsort()

calloc()

Syntax:
ptr=calloc(nmem, size)

Parameters:
nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns:
A pointer to the allocated memory, if any. Returns null otherwise.

241

CCS C Compiler

Function:

The calloc function allocates space for an array of nmem objects whose size is specified by
size.

The space is initialized to all bits zero.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int * iptr;
iptr=calloc(5,10); // iptr will point to a block of memory
of
// 50 bytes all initialized to O

See Also:
realloc(), free(), malloc()

ceil()

Syntax:
result = ceil (value)

Parameters:
value is a float
pco] value is any float type

Returns:
A float
treo] A float with precision equal to value

Function:

The calloc function allocates space for an array of nmem objects whose size is specified by
size.

The space is initialized to all bits zero.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
// Calculate cost
based

242

Built-in Functions

//on weight rounded
up to the next pound
cost = ceil(weight) * DollarsPerPound

See Also:
floor

clcl setup gate()
clc2 setup gate()
clc3 setup gate()
clc4 setup gate()

Syntax:

clcl_setup_gate(gate, mode);
clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);

Parameters:
gate — selects which data gate of the Configurable Logic Cell (CLC) module to setup, value
can be 1to 4.
mode — the mode to setup the specified data gate of the CLC module into. The options are:
clc_gate_and
clc_gate_nand
clc_gate_nor
clc_gate_or
clc_gate_clear
clc_gate_set

Returns:
Undefined
[rcol Undefined with precision equal to value

Function:
Sets the logic function performed on the inputs for the specified data gate.

Availability
Devices with a CLC module

Requires:
Undefined

Examples:
clcl setup gate(l, CLC GATE AND);
clcl setup gate(2, CLC GATE NAND) ;

243

CCS C Compiler

clcl setup gate (3, CLC GATE CLEAR);
clcl setup gate (4, CLC _GATE SET);

See Also:
setup_clex(), clex_setup _input()

clcl setup input() clc2 setup input() clc3 setup input()
clc4 setup input()

Syntax:

clcl_setup_input(input, selection);
clc2_setup_input(input, selection);
clc3_setup_input(input, selection);
clc4_setup_input(input, selection);

Parameters:
input — selects which input of the Configurable Logic Cell (CLC) module to setup, value can be
1to 4.

selection — the actual input for the specified input that is actually connected to the data gates
of the CLC module. The options are:

clc_input_0

clc_input_1

clc_input_2

clc_input_3

clc_input_4

clc_input_5

clc_input_6

clc_input_7

Returns:
Undefined

Function:

Sets the input for the specified input number that is actually connected to all four data gates of
the CLC module. Please refer to the table CLCx DATA INPUT SELECTION in the device's
datasheet to determine which of the above selections corresponds to actual input pin or
peripheral of the device.

Availability:
Devices with a CLC module

Requires:
Undefined

244

Built-in Functions

Examples:
clcl setup input(l, CLC_INPUT O0);
clcl setup input (2, CLC_INPUT 1);
(3)
(4)

’

clcl setup input (3, CLC_ INPUT 2
clcl setup input (4, CLC_ INPUT 3

’

See Also:
setup_clex(), clex_setup gate()

clear interrupt()

Syntax:
clear_interrupt(level)

Parameters:
level - a constant defined in the devices.h file

Returns:
Undefined

Function:

Clears the interrupt flag for the given level. This function is designed for use with a specific
interrupt, thus eliminating the GLOBAL level as a possible parameter. Some chips that have
interrupt on change for individual pins allow the pin to be specified like INT_RAL.

Availability:
All Devices

Requires:

Examples:
clear interrupt (int timerl);

See Also:
enable_interrupts() , enable_interrupts , #INT , #INT , Interrupts Overview
disable_interrupts(), interrupt _actvie()

245

CCS C Compiler

clear pwm1 interrupt() clear pwm?2 interrupt() clear pwm3 interrupt(
) clear pwm4 interrupt() clear pwm5 interrupt()
clear pwm6 interrupt()

Syntax:

clear_pwml_interrupt (interrupt)
clear_pwm2_interrupt (interrupt)
clear_pwm3_interrupt (interrupt)
clear_pwm4_interrupt (interrupt)
clear_pwmb5_interrupt (interrupt)
clear_pwmé6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file as:
pwm_period_interrupt
pwm_duty_interrupt
pwm_phase_interrupt
pwm_offset_interrupt

Returns:
Undefined

Function:
Clears one of the above PWM interrupts, multiple interrupts can be cleared by or'ing multiple
options together.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
clear pwml interrupt (PWM PERIOD INTERRUPT) ;
clear pwml interrupt (PWM PERIOD INTERRUPT |
PWM_DUTY_INTERRUPT)

See Also:

setup_pwm(), set pwm_duty(), set pwm phase(), set pwm_period(),
set pwm_offset(), enable pwm interrupt(), disable pwm interrupt(),
pwm_interrupt active()

246

Built-in Functions
cog _restart
coqg2 restart()
cog3 restart()
coqg4 restart()

Syntax:
cog_restart();
cog2_restart();
cog3_restart();
cog4_restart();

Parameters:

Function:
To restart the Complementary Output Generator (COG) module after an auto-shutdown event
occurs, when not using auto-restart option of module.

Availability:
Devices with a COG module

Requires:

Examples:
if (cog_status () ==COG_AUTO_SHUTDOWN)
cog_restart();

See Also:
setup _cog(), set coq dead band(), set cog blanking(), set cog phase(),

cog_status()

cog status()

cog?2 status()
cog3 status()
cog4 status()

Syntax:
value=cog_status();

247

CCS C Compiler

value=cog2_status();
value=cog3_status();
value=cog4_status();

Parameters:

Returns:
value - the status of the COG module

Function:
To determine if a shutdown event occurred on the Complementary Output Generator (COG)
module.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
if (cog_status () ==COG_AUTO_SHUTDOWN)
cog_restart();

See Also:
setup _cog(), set coq dead band(), set cog blanking(), set cog phase(),
cog_restart

crc_calc(mode)

Syntax:

Result = crc_calc (data,[width]);

Result = crc_calc(ptr,len,[width]);

Result = crc_calc8(data,[width]);

Result = crc_calc8(ptr,len,[width]);

Result = crc_calcl6(data,[width]); //lsame as crc_calc()
Result = crc_calc16(ptr,len,[width]); /lsame as crc_calc()
peo] Result = crc_calc32(data,[width]);

peo] Result = crc_cale32(ptr,len,[width]);

Parameters:

data- This is one double word, word or byte that needs to be processed when using
crc_calc16()
crc_calc8()
[pco] crc_calc32()

248

Built-in Functions
ptr- is a pointer to one or more double words, words or bytes of data

len- number of double words, words or bytes to process for function calls
crc_calc16()
crc_calc8()
tpco] crc_calc32()

width- optional parameter used to specify the input data bit width to use with the functions
crc_calcl6()
crc_calc8()
[pco] crc_calc32()

If not specified, it defaults to the width of the return value of the function
8-bit for crc_calc8()
16-bit for crc_calc16()
[pco] 32-bit for crc_cale32()

Returns:
Returns the result of the final CRC calculation.

Function:

Calculates the CRC of the passed data using the CRC engine. The function that should be
used to do the calculation depends on the CRC polynomial used. For polynomials less than or
equal 8 bits, crc_calc8() should be used. For polynomials greater than 8 bits, crc_calc16()
should be used. Data widths less than or equal to 16 bits are supported.

rco] Calculates the CRC of the passed data using the CRC engine. The crc_calc32() function
is only available for device with a 32 bit CRC peripheral. The function that should be used to
do the calculation depends on the CRC polynomial used. For polynomials less than or equal
to 8 bits, crc_calc8() should be used. For polynomials greater than 8 bits and less than or
equal to 16 bits, crc_calc16() should be used. For polynomials greater than 16 bits,
crc_calc32() should be used. For devices with a 32 bit CRC peripheral, data widths less than
or equal to 32 bits are supported, and for device with a 16 bit CRC peripheral data widths less
than or equal to 16 bits are supported.

Availability:
Only Devices with a built-in CRC module

Requires:

Examples:
intl6 datal[8];
Result = crc calc(data,8);

Example Files:
ex_crc_hw.c

249

CCS C Compiler

See Also:
setup_crc(); crc_init()

crc init(mode)

Syntax:
crc_init (data);

Parameters:
data- This will setup the initial value used by write CRC shift register. Most commonly, this
register is set to 0x0000 for start of a new CRC calculation.

Returns:
Undefined

Function:
Configures the CRCWDAT register with the initial value used for CRC calculations.

Availability:
Only Devices with a built-in CRC module
Requires:
Examples:
crc_init (); // Starts the CRC accumulator out at 0

crc_init (OXFEEE); // Starts the CRC accumulator out at OxFEEE

See Also:
setup_crc(), crc_calc(), crc_calc8()

crc_read()

Syntax:
value = read();

Parameters:

Returns:
A 16-bit integer.

250

Built-in Functions

Function:
Returns the current CRC Accumulator value.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

Examples:

intlé value;
value = crc_read();

See Also:
setup _crc(), crc_init(), crc_calc(), crc_write()

crc_write()

Syntax:
crc_write(data, [data_width]));

Parameters:
data is the 16 bit value to write
data_width is an optional parameter used to specify the width of the input data.

Returns:
Undefined

Function:
Used to write data into the CRC data registers.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

Examples:

crc_write(data);

251

CCS C Compiler

See Also:
setup_crc(), crc_init(), crc_calc(), crc_read()

cwg restart()

cwg?2 restart()
cwqg3 restart()

Syntax:
cwg_restart();
cwg2_restart();
cwg3_restart();

Parameters:

Function:
To restart the CWG module after an auto-shutdown event occurs, when not using auto-raster
option of module.

Availability:
Devices with a CWG module

Requires:

Examples:
if (cwg_status() == CWG_AUTO SHUTDOWN)
cwg_restart();

See Also:
setup_cwq(), cwg_status()

cwg status()

cwg?2 status()
cwg3 status()

Syntax:
value = cwg_status();
value = cwg2_status();

252

Built-in Functions
value = cwg3_status();

Parameters:

Returns:
The status of the CWG module

Function:
To determine if a shutdown event occurred causing the module to auto-shutdown.

Availability:
Devices with a CWG module

Requires:

Examples:
if(cwg _status() =
cwg_restart();

CWG_AUTO_SHUTDOWN)

See Also:
setup _cwg(), cwg_restart()

dac_write()

Syntax:

dac_write (value);

dac_write2 (value);
dac_write3(value);
dac_write4(value);
dac_write5(value);
dac_write6(value);
dac_write7(value);
dac_write8(value);

rco] dac_write (channel, value);
pco] dac_write (module, value);

Parameters:
value - 8-bit or 16-bit integer value to be written to the DAC module
rco] channel - 16-bit integer value to be written to the DAC module channel: Channel to be
written to. Constants are:
DAC_RIGHT
DAC_DEFAULT
DAC_LEFT
ipeco] module - DAC module to write value to.

253

CCS C Compiler

Returns:

Function:
This function will write a 8-bit or 16-bit integer to the specified DAC module.

Availability:
Devices with an analog-to-digital converter (DAC).

Requires:

Examples:
dac_write (20);

[PCD]
dac_write (DAC_RIGHT, 500);
dac write(l, DacValue);

See Also:
setup_dac(), DAC Overview, See header file for device selected

dci data received()

Syntax:
dci_data_received()

Parameters:

Returns:
An intl. Returns true if the DCI module has received data.

Function:
Use this function to poll the receive buffers. It acts as a kbhit() function for DCI.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{

if (dci data received())
254

Built-in Functions

{ //read data, load buffers,
etc..

}

See Also:
DCI Overview, setup _dci(), dci_start(), dci_write(), dci_read(), dci_transmit_ready()

dci_read()

Syntax:
dci_read(left_ channel, right_ channel);

Parameters:

left_channel- A pointer to a signed int16 that will hold the incoming audio data for the left
channel (on a stereo system). This data is received on the bus before the right channel data
(for situations where left & right channel does have meaning)

right_channel- A pointer to a signed int16 that will hold the incoming audio data for the right
channel (on a stereo system). This data is received on the bus after the data in left channel.

Returns:
Undefined

Function:
Use this function to read two data words. Do not use this function with DMA. This function is
provided mainly for applications involving a stereo codec.

If your application does not use both channels but only receives on a slot (see setup_dci), use
only the left channel.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
dci read(&left channel, &right channel);
dci write(&left channel, &right channel);

255

CCS C Compiler

See Also:
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_transmit_ready(),
dci_data_received()

dci_start()

Syntax:
dci_start();

Parameters:

Returns:
Undefined

Function:

Starts the DCI module’s transmission. DCI operates in a continous transmission mode (unlike
other transmission protocols that transmit only when they have data). This function starts the
transmission. This function is primarily provided to use DCI in conjunction with DMA

Availability:
Devices with a DCI

Requires:

Examples
dci initialize((I2S MODE | DCI_MASTER |
DCI_CLOCK_OUTPUT | SAMPLE RISING EDGE |
UNDERFLOW_LAST |
MULTI DEVICE BUS),DCI_ 1WORD FRAME |
DCI 16BIT WORD | DCI 2WORD INTERRUPT,
RECEIVE SLOTO | RECEIVE SLOT1, TRANSMIT SLOTO |
TRANSMIT SLOT1, 6000);

dci_start()
See Also:

DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(),
dci_data_received()

dci transmit ready()

Syntax:
dci_transmit_ready()

256

Built-in Functions

Parameters:

Returns:
An intl. Returns true if the DCI module is ready to transmit (there is space open in the
hardware buffer)

Function:
Use this function to poll the transmit buffers

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
if (dci_transmit ready())
{ //transmit data, load
buffers, etc..
}
}

See Also:
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(), dci_data_received()

dci_write()

Syntax:
dci_write(left_channel, right_channel);

Parameters:

left channel - A pointer to a signed int16 that holds the outgoing audio data for the left channel
(on a stereo system). This data is transmitted on the bus before the right channel data (for
situations where left & right channel does have meaning)

right channel - A pointer to a signed int16 that holds the outgoing audio data for the right
channel (on a stereo system). This data is transmitted on the bus after the data in left channel.

Returns:
Undefined

257

CCS C Compiler

Function:
Use this function to transmit two data words. Do not use this function with DMA. This function
is provided mainly for applications involving a stereo codec.

If the application does not use both channels but only transmits on a slot (see setup_dci()), use
only the left channel. If transmit more than two slots, call this function multiple times.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
dci read(&left channel, &right channel);
dci write(&left channel, &right channel)

See Also:
DCI Overview, setup_dci(), dci_start(), dci_read(), dci_transmit_ready(),
dci_data_received()

delay cycles()

Syntax:
delay_cycles (count)

Parameters:
count - a constant 1-255

Returns:
Undefined

Function:
Creates code to perform a delay of the specified number of instruction clocks (1-255). An
instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:

Built-in Functions

Examples:
delay cycles(1); // Same as a NOP
delay cycles(25); // At 20 mhz a 5us delay

Example Files:
ex_cust.c

See Also:
delay us(), delay ms()

delay ms()

Syntax:
delay_ms (time)

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

This function will create code to perform a delay of the specified length. Time is specified in
milliseconds. This function works by executing a precise number of instructions to cause the
requested delay. It does not use any timers. If interrupts are enabled the time spent in an
interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay (clock=20000000)
delay ms(2);

void delay seconds (int n) {
259

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
for (;n!=0; n- -)
delay ms(1000);
}

Example Files:
ex_sqw.c

See Also:
delay us(), delay cycles(), #USE DELAY

delay us()

Syntax:
delay_us (time)

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

Creates code to perform a delay of the specified length. Time is specified in

microseconds. Shorter delays will be INLINE code and longer delays and variable delays are
calls to a function. This function works by executing a precise number of instructions to cause
the requested delay. It does not use any timers. If interrupts are enabled the time spent in an
interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the delay. The
time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay(clock=20000000)

do {

output high (PIN BO);

delay us(duty);

output low (PIN BO);
260

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

delay us(period-duty);
} while (TRUE) ;

Example Files:
ex_sgw.c

See Also:
delay ms(), delay cycles(), #USE DELAY

disable interrupts()

Syntax:

disable_interrupts (level)

pco] disable_interrupts (name)

treoy disable_interrupts (INTR_XX)
rpco] disable_interrupts (expression)

Parameters:
level - a constant defined in the devices .h file

(pco] name - a constant defined in the devices .h file

reo] INTR_XX — Allows user selectable interrupt options like intr_normal, intr_alternate,
intr_level

[PCD] €Xpression — A non-constant expression

Returns:
Undefined
rreo) When intr_levelx is used as a parameter, this function will return the previous level.

Function:

Disables the interrupt at the given level. The GLOBAL level will not disable any of the specific
interrupts but will prevent any of the specific interrupts, previously enabled to be active. Valid
specific levels are the same as are used in #INT_xxx and are listed in the devices .h

file. GLOBAL will also disable the peripheral interrupts on devices that have it.

Note that it is not necessary to disable interrupts inside an interrupt service routine since
interrupts are automatically disabled. Some chips that have interrupt on change for individual
pins allow the pin to be specified like INT_RA1.

[PCD]
Disables the interrupt for the given name. Valid specific names are the same as are used in

#INT_xxx and are listed in the devices .h file. Note that it is not necessary to disable interrupts
inside an interrupt service routine since interrupts are automatically disabled.

intr_glogal — Disables all interrupts that can be disabled

261

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
intr_normal — Use normal vectors for the ISR

intr_alternate — Use alternate vectors for the ISR

intr_levelO / intr_level7 — Disables interrupts at this level and below, enables interrupts above
this level

intr_cn_pin|pin_xx — Disables a CN pin interrupts
expression — Disables interrupts during evaluation of the expression.

Availability:
Some Devices (PCM and PCH) with interrupts and all 24-bit (PCD) devices.

Requires:
Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples:
disable interrupts (GLOBAL) ; // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

enable interrupts (ADC DONE) ;
enable interrupts (RB_CHANGE) ; // these enable the
interrupts

// but since the GLOBAL is
disabled they

// are not activated until
the following

// statement:
enable interrupts (GLOBAL) ;

Example Files:
ex_sisr.c, ex_stwt.c

See Also:
enable interrupts(), clear interrupt (), #INT xxxx, Interrupts Overview,
interrupt_active()

disable pwm1 interrupt() disable pwm?2 interrupt()
disable pwm3 interrupt() disable pwm4 interrupt()
disable pwm5 interrupt() disable pwm6 interrupt()

Syntax:
disable_pwm1_interrupt (interrupt)
disable_pwm2_interrupt (interrupt)

262

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

disable_pwm3_interrupt (interrupt)
disable_pwm4_interrupt (interrupt)
disable_pwmb5_interrupt (interrupt)
disable_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file as:
pwm_period_interrupt
pwm_duty_interrupt
pwm_phase_interrupt
pwm_offset_interrupt

Returns:
Undefined

Function:
Disables one of the above PWM interrupts, multiple interrupts can be disabled by or'ing
multiple options together.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
disable interrupts (GLOBAL) ; // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

enable interrupts (ADC_ DONE) ;
enable interrupts (RB_CHANGE) ; // these enable the
interrupts

// but since the GLOBAL is
disabled they

// are not activated until
the following

// statement:
enable_ interrupts (GLOBAL) ;

See Also:

setup_pwm(), set pwm_duty(), set pwm_phase(), set pwm_period(),
set_ pwm_offset(), enable pwm _interrupt(), clear pwm interrupt(),
pwm_interrupt active()

263

CCS C Compiler
div
Idiv

Syntax:
idiv=div(hum, denom)
Idiv =ldiv(Inum, Idenom)

Parameters:

num and denom are signed integers.

num is the numerator and denom is the denominator
Inum and Idenom are signed longs

rco] Inum and Idenom are signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator

Returns:

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function returns a
structure of type div_t, comprising of both the quotient and the remainder. The Idiv function
returns a structure of type Idiv_t, comprising of both the quotient and the remainder.

Function:

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function returns
a structure of type div_t, comprising of both the quotient and the remainder. The Idiv function
returns a structure of type Idiv_t, comprising of both the quotient and the remainder.

Availability:
All Devices

Requires:
#INCLUDE <STDLIB.H>

Examples:
div_t idiv;
ldiv_t lidiv;

idiv=div (3,2); //idiv will contain quot=1 and
rem=1
1idiv=1div (300,250) ; //1idiv will contain lidiv.quot=1

and lidiv.rem=5

See Also:

264

Built-in Functions

dma_start()

Syntax:

dma_start(channel, mode, destAddr, sourceAddr, destCount, sourceCount);
rco] dma_start(channel, mode, addressA, addressB, count);

rco] dma_start(channel, mode, destAddr, sourceAddr, count);

Parameters:
Channel - The DMA channel to use.

mode - The mode to use for the DMA transfers. Constants for setting the mode are defined in
the device's header file. See the header file for all possible options.

destAddr - The start RAM address of the destination address to use, can be anywhere in the
GPR or SFR memory areas.

sourceAddr - The start address of the source address to use, can be anywhere in RAM,
EEPROM or Flash program memory areas. The memory area of the address reads from is
determined by one of the settings that can be made with the mode parameter.

destCount - The number of bytes to transfer to the destination address.

sourceCount - The number of bytes to transfer from the source address for each DMA trigger.

ipco] addressA - The start RAM address of the buffer to use located within the DMA RAM
bank.

pco] addressB - If using DMA_PING_PONG mode the start RAM address of the second
buffer to use located within the DMA RAM bank.

pco] destAddr - The start RAM address of the destination address to use, located within the
DMA RAM bank. Address data is moved from.

pco] sourceAddr - The start RAM address of the source address to use, located within the
DMA RAM bank. Address data is moved to.

pco] count - The number of DMA transfers to do. For devices with Type 1 DMA peripheral,
this should be one less the actual number of transfers to do. For devices with Type 2 DMA
peripheral, this should be equal to the actual number of transfers to do.

Returns:
Void

Function:

Starts the DMA transfer for the specified channel in the specified mode of operation and
assigns the RAM addresses to use the DMA transfer.

265

CCS C Compiler
Availability:
Devices that have the DMA peripheral. The version of the function used depends on the type
of DMA peripheral it has. Use getenv("DMA") to determine the type the device has. (pco] It
will return O for no DMA peripheral, 1 for Type 1 and 2 for Type 2. For devices with Type 1
uses first version of the function and for devices with Type 2 uses second version of the
function.

Requires:

Examples:
dma_start(l, DMA SOURCE ADDR IS SFR GPR |
DMA SOURCE ADDR UNCHANGED |
DMA INC DEST ADDR | DMA HW TRIGGER STARTS XFER |
DMA CONTINUOUS,
RxBuffer, getenv ("SFR:UlRXB"), DMA BUFFER SIZE, 1);

[PCD]

dma start (0,DMA PING PONG|DMA CONTINUOUS, RxBuffer[O0],
RxBuffer[1], (DMA BUFFER SIZE-1)); //
Type 1

dma_start (0,DMA SOURCE ADDR UNCHANGED|DMA INC DEST ADDR]|
DMA REPEATED|DMA ONE SHOT,RxBuffer,getenv ("SFR:UIRXREG"),
DMA BUFFER SIZE); //
Type 2

Example Files:
ex_dma uart rx.c

See Also:
setup_dma(), dma_status()

dma_ status()

Syntax:
Value = dma_status(channel);

Parameters:
Channel — The channel in which the status is to be queried.

Returns:

The DMA channel's status. See the device header file for mask values that can be AND'ed
with return value.

266

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
This function will return the status of the specified channel in the DMA module.

Availability:
Devices that have the DMA module
Requires:
Examples:
Int8 value;
value = dma_status(3); // This will return the status of

channel 1 of the DMA module

See Also:
setup_dma(), dma_start()

enable interrupts()

Syntax:

enable_interrupts (level)

[Pco] enable_interrupts (name)
pco] enable_interrupts (INTR_XX)

Parameters:
level - is a constant defined in the devices *.h file

pcb] name- a constant defined in the devices .h file

pco] INTR_XX — Allows user selectable interrupt options like intr_normal, intr_alternate,
intr_level

Returns:
Undefined

Function:
This function enables the interrupt at the given level. An interrupt procedure should have been
defined for the indicated interrupt.

The GLOBAL level will not enable any of the specific interrupts, but will allow any of the
specified interrupts previously enabled to become active. Some chips that have an interrupt
on change for individual pins all the pin to be specified, such as INT_RA1. For interrupts that
use edge detection to trigger, it can be setup in the enable_interrupts() function without
making a separate call to the set_int_edge() function.

267

CCS C Compiler

Enabling interrupts does not clear the interrupt flag if there was a pending interrupt prior to the
call. Use the clear_interrupt() function to clear pending interrupts before the call to
enable_interrupts() to discard the prior interrupts.

[PCD]
name -Enables the interrupt for the given name. Valid specific names are the same as are
used in #INT_xxx and are listed in the devices .h file.

intr_global — Enables all interrupt levels (same as INTR_LEVELO)
intr_normal — Use normal vectors for the ISR
intr_alternate — Use alternate vectors for the ISR

intr_levelO.... intr_level7 — Enables interrupts at this level and above, interrupts at lower
levels are disabled

intr_cn_pin | pin_xx — Enables a CN pin interrupts

Availability:
Devices that have interrupts and all 24-bit devices.

Requires:
Should have a #INT_XXXX to define the ISR, and constants are defined in the devices *.h file.

Examples:
enable interrupts (GLOBAL) ;
enable interrupts (INT TIMERO) ;
enable interrupts(INT EXT H2L)

[PCD]

enable interrupts (INT TIMERO) ;

enable interrupts (INT TIMERI1);

enable interrupts (INTR CN PIN|Pin BO);

Example Files:
ex_sisr.c, ex_stwt.c

See Also:
disable interrupts(), clear interrupt (), ext int edge(), #INT xxxx, Interrupts
Overview, interrupt_active()

erase _program_memory()

Syntax:
erase_program_memory (address);

268

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Parameters:
address - is 32 bits. The least significant bits may be ignored.

Returns:
Undefined

Function:
Erases FLASH_ERASE_SIZE bytes to OXFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part.

Family FLASH ERASE SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)

NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program memory access.

Availability:
All Devices

Requires:

Examples:
Int32 address = 0x2000;

erase program memory (address) ; // erase block of
memory from 0x2000

// to 0x2400 for a
PIC24HJ/FJ /33FJ

//device, or erase
0x2000 to 0x2040

//for a dsPIC30F chip

See Also:
write program eeprom() , write program memory(), Program Eeprom Overview

269

CCS C Compiler
enable pwm1 interrupt()
enable pwm2 interrupt()
enable pwm3 interrupt()
enable pwm4 interrupt()
enable pwmb5 interrupt()
enable pwm6 interrupt()

Syntax:

enable_pwm1_interrupt (interrupt)
enable_pwm2_interrupt (interrupt)
enable_pwm3_interrupt (interrupt)
enable_pwm4_interrupt (interrupt)
enable_pwmb5_interrupt (interrupt)
enable_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file as:
PWM_PERIOD_INTERRUPT
PWM_DUTY_INTERRUPT
PWM_PHASE_INTERRUPT
PWM_OFFSET_INTERRUPT

Returns:

Function:

Enables one of the above PWM interrupts, multiple interrupts can be enabled by or'ing multiple
options together. For the interrupt to occur, the overall PWMx interrupt still needs to be
enabled and an interrupt service routine still needs to be created.

Availability:
Devices with a 16-bit PWM module.

Requires:

Examples:
enable pwml interrupt (PWM PERIOD INTERRUPT) ;
enable pwml interrupt (PWM PERIOD INTERRUPT |
PWM DUTY INTERRUPT) ;

270

Built-in Functions

See Also:

setup_pwm(), set pwm _duty(), set pwm_phase(), set pwm_period(),
set_ pwm_offset(), disable pwm interrupt(), clear pwm interrupt(),
pwm_interrupt active()

erase _eeprom()

Syntax:
erase_eeprom (address);

Parameters:
address is 8 bits on PCB parts

Returns:
Undefined

Function:
This will erase a row of the EEPROM or Flash Data Memory.

Availability:
PCB devices with EEPROM like the 12F519

Requires:

Examples:
erase_eeprom(0) ; // erase the first row of the EEPROM (8
bytes)

See Also:
write _eeprom(), read eeprom(), Data EEPROM Overview

erase _program_memory()

Syntax:
erase_program_eeprom (address);

Parameters:

address - is 16 on PCM parts and 32 bits on PCH parts. The least significant bits may be
ignored.

rco] address - is 32 bits. The least significant bits may be ignored.

271

CCS C Compiler
Returns:

Function:

Erases FLASH_ERASE_SIZE bytes to OxFFFF in program memory. FLASH_ERASE_SIZE
varies depending on the part. For example, if it is 64 bytes then the least significant 6 bits of
address is ignored.

rco] For example, if it is 128 bytes then the least significant 7 bits of address is ignored.

See write_program_memory() ;rco] EEPROM Overview for more information on program
memory access.

Availability:
Only devices that allow writes to program memory.

Requires:

Examples:
for (i=0x1000;i<=0x1fff;i+=getenv ("FLASH ERASE SIZE"))
erase program memory (i) ;

See Also:
write program eeprom(), write program memory(), Program Eeprom Overview

exp()

Syntax:
result = exp (value)

Parameters:
value is a float
pco] value is any float type

Returns:
A float
trco] A float with a precision equal to value

Function:
Computes the exponential function of the argument. This is e to the power of value where e is
the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

272

Built-in Functions

Range error occur in the following case: exp when the argument is too large

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
// Calculate x to the power of y
x_power y = exp(y * log(x));

See Also:
pow(), log(), l0g10()

ext int edge()

Syntax:
ext_int_edge (source, edge)

Parameters:

source is a constant 0,1 or 2 for the PIC18XXX and 0 otherwise.
[pco] source is a constant from O to 4.

Source is optional and defaults to 0.

edge is a constant H_TO_L or L_TO_H representing "high to low" and "low to high"
Returns:

Undefined

Function:

Determines when the external interrupt is acted upon. The edge may beL_TO_HorH_TO_L

to specify the rising or falling edge.

Availability:
Only devices with interrupts

Requires:
Constants are in the devices .h file

Examples:
ext int edge(2, L TO H); // Set up PIC18 EXT2
ext int edge(2, L TO H); // Set up external interrupt 2

to interrupt
// on rising edge

273

CCS C Compiler
ext _int edge(H TO L); // Sets up EXT
ext int edge(H TO L); // Sets up external interrupt O
to interrupt
// on falling edge

Example Files:
ex_wakup.c

See Also:
#INT _EXT , enable_interrupts() , disable_interrupts() , #INT_EXT , enable_interrupts() ,
disable_interrupts , Interrupts Overview

fabs()

Syntax:
result=fabs (value)

Parameters:
value is a float
pco] value is any float type

Returns:
result is a float
[pco] result is a float with precision to value

Function:
The fabs() function computes the absolute value of a float

Availability:
All Devices

Requires:
Constants are in the devices .h file

Examples:

float result;
result=fabs (-40.0) // result is 40.0

See Also:

abs(), labs()

274

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
etc

getch()
getchar()
fgetc()

Syntax:

value = getc()

value = fgetc(stream)
value=getch()
value=getchar()

Parameters:
stream is a stream identifier (a constant byte)

Returns:
An 8-bit character

Function:

This function waits for a character to come in over the RS232 RCV pin and returns the
character.

In order to not hang forever waiting for an incoming character use kbhit() to test for a
character available.

If a built-in USART is used the hardware can buffer 3 characters otherwise getc() must be
active while the character is being received by the device.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN (the last
USE RS232).

Availability:
All Devices

Requires:
#USE RS232

Examples:
printf ("Continue (Y,N)?2");
do {
answer=getch () ;
}

while (answer!='Y' && answer!='N");

#use rs232(baud=9600, xmit=pin_ c6,
rcv=pin_ c7,stream=HOSTPC)

#use rs232(baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)

#use rs232 (baud=9600,xmit=pin b3,

275

CCS C Compiler
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

Example Files:
ex_stwt.c

See Also:
putc(), kbhit(), printf(), #USE RS232, input.c, RS232 1/O Overview

ets

fgets()

Syntax:
gets (string)
value = fgets (string, stream)

Parameters:
string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Reads characters (using getc()) into the string until a RETURN (value 13) is encountered. The
string is terminated with a 0. Note that INPUT.C has a more versatile get_string() function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the last
USE RS232).

Availability:
All Devices

Requires:
#USE RS232

Examples:
char string[30];

printf ("Password: ");

276

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

gets(string);
if (strcmp(string, password))
printf ("OK") ;

See Also:
getc(), get_string in input.c

floor

Syntax:
result = floor (value)

Parameters:
value is a float
[rco] value is any float type

Returns:
Result is a float
reo] Result is a float with precision equal to value

Function:
Computes the greatest integer value not greater than the argument. Floor (12.67) is 12.00

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
// Find the fractional part of a value
frac = value - floor(value);

See Also:

ceil()
fmod()

Syntax:
result= fmod (vall, val2)

Parameters:
vallis a float
tpco] vall is any float type
val2 is a float
[pco] val2 is any float type

277

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Returns:
Result is a float
peo] Result is a float with precision equal to input parameters vall and val2

Function:
Returns the floating point remainder of vall/val2. Returns the value vall - i*val2 for some
integer “i” such that, if val2 is nonzero, the result has the same sign as vall and magnitude

less than the magnitude of val2.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
result=fmod (3, 2) ; // result is 1

printf()
fprintf()

Syntax:
printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:
String is a constant string or an array of characters null terminated.

C String is a constant string. Note that format specifiers cannot be used in RAM strings.

Values is a list of variables separated by commas, fname is a function name to be used for
outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte)

Returns:
Undefined

278

Built-in Functions

Function:

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When variables are
used this string must be a constant. The % character is used within the string to indicate a
variable value is to be formatted and output. Longs in the printf may be 16 or 32 bit. A %% will
output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT (the
last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating point
and %w output. tis the type and may be one of the following:

c -- string or character

u --unsigned

d --signed int

Lu -- long unsigned int

Ld -- long signed int

X -- hexint (lower case)

X --hexint (upper case

Lx -- hex long int (lower case)

LX -- hex long int (upper case)
-- float with truncated decimal
-- float with rounded decimal
-- float in exponential format
-- unsigned int with decimal place inserted. Specify two numbers for n.

The first is a total field width. The second is the desired number of decimal places.

soaQ —*

Example Formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 00OFE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.

Availability:

All Devices

279

CCS C Compiler

Requires:
#USE RS232 (unless fname is used)

Examples:
byte x,y,z;
printf ("HiThere");
printf ("RTCCValue=>%2x\r\n",get rtcc());
printf ("%$2u %X %4X\r\n",x,vy,z);
printf (LCD_PUTC, "n=%u",n);

Example Files:
ex_admm.c, ex_lcdkb.c

See Also:
atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0O Overview

putc() putchar() fputc()

Syntax:

putc (cdata)

putchar (cdata)
fputc(cdata, stream)

Parameters:
cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

This function sends a character over the RS232 XMIT pin. A #USE RS232 must appear before
this call to determine the baud rate and pin used. The #USE RS232 remains in effect until
another is encountered in the file.

If This function sends a character over the RS232 XMIT pin. A #USE RS232 must appear
before this call to determine the baud rate and pin used. The #USE RS232 remains in effect
until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to STDOUT (the last
USE RS232). is used then the specified stream is used where putc() defaults to STDOUT (the
last USE RS232).

Availability:

All Devices

280

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Requires:
#USE RS232

Examples:
putc('*");
for (1=0; 1i<10; i++)
putc (bufferf[il]);
putc (13)

Example Files:

ex_tgetc.c

See Also:
getc(), printf(), #USE RS232, RS232 /O Overview

puts() fputs()

Syntax:
puts (string).
fputs (string, stream)

Parameters:
string is a constant string or a character array (null-terminated).
stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Sends each character in the string out the RS232 pin using putc(). After the string is sent a
CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general printf() is more useful
than puts().

If fputs() is used then the specified stream is used where puts() defaults to STDOUT (the last
USE RS232)

Availability:
All Devices

Requires:
#USE RS232

Examples:
puts(" -—-—-———————- ")
puts(" | HI ")
puts(" --——————-—- ")

281

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:
printf(), gets(), RS232 /O Overview

free()

Syntax:
free(ptr)

Parameters:
ptr is a pointer earlier returned by the calloc, malloc or realloc

Returns:
No Value

Function:

The free function causes the space pointed to by the ptr to be deallocated, that is made
available for further allocation. If ptr is a null pointer, no action occurs. If the ptr does not
match a pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined.

Availability:
All Devices

Requires:
#INCLUDE <stdlibm.h>

Examples:
int * iptr;
iptr=malloc (10);
free (iptr) // iptr will be deallocated

See Also:
realloc(), malloc(), calloc()

frexp()

Syntax:
result=frexp (value, &exp)

Parameters:
value is a float
pco] value is any float type

exp is a signed int

282

Built-in Functions

Returns:
result is a float
pep] result is a float with precision equal to value

Function:

The frexp function breaks a floating point number into a normalized fraction and an integral

power of 2. It stores the integer in the signed int object exp. The result is in the interval [1/2
tol) or zero, such that value is result times 2 raised to power exp. If value is zero then both

parts are zero.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
signed int exp;
result=frexp (.5, &¢exp) ; // result is .5 and exp is
0

See Also:
Idexp(), exp(), log(), log10(), modf()

scanf()
fscanf()

Syntax:

scanf(cstring);

scanf(cstring, values...)
fscanf(stream, cstring, values...

Parameters:
cstring is a constant string.

values is a list of variables separated by commas.
stream is a stream identifier
Returns:

0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read
in, plus the number of constant strings read in.

283

CCS C Compiler

Function:

Reads in a string of characters from the standard RS-232 pins and formats the string
according to the format specifiers. The format specifier character (%) used within the string
indicates that a conversion specification is to be done and the value is to be saved into the
corresponding argument variable. A %% will input a single %. Formatting rules for the format
specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last

USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99 specifying the field
width, the number of characters to be inputted. t is the type and maybe one of the following:

C

Lu

Ld

Lo

x or X

Matches a sequence of characters of the number specified by the field width
(1 if no field width is specified). The corresponding argument shall be a
pointer to the initial character of an array long enough to accept the
sequence.

Matches a sequence of non-white space characters. The corresponding
argument shall be a pointer to the initial character of an array long enough to
accept the sequence and a terminating null character, which will be added
automatically.

Matches an unsigned decimal integer. The corresponding argument shall be
a pointer to an unsigned integer.

Matches a long unsigned decimal integer. The corresponding argument shall
be a pointer to a long unsigned integer.

Matches a signed decimal integer. The corresponding argument shall be a
pointer to a signed integer.

Matches a long signed decimal integer. The corresponding argument shall be
a pointer to a long signed integer.

Matches a signed or unsigned octal integer. The corresponding argument
shall be a pointer to a signed or unsigned integer.

Matches a long signed or unsigned octal integer. The corresponding
argument shall be a pointer to a long signed or unsigned integer.

Matches a hexadecimal integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall be a

284

pointer to a long signed or unsigned integer.

Li

f,gore

Availability:
All Devices

Requires:
#USE RS232

Examples:

Built-in Functions

Matches a signed or unsigned integer. The corresponding argument shall be
a pointer to a signed or unsigned integer.

Matches a long signed or unsigned integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

Matches a non-empty sequence of characters from a set of expected
characters. The sequence of characters included in the set are made up of
all character following the left bracket ([) up to the matching right bracket
(). Unless the first character after the left bracket is a #, in which case the
set of characters contain all characters that do not appear between the
brackets. If a - character is in the set and is not the first or second, where
the first is a *, nor the last character, then the set includes all characters
from the character before the - to the character after the -.

For example, %[a-z] would include all characters from a to z in the set and
%][~a-z] would exclude all characters from a to z from the set. The
corresponding argument shall be a pointer to the initial character of an array
long enough to accept the sequence and a terminating null character, which
will be added automatically.

Assigns the number of characters read thus far by the call to scanf() to the
corresponding argument. The corresponding argument shall be a pointer to
an unsigned integer.

An optional assignment-suppressing character (*) can be used after the format
specifier to indicate that the conversion specification is to be done, but not
saved into a corresponding variable. In this case, no corresponding
argument variable should be passed to the scanf() function.

A string composed of ordinary non-white space characters is executed by
reading the next character of the string. If one of the inputted characters
differs from the string, the function fails and exits. If a white-space character
precedes the ordinary non-white space characters, then white-space
characters are first read in until a non-white space character is read.

White-space characters are skipped, except for the conversion specifiers [, ¢
or n, unless a white-space character precedes the [or ¢ specifiers.

char name[2-];

285

CCS C Compiler

unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1ld", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time:
%$1d", name, number, time

See Also:
RS232 1/0 Overview, getc(), putc(), printf()

get _adc ports()

Syntax:
value = get_adc_ports();

Parameters:

Returns:
A 32-bit int

Function:
Returns a value that can be passed to setup_adc_ports() to setup the analog pins.

Availability:
Devices with an Analog-to-Digital (ADC) module.

Requires:

Examples:

adc_pins = get adc_ports();

See Also:
read adc(), setup adc(mode), setup adc ports(), set adc_channel(), ADC

get capture()

Syntax:
value = get_capture(x)

Parameters:
x defines which ccp module to read from

286

Built-in Functions

Returns:
A 16-bit timer value

Function:
This function obtains the last capture time from the indicated CCP module.

Availability:
Only available on devices with Input Capture modules

Requires:

Example Files:
ex_ccpmp.c

See Also:

setup_ccpx()

[pcD] _get capture()

Syntax:
value = get_capture(x, wait)

Parameters:
x defines which input capture result buffer module to read from

wait signifies if the compiler should read the oldest result in the buffer or the next result to
enter the buffer

Returns:
A 16-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next result to
be sent to the buffer is returned. If wait is false, the default setting, the first value currently in
the buffer is returned. However, the buffer will only hold four results while waiting for them to
be read, so if read isn't being called for every capture event, when wait is false, the buffer will
fill with old capture values and any new results will be lost.

Availability:
Only available on devices with Input Capture modules

Requires:

287

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Examples:
setup_ timer3 (TMR INTERNAL | TMR DIV BY 8);
setup_ capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {
timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: %LU”, timerValue);

}

See Also:
setup_capture(), setup _compare(), Input Capture Overview

get capture32 ccpl()
get capture ccpl()
get _capture ccp2()
get capture ccp3()
get _capture ccp4()
get capture ccp5()

Syntax:
value=get_capture_ccpx(wait);

Parameters:
wait -signifies if the compiler should read the oldest result in the buffer or the next result in the
buffer or the next result to enter the buffer

Returns:
valuel6 -a 16-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next result to
be sent, the buffer is returned. If wait is false, the default setting, the first value currently in the
buffer is return. However, the buffer will only hold four results while waiting for them to be
read. If read is not being called for every capture event, when wait is false, the buffer will fill
with old capture values and any new result will be lost.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned intl6 value;

288

Built-in Functions
setup ccpl (CCP_CAPTURE FE);

while (TRUE) {
value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: SLU", value);

}

See Also:
set_ pwmX_duty(), setup _ccpX(), set_ccpX compare time(), set_timer_ccpX(),
set timer period ccpX(), get _timer_ccpx(), get _capture32 ccpX()

[PCD] get capture32 ccpl()
get capture32 ccp2()
get capture32 ccp3()
get capture32 ccp4()
get capture32 ccp5()

Syntax:
value=get_capture32_ccpx(wait);

Parameters:
wait -signifies if the compiler should read the oldest result in the buffer or the next result in the
buffer or the next result to enter the buffer

Returns:
value32 -a 32-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next result to
be sent, the buffer is returned. If wait is false, the default setting, the first value currently in the
buffer is return. However, the buffer will only hold two results while waiting for them to be
read. If read is not being called for every capture event, when wait is false, the buffer will fill
with old capture values and any new result will be lost.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned int32 value;

setup ccpl (CCP_CAPTURE FE|CCP_TIMER 32 BIT);

289

CCS C Compiler

while (TRUE) {
value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: SLU", value);

}

See Also:
set_ pwmX_duty(), setup _ccpX(), set_ccpX compare time(), set_timer_ccpX(),
set _timer period ccpX(), get _timer_ccpx(), get _capture ccpX()

get capture event()

Syntax:
result = get_capture_event([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE CAPTURE

Returns:
TRUE if a capture event occurred, FALSE otherwise

Function:
To determine if a capture event occurred.

Availability:
All Devices

Requires:
#USE CAPTURE

Examples:
#USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)
if(get_capture_event())
result = get_capture_time()

See Also:
#use capture, get_capture time()

290

Built-in Functions
get capture time()

Syntax:
result = get_capture_time([stream])

Parameters:
stream — optional parameter specifying the stream defined in #USE CAPTURE

Returns:
An int16 value representing the last capture time

Function:
To get the last capture time.

Availability:
All Devices

Requires:
#USE CAPTURE

Examples:
#USE CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1,FASTEST)

result = get capture time();

See Also:
#use capture, get capture event()

[PCD] get capture32()

Syntax:
result = get_capture32(x,[wait])

Parameters:
X is 1-16 and defines which input capture result buffer modules to read from.

wait is an optional parameter specifying if the compiler should read the oldest result in the
bugger or the next result to enter the buffer

Returns:
A 32-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next result to
be sent to the buffer is returned. If wait is false, the default setting, the first value currently in
the buffer is returned. However, the buffer will only hold four results while waiting for them to

291

CCS C Compiler

be read, so if get_capture32 is not being called for every capture event. When wait is false,
the buffer will fill with old capture values and any new results will be lost.

Availability:
Only devices with a 32-bit Input Capture module

Requires:

Examples:
setup timer2 (TMR INTERNAL | TMR DIV BY 1 | TMR 32 BIT);
Setup_capture(l,CAPTURE_FE | CAPTURE_TIMER2 |
CAPTURE 32 BIT);
while (TRUE) {
timerValue=get capture32(1l,TRUE);
printf ("Capture 1 occurred at: $%LU", timerValue);

}

See Also:
setup_capture(), setup _compare(), get_capture(), Input Capture Overview

get hspwm capture()

Syntax:
result=get_hspwm_capture(unit);

Parameters:
unit - The High Speed PWM unit to set

Returns:
Unsigned in16 value representing the capture PWM time base value.

Function:
Gets the captured PWM time base value from the leading edge detection on the current-limit
input.

Availability:

Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPXxxxMCXxxX,

and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
result=get hspwm capture(l);

292

Built-in Functions

See Also:

setup_hspwm _unit(), set_hspwm _phase(), set_hspwm _duty(), set_hspwm_event(),
setup _hspwm _blanking(), setup _hspwm trigger(), set_hspwm override(),
setup_hspwm_chop clock(), setup _hspwm_unit_chop clock()

setup _hspwm(), setup _hspwm_secondary()

get motor pwm count()

Syntax:
Datal6 = get_motor_pwm_count(pwm);

Parameters:
pwm- Defines the pwm module used

Returns:
16 bits of data

Function:
Returns the PWM count of the motor control unit

Availability:
Devices that have the motor control PWM unit

Requires:

Examples:
Datal6t = get motor pmw count (1)

See Also:
setup_motor_pwm(), set _motor_unit(), set motor pwm_event(),
set_motor_pwm_duty()

get nco accumulator()

Syntax:
value =get_nco_accumulator();

Parameters:

Returns:
Current value of accumulator

293

CCS C Compiler

Function:
Returns the PWM count of the motor control unit

Availability:
Devices that have a NCO module

Requires:

Examples:
value=get nco_accumulator();

See Also:
setup_nco(), set nco_inc_value(), get nco _inc_value()

get nco inc value()

Syntax:
value =get_nco_inc_value();

Parameters:

Returns:
Current value set in increment registers

Function:
Returns the PWM count of the motor control unit

Availability:
Devices that have the motor control PWM unit

Requires:

Examples:
Datal6 = get motor pmw count (1)

See Also:
setup_nco(), set _nco_inc_value(), get nco _accumulator()

294

Built-in Functions

get ticks()

Syntax:
value = get_ticks([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE TIMER

Returns:
value —a 8, 16 or 32 bit integer. (int8, int16 or int32)
pco] value — a 8, 16, 32 or 64 bit integer. (int8, intl6, int32 or int64)

Function:
Returns the current tick value of the tick timer. The size returned depends on the size of the
tick timer.

Availability:
All Devices

Requires:
#USE TIMER(options)

Examples:
#USE TIMER(TIMER=1,TICK=1lms,BITS=16,NOISR)

void main (void) {
unsigned intl6 current tick;

current tick = get ticks();

}

See Also:
#USE TIMER, set_ticks()

get timerA()

Syntax:
value=get_timerA();

Parameters:

Returns:
The current value of the timer as an int8

295

CCS C Compiler

Function:
Returns the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability:
This function is only available on devices with Timer A hardware

Requires:

Examples:
set timerA(0);
while (timerA < 200);

See Also:
set_timerA(), setup_timer_A(), TimerA Overview

get timerB()

Syntax:
value=get_timerB();

Parameters:

Returns:
The current value of the timer as an int8

Function:
Returns the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability:
This function is only available on devices with Timer B hardware

Requires:

Examples:
set timerB(0);
while (timerB < 200);

See Also:
set_timerB(), setup_timer_B(), TimerB Overview

296

Built-in Functions

get timerx()

Syntax:
value=get_timer0() Same as: value=get_rtcc()
value=get_timerl()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer10()
value=get_timer12()
pco] value=get_timer1()
pco] value=get_timer2()
[pco] value=get_timer3()
[pco] value=get_timer4()
[pco] value=get_timer5()
[pco] value=get_timer6()
pco] value=get_timer7()
[pco] value=get_timer8()
[pco] value=get_timer9()

Parameters:

Returns:

Timers 1, 3,5 and 7 return a 16 bit int.

Timers 2 ,4, 6, 8, 10 and 12 return an 8 bit int.

Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX where it returns a 16 bit int.
ipep] The current value of the timer as an int16

Function:

Returns the count value of a real time clock/counter. RTCC and TimerO are the same. All
timers count up. When a timer reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2...)

pco] Retrieves the value of the timer, specified by X (which may be 1-9)

Availability:

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices

Timer 3, 5 and 7 - Some PIC18 and Enhanced PIC16 devices
Timer 4,6,8,10 and 12- Some PIC18 and Enhanced PIC16 devices
ipeo] This function is available on all devices that have a valid timerX

297

CCS C Compiler
Requires:

Examples:
set timer0(0);
while (get timerO() < 200) ;
if (get timer2() % 0xA0 == HALF WAVE PERIOD)
output toggle (PIN BO);

Example Files:
ex_stwt.c

See Also:

set_timerx(), TimerQ Overview , Timerl Overview , Timer2 Overview , Timer5
Overview

eep) Timer Overview , setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

get timerxy()

Syntax:

value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Parameters:
Void

Returns:
The current value of the 32 bit timer as an int32

Function:
Retrieves the 32 bit value of the timers X and Y, specified by XY (which may be 23, 45, 67 and
89)

Availability:

This function is available on all devices that have a valid 32 bit enabled timers. Timers 2 & 3, 4
& 5,6 &7 and 8 & 9 may be used. The target device must have one of these timer sets. The
target timers must be enabled as 32 bit.

Requires:

Examples:
if (get timer23() > TRIGGER TIME)

298

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

ExecuteEvent () ;

Example Files:
ex_stwt.c

See Also:
Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

get timer ccpl()
get _timer _ccp2()
get _timer ccp3()
get _timer _ccp4()
get _timer _ccp5()

Syntax:
value32=get_timer_ccpx();
valuel6=get_timer_ccpx(which);

Parameters:
which - when in 16-bit mode determines which timer value to read. 0 reads the lower timer
value (CCPXTMRL), and 1 reads the upper timer value (CCPxTMRH)

Returns:
value32 - the 32-bit timer value.

valuel6- the 16-bit timer value

Function:

This function gets the timer values for the CCP module

Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned int32 value32;
unsigned int32 valuel5;

value32=get timer ccpx(); //get the 32 bit timer
value
valuel6=get timer ccpx(0); //get the 16 bit timer

value from
//lower timer

299

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

valuel6=get timer ccpx(l); //get the 16 bit timer
value from
//upper timer

See Also:
set pwmX duty(), setup _ccpX(), set ccpX compare time(), set timer ccpX(),
set_timer_period ccpX(), get capture ccpX(), get captures32 ccpX()

get tris x()

Syntax:

value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K();
value = get_tris_L();

Parameters:

Returns:
intl6, the value of TRIS register

Function:
Returns the value of the TRIS register of port A, B,C,D, E, F, G, H, J,KorL.

Availability
All Devices

Requires:

Examples:
tris a = GET TRIS A()

See Also:
input(), output_low(), output _high()

300

Built-in Functions

get wdt()

Syntax:
value = get_wdt();

Parameters:

Returns:
An 8-bit int

Function:
Returns the current watchdog timer value.

Availability:
Devices with a Windowed Watchdog Timer.

Requires:

Examples:

int8 count;
count = get wdt();

See Also:
setup_wdt(), restart wdt(), WDT or Watch Dog Timer

getenv()

Syntax:
value = getenv (cstring);

Parameters:
cstring - is a constant string with a recognized keyword

Returns:
A constant number, a constant string or 0

Function:
This function obtains information about the execution environment. The following are
recognized keywords. This function returns a constant O if the keyword is not understood.

FUSE_SET:fffff Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff Returns 1 if fuse fffff is valid

301

CCS C Compiler

INT:iiiii Returns 1 if the interrupt iiiii is valid

ID Returns the device ID (set by #ID)

DEVICE Returns the device name string (like "PIC16C74")
CLOCK Returns the MPU FOSC

VERSION Returns the compiler version as a float

VERSION_STRING

Returns the compiler version as a string

PROGRAM_MEMORY

Returns the size of memory for code (in words)

STACK

Returns the stack size

SCRATCH

Returns the start of the compiler scratch area

DATA_EEPROM

Returns the number of bytes of data EEPROM

EEPROM_ADDRESS

Returns the address of the start of EEPROM. O if
not supported by the device.

READ_PROGRAM

Returns a 1 if the code memory can be read

ADC_CHANNELS

Returns the number of A/D channels

ADC_RESOLUTION

Returns the number of bits returned from
READ_ADC()

ICD Returns a 1 if this is being compiled for a ICD
SPI Returns a 1 if the device has SPI

USB Returns a 1 if the device has USB

CAN Returns a 1 if the device has CAN
12C_SLAVE Returns a 1 if the device has 12C slave H/W

302

Built-in Functions

12C_MASTER Returns a 1 if the device has I2C master H/W
PSP Returns a 1 if the device has PSP

COMP Returns a 1 if the device has a comparator
VREF Returns a 1 if the device has a voltage reference
LCD Returns a 1 if the device has direct LCD H/W
UART Returns the number of H/W UARTSs

AUART Returns 1 if the device has an ADV UART

CCPx Returns a 1 if the device has CCP number x
TIMERX Returns a 1 if the device has TIMER number x

FLASH_WRITE_SIZE

Smallest number of bytes that can be written to
FLASH

FLASH_ERASE_SIZE

Smallest number of bytes that can be erased in
FLASH

BYTES_PER_ADDRESS

Returns the number of bytes at an address location

BITS_PER_INSTRUCTION

Returns the size of an instruction in bits

RAM

Returns the number of RAM bytes available for your
device.

SFR:name

Returns the address of the specified special file
register. The output format can be used with the
preprocessor command #bit. name must match SFR
denomination of your target PIC (example:
STATUS, INTCON, TXREG, RCREG, etc)

BIT:name

Returns the bit address of the specified special file
register bit. The output format will be in
“address:bit”, which can be used with the
preprocessor command #byte. name must match
SFR.bit denomination of your target PIC (example:
C, Z, GIE, TMROIF, etc)

303

CCS C Compiler

Returns TRUE if the specified special file register

SFR_VALID:name name is valid and exists for your target PIC
(example: getenv("SFR_VALID:INTCON"))
Returns TRUE if the specified special file register bit

BIT_VALID:name is valid and exists for your target PIC (example:
getenv("BIT_VALID:TMROIF"))

PIN:PB Returns 1 if PB is a valid /0 PIN (like A2)

UARTx_RX Returns UARTXPin (like PINXC7)

UARTX_TX Returns UARTXPin (like PINXC6)

SPIx_DI Returns SPIxDI Pin

SPIxDO Returns SPIXDO Pin

SPIXCLK Returns SPIXCLK Pin

ETHERNET Returns 1 if device supports Ethernet

QEI Returns 1 if device has QEI

DAC Returns 1 if device has a D/A Converter

DSP Returns 1 if device supports DSP instructions

DCI Returns 1 if device has a DCI module

DMA Returns 1 if device supports DMA

CRC Returns 1 if device has a CRC module

CWG Returns 1 if device has a CWG module

NCO Returns 1 if device has a NCO module

CLC Returns 1 if device has a CLC module

DSM Returns 1 if device has a DSM module

304

Built-in Functions

OPAMP Returns 1 if device has op amps
RTC Returns 1 if device has a Real Time Clock
CAP_SENSE Returns 1 if device has a CSM cap sense module

and 2 if it has a CTMU module

EXTERNAL_MEMORY

Returns 1 if device supports external program
memory

INSTRUCTION_CLOCK

Returns the MPU instruction clock

ENH16 Returns 1 for Enhanced 16 devices

Pco] ENH24 Returns 2 for Enhanced 24 devices

pco] I1C Returns number of Input Capture units device has
pco] 1CX Returns TRUE if ICx is on this part

o) OC E;;urns number of Output Compare units device
pco] OCx Returns TRUE if OCx is on this part

Pco] RAM_START

Returns the starting address of the first general
purpose RAM location

ipco] PSV

Returns TRUE if program space visibility (PSV) is
enabled. If PSV is enabled, data in program memory
(‘const char *' or 'rom char *') can be assigned to a
regular RAM pointer (‘char *') and a regular RAM
pointer can dereference data from program memory
or RAM.

pco] MIN_FLASH_WRITE

The smallest number of bytes that can be written to
FLASH using the write_program_memory()

function. The write_program_memory() function can
only write multiples of this size to the

FLASH. Additionally, the start address passed to
the write_program_memory() function must be
multiples of this value divided by two. For example,
if MIN_FLASH_WRITE is 4, then start address can
be 0x0000, 0x0002, 0x004, etc.

305

CCS C Compiler

Availability:
All Devices

Requires:

Examples:
#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old
#ENDIF

for(i=O;i<getenv("DATA_EEPROM");i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS")
#bit carry flag=GETENV (“BIT:C”)

ets

fgets()

Syntax:
gets (string)
value = fgets (string, stream)

Parameters:
string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:
Reads characters (using getc()) into the string until a RETURN (value 13) is encountered. The
string is terminated with a 0. Note that INPUT.C has a more versatile get_string() function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the last
USE RS232).

Availability:
All Devices

306

Built-in Functions

Requires:
#USE RS232

Examples:
char string[30];

printf ("Password: ");

gets (string);

if (strcmp(string, password))
printf ("OK") ;

See Also:
getc(), get_string in input.c

goto address()

Syntax:
goto_address(location);

Parameters:
location - is a ROM address, 16 or 32 bit int

Returns:

Function:

This function jumps to the address specified by location. Jumps outside of the current function
should be done only with great caution. This is not a normally used function except in very
special situations.

Availability:
All Devices

Requires:

Examples:
#define LOAD REQUEST PIN Bl
#define LOADER 0x1f00

if (input (LOAD_REQUEST))
goto_ address (LOADER) ;

Example Files:
setimp.h

307

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:

label address()

high speed adc done()

Syntax:
value = high_speed_adc_done([pair]);

Parameters:
pair — Optional parameter that determines which ADC pair's ready flag to check. If not used all
ready flags are checked

Returns:

An int16. If pair is used 1 will be return if ADC is done with conversion, O will be return if still
busy. If pair is not used, it will return a bit map of which conversion are ready to be read.

For example a return value of 0x0041 means that ADC pair 6, AN12 and AN13, and ADC pair
0, ANO and AN1, are ready to be read.

Function:
Can be polled to determine if the ADC has valid data to be read.

Availability:
Only on dsPIC33FJIxxGSxxx devices

Requires:

Examples:
intl6 result[2]
setup high speed adc pair(l, INDIVIDUAL SOFTWARE TRIGGER) ;
setup _high speed adc(ADC_CLOCK DIV 4);

read high speed adc(l, ADC_START ONLY);

while ('high speed adc done(1l));

read high speed adc(l, ADC READ ONLY, result);
printf (“AN2 value = $LX, AN3 value =
$LX\n\r”,result[0], result[1l])

See Also:
setup _high speed adc(), setup high speed adc pair(), read _high speed adc()

308

Built-in Functions
i2c_init()

Syntax:
i2c_init([stream],baud);

Parameters:
stream — optional parameter specifying the stream defined in #USE [2C.

baud - if baud is 0, 12C peripheral will be disable. If baud is 1, I2C peripheral is initialized and
enabled with baud rate specified in #USE 12C directive. If baud is > 1 then 12C peripheral is
initialized and enabled to specified baud rate

Returns:

Function:
To initialize 12C peripheral at run time to specified baud rate.

Availability:
All Devices

Requires:
#USE 12C

Examples:

#USE I2C(MASTER,I2C1l, FAST,NOINIT)
i2c_init (TRUE) ; //initialize and enable
I2C peripheral

//to baud rate
specified in //#USE I2C
i2c_init (500000) ; //initialize and enable
I2C peripheral

//to a baud rate of 500
KBPS

See Also:
i2c_poll(), i2c_speed(), i2c_slaveaddr(), i2c _isr_state() ,i2c_write(),
i2c_read(), use i2c(),i2c()

i2c _isr state()

Syntax:
state = i2c_isr_state();
state = i2c_isr_state(stream);

309

CCS C Compiler
Parameters:

Returns:
state - is an 8 bit int

0 - Address match received with R/W bit clear, perform i2c_read() to read the 12C address.
1-0x7F - Master has written data; i2c_read() will immediately return the data

0x80 - Address match received with R/W bit set; perform i2c_read() to read the 12C address,
and use i2c_write() to pre-load the transmit buffer for the next transaction (next 12C read
performed by master will read this byte).

0x81-0xFF - Transmission completed and acknowledged; respond with i2c_write() to pre-load
the transmit buffer for the next transition (the next I2C read performed by master will read this
byte).

Function:
Returns the state of 12C communications in 12C slave mode after an SSP interrupt. The return
value increments with each byte received or sent.

If 0x00 or 0x80 is returned, an i2C_read() needs to be performed to read the I12C address that
was sent (it will match the address configured by #USE I12C so this value can be ignored)

Availability:
Devices with built-in 12C
Requires:
#USE 12C
Examples:
#INT SSP
void i2c isr() {
state = i2c_isr state();
if (state==) i2c _read();
i@c_read();
if (state == 0x80)

i2c_read(2);
if (state >= 0x80)
i2c write(send buffer[state - 0x80]);
else if(state > 0)
rcv_buffer[state - 1] = i2c_read();

}

Example Files:
ex_slave.c

310

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read, #USE 12C, 12C
Overview

i2c_poll

Syntax:
i2c_poll()
i2c_poll(stream)

Parameters:
stream (optional)- specify the stream defined in #USE 12C

Returns:
1 (TRUE) or O (FALSE)

Function:

The i2c_poll() function should only be used when the built-in SSP is used. This function
returns TRUE if the hardware has a received byte in the buffer. When a TRUE is returned, a
call to i2c_read() will immediately return the byte that was received.

Availability:
Devices with built-in 12C

Requires:
#USE 12C

Examples:
if (i2c-poll ())
buffer [index]=i2c-read();//read data
}

See Also:
i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

i2c_read()

Syntax:

data = i2c_read();

data = i2c_read(ack);

data = i2c_read(stream, ack);

Parameters:
ack -Optional, defaults to 1
0 indicates do not ack

311

CCS C Compiler

1 indicates to ack
2 slave only, indicates to not release clock at end of read. Use when
i2c_isr_state() returns 0x80

stream - specify the stream defined in #USE 12C

Returns:
data - 8 bit int

Function:

Reads a byte over the 12C interface. In master mode this function will generate the clock and
in slave mode it will wait for the clock. There is no timeout for the slave, use i2c_poll() to
prevent a lockup. Use restart_wdt() in the #USE 12C to strobe the watch-dog timer in the
slave mode while waiting.

Availability:
All devices

Requires:
#USE 12C

Examples:
i2c_start();
i2c write(0Oxal);
datal = i2c_read(TRUE);
data2 = i2c_read(FALSE) ;
i2c_stop ()

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c _isr_state, i2c_write, #USE
12C, 12C Overview

i2c_slaveaddr()

Syntax:
i2c_slaveaddr(addr);
i2c_slaveaddr(stream, addr)

Parameters:
addr = 8 bit device address

stream(optional) - specifies the stream used in #USE 12C

312

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions
Returns:

Function:
This functions sets the address for the 12C interface in slave mode.

Availability:
Devices with built-in 12C

Requires:
#USE 12C

Examples:
i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08)

Example Files:
ex_slave.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read, #USE 12C,
12C Overview

i2c_speed()

Syntax:
i2c_speed (baud)
i2c_speed (stream, baud)

Parameters:
baud is the number of bits per second.

stream - specify the stream defined in #USE 12C

Returns:

Function:
This function changes the I2c bit rate at run time. This only works if the hardware 12C module
is being used.

Availability:
All Devices

Requires:
#USE 12C

313

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Examples:
i2C _Speed (400000);
putc (13)

Example Files:
ex_tgetc.c

See Also:
i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c _isr_state, i2zc_write, i2c_read, #USE
12C, 12C Overview

i2c_start()

Syntax:

i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

Parameters:
stream - specify the stream defined in #USE 12C
restart:- 2 - new restart is forced instead of start
1 - normal start is performed
0 - (or not specified) — restart is done only if the compiler last encountered a
i2c_start() and no i2c_stop()

Returns:
Undefined

Function:

Issues a start condition when in the 12C master mode. After the start condition the clock is held
low until i2c_write() is called. If another i2c_start() is called in the same function before an
i2c_stop() is called, then a special restart condition is issued.

Note that specific 12C protocol depends on the slave device. The i2c_start() function will now
accept an optional parameter. If 1 the compiler assumes the bus is in the stopped state. If 2
the compiler treats this i2c_start() as a restart. If no parameter is passed a 2 is used only if the
compiler compiled a i2c_start() last with no i2¢c_stop() since.

Availability:
All Devices

Requires:
#USE 12C

Examples:
i2c_start();

314

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

i2c_write (0xa0) ; //
i2c _write (address); //
i2c_start(); //
i2c_write (0Oxal); //

data=i2c_read(0); //
i2c_stop ()

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2¢c_stop, i2¢c

Built-in Functions

Device address

Data to device

Restart

to change data direction
Now read from slave

slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE

12C, 12C Overview

i2c_stop()

Syntax:
i2c_stop()
i2c_stop(stream)

Parameters:

stream - (optional) specify the stream defined in #USE 12C

Returns:
Undefined

Function:

Issues a stop condition when in the [2C master mode.

Availability

All Devices

Requires:

#USE 12C

Examples:
i2¢ start(); // Start condition
i2c write (0xa0); // Device address
i2c write(5); // Device command
i2c _write(12); // Device data
i2¢c stop(); // Stop condition

Example Files:
ex_extee.c with 2416.c

315

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

i2c transfer()

Syntax:
i2c_transfer([stream], address, wData, wCount, [rData], [rCount]);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

address - The device address to transfer data to and from.

wData - Pointer to data to transfer to device.

wCount - Number of bytes to transfer to device.

rData - Optional, pointer to save transferred data from device to.

Rcount - Optional, number of byte to transfer from device. Must be used if rData is used.

Returns:
Undefined

Function:
Transfer data to and from an 12C device. This function does the 12C start, restart, write, read
and stop operations.

Availability:
All devices when #USE 12C is setup for Master Mode.

Requires:

Examples:
unsigned int8 rAddress=0;
unsigned int8 rDatall6];

i2c_transfer (0xAO, &rAddress, 1, rData, 16);
See Also:

i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c _isr_state(), i2c_write(),
i2c_read(), i2c_transfer out(), i2c_transfer in(), #USE [2C, 12C Overview

316

Built-in Functions

i2c_transfer in()

Syntax:
i2c_transfer_in([stream], address, rData, rCount);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

address - The device address to transfer data from.
rData - Optional, pointer to save transferred data from device to.
Rcount - Number of byte to transfer from device.

Returns:
Undefined

Function:
Transfer data to and from an 12C device. This function does the 12C start, restart, write, read
and stop operations.

Availability:
All devices when #USE 12C is setup for Master Mode.

Requires:

Examples:
unsigned int8 rDatall6];

i2c_transfer in(0xAQ0,rData,16);
See Also:

i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c _isr_state(), i2c_write(),
i2c_read(), i2c_transfer out(), i2c_transfer(), #USE_12C, I12C Overview

i2c_transfer out()

Syntax:
i2c_transfer_out([stream], address, wData, wCount);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

317

CCS C Compiler

address - The device address to transfer data to.
wData - Pointer to data to transfer to device.
wcount - Number of bytes to transfer to device.

Returns:
Undefined

Function:
Transfer data to and from an 12C device. This function does the 12C start, restart, write, read
and stop operations.

Availability:
All devices when #USE 12C is setup for Master Mode.

Requires:

Examples:
unsigned int8wDatal[l6];

i2c_transfer out (0xAO,wData,16);
See Also:

i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c _isr_state(), i2c_write(),
i2c_read(), i2c_transfer_in(), i2c_transfer(), #USE 12C, 12C Overview

i2c_write()

Syntax:
i2c_write (data)
i2c_write (stream, data)

Parameters:
data is an 8 hit int

stream - specify the stream defined in #USE 12C
Returns:
This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in Multi_Master Mode.
This does not return an ACK if using i2c in slave mode.

318

Built-in Functions

Function:

Sends a single byte over the 12C interface. In master mode this function will generate a clock
with the data and in slave mode it will wait for the clock from the master. No automatic time-out
is provided in this function. This function returns the ACK bit. The LSB of the first write after a
start determines the direction of data transfer (0 is master to slave). Note that specific I12C
protocol depends on the slave device.

Availability:
All Devices

Requires:
#USE 12C

Examples:
long cmd;

i2c¢c_start(); // Start condition
i2c_write (0xa0) ; // Device address
i2c_write (cmd); // Low byte of command
i2c_write (cmd>>8); // High byte of command
i2c_stop(); // Stop condition

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_isr_state, i2c_read, #USE
12C, 12C Overview

input

Syntax:
value = input (pin)

Parameters:

Pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43.

ipcp] Pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined
as follows: #define PIN_A3 5651.

The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the FAST_IO

319

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

mode is set on port A. note that doing 1/O with a variable instead of a constant will take much
longer time.

Returns:
0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function:

This function returns the state of the indicated pin. The method of I/O is dependent on the last
USE *_|O directive. By default with standard I/O before the input is done the data direction is
set to input.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
while (!input (PIN B1l)); // waits for Bl to go high

if(input (PIN_A0))
printf ("A0 is now high\r\n");

intl6é i=PIN Bl;
while(!1i); //waits for Bl to go high

Example Files:

ex_pulse.c

See Also:
input_x(), output_low(), output _high(), #USE FIXED |0, #USE FAST 10, #USE
STANDARD 10, General Purpose I/O

input change x()

Syntax:

value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();

320

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

value = input_change_k();
value = input_change_I();

Parameters:

Returns:
An 8-bit or 16-bit int representing the changes on the port

Function:

This function reads the level of the pins on the port and compares them to the results the last
time the input_change_x() function was called. A 1 is returned if the value has changed, 0 if
the value is unchanged.

Availability:
All Devices

Requires:

Examples:
pin check = input change b();

See Also:
input(), input_x(), output x(), #USE FIXED 10, #USE FAST 10, #USE
STANDARD 10, General Purpose I/O

input_state()

Syntax:
value = input_state(pin)

Parameters:

pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43.

[pco] pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined
as follows: #define PIN_A3 5651.

Returns:
Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0 indicates it is low.

Function:
This function reads the level of a pin without changing the direction of the pin as INPUT() does.

321

CCS C Compiler

Availability:
All Devices

Requires:

Examples:
level = input state(pin A3);
printf ("level: %d",level)

See Also:
input(), set tris x(), output_low(), output _high(), General Purpose |I/O

input x()

Syntax:

value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()
value = input_I()

Parameters:

Returns:
An 8 bit int representing the port input data.
rco] An 16 bit int representing the port input data.

Function:

Inputs an entire byte from a port. The direction register is changed in accordance with the last
specified #USE *_10 directive. By default with standard 1/0O before the input is done the data
direction is set to input.

tpeo] Inputs an entire word from a port. The direction register is changed in accordance with the
last specified #USE *_IO directive. By default with standard 1/O before the input is done the
data direction is set to input.

Availability:
All Devices

322

Built-in Functions
Requires:

Examples:
data = input Db();

See Also:
input(), output_x(), #USE FIXED 10, #USE FAST 10, #USE STANDARD 10

interrupt active()

Syntax:
interrupt_active (interrupt)

Parameters:
Interrupt — constant specifying the interrupt

Returns:
Boolean value

Function:
The function checks the interrupt flag of the specified interrupt and returns true in case the flag
is set.

Availability:
Devices with Interrupts

Requires:
Should have a #INT_xxxx, Constants are defined in the devices .h file

Examples:
interrupt active (INT TIMERO) ;
interrupt active (INT TIMERI) ;

See Also:
Interrupts Overview, clear interrupt, enable interrupts(), disable interrupts(), #INT,
disable_interrupts() , #INT

interrupt enabled()

This function checks the interrupt enabled flag for the specified interrupt and returns TRUE if
set.

323

CCS C Compiler

Syntax:
interrupt_enabled(interrupt);

Parameters:
interrupt- constant specifying the interrupt

Returns:
Boolean value

Function:
The function checks the interrupt enable flag of the specified interrupt and returns TRUE when
set.

Availability:
Devices with Interrupts

Requires:
Interrupt Constants are defined in the devices .h file

Examples:

if (interrupt enabled (INT RDA))
disable interrupt (INT RDA);

See Also:

Interrupts Overview, clear interrupt, interrupt_active(), disable interrupts(),
#INT, #INT

isalnum(char) isalpha(char) iscntrl(x) isdigit(char)

isgraph(x) islower(char) isspace(char)
isupper(char) isxdigit(char) isprint(x) ispunct(x)

Syntax:

value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

324

Built-in Functions

Parameters:
datac - is a 8 bit character

Returns:
0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does match the criteria.

Function:
Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis0..9,'A'.."Z', or'a'..'z’
isalpha(x) Xis'A'..'Z' or'a'..'z
isdigit(x) Xis'0..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'.."Z
isspace(x) X is a space
isxdigit(x) Xis'0..'9', 'A'..'F', or 'a'..'f

iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space

ispunct(x) X is greater than a space and not a letter or number

Availability:
All Devices

Requires:
#INCLUDE <ctype.h>

Examples:
char id[20];

if (isalpha (id[0])) {

valid id=TRUE;

for (i=1;i<strlen (id) ;i++)

valid id=valid id && isalnum(id[i]);
} else

valid id=FALSE;

Example Files:
ex_str.c

See Also:

isamong()

325

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
isamong()

Syntax:
result = isamong (value, cstring)

Parameters:
value - is a character
cstring - is a constant sting

Returns:
0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Function:
Returns TRUE if a character is one of the characters in a constant string.

Availability:
All devices

Requires:

Examples:
char x="x'

if (isamong (x,"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is wvalid");

Example Files:
#INCLUDE <ctype.h>

See Also:
isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()

itoa()

Syntax:

string = itoa(i32value, i8base, string)

[pco] string = itoa(i48value, i8base, string)
pco] string = itoa(i64value, i8base, string)

Parameters:
i32value is a 32 bit int
pcp] i48value is a 48 bit int

326

Built-in Functions
pco] i64value is a 64 bit int

i8base is a 8 bit int
string is a pointer to a null terminated string of characters

Returns:
string is a pointer to a null terminated string of characters

Function:

Converts the signed int32 to a string according to the provided base and returns the converted
value if any. If the result cannot be represented, the function will return O.

rco] Converts the signed int48, or a int64 to a string according to the provided base and
returns the converted value if any. If the result cannot be represented, the function will return 0.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int32 x=1234;
char string[5];

itoa(x,10, string); // string is now “1234”

See Also:

jump to isr()

Syntax:
jump_to_isr (address)

Parameters:
address is a valid program memory address

Returns:

Function:

The jump_to_isr function is used when the location of the interrupt service routines are not at
the default location in program memory. When an interrupt occurs, program execution will
jump to the default location and then jump to the specified address.

327

CCS C Compiler

Availability:
All Devices

Requires:

Examples:
int global
void global isr(void) {
jump to isr(isr_address);

}

Example Files:
ex_bootloader.c

See Also:
#BUILD

kbhit()

Syntax:
value = kbhit()
value = kbhit (stream)

Parameters:
stream - is the stream id assigned to an available RS232 port. If the stream parameter is not
included, the function uses the primary stream used by getc().

Returns:
0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a character is
ready for getc()

Function:

If the RS232 is under software control this function returns TRUE if the start bit of a character
is being sent on the RS232 RCV pin. If the RS232 is hardware this function returns TRUE if a
character has been received and is waiting in the hardware buffer for getc() to read. This
function may be used to poll for data without stopping and waiting for the data to appear. Note
that in the case of software RS232 this function should be called at least 10 times the bit rate
to ensure incoming data is not lost.

Availability:
All Devices

Requires:
#USE RS232

328

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Examples:
char timed getc() {

long timeout;

timeout error=FALSE;

timeout=0;

while (!kbhit () && (++timeout<50000)) // 1/2 second
delay us(10);

if (kbhit ())
return (getc());

else {
timeout error=TRUE;
return (0) ;

}

Example Files:
ex_tgetc.c

See Also:
getc(), #USE RS232, RS232 I/0O Overview

label address()

Syntax:
value = label_address(label);

Parameters:
label - is a C label anywhere in the function

Returns:
16 bit intin PCB and PCM and 32 bit int for PCH
pco] 32 bit int for PCD

Function:
This function obtains the address in ROM of the next instruction after the label. This is not a
normally used function except in very special situations.

Availability:
All Devices

Requires:

Examples:
start:

329

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

a = (btc)<k2;

end:
printf ("It takes %$1lu ROM locations.\r\n",
label address(end)-label address(start))

Example Files:
setimp.h

See Also:

goto_address()

labs()

Syntax:
result = labs (value)

Parameters:
value is a 16 bit signed long int
pco] value is a 32, 48 or 64 bit signed long int

Returns:
A 16 bit signed long int
rco] A signed long int of type value

Function:
Computes the absolute value of a long integer.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

See Also:

abs()

lcd contrast()

Syntax:
Icd_contrast(contrast)

330

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
contrast is used to set the internal contrast control resistance ladder

Returns:
Undefined

Function:
This function controls the contrast of the LCD segments with a value passed in between 0 and
7. A value of 0 will produce the minimum contrast, 7 will produce the maximum contrast.

Availability:

Only on select devices with built-in LCD Driver Module

Requires:

Examples:
lcd contrast(0); // Minimum Contrast
lcd contrast(7); // Maximum Contrast

See Also:
Ilcd load(), lcd _symbol(), setup lcd(), Internal LCD Overview

lcd load()

Syntax:
Icd_load (buffer_pointer, offset, length)

Parameters:

buffer_pointer - points to the user data to send to the LCD, offset is the offset into the LCD
segment memory to write the data.

length - is the number of bytes to transfer to the LCD segment memory.

Returns:
Undefined

Function:

This function will load length bytes from buffer_pointer into the LCD segment memory
beginning at offset. The lcd_symbol() function provides as easier way to write data to the
segment memory.

Availability:
Only on select devices with built-in LCD Driver Module

Requires:
Constants are defined in the devices *.h file.

331

CCS C Compiler

Examples:
lcd load(buffer, 0, 16);

Example Files:
ex_92Icd.c

See Also:
Icd _symbol(), setup Icd(), lcd contrast(), Internal LCD Overview

lcd symbol()

Syntax:
lcd_symbol (symbol, bX_addr);

Parameters:
symbol is a 8 bit or 16 bit constant.

bX_addr is a bit address representing the segment location to be used for bit X of the
specified symbol.
1-16 segments could be specified

Returns:
Undefined

Function:

This function loads the bits for the symbol into the segment data registers for the LCD with
each bit address specified. If bit X in symbol is set, the segment at bX_addr is set, otherwise it
is cleared. The bX_addr is a bit address into the LCD RAM.

Availability:
Only on select devices with built-in LCD Driver Module

Requires:
Constants are defined in the devices *.h file.

Examples:
byte CONST DIGIT MAP[10] = {0xFC, 0x60, OxDA, OxF2, 0x66, 0xB6, OxBE,
0xEOQ, OxFE, OxE6};

#define DIGITL coM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18

for(i = 0; 1 <= 9; i++) {

lcd symbol(DIGIT MAP[i], DIGITL);
delay ms(1000);

332

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Example Files:
ex_92Icd.c

See Also:
setup _lcd(), lcd load(), lcd contrast(), Internal LCD Overview

Idexp()

Syntax:
result= Idexp (value, exp);

Parameters:
value is float
rco] value any float type

exp is a signed int

Returns:
Result is a float with value result times 2 raised to power exp.
reo] Result will have a precision equal to value

Function:
The ldexp() function multiplies a floating-point number by an integral power of 2.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
result=ldexp(.5,0); // result is .5

See Also:
frexp(), exp(), log(), log10(), modf()

333

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
loa()

Syntax:
result= Idexp (value, exp);

Parameters:
value is float
pco] value any float type

exp is a signed int

Returns:
Result is a float with value result times 2 raised to power exp
reo] Result will have a precision equal to value

Function:

Computes the natural logarithm of the float x. If the argument is less than or equal to zero or
too large, the behavior is undefined.

Note on error handling: "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Domain error occurs in the following cases: log: when the argument is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
Inx = log(x);

See Also:
10910(), exp(), pow()

10g10()

Syntax:
result=1og10 (value)

Parameters:
value is float
pco] value any float type

exp is a signed int

334

Built-in Functions

Returns:
Result is a float with value result times 2 raised to power exp
treo] Result will have a precision equal to value

Function:

Computes the natural logarithm of the float x. If the argument is less than or equal to zero or
too large, the behavior is undefined.

Note on error handling: "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Domain error occurs in the following cases: 1ogl0: when the argument is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
db = loglO(read adc()*(5.0/255))*10;

See Also:
loa(), exp(), pow()

longimp()
Syntax:

longjmp (env, val)

Parameters:
env - The data object that will be restored by this function

val -: The value that the function setjmp will return. If val is 0 then the function setjmp will
return 1 instead

Returns:
After longjmp is completed, program execution continues as if the corresponding invocation of
the setjmp function had just returned the value specified by val

Function:
Performs the non-local transfer of control

Availability:
All Devices

335

CCS C Compiler

Requires:
#INCLUDE <setjmp.h>

Examples:
longjmp (jmpbuf, 1);

See Also:

setimp()
make8()

Syntax:
i8 = MAKES8(var, offset);

Parameters:
var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3

Returns:
8 bit integer

Function:
Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & 0xff) except it is done
with a single byte move

Availability:
All Devices

Requires:

Examples:
int32 x;
int y;

y = make8(x,3); // Gets MSB of x

See Also:
makel16(), make32()

makel6()

Syntax:
i16 = MAKE16(varhigh, varlow)

336

Built-in Functions

Parameters:
varhigh and varlow are 8 bit integer

Returns:
16 bit integer

Function:

Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32 bits only the Isb
is used. Same as: i16 = (int16)(varhigh&0xff)*0x100+(varlow&O0xff) except it is done with two
byte moves

Availability:
All Devices

Requires:

Examples:
long x;
int hi,lo;

x = makel6 (hi, lo

Example Files:
[tc1298.c

See Also:
make8(), make32()

make32()

Syntax:
i32 = MAKE32(varl, var2, var3, var4)

Parameters:
varl-4 are a 8 or 16 bit integers
var2-4 are optional

Returns:
32 bit integer

Function:

Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note that the number
of parameters may be 1 to 4. The msb is first. If the total bits provided is less than 32 then
zeros are added at the msb

Availability:
All Devices
337

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Requires:

Examples:
int32 x;
int y;
long z;
x = make32(1,2,3,4); // x is 0x01020304
y=0x12;
z=0x4321;
x = make32(y,z); // x 1s 0x00124321

x = make32(y,y,z); // x 1s 0x12124321

Example Files:
ex_fregc.c

See Also:
make8(), makel6()

malloc()

Syntax:
ptr=malloc(size)

Parameters:
size - is an integer representing the number of byes to be allocated

Returns:
A pointer to the allocated memory, if any. Returns null otherwise

Function:
The malloc function allocates space for an object whose size is specified by size and whose
value is indeterminate

Availability:
All Devices

Requires:
#INCLUDE <stdlibm.h>

Examples:
int * iptr;
iptr=malloc(10); // iptr will point to a block of memory
of 10 bytes

338

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
realloc(), free(), calloc()

memcpy()
memmove()

Syntax:
memcpy (destination, source, n)
memmove(destination, source, n)

Parameters:

destination - is a pointer to the destination memory
source - is a pointer to the source memory

n - is the number of bytes to transfer

Returns:
Undefined

Function:

Copies n bytes from source to destination in RAM. Be aware that array names are pointers
where other variable names and structure names are not (and therefore need a & before
them).

memmove() performs a safe copy (overlapping objects does not cause a problem). Copying
takes place as if the n characters from the source are first copied into a temporary array of n
characters that does not overlap the destination and source objects. Then the n characters
from the temporary array are copied to destination.

Availability:
All Devices

Requires:

Examples:
memcpy (&structh, &structB, sizeof (structhd));
memcpy (arrayA, arrayB, sizeof (arravAh));
memcpy (&structA, &databyte, 1);

char a[20]="hello";
memmove (a,a+2,5) ; // a is now "llo

See Also:
strcpy(), memset()

339

CCS C Compiler

memset()

Syntax:
memset (destination, value, n)

Parameters:

destination - is a pointer to memory.
value -is a 8 bitint

n -is a 16 bitint

PCB and PCM parts n can only be 1-255.

Returns:
Undefined

Function:

Sets n number of bytes, starting at destination, to value. Be aware that array names are
pointers where other variable names and structure names are not (and therefore need a &
before them).

Availability:
All Devices

Requires:

Examples:
memset (arrayA, 0, sizeof (arrayh));
memset (arrayB, '?', sizeof (arrayB)):;
memset (&structhA, OxFF, sizeof (structh))

See Also:

memcpy()
modf()

Syntax:
result= modf (value, & integral)

Parameters:

value is a float

pco] value is any float type
integral is a float

tpco] integral is any float type

Returns:
Result is a float

340

Built-in Functions
pep] Result is a float with precision equal to value

Function:
The modf() function breaks the argument value into integral and fractional parts, each of which
has the same sign as the argument. It stores the integral part as a float in the object integral.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result, integral;
result=modf (123.987, &integral) ; // result is .987 and integral is
123.000

mul

Syntax:
prod=_mul(vall, val2);

Parameters:
vall and val2 are both 8-bit or 16-bit integers
reo] vall and val2 are both 8-bit, 16-bit, or 48-bit integers

Returns:
A 16-bit integer if both parameters are 8-bit integers, or a 32-bit integer if both parameters are
16-bit integers.

[PCD]
vall val2 prod
8 8 16
16* 16 32
32* 32 64
48* 48 64**
* or less

** large numbers will overflow with wrong results

Function:
Performs an optimized multiplication. By accepting a different type than it returns, this function
avoids the overhead of converting the parameters to a larger type.

Availability:
All Devices

Requires:

341

CCS C Compiler

Examples:
int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000

See Also:

nargs()

Syntax:
void foo(char * str, int count, ...)

Parameters:
The function can take variable parameters. The user can use stdarg library to create functions
that take variable parameters.

Returns:
Function dependent

Function:
The stdarg library allows the user to create functions that supports variable arguments.

The function that will accept a variable number of arguments must have at least one actual,
known parameters, and it may have more. The number of arguments is often passed to the
function in one of its actual parameters. If the variable-length argument list can involve more
that one type, the type information is generally passed as well. Before processing can begin,
the function creates a special argument pointer of type va_list.

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h>

Examples:
int foo(int num, ...)

{

int sum = 0;

int 1i;

va_list argptr; // create special argument
pointer

va_start (argptr,num) ; // initialize argptr

for (i=0; i<num; i++)

sum = sum + va_ arg(argptr, int);
va_end(argptr); // end variable processing

return sum;

}
342

void main ()

{

int total;

total = foo(2,4,6,9,10,2);

}

See Also:
va_start(),va end(),va_arg()

offset()
offsetofbit()

Syntax:

value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters:
stype - is a structure type name.
field - is a field from the above structure

Returns:
8 bit byte

Function:
These functions return an offset into a structure for the indicated field.
offsetof() returns the offset in bytes and offsetofbit returns the offset in bits.

Availability:
All Devices

Requires:
#INCLUDE <stddef.h>

Examples:
struct time structure ({

XXX

X

int hour, min, sec;
int zone : 4;
intl daylight savings;

= offsetof (time structure, sec);
= offsetofbit (time structure, sec);
= offsetof (time structure,

daylight savings);
offsetofbit (time structure,
daylight savings);

foo(2,4,6,9,10,2);

}

Built-in Functions

// x will be 2
// x will be 16

// x will be 3

// x will be 28total =

343

CCS C Compiler
OU'[QUIXQ [

Syntax:

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)
output_| (value)

Parameters:
value - is a 8 hit int
ipco) value - is a 16 bit int

Returns:
Undefined

Function:

Output an entire byte to a port. The direction register is changed in accordance with the last
specified #USE *_10 directive.

rco] Output an entire word to a port. The direction register is changed in accordance with the
last specified #USE *_IO directive.

Availability:
All Device that include all ports (A-E)

Requires:

Examples:
OUTPUT_ B (0x£f0) ;

Example Files:
ex_patqg.c

See Also:
input(), output _low(), output _high(), output_float(), output bit(), #USE FIXED 10O,
#USE FAST 10, #USE STANDARD 10, General Purpose 1/0O

344

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

output bit()

Syntax:
output_bit (pin, value)

Parameters:

pins - defined in the devices .h file. The actual number is a bit address. For example, port a
(byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3
43. The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the FAST_IO
mode is set on port A. Note that doing I/O with a variable instead of a constant will take much
longer time.

pco] pins - defined in the devices .h file. The actual number is a bit address. For example, port
a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined as

follows: #define PIN_A3 5651.

valueisaloraO.

Returns:
Undefined

Function:
Outputs the specified value (0 or 1) to the specified I/O pin. The method of setting the
direction register is determined by the last #USE*_10 directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output bit (PIN BO, 0); // Same as
output low(pin BO);
output bit (PIN BO,input (PIN Bl)); // Make pin BO the same
as Bl

output bit (PIN BO,shift left(&data,l,input (PIN B1l)));//
Output the MSB of data to
// BO and at the same

time
// shift Bl into the LSB
of data
intl6 i=PIN BO;
ouput bit(i,shift left(sdata,l,input (PIN Bl))); //same as

above example, but

345

CCS C Compiler

//uses a variable instead
of a constant

Example Files:
ex_extee.c with 9356.c

See Also:
input(), output_low(), output _high(), output float(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output drive()

Syntax:
output_drive(pin)

Parameters:

pins - are defined in the devices .h file. The actual value is a bit address. For example, port a
(byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3
43. The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the FAST_IO
mode is set on port A. Note that doing I/O with a variable instead of a constant will take much
longer time.

[pco] pins - are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined as
follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets the specified pin to the output mode.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output drive (pin AO0); // sets pin A0 to output
its value
output bit (pin BO, input(pin A0)) // makes BO the same as
AQ

See Also:
input(), output_low(), output _high(), output_bit(), output x(), output_float()
346

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions
output float()

Syntax:
output_float(pin)

Parameters:

pins - are defined in the devices .h file. The actual value is a bit address. For example, port a
(byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3
43. The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the FAST_IO
mode is set on port A. Note that doing I/O with a variable instead of a constant will take much
longer time.

[pco] pins - are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined as
follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets the specified pin to the input mode. This will allow the pin to float high to represent a high
on an open collector type of connection.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
if((data & 0x80)==0)
output low(pin AO);
else

output float (pin_ AO);

See Also:
input(), output_low(), output _high(), output_bit(), output x(), output_drive(), #USE
FIXED 10, #USE FAST 10, #USE STANDARD 10, General Purpose 1/0

output high()

Syntax:
output_high(pin)

347

CCS C Compiler

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable must have a
value equal to one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_10 mode is set on port A. Note that doing I/O with a variable
instead of a constant will take much longer time.

[pco] pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets a given pin to the high state. The method of /O used is dependent on the last USE *_1O
directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output high (PIN AQ);

Intl6 i=PIN Al;
output low (PIN Al);

Example Files:
ex_sgw.c

See Also:
input(), output low(), output float(), output_bit(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output low()

Syntax:
output_low(pin)

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable must have a
value equal to one of the constants (like PIN_A1) to work properly. The tristate register is

348

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

updated unless the FAST_10 mode is set on port A. Note that doing I/O with a variable
instead of a constant will take much longer time.

[pco] pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets a given pin to the ground state. The method of I/O used is dependent on the last USE
* 1O directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output low (PIN AO0);

Int16i=PIN Al;
output low (PIN Al);

Example Files:
ex_sgw.c

See Also:
input(), output_high(), output_float(), output bit(), output x(), #USE FIXED |0, #USE
FAST 10, #USE STANDARD 10, General Purpose 1/0

output toggle()

Syntax:
output_toggle(pin)

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable must have a
value equal to one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_1O mode is set on port A. Note that doing I/O with a variable
instead of a constant will take much longer time.

349

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

[pco] pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Toggles the high/low state of the specified pin.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output toggle (PIN B4);

See Also:
input(), output_high(), output low(), output_bit(), output X()

perror()

Syntax:
perror(string);

Parameters:
string is a constant string or array of characters (null terminated)

Returns:

Function:
This function prints out to STDERR the supplied string and a description of the last system
error (usually a math error.

Availability:
All Devices

Requires:
#USE RS232, #INCLUDE <errno.h>, #INCLUDE<stdio.h>

Examples:
X = sin(y);

if (errno!=0)

350

perror ("Problem in find area");

See Also:
RS232 1/0 Overview

pid busy()

Syntax:
result = pid_busy();

Parameters:

Function:
TRUE if PID module is busy or FALSE is PID module is not busy

Availability:
All Devices with a PID Module

Requires:

Examples:

pid get result (PID START ONLY, ADCResult);

while (pid busy());
pid_get_result(PID_READ_ONLY, &PIDResult) ;

See Also:
setup_pid(), pid write(), pid _get result(), pid_read()

pid get result()

Syntax:

pid_get_result(set_point, input, &output);
pid_get_result(mode, set_point, input);
pid_get_result(mode, &output)
pid_get_result(mode, set_point, input, &output);

Built-in Functions

351

CCS C Compiler

Parameters:
mode - constant parameter specifying whether to only start the calculation, only read the
result, or start the calculation and read the result. The options are defined in the device's
header file as:

pd_start_read

pid_read_only

pid_start_only

set_point -a 16-bit variable or constant representing the set point of the control system, the
value the input from the control system is compared against to determine the error in the
system.

input - a 16-bit variable or constant representing the input from the control system.

output - a structure that the output of the PID module will be saved to. Either pass the
address of the structure as the parameter, or a pointer to the structure as the parameter.

Returns:

Function:

To pass the set point and input from the control system to the PID module, start the PID
calculation and get the result of the PID calculation. The PID calculation starts, automatically
when the input is written to the PID module's input registers.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid get result (SetPoint, ADCResult, &PIDOutput); //Start
and Read
pid get result (PID START ONLY, SetPoint, ADCResult); //Start
Only
pid get result (PID READ ONLY, &PIDResult); //Read
Only

See Also:
setup_pid(), pid read(), pid_write(), pid_busy()

352

Built-in Functions

pid read()

Syntax:
pid_read(register, &output);

Parameters:
register- constant specifying which PID registers to read. The registers that can be written
are defined in the device's header file as:
- pid_addr_accumulator

pid_addr_output

pid_addr_z1

pid_addr_z2

pid_addr_k1

pid_addr_k2

pid_addr_k3

output -a 16-bit variable, 32-bit variable or structure that specified PID registers value will be
saved to. The size depends on the registers that are being read. Either pass the address of
the variable or structure as the parameter, or a pointer to the variable or structure as the
parameter.

Returns:

Function:

To read the current value of the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish
calculation before reading the specified register.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid read(PID ADDR Z1l, &value zl);

See Also:
setup_pid(), pid write(), pid _get result(), pid busy()

pid write()

Syntax:
pid_write(register, &output);

353

CCS C Compiler

Parameters:
register- constant specifying which PID registers to read. The registers that can be written
are defined in the device's header file as:

pid_addr_accumulator

pid_addr_output

pid_addr_z1

pid_addr_z2

pid_addr_k1

pid_addr_k2

pid_addr_k3

output -a 16-bit variable, 32-bit variable or structure that specified PID registers value will be
saved to. The size depends on the registers that are being read. Either pass the address of
the variable or structure as the parameter, or a pointer to the variable or structure as the
parameter.

Returns:

Function:

To write a new value for the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish the
calculation before writing the specified register.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid write(PID ADDR Zzl, &value zl);

See Also:
setup_pid(), pid read(), pid_get result(), pid busy()

pin_select()

Syntax:
pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters:

peripheral_pin — a constant string specifying which peripheral pin to map the specified pin
to. Refer to #pin_select for all available strings. Using “NULL” for the peripheral_pin
parameter will unassign the output peripheral pin that is currently assigned to the pin passed
for the pin parameter.

354

Built-in Functions

pin — the pin to map to the specified peripheral pin. Refer to device's header file for pin
defines. If the peripheral_pin parameter is an input, passing FALSE for the pin parameter will
unassign the pin that is currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock sequence before writing
the RPINRx or RPORX register register determined by peripheral_pin and pin options. Default
is TRUE if not specified. The unlock sequence must be performed to allow writes to the
RPINRx and RPORX registers. This option allows calling pin_select() multiple times without
performing an unlock sequence each time.

lock — optional parameter specifying whether to perform a lock sequence after writing the
RPINRx or RPORX registers. Default is TRUE if not specified. Although not necessary it is a
good idea to lock the RPINRx and RPORX registers from writes after all pins have been
mapped. This option allows calling pin_select() multiple times without performing a lock
sequence each time.

Returns:

Availability:
On device with remappable peripheral pins.

Requires:
Pin defines in device's header file.

Examples:
pin_select (“U2TX”,PIN BO); //Maps PIN BO to U2TX
peripheral pin,
//performs unlock and
lock sequences.

pin select (“U2TX”,PIN BO,TRUE,FALSE); //Maps PIN BO to U2TX
peripheral pin

//and performs unlock
sequence.

pin select (“U2RX”,PIN Bl,FALSE,TRUE); //Maps PIN Bl to U2RX
peripheral pin

//and performs lock
sequence.

See Also:
#pin_select

355

CCS C Compiler
pll locked()

Syntax:
result=pll_locked();

Parameters:

Returns:

A short int.

TRUE if the PLL is locked/ready,
FALSE if PLL is not locked/ready

Function:
Allows testing the PLL Ready Flag bit to determined if the PLL is stable and running.

Availability:

All Devices with a Phase Locked Loop (PLL).

Not all devices have a PLL Ready Flag, for those devices the pll_locked() function will always
return TRUE

Requires:

Examples:
while (!pll locked())

See Also:
#use delay

pmp address(address)

Syntax:
pmp_address (address);

Parameters:
address- The address which is a 16 bit destination address value. This will setup the address
register on the PMP module and is only used in Master mode.

Returns:
Undefined

Function:

Configures the address register of the PMP module with the destination address during Master
mode operation. The address can be either 14, 15 or 16 bits based on the multiplexing used
for the Chip Select Lines 1 and 2.

356

Built-in Functions

Availability:
All Devices with a built-in Parallel Port Module

Requires:

Examples:
pmp_address (0x2100) ; // Sets up Address register to
0x2100

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp_input_full(), psp _overflow(), pmp output full(),
pmp_input full),pmp_overflow()

pmp output full()pmp input full()pmp overflow() pmp error()
pmp timeout()

Syntax:

result = pmp_output_full()
result = pmp_input_full()
result = pmp_overflow()
result = pmp_eror()
result = pmp_timeout()

Parameters:

Returns:
A 0 (FALSE) or 1 (TRUE)

Function:
These functions check the Parallel Port for the indicated conditions and return TRUE or
FALSE.

Availability:
Only available on devices with Parallel Port
Requires:
Examples:
while (pmp output full());
pmp_data = command;

while (!pmp input full());
357

CCS C Compiler
if (pmp overflow())
error = TRUE;
else
data = pmp_ data

See Also:
setup_pmp(), pmp_write(), pmp_read()

pmp read()

Syntax:

result = pmp_read ();

result = pmp_read8(address);

result = pmp_readl6(address);
pmp_read8(address,pointer,count);
pmp_readl6(address,pointer,count);

Parameters:

address- EPMP only, address in EDS memory that is mapped to address from parallel port
device to read data from or start reading data from. (All address in EDS memory are word
aligned)

pointer- EPMP only, pointer to array to read data to.

count- EPMP only, number of bytes to read. For pmp_read16() number of bytes must be
even.

Returns:
For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit value. For
pmp_read8(address,pointer,count) and pmp_readl6(address,pointer,count) undefined.

Function:

For PMP module, this will read a byte from the next buffer location. For EPMP module, reads
one byte/word or count bytes of data from the address mapped to the EDS memory location.
The address is used in conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or low during the read.

Availability:
Only available on devices with Parallel Port or an Enhanced Parallel Master Port module.
Requires:
Examples:
result = pmp read(); //PMP reads next byte of data

358

Built-in Functions

result = pmp read8 (0x8000); //EPMP reads byte of data from
the

//address mapped to first
address in

//EDS memory.
pmp readl6 (0x8002,ptr,16); //EPMP reads 16 bytes of data
and

//returns to array pointed to
by ptr

//starting at address mapped
to address

//0x8002 in EDS memory

See Also:

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input full),pmp_overflow()

pmp write()

Syntax:

pmp_write (data);
pmp_write8(address,data);
pmp_write8(address,pointer,data);
pmp_writel6(address,data);
pmp_writel6(address,pointer,data);

Parameters:
data- The byte of data to be written.

address- EPMP only, address in EDS memory that is mapped to address from parallel port
device to write data to or start writing data to. (All addresses in EDS memory are word aligned)

pointer- EPMP only, pointer to data to be written

count- EPMP only, number of bytes to write. For pmp_write16() number of bytes must be
even.

Returns:
Undefined

Function:

For PMP modules, this will write a byte of data to the next buffer location. For EPMP modules
writes one byte/word or count bytes of data from the address mapped to the EDS memory
location. The address is used in conjunction with the offset address set with the

359

CCS C Compiler

setup_pmp_cs1() and setup_pmp_cs2() functions to determine which address lines are high
or low during write.

Availability
Only available on devices with Parallel Port or an Enhanced Parallel Master Port module.
Requires:
Examples:
pmp write(data); //Write the data byte to
//the next buffer location.
pmp write8(0x8000,data); //EPMP writes the data byte to
//the address mapped to the
first

//location in EDS memory.
pmp writel6(0x8002,ptr,16); //EPMP writes 16 bytes of data

pointed
//to by ptr starting at address
mapped
//to address 0x8002 in EDS
memory.
See Also:

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input full(), pmp overflow()

port a current source()

Syntax:
port_a_current_source(mask);

Parameters:
mask - an int8 value indicating which port pins have the weak current source enabled. 1
indicates the weak current source is enabled.

Returns:

Function:
Used to enable and disable the weak current source on port A pins.

Availability:
Devices that have a weak current source on some of the port A pins.

360

Built-in Functions
Requires:

Examples:
port a current source (0x0C); //enables weak current

source
//on PIN A2 and PIN A3.

See Also:

set_tris_x(), get trisx(), output x(), input_x(), input_change x(), port x pullups(),
input(),

input_state(), output _low(), output _high(), output toggle(), output_bit(),
output_float(),

output _drive(), General Purpose 1/0

port x pullups()

Syntax:

port_a_pullups (value)

port_b_pullups (value)

port_d_pullups (value)

port_e_pullups (value)

port_j_pullups (value)

port_k_pullups (value)

port_|_pullups (value)

port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters:
value - is TRUE or FALSE on most parts, some parts that allow pullups to be specified on
individual pins permit an 8 bit int here, one bit for each port pin.

upmask - for ports that permit pullups to be specified on a pin basis. This mask indicates what
pins should have pullups activated. A 1 indicates the pullups is on.

downmask - for ports that permit pulldowns to be specified on a pin basis. This mask indicates
what pins should have pulldowns activated. A 1 indicates the pulldowns is on.

Returns:
Undefined

Function:
Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

361

CCS C Compiler
Availability:
Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS on PCB parts).

Requires:

Examples:
port a pullups (FALSE) ;

Example Files:
ex_lcdkb.c, kbd.c

See Also:
input(), input_x(), output_float()

pow()
pwr()
Syntax:

f=pow (x.y)
f=pwr (x.y)

Parameters:
x and y are of type float
pco] X and y are any float type

Returns:
A float
tpeo] A float with precision equal to function parameters x and y.

Function:
Calculates X to the Y power.

Note on error handling: If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Range error occurs in the following case: pow: when the argument X is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
area = pow (size,3.0)

362

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

prgx status()

Syntax:

status = prgl_status();
status = prg2_status();
status = prg3_status();
status = prg4_status();

Parameters:

Returns:
An 8-bit value indicating the status of the PRGx module. See the device's header file for
constants that can be returned by function.

Function:
Used to set the PRGx modules.

Availability:
Devices that have a Programmable Ramp Generator (PRG) module.

Requires:

Examples:

int8 Status;
Status = prgl status();

See Also:

setup_prax()

printf()
fprintf()

Syntax:
printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:
String is a constant string or an array of characters null terminated.

363

CCS C Compiler
C String is a constant string. Note that format specifiers cannot be used in RAM strings.

Values is a list of variables separated by commas, fname is a function name to be used for
outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When variables are
used this string must be a constant. The % character is used within the string to indicate a
variable value is to be formatted and output. Longs in the printf may be 16 or 32 bit. A %% will
output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT (the
last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating point
and %w output. t is the type and may be one of the following:

¢ -- string or character

u --unsigned

d --signed int

Lu -- long unsigned int

Ld -- long signed int

X -- hexint (lower case)

X --hexint (upper case

Lx -- hex long int (lower case)

LX -- hex long int (upper case)

f -- float with truncated decimal

g -- float with rounded decimal

e --floatin exponential format

w -- unsigned int with decimal place inserted. Specify two numbers for n.

The first is a total field width. The second is the desired number of decimal places.

Example Formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

364

Built-in Functions

%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 00FE
%3.1w 1.8 254
* Result is undefined - Assume garbage.

Availability:

All Devices

Requires:

#USE RS232 (unless fname is used)

Examples:
byte x,y,2z;
printf ("HiThere");
printf ("RTCCValue=>%2x\r\n",get rtcc());
printf ("%$2u $X %4X\r\n",x,y,2z);
printf (LCD_PUTC, "n=%u",n);

Example Files:
ex_admm.c, ex_lcdkb.c

See Also:
atoi(), puts(), putc(), getc() (for a stream example), RS232 /O Overview

profileout()

Syntax:
profileout(string);
profileout(string, value);
profileout(value);

Parameters:

string - is any constant string, and value can be any constant or variable integer. Despite the
length of string the user specifies here, the code profile run-time will actually only send a one
or two byte identifier tag to the code profile tool to keep transmission and execution time to a
minimum.

Returns:
Undefined

Function:
Typically the code profiler will log and display function entry and exits, to show the call
sequence and profile the execution time of the functions. By using profileout(), the user can

365

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler
add any message or display any variable in the code profile tool. Most messages sent by

profileout() are displayed in the 'Data Messages' and 'Call Sequence' screens of the code
profile tool.

If a profileout(string) is used and the first word of string is "START", the code profile tool will
then measure the time it takes until it sees the same profileout(string) where the "START" is
replaced with "STOP". This measurement is then displayed in the 'Statistics' screen of the
code profile tool, using string as the name (without "START" or "STOP")

Availability:
All Devices

Requires:
#use profile() used somewhere in the project source code

Examples:

// send a simple string.
profileout ("This is a text string"); // send a variable with
a string identifier.
profileout ("RemoteSensor=", adc); // just send a variable.
profileout (adc) ; // time how long a block
of code takes to execute.

// this will be
displayed in the 'Statistics'

// of the Code Profile
tool.
profileout ("start my algorithm");

/* code goes here */
profileout ("stop my algorithm")

Example Files:
ex_profile.c

See Also:
#use profile(), #profile, Code Profile Overview

psmc blanking()

Syntax:
psmc_blanking(unit, rising_edge, rise_time, falling_edge, fall_time);

Parameters:
unit - is the PSMC unit number 1-4

rising_edge - are the events that are ignored after the signal activates.

366

Built-in Functions
rise_time - is the time in ticks (0-255) that the above events are ignored.

falling_edge - are the events that are ignored after the signal goes inactive.

fall_time - is the time in ticks (0-255) that the above events are ignored.
Events:
psmc_event_clout
psmc_event_c2out
psmc_event_c3out
psmc_event_c4out
psmc_event_in_pin

Returns:
Undefined

Function:

This function is used when system noise can cause an incorrect trigger from one of the
specified events. This function allows for ignoring these events for a period of time around
either edge of the signal. See setup_psmc() for a definition of a tick.

Pass a 0 or FALSE for the events to disable blanking for an edge.

Availability:
All Devices with PSMC module

Requires:

psmc deadband()

Syntax:
psmc_deadband(unit,rising_edge, falling_edge);

Parameters:
unit - is the PSMC unit number 1-4

rising_edge - is the deadband time in ticks after the signal goes active. If this function is not
called, O is used.

falling_edge - is the deadband time in ticks after the signal goes inactive. If this function is not
called, O is used.

Returns:
Undefined

367

CCS C Compiler

Function:

This function sets the deadband time values. Deadbands are a gap in time where both sides
of a complementary signal are forced to be inactive. The time values are in ticks. See
setup_psmc() for a definition of a tick.

Availability:
All Devices with PSMC module

Requires:

Examples:
// 5 tick deadband when the signal
goes active.
psmc_deadband(l, 5, 0)

See Also:
setup_psmc(), psmc_sync(), psmc_blanking(), psmc_modulation(), psmc_shutdown(),
psmc_duty(), psmc_freq adjust(), psmc_pins()

psmc_duty()

Syntax:
psmc_duty(unit, pins_used, pins_active_low);

Parameters:
unit - is the PSMC unit number 1-4

fall_time - is the time in ticks that the signal goes inactive (after the start of the period)
assuming the event PSMC_EVENT_TIME has been specified in the setup_psmc().

Returns:
Undefined

Function:

This function changes the fall time (within the period) for the active signal. This can be used to
change the duty of the active pulse. Note that the time is NOT a percentage nor is it the time
the signal is active. It is the time from the start of the period that the signal will go inactive. If
the rise_time was set to 0, then this time is the total time the signal will be active.

Availability:
All Devices with PSMC module

Requires:

Built-in Functions

Examples:
// For a 10khz PWM, based on Fosc
divided by 1
// the following sets the duty
from
// 0% to 100% baed on the ADC
reading
while (TRUE) {
psmc_duty (1, (read adc()*(intl6)10)/25)*
(getenv ("CLOCK") /1000000)) ;
}

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_freq adjust(), psmc_pins()

psmc freq adjust()

Syntax:
psmc_freq_adjust(unit, freq_adjust);

Parameters:
unit - is the PSMC unit number 1-4

freq_adjust - is the time in tick/16 increments to add to the period. The value may be 0-15.

Returns:
Undefined

Function:
This function adds a fraction of a tick to the period time for some modes of operation.

Availability
All Devices with PSMC module

Requires:

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_dutyt(), psmc_pins()

369

CCS C Compiler
psmc_modulation()

Syntax:
psmc_modulation(unit, options);

Parameters:
unit is the PSMC unit number 1-4

Options may be one of the following:
psmc_mod_off
psmc_mod_active
psmc_mod_inactive
psmc_mod_clout
psmc_mod_c2out
psmc_mod_c3out
psmc_mod_c4out
psmc_mod_ccpl
psmc_mod_ccp2
psmc_mod_in_pin

The following may be OR'ed with the above
psmc_mod_invert
psmc_mod_not_bdf
psmc_mod_not_ace

Returns:
Undefined

Function:

This function allows some source to control if the PWM is running or not. The active/inactive
are used for software to control the modulation. The other sources are hardware controlled
modulation. There are also options to invert the inputs, and to ignore some of the PWM
outputs for the purpose of modulation.

Availability:
All Devices with PSMC module

Requires:

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_shutdown(),
psmc_duty(), psmc_freq adjust(), psmc_pins()

370

Built-in Functions
smc_pins

Syntax:
psmc_pins(unit, pins_used, pins_active_low);

Parameters:
unit - is the PSMC unit number 1-4

used_pins - is the any combination of the following or'ed together:
psmc_A
psmc_B
psmc_C
psmc_D
psmc_E
psmc_F
psmc_on_next_period

If the last constant is used, all the changes made take effect on the next period (as opposed to
immediate)

pins_active_low - is an optional parameter. When used it lists the same pins from above as
the pins that should have an inverted polarity.

Returns:
Undefined

Function:
This function identified the pins allocated to the PSMC unit, the polarity of those pins and it
enables the PSMC unit. The tri-state register for each pin is set to the output state.

Availability:
All Devices with PSMC module

Requires:

Examples:
// Simple PWM, 10khz out on pin CO
assuming a 20mhz crystal
// Duty is initially set to 25%
setup psmc(l, PSMC)SINGLE,
PSMC EVENT TIME | PSMC SOURCE FOSC, us (100,
PSMC_EVENT TIME, O,
PSMC EVENT TIME, us(25));

psmc_pins(l, PSMC A);
}

371

CCS C Compiler

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_duty(), psmc_freq_adjust()

psmc shutdown()

Syntax:
psmc_shutdown(unit, options, source, pins_high);
psmc_shutdown(unit, command);

Parameters:
unit - is the PSMC unit number 1-4

Options may be one of the following:
psmc_shutdown_
psmc_shutdown_normal
psmc_shutdown_auto_restart

command may be one of the following:
psmc_shutdown_restart
psmc_shutdown_force
psmc_shutdown_check

source may be any of the following or'ed together:
psmc_shutdown_clout
psmc_shutdown_c2out
psmc_shutdown_c3out
psmc_shutdown_c4out
psmc_shutdown_in_pin

pins_high is any combination of the following or'ed together:
psmc_A
psmc_B
psmc_C
psmc_D
psmc_E
psmc_F

Returns:
Non-zero if the unit is now in shutdown

Function:

This function implements a shutdown capability. When any of the listed events activate the
PSMC unit will shutdown and the output pins are driver low unless they are listed in the pins
that will be driven high.

372

Built-in Functions

The auto restart option will restart when the condition goes inactive, otherwise a call with the
restart command must be used. Software can force a shutdown with the force command.

Availability:
All Devices with PSMC module

Requires:

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_duty(), psmc_freq adjust(), psmc_pins()

psmc sync()

Syntax:
psmc_sync(slave_unit, master_unit, options);

Parameters:
slave_unit is the PSMC unit number 1-4 to be controlled.

master_unit is the PSMC unit number 1-4 to be synchronized to

Options may be:
psmc_source_is_phase
psmc_source_is_period
psmc_source_disconnect

The following may be OR'ed with the above:
psmc_invert_duty
psmc_invert_period

Returns:
Non-zero if the unit is now in shutdown

Function:
This function allows one PSMC unit (the slave) to be synchronized (the outputs) with another
PSMC unit (the master).

Availability:
All Devices with PSMC module

Requires:

373

CCS C Compiler

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freq adjust(), psmc_pins()

psp output full() psp input full() psp overflow()

psp_error()
psp_timeout()

Syntax:

result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error();
result = psp_timeout();

Parameters:

Returns:
A 0 (FALSE) or 1 (TRUE)

Function:
These functions check the Parallel Slave Port (PSP) for the indicated conditions and return
TRUE or FALSE.

Availability:

All Devices with PSP module

Requires:

Examples:
while (psp output full()) -
psp_data = command;

while (!psp_input full()) ;
if (psp_overflow())
error = TRUE;
else
data = psp_data;

Example Files:
ex_psp.c

374

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
setup_psp(), PSP Overview

psp read()

Syntax:
Result = psp_read ();
Result = psp_read (address);

Parameters:
address - The address of the buffer location that needs to be read. If address is not specified,
use the function psp_read() which will read the next buffer location.

Returns:
A byte of data

Function:
psp_read() will read a byte of data from the next buffer location and psp_read(address) will
read the buffer location address.

Availability:
Only the devices with a built in Parallel Master Port module of Enhanced Parallel Master Port
module

Requires:
Examples:
Result = psp_read(); // Reads next byte of data
Result = psp_read(3); // Reads the buffer location 3
See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp input_full(), psp overflow(), pmp output full(),
pmp_input full),pmp_overflow().

psp_write

Syntax:
psp_write (data);
psp_write(address, data);

375

CCS C Compiler

Parameters:
address - The buffer location that needs to be written to
data - The byte of data to be written

Returns:
Undefined

Function:
This will write a byte of data to the next buffer location or will write a byte to the specified buffer
location.

Availability:
Only the devices with a built in Parallel Master Port module or Enhanced Parallel Master Port
module

Requires:

Examples:
psp_write(data); // Write the data byte to the next buffer
location

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output_full(), psp_input_full(), psp_overflow(), pmp output full(),
pmp_input full(),pmp_overflow().

putc send() fputc send()

Syntax:
putc_send();
fputc_send(stream);

Parameters:
stream — parameter specifying the stream defined in #USE RS232

Returns:
Undefined

Function:
Function used to transmit bytes loaded in transmit buffer over RS232. Depending on the
options used in #USE RS232 controls if function is available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently transmitting. If not
transmitting it will then check for data in transmit buffer. If there is data in transmit buffer it will
load next byte from transmit buffer into the hardware TX buffer, unless using CTS flow control

376

Built-in Functions

option. In that case it will first check to see if CTS line is at its active state before loading next
byte from transmit buffer into the hardware TX buffer.

If using hardware UARTXx with TXISR option, function only available if using CTS flow control
option, it will test to see if the TBEX interrupt is enabled. If not enabled it will then test for data
in transmit buffer to send. If there is data to send it will then test the CTS flow control line and
if at its active state it will enable the TBEx interrupt. When using the TXISR mode the TBEx
interrupt takes care off moving data from the transmit buffer into the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check if there is data in
transmit buffer to send. If there is data it will then check the CTS flow control line, and if at its
active state it will clock out the next data byte.

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE RS232 (UART1,BAUD=9600, TRANSMIT_BUFFER=50 , NOTXISR)
printf (“Testing Transmit Buffer”);
while (TRUE) {
putc_send() ;
}

See Also:

USE RS232(), rev_buffer full(), tx_buffer full(), tx_buffer bytes(), getc(), putc()
rintf(), setup_uart(),

utc(),

pwm_off()

Syntax:
pwm_off([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM

Returns:
Undefined

Function:
To turn off the PWM signal.

377

CCS C Compiler

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();
if (c=="F")
pwm_off();

}

See Also:
#use pwm, pwm_on(), pwm_set duty percent(), pwm_set duty(),
pwm_set frequency()

pwm_off()

Syntax:
pwm_on([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM

Returns:
Undefined

Function:
To turn off the PWM signal.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {

378

Built-in Functions
c = getc();
if (c=='0")
pwm_on () ;

}

See Also:
#use pwm, pwm_off(), pwm_set duty percent(), pwm_set duty(),
pwm_set frequency()

pwm_off()

Syntax:
pwm_set_duty([stream],duty);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.
duty — an int16 constant or variable specifying the new PWM high time

Returns:
Undefined

Function:

To change the duty cycle of the PWM signal. The duty cycle percentage depends on the
period of the PWM signal. This function is faster than pwm_set_duty_percent(), but requires
you to know what the period of the PWM signal is.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM(OUTPUT:PIN_CZ, FREQUENCY=10kHz, DUTY=25)

See Also:
#use pwm, pwm_on(), pwm _off(), pwm_set frequency(), pwm set duty percent()

pwm set duty percent)

Syntax:
pwm_set_duty percent([stream]), percent

379

CCS C Compiler

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.

percent- an int1l6 constant or variable ranging from 0 to 1000 specifying the new PWM duty
cycle, D is 0% and 1000 is 100.0%.

Returns:
Undefined

Function:
To change the duty cycle of the PWM signal. Duty cycle percentage is based off the current
frequency/period of the PWM signal.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set duty percent (500); //set PWM duty cycle to 50%

See Also:
#use pwm, pwm_on(), pwm_off(), pwm_set frequency(), pwm_set duty()

pwm set frequency)

Syntax:
pwm_set_set_frequency([stream],frequency);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.

frequency — an int32 constant or variable specifying the new PWM frequency.

Returns:
Undefined

Function:

To change the frequency of the PWM signal. Warning this may change the resolution of the
PWM signal

Availability:

All Devices

380

Built-in Functions

Requires:
#USE PWM

Examples:
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency(1000) ; //set PWM frequency to 1kHz

See Also:
#use pwm, pwm_on(), pwm_off(), pwm_set duty percent, pwm_set duty()

pwm1l interrupt active() pwm?2 interrupt active()
pwma3 interrupt active() pwm4 interrupt active()
pwmb5 interrupt active() pwm6 interrupt active()

Syntax:

result_pwm2l_interrupt_active (interrupt)
result_pwm2_interrupt_active (interrupt)
result_pwm3_interrupt_active (interrupt)
result_pwm4_interrupt_active (interrupt)
result_pwmb5_interrupt_active (interrupt)
result_pwm6_interrupt_active (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file as:
pwm_period_interrupt
pwm_duty_interrupt
pwm_phase_interrupt
pwm_offset_interrupt

Returns:
TRUE if interrupt is active. FALSE if interrupt is not active.

Function:
Tests to see if one of the above PWM interrupts is active, interrupt flag is set.

Availability:
Devices with a 16-bit PWM module

Requires:
#USE PWM

Examples:

if (pwml interrupt active (PWM PERIOD INTERRUPT))
clear pwml interrupt (PWM PERIOD INTERRUPT)

381

CCS C Compiler

See Also:

setup_pwm(), set_pwm_duty(), set pwm_phase(), set_pwm_period(),
set_pwm_offset(), enable pwm _interrupt(), clear pwm _interrupt(),
disable pwm interrupt()

[PcD] gei _get capture()

Syntax:
value = gei_get_capture();
value = gei_get_capture(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the capture value from. Defaults to 1
if not specified.

Returns:
The 32-bit capture value of the specified QEI unit.

Function:
Used to get the capture value for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if function is
available.

Requires:

Examples:

Unsigned int32 Value;
Value = gei get capture(l);

See Also:

setup_gei(), gei_set count(), gei_status(),

gei_set index count(), gei _get index count(), gei_get velocity count(),
gei_get interval count()

gei get count()

Syntax:
value = gei_get_count([type]);
pco] value = gei_get_count([unit]);

382

Built-in Functions

Parameters:
type - Optional parameter to specify which counter to get, defaults to position counter. Defined
in devices .h file as:

gei_get_position_count

gei_get_velicity_count

pco] Value- The 16-bit value of the position counter.

tpco] unit- Optional unit number, defaults to 1.

Returns:

The 16-bit value of the position counter or velocity counter.
pco] void

Function:

Reads the current 16-bit value of the position or velocity counter.
rco] Reads the current 16-bit value of the position counter.

Availability:

Devices that have the QEI module

Requires:

Examples:
value = gei get counter (QEI GET POSITION COUNT) ;
value = gei get counter();
value = gei get counter (QEI GET VELOCITY COUNT) ;
eep; value = gei get counter();

See Also:

setup_gei() , gei_set _count() , gei_status()

[pcb] gei get index count()

Syntax:
value = gei_get_index_count();
value = gei_get_index_count(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the index count value from. Defaults
to 1 if not specified.

Returns:
The 32-bit index count for the specified QEI unit.

383

CCS C Compiler

Function:
Used to get the index count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if function is
available.

Requires:

Examples:

Unsigned int32 IndexCount;
IndexCount = gei get index count(1l);

See Also:
setup_qgei(), gei_set count(), gei_status(
), gei_set index_count(), gei_get capture(), gei_get velocity count(), gei_get inter

val_count()

[pcp] gei get interval count()

Syntax:
value = gei_get_interval_count();
value = gei_get_interval_count(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the interval count value
from. Defaults to 1 if not specified.

Returns:
The 32-bit interval count for the specified QEI unit.

Function:
Used to get the interval count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if function is
available.

Requires:

Examples:

384

Built-in Functions

Unsigned int32 IntervalCount;
IntervalCount = gei get interval count(1l);

See Also:
setup_qei(), gei_set count(), gei status(), gei_set index count(),
gei_get capture(), gei_get velocity count(), gei_get index count()

[PcD] gei get velocity count()

Syntax:
value = gei_get_velocity_count();
value = gei_get_velocity _count(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the velocity count value
from. Defaults to 1 if not specified.

Returns:
The 16-bit velocity count for the specified QEI unit.

Function:
Used to get the velocity count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if function is
available.

Requires:

Examples:

Unsigned int32 VelocityCount;
VelocityCount = gei get velocity count(1);

See Also:
setup_gei(), gei_set_count(), gei_status(
), gei_set_index_count(), gei_get capture(), gei_get interval count(), gei_get inde

Xx_count()

385

CCS C Compiler
gei _set count()

Syntax:
gei_set_count(value);
pco] gei_set_count([unit,] value)

Parameters:
value - The 16-hit value of the position counter.
pco] value - The 16-bit value of the position counter.

[pco] unit- Optional unit number, defaults to 1.

Returns:
Void

Function:
Write a 16-bit value to the position counter.

Availability:
Devices that have the QEI module

Requires:

Examples:
gei set counter (value);

See Also:
setup _gei() , gei_get _count() , gei_status()

[pcD] gei set index count()

Syntax:
gei_set_index_count();
gei_set_index_count(unit, count);

Parameters:

unit - optional parameter specifying the QEI unit to set the index count value from. Defaults to
1 if not specified.

count - the 32-bit value to set the index count to.

Returns:

Function:
Used to set the index count for the specified QEI unit.

386

Built-in Functions

Availability:
Some devices that have a QEI module. See the device's header file to determine if function is
available.

Requires:

Examples:

gei set index count (1, 500);

See Also:
setup _gei(), gei_set count(), gei_status(),
gei_get velocity count(), gei_get capture(), gei_get interval count(), gei _get inde

x_count()

gei_status()

Syntax:
status = gei_status();
[pco] Status = gei_status([unit]);

Parameters:
None
[pcp] status- The status of the QEI module

[pco] unit- Optional unit number, defaults to 1

Returns:
The status of the QEI module.
pco] Void

Function:
Returns the status of the QEI module.
rco] Returns the status of the QUI module

Availability:
Devices that have the QEI module
Requires:
Examples:
status = gei status();

387

CCS C Compiler

See Also:
setup_qei() , gei_set count() , gei_get count()

gsort()

Syntax:
gsort (base, num, width, compare)

Parameters:
base: Pointer to array of sort data

num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns:

Function:
Performs the shell-metzner sort (not the quick sort algorithm). The contents of the array are
sorted into ascending order according to a comparison function pointed to by compare

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int nums([5]={ 2,3,1,5,4};
int compar (void *argl,void *arg2);

void main () {
gsort (nums, 5, sizeof (int), compar);

}

int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

388

Built-in Functions

Example Files:
ex_gsort.c

See Also:

bsearch()

rand()

Syntax:
re=rand()

Parameters:

Returns:
A pseudo-random integer

Function:
The rand function returns a sequence of pseudo-random integers in the range of 0 to
RAND_MAX.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int I;
I=rand () ;

See Also:

srand()

rcv buffer bytes()

Syntax:
value = rcv_buffer_bytes([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE RS232

Returns:
Number of bytes in receive buffer that still need to be retrieved

389

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Function:
Function to determine the number of bytes in receive buffer that still need to be retrieve

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE_RS232(UARTl,BAUD=9600,RECEIVE_BUFFER=100)
void main (void) {
char c;
if (rcv_buffer bytes() > 10)
c = getc();

}

See Also:
USE RS232(), rcv_buffer full(), tx_buffer full(), tx_buffer bytes(), getc(), putc)
Jrintf(), setup uart(), putc_send()

rcv buffer full()

Syntax:
value = rcv_buffer_full([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE RS232

Returns:
TRUE if receive buffer is full, FALSE otherwise

Function:
Function to test if the receive buffer is full

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USEiRS232(UARTl,BAUD=9600,RECEIVEiBUFFER=lOO)
void main (void) {

char c;

390

Built-in Functions
if (rcv _buffer full())
c = getc();
}

See Also:
USE RS232(), rcev_buffer full(), tx_buffer bytes(), tx_buffer bytes(), getc(), putc)
Jprintf(), setup uart(), putc_send()

read adc()
[PCD] read adc2()

Syntax:

value = read_adc ([mode])

trco] value =read_adc2 ([mode])

trco] value=read_adc(mode,[channel])

Parameters:

mode - is an optional parameter. If used the values may be:
adc_start_and_read (continually takes readings, this is the default)
adc_start_only (starts the conversion and returns)
adc_read_only (reads last conversion result)

rco] channel - is an optional parameter for specifying the channel to start the conversion on
and/or read the result from. If not specified will use channel specified in last call to
set_adc_channel(), read_adc(), or adc_done().

Returns:
Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

Function:

This function will read the digital value from the analog to digital converter. Calls to
setup_adc(), setup_adc_ports() and set_adc_channel() should be made sometime before this
function is called. The range of the return value depends on number of bits in the chips A/D
converter and the setting in the #DEVICE ADC= directive as follows:

#DEVICE 8 bit 10 bit 11 bit 12 bit 16 bit

ADC=8 00-FF 00-FF 00-FF 00-FF 00-FF

ADC=10 X 0-3FF X 0-3FF X

ADC=11 X X 0-7FF X X

rco) ADC=12 pco] O-FFC pco] O-FFF

ADC=16 OFF00 0-FFCO 0-FFEO 0-FFFO O0-FFFF
Availability:

This function is only available on devices with A/D hardware.
reo] Only available on devices with built in analog to digital converters.

391

CCS C Compiler

Requires:
Pin constants are defined in the devices .h file

Examples:

setup_adc(ADC CLOCK INTERNAL);

setup adc ports(ALL ANALOG) ;

set adc channel (1) ;

while (input(PIN _BO)) {
delay ms(5000);
value = read adc();
printf ("A/D value = %2x\n\r", value);

}

read_adc (ADC_START_ONLY) ;
sleep () ;
value=read adc (ADC_READ ONLY) ;

[PCD]
intl6 value;

setup adc_ports (sANO|sANl, VSS VDD);
setup adc (ADC_CLOCK DIV 4|ADC_TAD MUL 8);

while (TRUE)
{

set _adc_ channel (0);
value = read adc();
printf (“Pin ANO A/C value = $LX\n\r”, value);

delay ms(5000);

set adc channel (1);
read adc (ADC_START ONLY) ;

value = read adc (ADC_READ ONLY) ;
printf ("Pin AN1 A/D value = 3%LX\n\r", value);
}

Example Files:
ex_admm.c, ex 14kad.c

See Also:
setup_adc(), set _adc _channel(), setup _adc_ports(), #DEVICE, ADC Overview

392

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

read bank()

Syntax:
value = read_bank (bank, offset)

Parameters:
bank - is the physical RAM bank 1-3 (depending on the device)

offset - is the offset into user RAM for that bank (starts at 0)

Returns:
8 bit int

Function:

Read a data byte from the user RAM area of the specified memory bank. This function may be
used on some devices where full RAM access by auto variables is not efficient. For example,
setting the pointer size to 5 bits on the PIC16C57 chip will generate the most efficient ROM
code. However, auto variables can not be above 1Fh. Instead of going to 8 bit pointers, you
can save ROM by using this function to read from the hard-to-reach banks. In this case, the
bank may be 1-3 and the offset may be 0-15.

Availability:
All devices but only useful on PCB parts with memory over 1Fh and PCM parts with memory
over FFh

Requires:
Examples:
// See write bank() example to see
// how we got the data
// Moves data from buffer to LCD
i=0;
do {
c=read bank(1l,i++);
if (c!=0x13)

lcd putc(c);
} while (c!=0x13);

Example Files:
ex_psp.c

See Also:

write _bank()

393

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

read calibration()

Syntax:
value = read_calibration (n)

Parameters:
n is an offset into calibration memory beginning at 0

Returns:
8 bit byte

Function:
The read_calibration function reads location "n" of the 14000-calibration memory

Availability:
This function is only available on the PIC14000

Requires:

Examples:
fin = read calibration(16);

Example Files:
ex_14kad.c with 14kcal.c

read calibration memory()

Syntax:
value = read_calibration_memory (cal_word)

Parameters:
cal_word - calibration word to read from calibration memory (1-16).

Returns:
unsigned intl16 value read from calibration memory.

Function:
Allows for reading one of the calibration words from the calibration memory.

Availability:
This function is only available on MCP191xx devices.

394

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions
Requires:

Examples:
CALWDl=read calibration memory (1) ;

See Also:
Program EEPROM Overview

read config info()

Syntax:
read_config_info([offset], ramPtr, count)

Parameters:
ramPTR - is the destination pointer for the read results.

count - is the number of bytes to read.

Offset - is an optional parameter specifying the offset into the DCI memory to start reading
from, offset default to zero if not used.

Returns:

Function:
Read count bytes from Device Configuration Area (DCI) memory and saves the values to
ramPtr. The DCI region of memory contains read-only data about the device's configuration.

Availability:
Devices with a DCI memory region.

Requires:

Examples:

unsigned intl6 EraseSize;
read device info (&EraseSize, 2); //reads Erase Row Size from DCI
memory

See Also:
read configuration _memory(), read device info(), Configuration Memory Overview

395

CCS C Compiler
read configuration memory()

Syntax:
read_configuration_memory([offset], ramPtr, n)

Parameters:
ramPtr - is the destination pointer for the read results

count - is an 8 bit integer

offset - is an optional parameter specifying the offset into configuration memory to start
reading from, offset defaults to zero if not used.

Returns:
Undefined

Function:

Reads n bytes of configuration memory and saves the values to ramPtr.

For Enhanced16 devices function reads User ID, Device ID and configuration memory
regions.

Availability:
All Devices

Requires:

Examples:

int datal[6];
read configuration memory (data, 6)

See Also:
write_configuration_memory(), read_program_memory(), Configuration Memory
Overview, Configuration Memory Overview

read device info()

Syntax:
read_device_info([offset], ramPtr, count)

Parameters:
ramPTR - is the destination pointer for the read results.

count - is the number of bytes to read.

396

Built-in Functions

Offset - is an optional parameter specifying the offset into the DIA memory to start reading
from, offset default to zero if not used.

Returns:

Function:
Read count bytes from Device Information Area (DIA) memory and saves the values to
ramPtr. The DIA region of memory contains read-only data used to identify the device.

Availability:
Devices with a DIA memory region.

Requires:

Examples:

unsigned intl6 identifier([9];
read device info(identifier, 18); //reads Unique Identifier from
DIA memory.

See Also:
read configuration _memory(), read config info(), Configuration Memory Overview

read eeprom()

Syntax:
value = read_eeprom (address)

pco] value = read_eeprom (address , [N])
read_eeprom(address,variable)
read_eeprom(address, pointer, N)

Parameters:
address - is an 8 bit or 16 bit int depending on the part

treo] N - specifies the number of EEPROM bytes to read
[pco] variable - a specified location to store EEPROM read results
[pcD] pointer - is a pointer to location to store EEPROM read results

Returns:
An 8 bit int

397

CCS C Compiler
pco] A 16 bit int

Function:

Reads a byte from the specified data EEPROM address. The address begins at 0 and the
range depends on the part.

pco] By default the function reads a word from EEPROM at the specified address. The number
of bytes to read can optionally be defined by argument N. If a variable is used as an argument,
then EEPROM is read and the results are placed in the variable until the variable data size is
full. Finally, if a pointer is used as an argument, then n bytes of EEPROM at the given address
are read to the pointer.

Availability:
This command is only for parts with built-in EEPROMs

Requires:

Examples:

#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

See Also:
write _eeprom(), erase _eeprom(), Data Eeprom Overview

read extended ram()

Syntax:
read_extended_ram(page,address,data,count);

Parameters:
page — the page in extended RAM to read from

address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)

Returns:
Undefined

Function:
To read data from the extended RAM of the device.

Availability:
On devices with more then 30K of RAM
398

Built-in Functions

Requires:

Examples:

unsigned int8 datal8];
read extended ram(1l,0x0000,data,8);

See Also:
Extended RAM Overview

read program memory()

Syntax:
READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters:
address is 32 bits. The least significant bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16
count is a 16 bit integer for PIC18 and dsPIC/PIC24

Returns:
Undefined

Function:
Reads count bytes from program memory at address to RAM at dataptr.

Availability:
On devices with the ability to Read program memory.

Requires:

Examples:

char buffer([64];
read program memory (0x40000, buffer, 64);

See Also:
write program memory(), External memory overview , Program Eeprom Overview

399

CCS C Compiler
read high speed adc()

Syntax:

read_high_speed_adc(pair,mode,result); /I Individual start and read or read only
read_high_speed_adc(pair,result); I/l Individual start and read
read_high_speed_adc(pair); /I Individual start only
read_high_speed_adc(mode,result); /I Global start and read or read only
read_high_speed_adc(result); I/l Global start and read
read_high_speed_adc(); /I Global start only

Parameters:

pair — Optional parameter that determines which ADC pair number to start and/or read. Valid
values are 0 to total number of ADC pairs. 0 starts and/or reads ADC pair ANO and AN1, 1
starts and/or reads ADC pair AN2 and AN3, etc. If omitted then a global start and/or read will
be performed.

mode — Optional parameter, if used the values may be:
adc_start_and_read (starts conversion and reads result)
adc_start_only (starts conversion and returns)
adc_read_only (reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if not used the
read_fast_adc() function can only perform a start.

Returns:
Undefined

Function:

This function is used to start an analog to digital conversion and/or read the digital value when
the conversion is complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime before this function is called.

When using this function to perform an individual start and read or individual start only, the
function assumes that the pair's trigger source was set to individual_software_trigger.

When using this function to perform a global start and read, global start only, or global read
only. The function will perform the following steps:

Determine which ADC pairs are set for global_software_trigger

Clear the corresponding ready flags (if doing a start).

Set the global software trigger (if doing a start).

Read the corresponding ADC pairs in order from lowest to highest (if doing a read).
Clear the corresponding ready flags (if doing a read).

agrODE

When using this function to perform a individual read only. The function can read the ADC
result from any trigger source.

400

Built-in Functions

Availability
Only on dsPIC33FJIxxGSxxx devices

Requires:
Constants are define in the device .h file

Examples:

//Individual
start and read
intl6 result[2];

setup high speed adc (ADC_ CLOCK DIV 4);
setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read high speed adc(0, result); //starts
conversion for ANO

//and AN1 and
stores result

//in result[0]
and result[1l]

//Global start
and read
intl6 result[4];

setup high speed adc (ADC CLOCK DIV 4);
setup _high speed adc pair (0, GLOBAL SOFTWARE TRIGGER);
setup high speed adc pair (4, GLOBAL SOFTWARE TRIGGER);
read high speed adc(result); //starts
conversion for ANO, AN1,

//AN8 and AN9
and stores result in

//result[0],
result //[1], result[2]

//and
result[3]

See Also:
setup _high speed adc(), setup high speed adc pair(), high speed adc done()

read program memory()

Syntax:
value = read_program_eeprom (address)

401

CCS C Compiler

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts

Returns:
16 bits

Function:
Reads data from the program memory

Availability:
Only devices that allow reads from program memory
Requires:
Examples:
checksum = 0;

for (1=0;1<8196; 1++)
checksum”=read program eeprom(i);
printf ("Checksum is %2X\r\n",checksum) ;

See Also:
write_program_eeprom(), write_eeprom(), read_eeprom(), Program Eeprom
Overview

read program memory()

Syntax:
READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters:
address is 32 bits. The least significant bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16
count is a 16 bit integer for PIC18 and dsPIC/PIC24

Returns:
Undefined

Function:
Reads count bytes from program memory at address to RAM at dataptr.

402

Built-in Functions

Availability:
On devices with the ability to Read program memory.

Requires:

Examples:

char buffer([64];
read program memory (0x40000, buffer, 64);

See Also:
write program memory(), External memory overview , Program Eeprom Overview

read program memory8()

Syntax:
READ_PROGRAM_MEMORYS8 (address, dataptr, count);

Parameters:
address is 16 bits to start reading data from the program memory.

dataptr is a pointer to an array of bytes to store read data to.
count is the number of bytes to read from program memory.

Returns:
Undefined

Function:

Reads count bytes from program memory. This function only reads the least significant byte
from each address in program memory. See read program_memory() for a function that
can read all the data from each address in program memory.

Availability:
Only on PCM devices with the ability to Read program memory.

Requires:

Examples:

read program memory8 (Address, Data, 128);

403

CCS C Compiler

See Also:
read program_memory(), write program memory(), write_program_memory8(
), Program Eeprom Overview

read rom memory()

Syntax:
read_rom_memory (address, dataptr, count);

Parameters:

address - is 32 bits. The least significant bit should always be O.
dataptr - is a pointer to one or more bytes.

count - is a 16 bit integer

Returns:
Undefined

Function:
Reads count bytes from program memory at address to dataptr.
[pco] 24 bit program instruction size, 3 bytes are read from each address location

Availability:
Only devices that allow reads from program memory

Requires:

Examples:

char buffer[64];
read program memory (0x40000, buffer, 64);

See Also:
write program_eeprom() , write_eeprom(), read eeprom(), Program eeprom
overview

read sd adc()

Syntax:
value = read_sd_adc();

Parameters:

Built-in Functions

Returns:
A signed 32 bit int

Function:

To poll the SDRDY bit and if set return the signed 32 bit value stored in the SD1IRESH and
SD1RESL registers, and clear the SDRDY bit. The result returned depends on settings made
with the setup_sd_adc() function, but will always be a signed int32 value with the most
significant bits being meaningful. Refer to Section 66, 16-bit Sigma-Delta A/D Converter, of
the PIC24F Family Reference Manual for more information on the module and the result
format.

Availability:
Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC) module

Requires:

Examples:
value = read sd adc()

See Also:
setup_sd _adc(), set sd adc calibration(), set sd _adc _channel()

realloc()

Syntax:
realloc (ptr, size)

Parameters:
ptr - is a null pointer or a pointer previously returned by calloc or malloc or realloc function,
size is an integer representing the number of byes to be allocated.

Returns:
A pointer to the possibly moved allocated memory, if any. Returns null otherwise.

Function:

The realloc function changes the size of the object pointed to by the ptr to the size specified
by the size. The contents of the object shall be unchanged up to the lesser of new and old
sizes. If the new size is larger, the value of the newly allocated space is indeterminate. If ptr is
a null pointer, the realloc function behaves like malloc function for the specified size. If the ptr
does not match a pointer earlier returned by the calloc, malloc or realloc, or if the space has
been deallocated by a call to free or realloc function, the behavior is undefined. If the space
cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and the ptr is not
a null pointer, the object is to be freed.

405

CCS C Compiler

Availability
All Devices

Requires:
#INCLUDE <stdlibm.h>

Examples:

int * iptr;
iptr=malloc (10);
realloc (iptr, 20) // iptr will point to a block of
memory of
// 20 bytes, if available

See Also:
malloc(), free(), calloc()

release io()

Syntax:
release_io();

Parameters:

Function:
The function is used to release the 1/0O on devices that have woken up from deep sleep.

Availability
Devices with a Deep Sleep Watch Dog Timer (DSWDT) peripheral.

Requires:

Examples:
restart=restart cause();
switch (restart)
{ case RTC_FROM DS:
case DSWDT FROM DS:

406

Built-in Functions

case ULPWU FROM DS:

case EXT FROM DS:
release _io();
break;

}

See Also:
slee

reset cpu()

Syntax:
reset_cpu()

Parameters:

Returns:
This function never returns

Function:
This is a general purpose device reset. It will jump to location 0 on PCB and PCM parts and
also reset the registers to power-up state on the PIC18.

Availability:
All Devices

Requires:

Examples:

if (checksum!=0)
reset cpul();

restart cause()

Syntax:
value = restart_cause()

Parameters:

407

CCS C Compiler

Returns:

A value indicating the cause of the last processor reset. The actual values are device
dependent. See the device .h file for specific values for a specific device. Some example
values are: wdt_from_sleep, wdt_timeout, mclr_from_sleep and normal_power_up

[PCD] reset_power_up, restart_brownout, restart_wdt and sestart_mclr, wdt_from_sleep

Function:
Returns the cause of the last processor reset.

rpeo] In order for the result to be accurate, it should be called immediately in main().

Availability:
All Devices

Requires:
Constants are defined in the devices .h file

Examples:

switch (restart cause()) {
case WDT FROM SLEEP:
case WDT TIMEOUT:
handle error();

}

[PCD]
switch (restart cause()) {
case RESTART BROWNOUT:
case RESTART WDT:
case RESTART MCLR:
handle error();

}

Example Files:
ex_wdt.c

See Also:
restart_wdt(), reset _cpu()

restart wdt()

Syntax:
restart_wdt()

Parameters:

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
Returns:

Function:
Restarts the watchdog timer. If the watchdog timer is enabled, this must be called periodically
to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears to be stuck.

The timer must be enabled, the timeout time set and software must periodically restart the
timer. These are done differently on the PCB/PCM and PCH parts as follows:
PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability:
All Devices

Requires:
#FUSES

Examples:

#fuses WDT // PCB/PCM example
// See setup wdt for a PIC18 example
main () {
setup wdt (WDT 2304MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

Example Files:
ex_wdt.c

See Also:
#FEUSES, setup_wdt(), WDT or Watch Dog Timer Overview

rotate left()

Syntax:
rotate_left (address, bytes)

409

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Parameters:
address - is a pointer to memory
bytes - is a count of the number of bytes to work with

Returns:
Undefined

Function:

Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is considered
the LSB.

Availability:
All Devices

Requires:

Examples:

x = 0x86;
rotate left(&x, 1); // x 1is now 0x0d

See Also:
rotate_right(), shift_left(), shift_right()

rotate right()

Syntax:
rotate_right (address, bytes)

Parameters:
address - is a pointer to memory

bytes - is a count of the number of bytes to work with

Returns:
Undefined

Function:

Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is considered
the LSB.

Availability:
All Devices

410

Built-in Functions
Requires:

Examples:

struct {
int cell 1 : 4;
int cell 2 : 4;
int cell 3 : 4;
int cell 4 : 4; } cells;
rotate right(&cells, 2

’

()
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2); // cell 1->4, 2->1, 3->2 and
4-> 3
See Also:

rotate left(), shift left(), shift _right()

rtc_alarm read()

Syntax:
rtc_alarm_read(&datetime);

Parameters:
datetime- A structure that will contain the values to be written to the alarm in the RTCC
module.

Structure used in read and write functions are defined in the device header file as rtc_time_t

Returns:
Void

Function:
Reads the date and time from the alarm in the RTCC module to structure datetime.

Availability:
Devices that an RTCC module

Requires:

Examples:
rtc_alarm read(&datetime);

411

CCS C Compiler

See Also:
ric_read(), rtc_alarm_read(), rtc_alarm_write(), setup _rtc_alarm(), rtc_write(),

setup_rtc()

rtc alarm write()

Syntax:
rtc_alarm_write(&datetime);

Parameters:

datetime- A structure that will contain the values to be written to the alarm in the RTCC
module.

Structure used in read and write functions are defined in the device header file as rtc_time_t

Returns:
Void

Function:
Write the date and time from the alarm in the RTCC module to structure datetime.

Availability:
Devices that an RTCC module

Requires:

Examples:
rtc_alarm write (&datetime);

See Also:
ric_read(), ric_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

rtc read

Syntax:
rtc_read(&datetime);

Parameters:
datetime- A structure that will contain the values returned by the RTCC module.

412

Built-in Functions
Structure used in read and write functions are defined in the device header file as rtc_time_t

Returns:
Void

Function:
Reads the current value of Time and Date from the RTCC module and stores the structure
date time.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) module.

Requires:

Examples:
rtc_read(&datetime);

Example Files:
ex_rtcc.c

See Also:
rtc_read(), ric_alarm_read(), rtc_alarm write(), setup _rtc_alarm(), rtc_write(),
setup _rtc

[pcD] rtc status()

Syntax:
Status = rtc_status();

Parameters:

Returns:

An int8 value indicating the status of the RTCC module. See the device's header file for
constants that can be and'ed with return value to determine that state of the individual status
bits.

Function:
Used to determine the status of the RTCC module.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) with Timestamp module.

413

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
Requires:

Examples:

rtc _time t TimeStamp;

rtc tsa read(&TimeStamp) ; //read Timestamp A registers
rtc_tsb_read(&TimeStamp) ; //read Timestamp B registers
See Also:

setup_rtc(), setup_rtc_alarm(), rtc_read(), rtc_write(), rtc_alarm_read(),
ric_alarm_ write(), rtc_tsx read()

[pcp] rtc_tsx read()

Syntax:
rtc_tsa_read(×tamp);
rtc_tsb_read(×tamp);

Parameters:
timestamp - a structure of rtc_time_t to return the timestamp value.

Returns:

Function:
Used to read the Timestamp A and Timestamp B registers and converts them to be compatible
with the rtc_time_t structure.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) with Timestamp module.

Requires:

Examples:

rtc_time t TimeStamp;

rtc tsa read(&TimeStamp) ; //read Timestamp A registers
rtc_tsb read(&TimeStamp) ; //read Timestamp B registers
See Also:

setup rtc(), setup _rtc_alarm(), rtc_read(), rtc_write(), rtc_alarm_read(),
rtc_alarm_write(), rtc_status()

414

Built-in Functions

rtc_write

Syntax:
rtc_write(&datetime);

Parameters:
datetime- A structure that will contain the values to be written to the RTCC module.

Structure used in read and write functions are defined in the device header file as rtc_time_t

Returns:
Void

Function:
Writes the date and time to the RTCC module as specified in the structure date time.

Availability:
Devices that an RTCC module

Requires:

Examples:
rtc write (&datetime);

Example Files:
ex_rtcc.c

See Also:
rtc_read() , rtc_alarm read() , rtc_alarm_write() , setup _rtc_alarm() , rtc_write(),

setup_rtc()

rtos await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_await (expre)

Parameters:
expre is a logical expression

415

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
Returns:

Function:

This function can only be used in an RTOS task. This function waits for expre to be true before
continuing execution of the rest of the code of the RTOS task. This function allows other tasks
to execute while the task waits for expre to be true.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos_await (kbhit());

See Also:

rtos disable()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_disable (task)

Parameters:
task - is the identifier of a function that is being used as an RTOS task

Returns:

Function:
This function disables a task which causes the task to not execute until enabled by
rtos_enable(). All tasks are enabled by default.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

rtos_disable(toggle green);

416

Built-in Functions

See Also:
rtos enable

rtos _enable()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_enable (task)

Parameters:
task - is the identifier of a function that is being used as an RTOS task

Returns:

Function:
This function enables a task to execute at it's specified rate.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos_enable (toggle green);

See Also:

rtos disable()

rtos msqg poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
i = rtos_msg_poll()

Parameters:

417

CCS C Compiler

Returns:
An integer that specifies how many messages are in the queue

Function:
This function can only be used inside an RTOS task. This function returns the number of
messages that are in the queue for the task that the rtos_msg_poll() function is used in.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
if (rtos _msg poll())

See Also:
rtos msqg send(), rtos msg read()

rtos _msg read()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
b = rtos_msg_read()

Parameters:

Returns:
A byte that is a message for the task

Function:
This function can only be used inside an RTOS task. This function reads in the next (message)
of the queue for the task that the rtos_msg_read() function is used in.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
if (rtos _msg poll()) {

418

Built-in Functions

b = rtos msg read();

See Also:
rtos msq poll(), rtos msqg send()

rtos msg send()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_msg_send(task, byte)

Parameters:
task - is the identifier of a function that is being used as an RTOS task

byte - is the byte to send to task as a message

Returns:

Function:
This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by task.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

if (kbhit ())
{

rtos msg send(echo, getc());

}

See Also:
rtos_msqg_poll(), rtos_msg_read()

rtos overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

419

CCS C Compiler

Syntax:
rtos_overrun([task])

Parameters:
task - is an optional parameter that is the identifier of a function that is being used as an
RTOS task

Returns:
A 0 (FALSE) or 1 (TRUE)

Function:

This function returns TRUE if the specified task took more time to execute than it was
allocated. If no task was specified, then it returns TRUE if any task ran over it's alloted
execution time.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

rtos_overrun () ;

rtos run

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_run()

Parameters:

Function:

This function begins the execution of all enabled RTOS tasks. This function controls the
execution of the RTOS tasks at the allocated rate for each task. This function will return only
when rtos_terminate() is called.

Availability:
All Devices

Requires:
#USE RTOS

420

Built-in Functions

Examples:
rtos_run();

See Also:

rtos terminate()

rtos signal

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_signal (sem)

Parameters:
sem is a global variable that represents the current availability of a shared system resource (a
semaphore)

Returns:

Function:
This function can only be used by an RTOS task. This function increments sem to let waiting
tasks know that a shared resource is available for use.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos _signal (uart use);

See Also:
rtos wait

rtos stats

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

421

CCS C Compiler

Syntax:
rtos_stats(task,&stat)

Parameters:
task - is the identifier of a function that is being used as an RTOS task.
stat - is a structure containing the following:
struct rtos stas struct {
unsigned int32 task total ticks; //number of ticks the
task has used

unsigned intl6 task min ticks; //the minimum number of
ticks used

unsigned intl6 task max ticks; //the maximum number of
ticks used

unsigned intl6 hns per tick; //us =

(ticks*hns per tick)/10

Returns:
Undefined

Function:
This function returns the statistic data for a specified task.

Availability:
All Devices

Requires:
#USE RTOS(statistics)

Examples:
rtos stats(echo, &stats);

See Also:

rtos terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_terminate()

Parameters:

Built-in Functions

Function:

This function ends the execution of all RTOS tasks. The execution of the program will continue
with the first line of code after the rtos_run() call in the program. (This function causes
rtos_run() to return.)

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos terminate ()

See Also:
rtos run

rtos wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_wait (sem)

Parameters:
sem is a global variable that represents the current availability of a shared system resource (a
semaphore)

Returns:

Function:

This function can only be used by an RTOS task. This function waits for sem to be greater
than 0 (shared resource is available), then decrements sem to claim usage of the shared
resource and continues the execution of the rest of the code the RTOS task. This function
allows other tasks to execute while the task waits for the shared resource to be available.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

423

CCS C Compiler

rtos wait (uart use)

See Also:
rtos signal

rtos vield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_yield()

Parameters:

Returns:

Function:

This function can only be used in an RTOS task. This function stops the execution of the
current task and returns control of the processor to rtos_run(). When the next task executes,
it will start its execution on the line of code after the rtos_yield().

Availability:
All Devices

Requires:
#USE RTOS

Examples:

void yield(void)
{
printf (“Yielding...\r\n”);
rtos_yield();
printf (“Executing code after yield\r\n”);

set adc channel()
set adc2 channel()

Syntax:

set_adc_channel (chan [,neg]))

peo] set_adc_channel(chan, [differential]) //dsPIC33EPxxGSxxx only
424

Built-in Functions
pco] set_adc2_channel(chan)

Parameters:
chan is the channel number to select. Channel numbers start at 0 and are labeled in the data
sheet ANO, AN1. For devices with a differential ADC it sets the positive channel to use.

neg is optional and is used for devices with a differential ADC only. It sets the negative
channel to use, channel numbers can be 0 to 6 or VSS. If no parameter is used the negative
channel will be set to VSS by default.

Returns:

Undefined

rco) differential is an optional parameter to specify if channel is differential or single-
ended. TRUE is differential and FALSE is single-ended. Only available for
dsPIC3EPxxGSxxx family.

Function:

Specifies the channel to use for the next read_adc() call. Be aware that you must wait a short
time after changing the channel before you can get a valid read. The time varies depending on
the impedance of the input source. In general 10us is good for most applications. You need not
change the channel before every read if the channel does not change.

Availability:
This function is only available on devices with A/D hardware.
reo] Only available on devices with built in analog to digital converters

Requires:

Examples:

set adc channel (2);
delay us(10);
value = read adc();

Example Files:
ex_admm.c

See Also:
read adc(), setup_adc(), setup_adc ports(), ADC Overview

set adc trigger()

Syntax:
set_adc_trigger (trigger)

425

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Parameters:
trigger - ADC trigger source. Constants defined in device's header, see the device's .h file for
all options. Some typical options include:

ADC_TRIGGER_DISABLED

ADC_TRIGGER_ADACT_PIN

ADC_TRIGGER_TIMER1

ADC_TRIGGER_CCP1

Returns:
Undefined

Function:
Sets the Auto-Conversion trigger source for the Analog-to-Digital Converter with Computation
(ADC2) Module.

Availability:
All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
set adc_trigger (ADC_TRIGGER TIMERI);

See Also:
ADC Overview, setup _adc(), setup_adc_ports(), set _adc _channel(), read adc(),
#DEVICE, adc_read(), adc_write(), adc_status()

set _analog pins()

Syntax:
set_analog_pins(pin, pin, pin, ...)

Parameters:

pin - pin to set as an analog pin. Pins are defined in the device's .h file. The actual value is a
bit address. For example, bit 3 of port A at address 5, would have a value of 5*8+3 or 43. This
is defined as follows: #define PIN_A3 43

Returns:
Undefined

Function:

To set which pins are analog and digital. Usage of function depends on method device has for
setting pins to analog or digital. For devices with ANSELX, x being the port letter, registers the
function is used as described above. For all other devices the function works the same as
setup_adc_ports() function.

426

Built-in Functions

Availability:
On all devices with an Analog to Digital Converter

Requires:

Examples:
set analog pins(PIN_AO,PIN Al,PIN EI1,PIN BO,PIN B5);
See Also:

setup _adc reference(), set_adc _channel(), read adc(), setup _adc(),
setup _adc_ports(), ADC Overview

scanf()
fscanf()

Syntax:

scanf(cstring);

scanf(cstring, values...)
fscanf(stream, cstring, values...

Parameters:
cstring is a constant string.

values is a list of variables separated by commas.
stream is a stream identifier

Returns:
0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read
in, plus the number of constant strings read in.

Function:

Reads in a string of characters from the standard RS-232 pins and formats the string
according to the format specifiers. The format specifier character (%) used within the string
indicates that a conversion specification is to be done and the value is to be saved into the
corresponding argument variable. A %% will input a single %. Formatting rules for the format
specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last
USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99 specifying the field
width, the number of characters to be inputted. t is the type and maybe one of the following:

427

CCS C Compiler

428

c Matches a sequence of characters of the number specified by the field width
(1 if no field width is specified). The corresponding argument shall be a
pointer to the initial character of an array long enough to accept the
sequence.

s Matches a sequence of non-white space characters. The corresponding
argument shall be a pointer to the initial character of an array long enough to
accept the sequence and a terminating null character, which will be added
automatically.

u Matches an unsigned decimal integer. The corresponding argument shall be
a pointer to an unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding argument shall
be a pointer to a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be a
pointer to a signed integer.

Ld Matches a long signed decimal integer. The corresponding argument shall be
a pointer to a long signed integer.

o] Matches a signed or unsigned octal integer. The corresponding argument
shall be a pointer to a signed or unsigned integer.

Lo Matches a long signed or unsigned octal integer. The corresponding
argument shall be a pointer to a long signed or unsigned integer.

x or X Matches a hexadecimal integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall be a
pointer to a long signed or unsigned integer.

i Matches a signed or unsigned integer. The corresponding argument shall be
a pointer to a signed or unsigned integer.

Li Matches a long signed or unsigned integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

f,g or e Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

[Matches a non-empty sequence of characters from a set of expected
characters. The sequence of characters included in the set are made up of
all character following the left bracket ([) up to the matching right bracket
(). Unless the first character after the left bracket is a , in which case the
set of characters contain all characters that do not appear between the

Built-in Functions

brackets. If a - character is in the set and is not the first or second, where
the firstis a ”*, nor the last character, then the set includes all characters
from the character before the - to the character after the -.

For example, %[a-z] would include all characters from a to z in the set and
%][~a-z] would exclude all characters from a to z from the set. The
corresponding argument shall be a pointer to the initial character of an array
long enough to accept the sequence and a terminating null character, which
will be added automatically.

n Assigns the number of characters read thus far by the call to scanf() to the
corresponding argument. The corresponding argument shall be a pointer to
an unsigned integer.

An optional assignment-suppressing character (*) can be used after the format
specifier to indicate that the conversion specification is to be done, but not
saved into a corresponding variable. In this case, no corresponding
argument variable should be passed to the scanf() function.

A string composed of ordinary non-white space characters is executed by
reading the next character of the string. If one of the inputted characters
differs from the string, the function fails and exits. If a white-space character
precedes the ordinary non-white space characters, then white-space
characters are first read in until a non-white space character is read.

White-space characters are skipped, except for the conversion specifiers [, ¢
or n, unless a white-space character precedes the [or ¢ specifiers.

Availability:
All Devices

Requires:
#USE RS232

Examples:
char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%$u%s%1d", &énumber, name, &time))
printf"\r\nName: %s, Number: %u, Time:
%1d", name, number, time

See Also:
RS232 1/0 Overview, getc(), putc(), printf()

429

CCS C Compiler
[pcp] sent_getd()

Syntax:
data = sent_getd(module);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

Returns:
The data read by the SENT peripheral when it is setup as a receiver. The data type
SENT_DATA_TYPE is defined in the device's header file for organizing the nibble data.

Function:
Gets data from the Single-Edge Nibble Transmission (SENT) peripheral's data registers.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

SENT DATA TYPE Data;
Data = sent getd(1l);

Example Files:
ex_sent_transmitter.c, ex_sent receiver.c

See Also:
sent_putd(), setup_sent(),sent_status()

[PcD] sent putd()

Syntax:
sent_putd(module, data);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

data - the data to transmit when SENT peripheral is setup as a transmitter. The data type
SENT_DATA_TYPE is defined in the device's header file for organizing the nibble data.

Returns:

430

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

Built-in Functions

Function:
Puts data for transmission into the Single-Edge Nibble Transmission (SENT) peripheral's data
registers.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

SENT DATA TYPE Data;
sent putd(l, Data);

Example Files:
ex_sent_transmitter.c, ex_sent receiver.c

See Also:
sent_getd(),setup_sent(), sent_status()

[PcD] sent status()

Syntax:
status = sent_status(module);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

Returns:
The status of the SENT peripheral. See device's header file for constants that can be and'ed
with return value to determine which status flags are set.

Function:
Gets status from the Single-Edge Nibble Transmission (SENT) peripheral's status register.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

unsigned int8 status;
status = sent status(l);

431

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

CCS C Compiler

Example Files:
ex_sent_transmitter.c, ex_sent receiver.c

See Also:
sent_putd(), sent_getd(), setup _sent()

set_ccpl compare time()
set_ccp2 compare time()
set_ccp3 compare time()
set_ccp5 compare time()
set_ccp5 compare time()

Syntax:
set_ccpx_compare_time(time);
set_ccpx_compare_time(timeA, timeB)

Parameters:

time - may be a 16 or 32-bit constant or varaible. If 16-bit, it sets the CCPxRAL register to the
value time and CCPxRBL to zero; used for single edge output compare mode set for 16-bit
timer mode. If 32-bit, it sets the CCPXRAL and CCPxRBL register to the value time, CCPxRAL
least significant word and CCPRBL most significant word; used for single edge output compare
mode set for 32-bit timer mode.

timeA - is a 16-bit constant or variable to set the CCPxRAL register to the value of timeA, used
for dual edge output c ompare and PWM modes.

timeB - is a 16-bit constant or variable to set the CCPxRBL register to the value of timeB, used
for dual edge output compare and PWM modes.

Returns:
Undefined

Function:

This function sets the compare value for the CCP module. If the CCP module is performing a
single edge compare in 16-bit mode, then the CCPxRBL register is not used. If 32-bit mode,
the CCPxRBL is the most significant word of the compare time. If the CCP module is
performing dual edge compare to generate an output pulse, then timeA, CCPxRAL register,
signifies the start of the pulse, and timeB, CCPxRBL register signifies the pulse termination
time.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

Built-in Functions

Examples:

setup_ ccpl (CCP_COMPARE PULSE) ;
set timer period ccpl (800);
set ccpl compare time (200,300); //generate a pulse
starting at time

// 200 and ending at time
300

See Also:
set pwmX duty(), setup_ccpX(), set_timer _period ccpX(), set_timer_ccpX(),
get_timer _ccpX(), get_capture _ccpX(), get _captures32 ccpX()

set_cog blanking()

set_cog2_blanking()
set_cog3_blanking()
set_cog4_blanking()

Syntax:
set_cog_blanking(falling_time, rising_time);

Parameters:
falling time - sets the falling edge blanking time.

rising time - sets the rising edge blanking time

Returns:

Function:

To set the falling and rising edge blanking times on the Complementary Output Generator
(COG) module.

The time is based off the source clock of the COG module, the times are either a 4-bit or 6-bit
value, depending on the device, refer to the

device's datasheet for the correct width.

Availability:
All devices with a COG module

Requires:

Examples:

set cog blanking(10,10);
433

CCS C Compiler

See Also:
setup_cod(), set _cog phase(), set cog dead band(), cog status(), cog restart()

set cog dead band()

set_cog2_dead_band()
set_cog3_dead_band()
set_cog4_dead_band()

Syntax:
set_cog_dead_band(falling_time, rising_time);

Parameters:
falling time - sets the falling edge dead-band time.

rising time - sets the rising edge dead-band time.

Returns:

Function:

To set the falling and rising edge dead-band times on the Complementary Output Generator
(COG) module.

The time is based off the source clock of the COG module, the times are either a 4-bit or 6-bit
value, depending on the device, refer to the

device's datasheet for the correct width.

Availability:
All devices with a COG module

Requires:

Examples:
set cog dead band(16,32);

See Also:
setup_coq(), set _cog phase(), set_cog blanking(), cog_status(), cog_restart()

set cog phase()
set_cog2_phase()
set_cog3_phase()
set_cog4_phase()

434

Built-in Functions

Syntax:
set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters:
falling time - sets the falling edge phase time.

rising time - sets the rising edge phase time.

Returns:

Function:

To set the falling and rising edge phase times on the Complementary Output Generator (COG)
module.

The time is based off the source clock of the COG module, the times are either a 4-bit or 6-bit
value, depending on the device.

Some devices only have a rising edge delay, refer to the device's datasheet.

Availability:
All devices with a COG module

Requires:

Examples:
set cog phase(10,10);

See Also:
setup _cog(), set cog dead band(), set cog blanking(), cog_status(), cog_restart()

set compare time()

Syntax:
set_compare_time(x, time])
[pco] Sset_compare_time(x, ocr, [ocrs]])

Parameters:
X - is 1-8 and defines which output compare module to set time for.

time - is the compare time for the primary compare register.
[PCD]

X - is 1-16 and defines which output compare module to set time for.

ocr - is the compare time for the primary compare register.
435

CCS C Compiler

ocrs - is the optional compare time for the secondary register. Used for dual compare mode.

Returns:

Function:

This function sets the compare value for the CCP module.

reoy This function sets the compare value for the output compare module. If the output
compare module is to perform only a single compare than the ocrs register is not used. If the
output compare module is using double compare to generate an output pulse, the ocr signifies
the start of the pulse and ocrs defines the pulse termination time.

Availability:
All devices with a CCP module
rreo] All devices with Output Compare modules

Requires:

Example Files:
ex_ccpls.c

rco] Example File:
// Pin OCl will be
set when
//timer 2 is equal
to 0xF000
setup timer2 (TMR INTERNAL | TIMER DIV BY 8);
setup compare time(l, O0xF000);
setup compare(l, COMPARE SET ON MATCH | COMPARE TIMERZ2) ;

See Also:
get _capture(), setup _ccpx()
rrep] Output Compare

set dedicated adc channel()

Syntax:
set_dedicated_adc_channel(core,channel, [differential]);

Parameters:
core - the dedicated ADC core to setup

channel - the channel assigned to the specified ADC core. Channels are defined in the
device's .h file as follows:

436

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

ADC_CHANNEL_ANO
ADC_CHANNEL_AN7
ADC_CHANNEL_PGA1
ADC_CHANNEL_ANOALT
ADC_CHANNEL_AN1
ADC_CHANNEL_AN18
ADC_CHANNEL_PGA?2
ADC_CHANNEL_AN1ALT
ADC_CHANNEL_AN2
ADC_CHANNEL_AN11
ADC_CHANNEL_VREF_BAND_GAP
ADC_CHANNEL_AN3
ADC_CHANNEL_AN15

Not all of the above defines can be used with all the dedicated ADC cores. Refer to the
device's header for which can be used with each dedicated ADC core.

differential - optional parameter to specify if channel is differential or single-ended. TRUE is
differential and FALSE is single-ended.

Returns:
Undefined

Function:

Sets the channel that will be assigned to the specified dedicated ADC core. Function does not
set the channel that will be read with the next call to read_adc(), use set_adc_channel() or
read_adc() functions to set the channel that will be read.

Availability:
Only dsPIC33EPxxGSxxx family of devices

Requires:

Examples:
setup dedicated adc channel (0, ADC_CHANNEL ANO) ;

See Also:
setup_adc(), setup_adc_ports(), set adc_channel(), read adc(), adc_done(),
setup dedicated adc(), ADC Overview

437

CCS C Compiler

[pcp] set hspwm event()
[pcD] set hspwm secondary event()

Syntax:
set_hs hspwm_event(settings, compare_time);
set_hswpm_secondary_event(settings, compare_time); //if available

Parameter:

settings - special event timer setting or'd with a value from 1 to 16 to set the prescaler. The

following are the settings available for the special event time:
HSPWM_SPECIAL_EVENT_INT_ENABLED
HSPWM_SPECIAL_EVENT_INT_DISABLED

compare_time - the compare time for the special event to occur

Returns:

Function:
Sets the specified High Speed PWM unit.

Availability:

Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:

See Also:

setup _hspwm_unit(), set_hspwm phase(), set_hspwm_duty(),

setup _hspwm blanking(), setup hspwm trigger(), set _hspwm override(),

get _hspwm_capture(), setup_hspwm_chop clock(), setup _hspwm unit_chop_clock()
setup _hspwm(), setup _hspwm_secondary()

set hspwm duty()

Syntax:
set_hspwm_duty(duty);
set_hspwm_duty(unit,primary, [secondary];

438

Built-in Functions

Parameters:
duty - A 16-bit constant or variable to set the master duty cycle

unit - The High Speed PWM unit to set.
primary - A 16-bit constant or variable to set the primary duty cycle.

secondary - An optional 16-bit constant or variable to set the secondary duty
cycle. Secondary duty cycle is only used in Independent PWM mode. Not available on all
devices, refer to the device datasheet for availability.

Returns:
Undefined

Function:
Sets the specified High Speed PWM unit.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:

set_hspwm duty (0x7FFF) ; //sets the high speed PWM
//master duty cycle

set _hspwm duty(l, Ox3FFF); //sets unit 1's primary duty

cycle

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_event(),

setup _hspwm _blanking(), setup _hspwm _trigger(), set_hspwm override(),

get _hspwm_capture(), setup_hspwm_chop clock(), setup _hspwm_unit _chop clock()
setup _hspwm(), setup _hspwm _secondary()

set hspwm override()

Syntax:
set_hspwm_override(unit, setting);

Parameters:
unit - the High Speed PWM unit to override.

439

CCS C Compiler

settings - the override settings to use. The valid options vary depending on the device. See
the device's .h file for all options. Some typical options include:

HSPWM_FORCE_H_1

HSPWM_FORCE_H_0

HSPWM_FORCE_L_1

HSPWM_FORCE_L_0O

Returns:
Undefined

Function:
Setup and High Speed PWM override settings.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxXx,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm override (1,HSPWM FORCE H 1|HSPWM FORCE L 0);

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm _trigger(), get hspwm _capture(),

setup _hspwm_chop clock(), setup _hspwm unit _chop clock()

setup _hspwm(), setup _hspwm_secondary()

set hspwm phase()

Syntax:
set_hspwm_phase(unit, primary, [secondary]);

Parameters:
unit - The High Speed PWM unit to set.

primary - A 16-bit constant or variable to set the primary duty cycle.
secondary - An optional 16-bit constant or variable to set the secondary duty
cycle. Secondary duty cycle is only used in Independent PWM mode. Not available on all

devices, refer to device datasheet for availability.

Returns:
Undefined

440

Built-in Functions

Function:
Sets up the specified High Speed PWM unit.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
set _hspwm(1,0x1000,0x8000);

See Also:

setup_hspwm_unit(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm blanking(), setup hspwm trigger(), set _hspwm _override(),

get _hspwm capture(), setup_hspwm_chop clock(), setup _hspwm unit_chop clock()
setup _hspwm(), setup _hspwm_secondary()

set input level x()

Syntax:
set_input_level_a(value)
set_input_level_b(value)
set_input_level_v(value)
set_input_level_d(value)
set_input_level_e(value)
set_input_level_f(value)
set_input_level_g(value)
set_input_level_h(value)
set_input_level_j(value)
set_input_level_k(value)
set_input_level_l(value)

Parameters:
value- is an 8-bit int with each bit representing a bit of the 1/0O port.

Returns:
Undefined

Function:

These functions allow the I/O port Input Level Control (INLVLX) registers to be set. Each bit in
the value represents one pin. A 1 sets the corresponding pin's input level to Schmitt Trigger
(ST) level, and a 0 sets the corresponding pin's input level to TTL level.

441

CCS C Compiler

Availability:
All devices with ODC registers, however not all devices have all I/O ports and not all devices
port's have a corresponding ODC register.

Requires:
Constants are defined in the device's .h file

Examples:

set input level a(0x0); //sets PIN A0 input level to ST and
all other
//PORTA pins to TTL level

See Also:
output _high(), output low(), output bit(), output_X(), General Purpose 1/0O

set motor pwm duty()

Syntax:
set_motor_pwm_duty(pwm,group,time);

Parameters:
pwm- Defines the pwm module used.

group- Output pair number 1,2 or 3.
time- The value set in the duty cycle register.

Returns:
Void

Function:
Configures the motor control PWM unit duty.

Availability
Devices that have the motor control PWM unit.

Requires:

Examples:

set input level a(0x0); //sets PIN A0 input level to ST and
all other
//PORTA pins to TTL level

442

Built-in Functions

See Also:
get_motor pwm_count(), set motor pwm _event(), set_motor_unit(),
setup_motor_pwm()

set motor pwm event()

Syntax:
set_motor_pwm_event(pwm,time);
[pco] set_motor_pwm_event(pwm,time,[postscale]);

Parameters:
pwm- Defines the pwm module used.

time- The value in the special event comparator register used for scheduling other events.

[pco] postscale- Optional parameter to set the special trigger output postscale (1-16). Defaults
to 1 if not specified.

Returns:
Void

Function:
Configures the PWM event on the motor control unit.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:
set motor pww event (pwm, time);
reep; set _motor pwm event (1,625,2);
See Also:

get _motor pwm_count(), setup _motor_pwm(), set motor unit(),
set_motor_pwm_duty();

443

CCS C Compiler
set motor unit()

Syntax:
set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);

Parameters:
pwm- Defines the pwm module used

Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file for all options
active_deadtime- Set the active deadtime for the unit

inactive_deadtime- Set the inactive deadtime for the unit

Returns:
Void

Function:
Configures the motor control PWM unit.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:

set_motor_unit(pwm,unit,MPWM_INDEPENDENT | MPWM FORCE L 1,
active deadtime,
inactive deadtime);

See Also:
get_motor pwm_count(), set motor pwm_event(), set motor pwm_duty(),
setup_motor pwm()

set nco accumulator()

Syntax:
set_nco_accumulator(value);

Parameters:
value - The 20-bit value to set the NCO accumulator to.

444

Built-in Functions
Returns:

Function:
Used to set the NCO accumulator to a specific value.

Availability:
Devices with a Numerically Controlled Oscillator (NCO) module.

Requires:

Examples:

set nco accumulator (500000) ;

See Also:
setup _nco(), get nco_accumulator(), set nco _inc _value(), get nco_inc_value()

set nco inc value()

Syntax:
set_nco_inc_value(value);

Parameters:
value- value to set the NCO increment registers

Returns:
Undefined

Function:

Sets the value that the NCO's accumulator will be incremented by on each clock pulse. The
increment registers are double buffered so the new value won't be applied until the
accumulator rolls-over.

Availability:
Devices with a NCO module

Requires:

Examples:

set nco_inc value (inc_value); //sets the new increment
value

445

CCS C Compiler

See Also:
setup_nco(), get nco_accumulator(), get nco_inc_value()

set open drain x(value)

Syntax:
set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)
set_open_drain_k(value)

Parameters:
value — is an 8-bit int with each bit representing a bit of the 1/0O port.
[rco] value — is a 16-bit int with each bit representing a bit of the 1/0 port.

Returns:

Function:

These functions allow the 1/O port Open-Drain Control (ODCONX) registers to be set. Each bit
in the value represents one pin. A 1 sets the corresponding pin to act as an open-drain output,
and a 0 sets the corresponding pin to act as a digital output.

rrco] Enables/Disables open-drain output capability on port pins. Not all ports or port pins have open-
drain capability, refer to devices data sheet for port and pin availability.

Availability:
Devices with a NCO module

Requires:

Examples:

set open drain a(0x01); //makes PIN A0 an open-drain output.
set open drain b (0x001); //enables open-drain output on PIN-BO
//disable on all other port B pins

See Also:
output _high(), output low(), output bit(), output x(), General Purpose 1/O

446

Built-in Functions

set power pwm override()

Syntax:
set_power_pwm_override(pwm, override, value)

Parameters:

pwm - is a constant between 0 and 7
Override - is true or false

Value -isOor 1l

Returns:
Undefined

Function:
pwm - selects which module will be affected.

Override - determines whether the output is to be determined by the OVDCONS register or
the PDC registers. When override is false, the PDC registers determine the output. When
override is true, the output is determined by the value stored in OVDCONS.

value - determines if pin is driven to it's active staet or if pin will be inactive. | will be driven to
its active state, 0 pin will be inactive.

Availability:
All devices equipped with PWM.

Requires:

Examples:

set power pwm override(l, true, 1); //PWMl will be overridden to
active state
set_power pwm override (1, false, 0); //PMW1 will not be overidden

See Also:
setup _power pwm(), setup power pwm_pins(), set power pwmX_duty()

set power pwmx duty()

Syntax:
set_power_pwmX_duty(duty)

Parameters:
Xis0,2,4,0r6

447

CCS C Compiler

Duty is an integer between 0 and 16383

Returns:
Undefined

Function:
Stores the value of duty into the appropriate PDCXL/H register. This duty value is the amount
of time that the PWM output is in the active state.

Availability:
All devices equipped with PWM.

Requires:

Examples:
set power pwmx duty(4000);

See Also:
setup _power pwm(), setup power pwm_pins(), set power pwm_override()

set pulldown()

Syntax:
set_Pulldown(state [, pin])

Parameters:
Pins are defined in the devices .h file. If no pin is provided in the function call, then all of the
pins are set to the passed in state.

State is either true or false.

Returns:
Undefined

Function:
Sets the pin's pull down state to the passed in state value. If no pin is included in the function
call, then all valid pins are set to the passed in state.

Availability:
All devices equipped with pull-down hardware

Requires:
Pin constants are defined in the devices .h file

448

Built-in Functions
Examples:

set _pulldown (true, PIN BO); //Sets pin BO's pull down state to
true

set _pullup (false); //Sets all pin's pull down state to
false

See Also:

set pullup()

Syntax:
set_pullup(state, [pin])

Parameters:
Pins are defined in the devices .h file. If no pin is provided in the function call, then all of the
pins are set to the passed in state.

State is either true or false.

Pins are defined in the devices .h file. The actual number is a bit address. For example, port a
(byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3
43 . The pin could also be a variable that has a value equal to one of the predefined pin
constants. Note if no pin is provided in the function call, then all of the pins are set to the
passed in state.

Returns:
Undefined

Function:
Sets the pin's pull up state to the passed in state value. If no pin is included in the function
call, then all valid pins are set to the passed in state.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
set pullup (true, PIN BO); //Sets pin BO's pull up state to
true
set pullup(false); //Sets all pin's pull up state to
false

449

CCS C Compiler

set pwml duty() set pwm?2 duty() set pwm3 duty() set pwm4 duty(
) set pwm5 duty()

Syntax:

set_pwml_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)
set_pwm5_duty (value)

[pco] set_pwmX_duty (value)

Parameters:
value - may be an 8 or 16 bit constant or variable

Returns:
Undefined

Function:
Writes the 10-bit value to the PWM to set the duty. An 8-bit value may be used if the most
significant bits are not required. The 10 bit value is then used to determine the duty cycle of the
PWM signal as follows:

duty cycle =value /[4 * (PR2 +1)]

If an 8-bit value is used, the duty cycle of the PWM signal is determined as follows:
duty cycle=value/(PR2+1)

Where PR2 is the maximum value timer 2 will count to before toggling the output pin.

reo] PIC24FxxKLxxx devices, writes the 10-bit value to the PWM to set the duty. An 8-bit
value may be used if the most significant bits are not required. The 10-bit value is then used to
determine the duty cycle of the PWM signal as follows:

duty cycle =value /[4 * (PRx +1)]
Where PRx is the maximum value timer 2 or 4 will count to before rolling over.

PIC24FxxKMxxx devices, wires the 16-bit value to the PWM to set the duty. The 16-bit value
is then used to determine the duty cycle of the PWM signal as follows:

duty cycle=value/(CCPXPRL+1)
Where CCPxPRL is the maximum value timer 2 will count to before toggling the output pin.

Availability:
This function is only available on devices with CCP/PWM hardware.
rpeo] This function is only available on devices with MCCP and/or SCCP modules.

Requires:

450

Built-in Functions

Examples:
// For a 20 mhz clock, 1.2 khz
frequency,
// t2DIV set to 16, PR2 set to
200

// the following sets the duty to
50% (or 416 us).
long duty;

duty = 408; // [408/(4*(200+1))]1=0.5=50%
set pwml duty(duty);

[PIC24FxxKLxxx Devices]

// 32 MHz clock
unsigned intlé duty;
setup timer2 (T2 DIV _BY 4, 199, 1); //period=50us
setup ccpl (CCP_PWM) ;

duty=400; //duty=400/[4* (199+1) 1=0.5=50%
set pwml duty(duty);

[PIC24FxxKMxxx Devices]
// 32 MHz clock
unsigned intlé duty;

setup ccpl (CCP_PWM) ;

set timer period ccpl (799); //period=50us

duty=400; //duty=400/(799+1)=0.5=50%
set pwml duty(duty);

Example Files:
ex_pwm.c

See Also:
setup_ccpX(), set_ccpX_compare _time(), set_timer period _ccpX(), set_timer_ccpX(),
get _timer _ccpX(), get _capture ccpX(, get _captures32 ccpX()

set pwml offset() set pwm?2 offset() set pwm3 offset()
set pwm4 offset() set pwm5 offset() set pwm6 offset()

Syntax:

set_pwml_offset (value)
set_pwm2_offset (value)
set_pwm3_offset (value)
set_pwm4_offset (value)
set_pwmb5_offset (value)
set_pwm6_offset (value)

451

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Parameters:
value - 16-bit constant or variable

Returns:
Undefined

Function:
Writes the 16-hit to the PWM to set the offset. The offset is used to adjust the waveform of a
slae PWM module relative to the waveform of a master PWM module.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml offset (0x0100);
set pwml offset (offset);

See Also:

setup _pwm(), set pwm_duty(), set pwm_period(), clear pwm interrupt(),
set_ pwm_phase(), enable pwm interrupt(), disable pwm interrupt(),
pwm_interrupt active()

set pwml period() set pwm?2 period() set pwm3 period()
set pwm4 period() set pwm5 period() set pwm6 period()

Syntax:

set_pwm1l_period (value)
set_pwm2_period (value)
set_pwm3_period (value)
set_pwmd4_period (value)
set_pwmb5_period (value)
set_pwm6_period (value)

Parameters:
value - 16-bit constant or variable

Returns:
Undefined

452

Built-in Functions

Function:

Writes the 16-bit to the PWM to set the period. When the PWM module is set-up for standard
mode it sets the period of the PWM signal. When set-up for set on match mode, it sets the
maximum value at which the phase match can occur. When in toggle on match and center
aligned modes it sets the maximum value the PWMxTMR will count to, the actual period of
PWM signal will be twice what the period was set to.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml period(0x8000);
set pwml period(period);

See Also:

setup_pwm(), set_ pwm_duty(), set pwm_phase(), clear pwm _interrupt(),
set pwm_offset(), enable pwm interrupt(), disable pwm interrupt(),
pwm_interrupt active()

set pwmx phase()

Syntax:

set_pwm1l_phase (value)
set_pwm2_phase (value)
set_pwm3_phase (value)
set_pwmd4_phase (value)
set_pwm5_phase (value)
set_pwm6_phase (value)

Parameters:
value - 16-bit constant or variable

Returns:
Undefined

Function:

Writes the 16-bit to the PWM to set the phase. When the PWM module is set-up for standard
mode the phaes specifies the start of the duty cycle, when in set on match mode it specifies
when the output goes high, and when in toggle on match mode it specifies when the output
toggles. Phase is not used when in center aligned mode.

453

CCS C Compiler

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml phase (0);
set pwml phase (phase);

See Also:

setup _pwm(), set_ pwm_duty(), set pwm_period(), clear pwm _interrupt(),
set pwm_offset(), enable pwm interrupt(), disable pwm interrupt(),
pwm_interrupt active()

set_timerx()
set rtcc() set timerO() set timerl() set timer2() set timer3()
set timer4() set timer5()

Syntax:

set_timerX(value)

set_timerO(value) or set_rtcc (value)
set_timerl(value)

set_timer2(value)

set_timer3(value)

set_timer4(value)

set_timer5(value)

Parameters:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns:
Undefined

Function:

Sets the count value of a real time clock/counter. RTCC and TimerO are the same. All timers
count up. When a timer reaches the maximum value it will flip over to 0 and continue counting
(254, 255, 0, 1, 2...)

Availability:

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices

454

Built-in Functions

Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires:
Examples:
// 20 mhz clock, no prescaler,
//set timer 0 to overflow in 35us
set timer0(81); // 256-(.000035/(4/20000000))

Example Files:
ex_patg.c

See Also:
set_timerl(), get timerX() Timer0 Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview

set_ticks()

Syntax:
set_ticks([stream],value);

Parameters:
stream — optional parameter specifying the stream defined in #USE TIMER

value — a 8, 16 or 32 bit integer, specifying the new value of the tick timer. (int8, int16 or int32)
pco] value — a 8, 16, 32 or 64 bit integer, specifying the new value of the tick timer. (int8, int16,
int32 or int64)

Returns:
Void

Function:
Sets the new value of the tick timer. Size passed depends on the size of the tick timer.

Availability:
All Devices

Requires:
#USE TIMER(options)

Examples:

#USE TIMER (TIMER=1,TICK=1lms,BITS=16,NOISR)

455

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

void main (void) {
unsigned intl6 value = 0x1000;

set ticks(value);
} // 256-
(.000035/(4/20000000))

See Also:
#USE TIMER, get_ticks()

setup sd adc calibration()

Syntax:
setup_sd_adc_calibration(model);

Parameters:
mode- selects whether to enable or disable calibration mode for the SD ADC module. The
following defines are made in the device's .h file:

SDADC_START_CALIBRATION_MODE

SDADC_END_CALIBRATION_MODE

Returns:

Function:

To enable or disable calibration mode on the Sigma-Delta Analog to Digital Converter (SD
ADC) module. This can be used to determine the offset error of the module, which then can
be subtracted from future readings.

Availability:
Devices with a SD ADC module

Requires:
#USE TIMER(options)

Examples:
signed int 32 result, calibration;
set sd adc calibration (SDADC START CALIBRATION MODE) ;
calibration=read sd adc()
set sd adc calibration (SDADC END CALIBRATION MODE) ;

result=read sd adc()-calibration;

See Also:
setup _sd _adc(), read sd _adc(), set sd _adc_channel()

456

Built-in Functions

set sd adc channel()

Syntax:
setup_sd_adc(channel);

Parameters:
channel- sets the SD ADC channel to read. Channel can be 0 to read the difference between
CHO+ and CHO-, 1 to read the difference between CH1+ and CH1-, or one of the following:
SDADC_CHI1SE_SVSS
SDADC_REFERENCE

Returns:

Void

Function:

To select the channel that the Sigma-Delta Analog to Digital Converter (SD ADC) performs the
conversion on.

Availability:
Devices with a SD ADC module

Requires:

Examples:
set sd adc channel (0) ;

See Also:
setup _sd _adc(), read sd _adc(), set_sd adc_calibration()

set slow slew x()

Syntax:

set_slow_slew_a(value);
set_slow_slew_b(value);
set_slow_slew_c(value);
set_slow_slew_d(value);
set_slow_slew_e(value);
set_slow_slew_f(value);
set_slow_slew_g(value);
set_slow_slew_h(value);

457

CCS C Compiler

Parameters:

value - may be a 1-bit constant or an 8-bit value (see the device's header file to determine
which) used to enable and disable slew rating limiting on a port or port pin. Devices that take a
1-bit constant passing a 1 to function enables slew rate limiting on entire port. Passing a O to
function disables slew rate limiting on entire port. Devices that take an 8-bit value, each bit
corresponds to a pin on the port. Setting a bit enables slew rate limiting on that port's
corresponding pin and clearing a bit disables slew rate limiting on that port's corresponding pin.

Returns:

Function:
Used to enable and disable slew rate limiting on the device's ports or port pins.

Availability:
Devices that have Slew Rate Control registers for enabling and disabling slew rate limiting.

Requires:

Examples:

set slow slew a(TRUE);
set slow slew a(0x03);

See Also:

set_tris_x(), set_input_level x(), set open drain_x(), get_tris x(), output_x(),
input_Xx(), input_change x(), port_x_pullups(), input(), input_state(), output low(),
output_high(), output_toggle(), output_bit(), output float(), output_drive()

set _timerA()

Syntax:
set_timerA(value);

Parameters:
An 8 bit integer. Specifying the new value of the timer. (int8)

Returns:

Function:
Sets the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...)

458

Built-in Functions

Availability:
Devices with Timer A hardware

Requires:

Examples:

// 20 mhz clock, no prescaler, set
timer A

// to overflow in 35us
set timerA(81); // 256-(.000035/(4/20000000)

See Also:
get _timerA(), setup _timer_A(), TimerA Overview

set_timerB()

Syntax:
set_timerB(value);

Parameters:
An 8 bit integer. Specifying the new value of the timer. (int8)

Returns:

Function:
Sets the current value of the timer. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...)

Availability:
Devices with Timer B hardware

Requires:

Examples:

// 20 mhz clock, no prescaler, set
timer B

// to overflow in 35us
set timerB(81); // 256-(.000035/(4/20000000)

See Also:
get _timerB(), setup timer B(), TimerB Overview

459

CCS C Compiler

set_timerxy()

Syntax:
set_timerXY(value)

Parameters:
A 32 bit integer, specifying the new value of the timer. (int32)

Returns:

Function:
Retrieves the 32 bit value of the timers X and Y, specified by XY(which may be 23, 45, 67 and
89)

Availability:

This function is available on all devices that have a valid 32 bit enabled timers. Timers 2 & 3, 4
& 5,6 &7 and 8 & 9 may be used. The target device must have one of these timer sets. The
target timers must be enabled as 32 bit.

Requires:

Examples:

if (get timer45() == THRESHOLD)
set timer (THRESHOLD + 0x1000); //skip those timer
values

See Also:
Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

set timerx()
set rtcc() set timerO() set timerl() set timer2() set timer3()
set timer4() set timer5()

Syntax:

set_timerX(value)

set_timerO(value) or set_rtcc (value)
set_timerl(value)

set_timer2(value)

set_timer3(value)

set_timer4(value)

set_timer5(value)

460

Built-in Functions

Parameters:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns:
Undefined

Function:

Sets the count value of a real time clock/counter. RTCC and Timer0 are the same. All timers
count up. When a timer reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0, 1, 2..)

Availability:

Timer 0O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Requires:
Examples:
// 20 mhz clock, no prescaler,
//set timer 0 to overflow in 35us
set _timer0(81); // 256-(.000035/(4/20000000))

Example Files:
ex_patg.c

See Also:
set_timerl(), get timerX() Timer0 Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview

set timer ccpl() set timer ccp2() set timer ccp3() set timer ccp4()
set timer ccp5()

set timer ccp6()

Syntax:
set_timer_ccpx(time);
set_timer_ccpx(timeL, timeH);

461

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
Parameters:

time - may be a 32-bit constant or variable. Sets the timer value for the CCPx module when in
32-bit mode.

timeL - may be a 16-bit constant or variable to set the value of the lower timer when CCP
module is set for 16-bit mode.

timeH - may be a 16-hit constant or variable to set the value of the upper timer when CCP
module is set for 16-bit mode.

Returns:

Function:
This function sets the timer values for the CCP module. TimeH is optional parameter when
using 16-bit mode, defaults to zero if not specified.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.
Requires:
Examples:
setup_ccpl (CCP_TIMER) ; //set for dual timer mode
set_timer ccpl (100,200); //set lower timer value to 100 and upper
timer
//value to 200
See Also:

set pwmX_duty(), setup_ccpX(), set_ccpX_compare time(), get _capture ccpX(),
set_timer_period ccpX(), get timer _ccpx(), get _captures32 ccpX()

set timer period ccpl()set timer period ccp2()
set timer period ccp3() set timer period ccp4()
set timer period ccp5()

set timer period ccp6()

Syntax:
set_timer_period_ccpx(time);
set_timer_period_ccpx(timeL, timeH);

Parameters:
time - may be a 32-bit constant or variable. Sets the timer value for the CCPx module when in
32-bit mode.

462

Built-in Functions

timeL - may be a 16-bit constant or variable to set the value of the lower timer when CCP
module is set for 16-bit mode.

timeH - may be a 16-bit constant or variable to set the value of the upper timer when CCP
module is set for 16-bit mode.

Returns:

Function:

This function sets the timer periods for the CCP module. When setting up CCP module in 32-
bit function is only needed when using Timer mode. Period register are not used when module
is setup for 32-bit compare mode, period is always OxFFFFFFFF. TimeH is optional parameter
when using 16-bit mode, default to zero if not specified.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires:

Examples:

setup ccpl (CCP_TIMER) ; //set for dual timer mode
set_timer period ccpl (800,2000); //set lower timer period to 800
and

//upper timer period to 2000

See Also:
set pwmX duty(), setup_ccpX(), set_ccpX _compare time(), set_timer_ccpX(),
get _timer_ccpX(), get_capture ccpX(), get _captures32 _ccpX()

set_tris()

Syntax:
set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)
set_tris_| (value)

463

CCS C Compiler

Parameters:
value is an 8 bit int with each bit representing a bit of the 1/0O port.
rrco] Value is an 16 bit int with each bit representing a bit of the /O port.

Returns:
Undefined

Function:

These functions allow the I/O port direction (TRI-State) registers to be set.

This must be used with FAST_IO and when 1/O ports are accessed as memory such as when
a # BYTE directive is used to access an I/O port.

rco] This must be used with FAST_IO and when I/O ports are accessed as memory such as
when a #word directive is used to access an I/O port.

Using the default standard 1/O the built in functions set the 1/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a O indicates it is
output.

Availability:
All devices (however not all devices have all /O ports)

Requires:
Pin constants are defined in the devices .h file

Examples:
SET_TRIS B(O0x0F); // B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs
reco; // B15,B14,B13,B12,B11,B10,B9,BS8,

Example Files:
Icd.c

See Also:
#USE FAST 10, #USE FIXED 10, #USE STANDARD 10, General Purpose 1/0

set uart speed()

Syntax:
set_uart_speed (baud, [stream, clock])

Parameters:
baud - is a constant representing the number of bits per second.

stream - is an optional stream identifier.

clock - is an optional parameter to indicate what the current clock is if it is different from the
#use delay value

464

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
Returns:

Function:
Changes the baud rate of the built-in hardware RS232 serial port at run-time.

Availability:
This function is only available on devices with a built in UART

Requires:
#USE RS232

Examples:
// Set baud rate based on setting

// of pins B0 and Bl
switch(input b() & 3) {

case 0 : set uart speed(2400); break;
case 1 set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 set uart speed(19200); break;

}

Example Files:
loader.c

See Also:
#USE RS232, putc(), getc(), setup uart(), RS232 1/0 Overview

setimp()

Syntax:
result = setjmp (env)

Parameters:
env - The data object that will receive the current environment

Returns:

If the return is from a direct invocation, this function returns O.

If the return is from a call to the longjmp function, the setjmp function returns a nonzero value
and it's the same value passed to the longjmp function.

Function:
Stores information on the current calling context in a data object of type jmp_buf and which
marks where you want control to pass on a corresponding longjmp call.

465

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Availability:
All Devices

Requires:
#INCLUDE <setjmp.h>

Examples:

result = setjmp (jmpbuf);

See Also:

longjmp()

setup act()

Syntax:
setup_act(settings);

Parameters:
settings - to setup the ACT module. See the device's header file for options.

Returns:

Function:
Used to setup the Active Clock Tuning (ACT) module.

Availability:
Devices with an ACT module. See the device's header file for availability.

Requires:

Examples:

setup act (ACT ENABLED | ACT TUNED TO USE);

See Also:

act_status()

466

Built-in Functions
setup adc(mode)
[PCD] setup adc2(mode)

Syntax:
setup_adc (mode, [ADCRS], [ADRPT]);
[pco] Setup_adc2(mode);

Parameters:
mode- Analog to digital mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:
ADC_OFF
ADC_CLOCK_INTERNAL
ADC_CLOCK_DIV_32
trco] ADC_CLOCK _INTERNAL — The ADC will use an internal clock
rco] ADC_CLOCK_DIV_32 — The ADC will use the external clock scaled down by 32
rco] ADC_TAD_MUL_16 — The ADC sample time will be 16 times the ADC conversion
time

ADCRS - For devices with an analog-to-digital converter with computation (ADC2) module
only. Optional parameter used set how much the accumulated value is divided by (2*"ADCRS)
in Accumulate, Average and Parst Average modes, and the cut-off frequency in low-pass filter
mode.

ADRPT - For devices with an ADC2 module only. Optional parameter used to set the number
of samples to be done before performing a threshold comparison in Average, Bust Average
and low-pass filter modes.

Returns:

Function:

Configures the analog to digital converter.

reo] Configures the ADC clock speed and the ADC sample time. The ADC converters have a
maximum speed of operation, so ADC clock needs to be scaled accordingly. In addition, the
sample time can be set by using a bitwise OR to concatenate the constant to the argument.

Availability:
Only the devices with built in analog to digital converter.

Requires:
Constants are defined in the devices .h file.

Examples:

setup adc ports(ALL ANALOG);
setup adc (ADC CLOCK INTERNAL) ;
set adc_channel(0);

value = read adc();

467

CCS C Compiler
setup_adc(ADC OFF)

Example Files:
ex_admm.c

See Also:
setup _adc ports(), set_adc _channel(), read adc(), #DEVICE, ADC Overview

setup adc ports()
[PCD] setup adc ports2()

Syntax:

setup_adc_ports (value)
setup_adc_ports (ports, reference])

pco] setup_adc_ports (ports, reference])

Parameters:
value - a constant defined in the device's .h file

ports - is a constant specifying the ADC pins to use

reference - is an optional constant specifying the ADC reference to use. By default, the
reference voltage are Vss and Vdd

Returns:

Function:
Sets up the ADC pins to be analog, digital, or a combination and the voltage reference to use
when computing the ADC value. The allowed analog pin combinations vary depending on the
chip and are defined by using the bitwise OR to concatenate selected pins together. Check
the device include file for a complete list of available pins and reference voltage settings. The
constants ALL_ANALOG and NO_ANALOGS are valid for all chips.
Some other example pin definitions are:

SAN1 | sAN2 - AN1 and AN2 are analog, remaining pins are digital

SANO | sSAN3 - ANO and AN3 are analog, remaining pins are digital

Availability:
This function is only available on devices with A/D hardware.
This function is only available on devices with built-in A/D converters

Requires:
Constants are defined in the devices .h file.

Examples:

468

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

// All pins analog (that can

be)
setup adc ports (ALL ANALOG) ; // Pins A0, Al, and A3 are
analong and all

// others are digital.

// The +5V is used as a
reference
setup_adc_ports (RAO, RAL, RA3 ANALONG); // Pins A0 and Al are
analog. Pin RA3 is

// used for the reference
voltage and all

// other pins are digital.
setup adc ports (A0O_RA1l ANALOGRA3 REF); // Set all ADC pins to analog
mode.

setup_adc_ports (ALL ANALOG) ; // Pins ANO, ANl and AN3 are
analog and all

// others pins are digital.
setup_adc_ports (sANO|sAN1|sAN3) ; // Pins ANO and ANl are
analog. The Vrefl pin

// and Vdd are used for

voltage references.

setup adc ports(sANO|sAN1, VREF VDD) ;

Example Files:
ex_admm.c

See Also:
#USE RS232, putc(), getc(), setup uart(), RS232 1/0 Overview

setup adc reference()
setup adc reference2()

Syntax:
setup_adc_reference(reference)

Parameters:
reference - the voltage reference to set the ADC. The valid options depend on the device,
see the device's .h file for all options. Typical options include:
-VSS VDD
-VSS VREF
- VREF_VREF
- VREF_VDD

469

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Returns:
Undefined.

Function:

Set the positive and negative voltage reference for the Analog to Digital Converter (ADC)
uses.

Availability:
Only on devices with an ADC and has ANSELX, x being the port letter; registers for setting
which pins are analog or digital.

Requires:
Nothing

Examples:
setup adc reference (VSS_VREF) ;

Examples Files:
None

See Also:

set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(), setup_adc_ports(), ADC
Overview

setup adc reference()
setup adc reference2()

Syntax:
setup_adc_reference(reference)

Parameters:
reference - the voltage reference to set the ADC. The valid options depend on the device,
see the device's .h file for all options. Typical options include:
-VSS_VDD
-VSS_VREF
- VREF_VREF
- VREF_VDD

Returns:
Undefined.

Function:

Set the positive and negative voltage reference for the Analog to Digital Converter (ADC)
uses.

470

Built-in Functions

Availability:
Only on devices with an ADC and has ANSELX, x being the port letter; registers for setting
which pins are analog or digital.

Requires:
Nothing

Examples:
setup_adc reference (VSS_VREF) ;

Examples Files:
None

See Also:
set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(), setup_adc_ports(), ADC
Overview

setup at()

Syntax:
setup_at(settings)

Parameters:
settings - the setup of the AT module. See the device's header file for all options. Some
typical options include:

at_enabled

at_disabled

at_multi_pulse_mode

at_single_pulse_mode

Returns:

Function:
To setup the Angular Timer (AT) module.

Availability:
All devices with an AT module

Requires:
Constants defined in the device's .h file

Examples:
setup at (AT ENABLED|AT MULTI PULSE MODE |AT INPUT ATIN) ;

471

CCS C Compiler

See Also:

at_set_resolution(), at_get_resolution(), at_set _missing_pulse delay(),

at_get _missing_pulse delay(), at_get period(), at_get phase_counter(),

at_set_set point(), at_get_set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup _cc(),
at_set compare _time(), at get capture(), at_get status()

setup capture()

Syntax:
setup_capture(x, mode)

Parameters:
X - is 1-16 and defines which input capture module is being configured

mode - is defined by the constants in the devices .h file

Returns:

Function:
This function specifies how the input capture module is going to function based on the value of
mode. The device specific options are listed in the device .h file

Availability:
Only available on devices with Input Capture modules

Requires:

Examples:
setup timer3(TMR INTERNAL | TMR DIV BY 8);
setup capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {
timerValue = get capture(2, TRUE);
printf (“Capture 2 occurred at: %LU”, timerValue);

See Also:
get _capture(), setup _compare(), Input Capture Overview

472

Built-in Functions

setup ccpl() setup ccp?2() setup ccp3() setup ccp4() setup ccp5()
setup _ccp6()

setup _ccp7()
setup _ccp8()

setup _ccp9()
setup _ccpl0()

Syntax:

setup_ccpl (mode) or setup_ccpl (mode, pwm)

setup_ccp2 (mode) or setup_ccp2 (mode, pwm)

setup_ccp3 (mode) or setup_ccp3 (mode, pwm)

setup_ccp5 (mode) or setup_ccp5 (mode, pwm)

setup_ccp6 (mode) or setup_ccp6 (mode, pwm)

[pco] setup_ccpx(mode,[pwm]);//PIC24FxxKLxxx devices

pco] setup_ccpx(model,[mode2],[mode3],[dead_time]);//PIC24FxxKMxxx devices

Parameters:
mode - is a constant. Valid constants are defined in the devices .h file and refer to devices .h
file for all options; some options are as follows:

Disable the CCP

CCP_CAPUTURE_FE Capture on falling edge
CCP_CAPUTURE_RE Capture on rising edge
CCP_CAPUTURE_DIV_4 Capture after 4 pulses
CCP_CAPUTURE_DIV_16 Capture after 16 pulses

Set CCP to Capture Mode:

CCP_CAPUTURE_SET _ON_MATCH Output high on compare
CCP_CAPUTURE_CLR_ON_MATCH Output low on compare
CCP_CAPUTURE_INT Interrupt on compare
CCP_CAPUTURE_RESET_TIMER Reset timer on compare

Set to CCP to PWM Mode:
CCP_PWM Enable Pulse Width Modulator

Constants used for ECCP Modules:
CCP_PWM_H_H
CCP_PWM_H_L
CCP_PWM_L H
CCP_PWM_L L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

CCP_SHUTDOWN_ON_COMP1 Shutdown on Comparator 1 change
CCP_SHUTDOWN_ON_COMP2 Shutdown on Comparator 2 change

473

CCS C Compiler

CCP_SHUTDOWN_ON_COMP Either Comparator 1 or 2 change
CCP_SHUTDOWN_ON_INTO VIL on INT pin
CCP_SHUTDOWN_ON_COMP1_INTO VIL on INT pin or Comparator 1 change
CCP_SHUTDOWN_ON_COMP2_INTO VIL on INT pin or Comparator 2 change
CCP_SHUTDOWN_ON_COMP_INTO VIL on INT pin or Comparator 1 or 2 change

CCP_SHUTDOWN_AC_
CCP_SHUTDOWN_AC_
CCP_SHUTDOWN_AC_

L Drive pins A and C high
H Drive pins A and C low
F Drive pins A and D tri-state

CCP_SHUTDOWN_BD_L Drive pins B and D high
CCP_SHUTDOWN_BD_H Drive pins B and D low
CCP_SHUTDOWN_BD_F Drive pins B and D tri-state

CCP_SHUTDOWN_RESTART Device restart after a shutdown event
CCP_DELAY Use the deadband delay

pwm parameter - is an optional parameter for chips that includes ECCP module. This
parameter allows setting the shutdown time. The value may be 0-255.

rrco) mode and model - constants used for setting up the CCP module. Valid constants are
defined in the device's .h file; refer to the device's .h file for all options. Some typical options
are as follows:

CCP_OFF
CCP_COMPARE_INT_AND_TOGGLE
CCP_COMPARE_FE
CCP_COMPARE_RE
CCP_COMPARE_DIV_4
CCP_COMPARE_DIV_16
CCP_COMPARE_SET_ON_MATCH
CCP_COMPARE_CLR_ON_MATCH
CCP_COMPARE_INT
CCP_COMPARE_RESET_TIMER
CCP_PWM

rco] mode?2 is an optional parameter for setting up more settings of the CCP module. Valid
constants are defined in the device's .h file, refer to the device's .h file for all options.

rco) mode3 is an optional parameter for setting up more settings of the CCP module. Valid
constants are defined in the device's .h file, refer to the device's .h file for all options.

[pco] pwm is an optional parameter for devices that have an ECCP module. this parameter
allows setting the shutdown time. The value may be 0-255.

pco] dead_time is an optional parameter for setting the dead time when the CCP module is

operating in PWM mode with complementary outputs. The value may be 0-63, 0 is the default
setting if not specified.

474

Built-in Functions

Returns:

Function:

Initialize the CCP. The CCP counters may be accessed using the long variables CCP_1 and
CCP_2. The CCP operates in 3 modes. In capture mode it will copy the timer 1 count value to
CCP_x when the input pin event occurs. In compare mode it will trigger an action when timer 1
and CCP_x are equal. In PWM mode it will generate a square wave. The PCW wizard will help
to set the correct mode and timer settings for a particular application.

rpep Initializes the CCP module. For PIC24FxxKLxxx devices the CCP module can operate in
three modes (Capture, Compare or PWM).

Capture Mode - the value of Timer 3 is copied to the CCPRxH and CCPRXxI registers
when an input event occurs.

Compare Mode - will trigger an action when Timer 3 and the CCPRxL and CCPRxH
registers are equal.

PWM Mode - will generate a square wave, the duty cycle of the signal can be adjusted using
the CCPRXL register and the DCxB bits of the CCPxCON register. The function
set_pwmx_duty() is provided for setting the duty cycle when in PWM mode.

PIC24FxxKMxxx devices, the CCP module can operate in four mode (Timer, Caputure,
Compare or PWM). IN Timer mode, it functions as a timer. The module has to basic modes, it
can functions as two independent 16-bit timers/counters or as a single 32-bit

timer/counter. The mode it operates in is controlled by the option CCP_TIMER_32_BIT, with
the previous options added, the module operates as a single 32-bit timer, and if not added, it
operates as two 16-bit timers. The function set_timer_period_ccpx() is provided to set the
period(s) of the timer, and the functions set_timer_ccpx() and get_timer_ccpx() are provided to
set and get the current value of the timer(s).

In Capture mode, the value of the timer is captured when an input event occurs, it can operate
in either 16-bit or 32-bit mode. The functions get_capture_ccpx() and get_capture32_ccpx()
are provided to get the last capture value.

In Compare and PWM modes, the value of the timers is ¢ ompared to one or two compare
registers, depending on its mode of operation, to generate a single output transition or a train
of output pulses. For signal output edge modes,

CCP_COMPARE_SET_ON_MATCH, CCP_COMPARE_CLR_ON_MATCH, and
CCP_COMPARE_TOGGLE, the module can operate in 16 or 32-bit mode, all other modes can
only operate in 16-bit mode. However, when in 32-bit mode the timer source will only rollover
when it reaches OXFFFFFFFF or when reset from an external synchronization

source. Therefore, is a period of less than OXFFFFFFFF is needed, as it requires an external
synchronization source to reset the timer. The functions set_ccpx_compare_time() and
set_pwmx_duty() are provided for setting the compare registers.

Availability:
This function is only available on devices with CCP hardware.

475

CCS C Compiler
tpeo] Only on devices with the MCCP and/or SCCP modules.

Requires:
Constants are defined in the devices .h file.

Examples:
setup ccpl (CCP_CAPTURE RE);

[PCD]

setup_ccpl (CCP_CAPTURE FE) ;
setup_ccpl (CCP_COMPARE TOGGLE) ;
setup ccpl (CCP_PWM) ;

Example Files:
ex_pwm.c, ex_ccpmp.c, ex_ccpls.c

See Also:
set pwmX duty(), set ccpX compare time(), set_timer _period ccpX(),
set_timer_ccpX(), get _timer _ccpX(), get _capture ccpX(), get captures32_ccpX()

setup clcl() setup clc2() setup clc3() setup clc4()

Syntax:

setup_clcl(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);_capture(x, mode)

Parameters:
mode — The mode to setup the Configurable Logic Cell (CLC) module into. See the device's
.h file for all options. Some typical options include:

CLC_ENABLED

CLC_OUTPUT

CLC_MODE_AND_OR

CLC_MODE_OR_XOR

Returns:

Function:
Sets up the CLC module to performed the specified logic. Please refer to the device datasheet
to determine what each input to the CLC module does for the select logic function

Availability:
Devices with a CLC module

476

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

Built-in Functions
Requires:

Examples:
setup clcl (CLC_ENABLED | CLC MODE AND OR);

See Also:
clex_setup gate(), clex _setup _input()

setup _comparator()

Syntax:
setup_comparator (mode)
[pcp] setup_comparator (comparator, mode);

Parameters:
mode is a constant. Valid constants are in the devices .h file refer to devices .h file for valid
options. Some typical options are as follows:
A0 A3 Al A2
A0 A2 Al A2
NC_NC_A1l A2
NC_NC_NC_NC
AO_VR_A1_VR
A3_VR_A2 VR
AO_A2_Al_A2_OUT_ON_A3_A4
A3 A2 Al _A2

[pPcD] comparator - constant specifying which comparator to setup.

rco] mode - constants specifying the settings to setup the specified comparator. See the
device's .h file for all options. Some typical options include:

CXINB_CXINA

CXINC_CSINA

CXIND_CXINA

CXINB_VREF

CXINC_VREF

CXIND_VREF

COMP_INVERT

COMP_OUTPUT

Returns:

Function:
Sets the analog comparator module. The above constants have four parts representing the
inputs: C1-, C1+, C2-, C2+

477

CCS C Compiler

treo] Configures the voltage comparator. The voltage comparators allow to compare two
voltages and find the greater of them. The configuration constants for this function specify the
sources for the comparator in the order Cx- and Cx+. The results of the comparator modules
are stored in CxOUT. COMP_INVERT will invert the result of the comparator and
COMP_OUTPUT will output the result to the comparator output pin.

Availability:
This function is only available on devices with an analog comparator.
tpco] Devices with a comparator module.

Requires:
Constants are defined in the devices .h file

Examples:
//Sets up two independent
comparators (Cl and C2),
// Cl uses AQ and A3 as
inputs (- and +), and C2
// uses Al and A2 as
inputs
setup comparator (A0 A3 Al A2);
reep) setup comparator (1,CXINB CXINA) ; // setup C1
setup_ comparator (2,CXINB_CXina); // setup C2

Example Files:
ex_comp.c

See Also:
Analog Comparator Overview, setup _comparator filter(), setup comparator mask()

setup comparator filter()

Syntax:
[pcp] Setup_comparator (comparator, mode);

Parameters:
[PcD] comparator - constant specifying which comparator filter to setup.

rco] mode - constants specifying the settings to setup the specified comparator's filter. See
the device's .h file for all options. Some typical options include:

COMP_FILTER_ENABLE

COMP_FILTER_CLK_T3

COMP_FILTER_CLK_T2

COMP_FILTER_CLK_FOSC

COMP_FILTER_CLK_INTERNAL

COMP_FILTER_CLK_DIV_BY_4

478

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

COMP_FILTER_CLK_DIV_BY_2
COMP_FILTER_CLK_DIV_BY_1

Returns:

Function:
trep] Configures the voltage comparator's digital filter.

Availability:
rco] Devices with a comparator module that has a digital filter. See the device's header file to
determine if the device has a digital filter as part of the comparator module.

Requires:
Constants are defined in the devices .h file

Examples:

reecp; setup comparator filter (1,COMP _FILTER ENABLE |
COMP FILTER CLK FOSC|COMP_FILTER CLK DIV BY 4);

See Also:
Analog Comparator Overview, setup comparator(), setup_comparator _mask()

setup comparator mask()

Syntax:
[pcp] Setup_comparator_mask (comparator, mode, [inputl], [input2], [input3]);

Parameters:
[PcD] comparator - constant specifying which comparator filter to setup.

rco] mode - constants specifying the settings to setup the specified comparator's mask
registers. See the device's .h file for all options. Some typical options include:
COMP_MASK_COMP_HIGH
COMP_MASK_COMP_LOW
COMP_MASK_MAI_CONNECTED_TO_OR
COMP_MASK_INVERTED_MAI_CONNECTED_TO_OR
COMP_MASK_MAI_CONNECTED_TO_AND
COMP_MASK_INVERTED_MAI_CONNECTED_TO_AND

[pco] inputl, input2, input3 - optional parameters specifying the inputs to mask. See the
device's .h file for all options. Some typical options include:
COMP_MASK_INPUT_PWM3H
COMP_MASK_INPUT_PWM3L
COMP_MASK_INPUT_PWM2H

479

CCS C Compiler

COMP_MASK_INPUT_PWM2L
COMP_MASK_INPUT_PWM1H
COMP_MASK_INPUT_PWMIL

Returns:

Function:
rep] Configures the voltage comparator's output blanking function.

Availability:

rco] Devices with a comparator module that has a output blanking function. See the device's
header file to determine if the device has an output blanking function as part of the comparator
module.

Requires:
Constants are defined in the devices .h file

Examples:

reeo) setup comparator mask(l,COMP MASK COMP_ LOW|
COMP_ MASK MAI CONNECTED TO AND, COMP_MASK_INPUT_PWM]_H;

See Also:
Analog Comparator Overview, setup comparator(), setup_comparator_filter()

setup comparator x()

Syntax:

setup_comparator_1(mode);
setup_comparator_2(mode);
setup_comparator_3(mode);
setup_comparator_4(mode);
setup_comparator_5(mode);
setup_comparator_6(mode);
setup_comparator_7(mode);
setup_comparator_8(mode);

Parameters:
mode - to setup the comparator in. Valid options are device dependent. See the device's
header file for all valid options.

Returns:

Built-in Functions

Function:
Used to setup one of the Analog Comparator modules.

Availability:
On most devices that have more than three Analog Comparator modules.

Requires:

Examples:

setup comparator 1(CP1 Al AOQ | CP1 INVERT);

See Also:
setup_comparator(), Analog Comparator

setup compare()

Syntax:
setup_compare(x, mode)

Parameters:
mode - is defined by the constants in the devices .h file

X - is 1-16 and specifies which OC pin to use.

Returns:

Function:
This function specifies how the output compare module is going to function based on the value
of mode. The device specific options are listed in the device .h file.

Availability:
Available only on devices with Output Compare Modules

Requires:

Examples:

// Pin OCl will be set
when timer 2

// is equal to 0xF000
setup timer2 (TMR INTERNAL | TIMER DIV BY 16);
set compare time(l, 0xF000);
setup compare(l, COMPARE SET ON MATCH | COMPARE TIMERZ2);

481

CCS C Compiler

See Also:
set_compare _time(), set pwm_duty(), setup capture(), Output Compare / PWM
Overview

setup counters()

Syntax:
setup_counters (rtcc_state, ps_state)

Parameters:

rtcc_state - may be one of the constants defined in the devices .h file.
RTCC_INTERNAL
RTCC_EXT L TO_H
RTCC_EXT H_TO L

ps_state - may be one of the constants defined in the devices .h file.
RTCC_DIV_2
RTCC_DIV_4
RTCC_DIV_8
RTCC_DIV_16
RTCC_DIV_32
RTCC_DIV_64
RTCC_DIV_128
RTCC_DIV_256
WDT_18MS
WDT_36MS
WDT_72MS
WDT_144MS
WDT_288MS
WDT_576MS
WDT_1152MS
WDT_2304MS

Returns:

Function:

Sets up the RTCC or WDT. The rtcc_state determines what drives the RTCC. The PS state
sets a prescaler for either the RTCC or WDT. The prescaler will lengthen the cycle of the
indicated counter. If the RTCC prescaler is set the WDT will be set to WDT_18MS. If the WDT
prescaler is set the RTCC is setto RTCC_DIV_1.

This function is provided for compatibility with older versions. setup_timer_0 and setup_WDT

are the recommended replacements when possible. For PCB devices if an external RTCC
clock is used and a WDT prescaler is used then this function must be used.

482

Built-in Functions

Availability:
All Devices

Requires:
Constants are defined in the devices .h file

Examples:

setup counters (RTCC INTERNAL, WDT 2304MS);

See Also:
setup wdt(), setup _timer 0(), see header file for device selected

setup crc(mode)

Syntax:
setup_crc(polynomial terms)

Parameters:

polynomial - This will setup the actual polynomial in the CRC engine. The power of each term

is passed separated by a comma. 0 is allowed, but ignored. The following define is added to

the device's header file (32-bit CRC Moduel Only), to enable little-endian shift direction:
CRC_LITTLE_ENDIAN

Returns:

Function:
Configures the CRC engine register with the polynomial.

Availability:
Devices with built in CRC module

Requires:

Examples:

setup crc (12, 5); // CRC Polynomial is X' + x° + 1

setup_crc(16, 15, 3, 1); // CRC Polynomial is X'® + X'°

X+ X+ 1

+

Example Files:
ex.c

483

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

See Also:
crc_init(); crc_calc(); crc_calc8()

setup cog()

setup_cog2()
setup_cog3()
setup_cog4()

Syntax:
setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters:
mode- the setup of the COG module. See the device's .h file for all options. Some typical
options include:

COG_ENABLED

COG_DISABLED

COG_CLOCK_HFINTOSC

COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module. See the device's .h file
for all the options. Some typical options include:

COG_AUTO_RESTART

COG_SHUTDOWN_ON_C10UT

COG_SHUTDOWN_ON_C20UT

steering- optional parameter for steering the PWM signal to COG output pins and/or selecting
the COG pins static level. Used when COG is set for steered PWM or synchronous steered
PWM modes. Not available on all devices, see the device's .h file if available and for all
options. Some typical options include:

COG_PULSE_STEERING_A

COG_PULSE_STEERING_B

COG_PULSE_STEERING_C

COG_PULSE_STEERING D

Returns:

Function:
Sets up the Complementary Output Generator (COG) module, the auto-shutdown feature of
the module and if available steers the signal to the different output pins.

Availability:
Devices with built in COG module

Requires:

Built-in Functions

Examples:

setup cog (COG_ENABLED | COG_PWM | COG_FALLING SOURCE PWM3 |
COG_RISING SOURCE PWM3, COG _NO AUTO SHUTDOWN,
COG_PULSE_STEERING A | COG PULSE STEERING B);

See Also:
set _cog _dead band(), set_cog phase(), set cog_blanking(), cog status(),
cog_restart

setup _cwg()
setup _cwg2()

setup _cwg3()

Syntax:
setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters:
mode - the setup of the CWG module. See the device's .h file for all options. Some typical
options include:

CWG_ENABLED

CWG_DISABLED

CWG_OUTPUT B

CWG_OUTPUT A

shutdown - the setup for the auto-shutdown feature of CWG module. See the device's .h file
for all the options. Some typical options include:

CWG_AUTO_RESTART

CWG_SHUTDOWN_ON)COMP1

CWG_SHUTDOWN_ON_FLT

CWG_SHUTDOWN_ON_CLC2

dead_time_rising - value specifying the dead time between A and B on the rising edge. (0-63)

dead_time_rising - value specifying the dead time between A and B on the falling edge. (0-
63)

Returns:

Function:
Sets up the CWG module, the auto-shutdown feature of module and the rising and falling dead
times of the module.

485

CCS C Compiler

Availability:
Devices with built in CWG module

Requires:

Examples:

setup cwg (CWG_ENABLED|CWG OUTPUT A|CWG OUTPUT B|CWG INPUT PWM1,CWG SHUTDOWN
ON_FLT, 60, 30) ;

See Also:
cwg_status(), cwg_restart()

[pcp]_setup current source()

Syntax:
setup_current_source(mode);

Parameters:
mode - setup the Constant Current Source module. Valid options are device dependent. See
the device's header file for all options.

Returns:

Function:
Used to setup the Constant Current Source module.

Availability:
Devices that have a Constant Current Source module.

Requires:

Examples:

setup current source (CURRENT SOURCE ENABLED | CURRENT SOURCE D5);

See Also:

486

Built-in Functions

setup _dac()

Syntax:

setup_dac(mode);
setup_dac2(mode);
setup_dac3(mode);
setup_dac4(mode);
setup_dac5(mode);
setup_dac6(mode);
setup_dac7(mode);
setup_dac8(mode);

[pco] setup_dac(mode, divisor);
[rco] setup_dac(module, mode);

Parameters:

mode - The mode to setup the DAC module in. The valid options vary depending on the
device. See the device's header file for all options.

rpeo] divisor - Divides the provided clock.

rrco] module - DAC module setup.

Returns:

Function:
Setup the DAC module.

Availability:
Devices with a digital-to-analog converter (DAC).

Requires:

Examples:
setup _dac (DAC_VSS VDD | DAC OUTPUT) ;

eeco; setup dac (DAC_RIGHT ON, 5);
setup dac (1, DAC ON)

See Also:
dac write, DAC. See header file for selected device.

487

CCS C Compiler
setup dci()

Syntax:
setup_dci(configuration, data size, rx config, tx config, sample rate);

Parameters:
configuration - Specifies the configuration the Data Converter Interface should be initialized
into, including the mode of transmission and bus properties. The following constants may be
combined (OR’d) for this parameter:

CODEC_MULTICHANNEL

CODEC_I2S- CODEC_AC16

CODEC_AC20- JUSTIFY_DATA: DCI_MASTER

DCI_SLAVE- TRISTATE_BUS- MULTI_DEVICE_BUS

SAMPLE_FALLING_EDGE: SAMPLE_RISING_EDGE

DCI_CLOCK_INPUT: DCI_CLOCK_OUTPUT

data size — Specifies the size of frames and words in the transmission:
DCI_xBIT_WORD: x may be 4 through 16
DCI_XWORD_FRAME: x may be 1 through 16
DCI_XWORD_INTERRUPT: x may be 1 through 4

rx config- Specifies which words of a given frame the DCI module will receive (commonly
used for a multi-channel, shared bus situation)

RECEIVE_SLOTXx: x May be 0 through 15

RECEIVE_ALL- RECEIVE_NONE

tx config- Specifies which words of a given frame the DCI module will transmit on.
TRANSMIT_SLOTx: x May be 0 through 15
TRANSMIT _ALL
TRANSMIT _NONE

sample rate - The desired number of frames per second that the DCI module should produce.
Use a numeric value for this parameter. Keep in mind that not all rates are achievable with a
given clock. Consult the device datasheet for more information on selecting an adequate clock.

Returns:

Function:
Configures the DCI module.

Availability:
Only available on devices with DCI peripheral.

Requires:
Constants are defined in the devices .h file

488

Built-in Functions

Examples
dci initialize ((I2S_MODE|DCI_MASTER|DCI_CLOCK OUTPUT|SAMPLE RISING_ EDGE | UNDE
RFLOW LAST|
MULTI DEVICE BUS,DCI 1WORD FRAME|DCI 16BIT WORD|DCI 2WORD IN
TERRUPT,
RECEIVE_SLOTO|RECEIVE_SLOT1, TRANSMIT SLOTO|TRANSMIT SLOT1, 4
4100) ;

See Also:
DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(), dci data
received()

setup dedicated adc()

Syntax:
setup_dedicated_adc(core, mode);

Parameters:
core - the dedicated ADC core to setup

mode - the mode to setup the dedicated ADC core in. See the device's .h file all
options. Some typical options include:

ADC_DEDICATED_CLOCK_DIV_2

ADC_DEDICATED_CLOCK_DIV_6

ADC_DEDICATED_TAD_MUL_2

ADC_DEDICATED_TAD_MUL_3

Returns:

Function:
Configures one of the dedicated ADC core's clock speed and sample time.
Function should be called after the setup_adc() function.

Availability:
Only available on dsPIC33EPxxGSxxx family of devices.

Requires:
Constants are defined in the devices .h file

Examples:

setup dedicated adc (0,ADC_DEDICATED CLOCK DIV 2|ADC_DEDICATED
_TAD MUL_1025)

489

CCS C Compiler
See Also:
setup_adc(), setup _adc_ports(), set _adc _channel(), read _adc(), adc_done(),
set_dedicated adc channel(), ADC Overview

setup _dma()

Syntax:

setup_dma(channel, start_trigger, abort_trigger);
pco] setup_dma(channel, peripheral,mode);

pco] setup_dma(channel, trigger, mode);

Parameters:
channel -The DMA channel to setup.

start_trigger - The trigger source to cause the DMA channel to start the transfer when HW
trigger is enabled. See header file for all possible sources.

abort_trigger - The trigger source to cause the DMA channel to abort the transfer when HW
abort trigger is enabled. See header file for all possible sources.

rco] peripheral - The peripheral that the DMA channel transfers data to and from. Constants
for setting the trigger source are defined in the device's .h file, see header file for all possible
peripherals.

[pco] trigger - The trigger source to cause the DMA channel to start the transfer. Constants for
setting the trigger source are defined in the device's header file, see header file for all possible
sources.

irco] mode - The mode to use for the DMA transfers. Constants for setting the mode are
defined in the device's header file, see header file for all possible options.

Returns:

Function:
Configures the DMA peripheral to copy data from one location to another.

Availability:

Devices that have a DMA peripheral. [pco) The version of the function depends on the type of
DMA peripheral it has. Use getenv("DMA") to determine the type the device has. It will return
0 for no DMA peripheral, 1 for Type 1 and 2 for Type 2. For devices with Type 1 uses first
version of the function and for devices with Type 2 uses second version of the function.

Requires:

490

Built-in Functions

Examples:
[PCD]
setup_dma (0,DMA IN UART1,DMA BYTE); // Type 1
setup_dma (0, DMA TRIGGER RDA,DMA BYTE |
DMA RELOAD ADDRESS) ; // Type 2

setup dma(l, DMA TRIGGER RDA, DMA TRIGGER NONE) ;

Example Files:
ex_dma uart_rx.c

See Also:
dma_start(), dma_status()

setup _dsm()

Syntax:

setup_dsm(enable);
setup_dsm2(enable);
setup_dsm3(enable);
setup_dsm4(enable);
setup_dsm(mode, source, carrier);
setup_dsm2(mode, source, carrier);
setup_dsm3(mode, source, carrier);
setup_dsm4(mode, source, carrier);

Parameters:

enable — a 1-bit constant used to enable and disable the DSM module. If 1 is passed as the
parameter, the DSMx module is enabled, and if O is passed as the parameter, the DSM
module is disabled.

mode - the mode to setup the DSM module. Valid options vary by device. See the device's
header file for all options.

source - used to set the signal source for the DSM module. Valid options vary by device. See
the device's header file for all options.

carrier - used to set the high and low level carriers for the DSM module. Valid options vary by
device. See the device's header file for all options.

Returns:

Function:
Used to setup the DSM module.

491

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Availability:
Devices that have a Data Signal Modulator (DSM) module

Requires:

Examples:

setup dsm(DSM_ENABLED, DSM SOURCE U1TX, DSM CARRIER LOW CCP1 |
DSM_CARRIER HIGH CCP2);

See Also:
Data Signal Modulator Overview

setup external memory()

Syntax:
setup_external_memory(mode);

Parameters:
mode - is one or more constants from the device header file OR'ed together.

Returns:

Function:
Sets the mode of the external memory bus.

Availability:
Devices that allow external memory bus.

Requires:
Constants are defined in the devices .h file

Examples:
setup_external memory (EXTMEM WORD WRITE|EXTMEM WAIT O);
setup external memory (EXTMEM DISABLE) ;

See Also:
WRITE PROGRAM EEPROM() , WRITE PROGRAM MEMORY(), External Memory
Overview

492

Built-in Functions
setup high speed adc()

Syntax:
setup_external_memory(mode);

Parameters:
mode - Analog to digital mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:

ADC_OFF

ADC_CLOCK_DIV_1

ADC_HALT_IDLE (The ADC will not run when device is idle)

Returns:

Function:

Configures the High-Speed ADC clock speed and other High-Speed ADC options including,
when the ADC interrupts occurs, the output result format, the conversion order, whether the
ADC pair is sampled sequentially or simultaneously, and whether the dedicated sample and
hold is continuously sampled or samples when a trigger event occurs.

Availability:
dsPIC33FJIxxGSxxx devices

Requires:
Constants are defined in the devices .h file

Examples:
setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER);
setup high speed adc(ADC_ CLOCK DIV 4);
read high speed adc (0, START AND READ, result);
setup _high speed adc (ADC_OFF);

See Also:
setup _high speed adc pair(), read high speed adc(), high speed adc done()

setup high speed adc pair()

Syntax:
setup_high_speed_adc_pair(pair, mode);

Parameters:

pair — The High-Speed ADC pair number to setup, valid values are 0 to total number of ADC
pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC pair AN2 and AN3, etc.

493

CCS C Compiler

mode — ADC pair mode. The valid options vary depending on the device. See the devices .h
file for all options. Some typical options include:

INDIVIDUAL_SOFTWARE_TRIGGER

GLOBAL_SOFTWARE_TRIGGER

PWM_PRIMARY_SE_TRIGGER

PWM_GEN1_PRIMARY_TRIGGER

PWM_GEN2_PRIMARY_TRIGGER

Returns:

Function:
Sets up the analog pins and trigger source for the specified ADC pair. Also sets up whether
ADC conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to digital
pins.

Availability:
dsPIC33FJIxxGSxxx devices

Requires:
Constants are defined in the devices .h file

Examples:
setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup _high speed adc pair(l,GLOBAL SOFTWARE TRIGGER) ;
setup _high speed adc pair(2,0) //sets AN4 and
AN5 as digital pins

See Also:
setup_high speed adc(), read high speed adc(), high speed adc _done()

setup hspwm blanking()

Syntax:
setup_hspwm_blanking(unit, settings, delay);

Parameters:
unit - The High Speed PWM unit to set.

settings - Settings to setup the High Speed PWM Leading-Edge Blanking. The valid options
vary depending on the device. See the device's header file for all options. Some typical
options include:
HSPWM_RE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_FE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_RE_PWML_TRIGGERS_LE_BLANKING
494

Built-in Functions

HSPWM_FE_PWML_TRIGGERS_LE_BLANKING
HSPWM_LE_BLANKING_APPLIED_TO_FAULT_INPUT
HSPWM_LE_BLANKING_APPLIED_TO_CURRENT_LIMIT_INPUT

delay - 16-bit constant or variable to specify the leading-edge blanking time.

Returns:

Function:
Sets up the analog pins and trigger source for the specified ADC pair. Also sets up whether
ADC conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to digital
pins.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm blanking (HSPWM RE PWMH TRIGGERS LE BLANKING, 10);

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup_hspwm_blanking(), set_hspwm _override(), get_hspwm _capture(),

setup _hspwm _chop clock(), setup _hspwm unit _chop clock()

setup _hspwm(), setup _hspwm _secondary(), setup high speed adc(),

read high speed adc(), high speed adc done()

setup hspwm chop clock()

Syntax:
setup_hspwm_chop_clock(settings);

Parameters:
unit - The High Speed PWM unit to set.

settings - a value from 1 to 1024 to set the chop clock divider. Also one of the following can
be or'd with the value:
HSPWM_CHOP_CLK_GENERATOR_ENABLED
HSPWM_CHOP_CLK_GENERATOR_DISABLED

495

CCS C Compiler
Returns:

Function:
Setup and High Speed PWM Chop Clock Generator and divisor.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup _hspwm chop clock (HSPWM CHOP CLK GENERATOR ENABLED|32);

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm blanking(), setup hspwm trigger(), set _hspwm _override(),

get _hspwm capture(), setup _hspwm_unit_chop clock(), setup _hspwm(),

setup _hspwm_secondary()

setup hspwm trigger()

Syntax:
setup_hspwm_trigger(unit, [start_ delay], [divider], [trigger_value], [strigger_value]);

Parameters:
unit - The High Speed PWM unit to set.

start_delay - Optional value from 0 to 63 specifying then umber of PWM cycles to wait before
generating the first trigger event. For some devices, one of the following may be optional or'd
in with the value:
HSPWM_COMBINE_PRIMARY_AND_SECONDARY_TRIGGER
HSPWM_SEPERATE_PRIMARY_AND_SECONDARY_TRIGGER
divider - optional value from 1 to 16 specifying the trigger event divisor.
trigger_value - optional 16-bit value specifying the primary trigger compare time.
strigger_value - optional 16-bit value specifying the secondary trigger compare time.

Returns:

496

Built-in Functions

Function:
Sets up the High Speed PWM Trigger event.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm trigger(l, 10, 1, 0x2000);

See Also:

setup _hspwm_unit(), set_ hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm trigger(), set hspwm_override(), get hspwm capture(),

setup _hspwm_chop clock(), setup _hspwm unit_chop clock(), setup_hspwm(),
setup _hspwm_secondary()

setup _hspwm unit()

Syntax:
setup_hspwm_unit(unit, mode, [dead_time], [alt_dead_time]);
set_hspwm_duty(unit, primary, [secondary]);

Parameters:
unit - The High Speed PWM unit to set.

mode - Mode to setup the High Speed PWM unit in. The valid option vary depending on the
device. See the device's header file for all options. Some typical options include:
HSPWM_ENABLE
HSPWM_ENABLE_H
HSPWM_ENABLE_L
HSPWM_COMPLEMENTARY
HSPWM_PUSH_PULL

dead_time - Optional 16-bit constant or variable to specify the dead time for this PWM unit,
defaults to 0 if not specified.

alt_dead_time - Optional 16-bit constant or variable to specify the alternate dead time for this
PWM unit, default to O if not specified.

Returns:

497

CCS C Compiler

Function:
Sets up the specified High Speed PWM unit.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
setup hspwm unit (1, HSPWM ENABLE | SHPWM COMPLEMENTARY,
100,100) ;

See Also:

set_hspwm phase(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm blanking(), setup hspwm trigger(), set_hspwm override(),
get _hspwm_capture(), setup_hspwm_chop clock(),
setup_hspwm_unit_chop clock(),

setup _hspwm(), setup _hspwm_secondary()

setup hspwm()
setup hspwm secondary()

Syntax:
setup_hspwm(mode, value);
setup_hspwm_secondary(mode, value); //if available

Parameters:
mode - Mode to setup the High Speed PWM module in. The valid options vary depending on
the device. See the device's .h file for all options. Some typical options include:
HSPWM_ENABLED
HSPWM_HALT_WHEN_IDLE
HSPWM_CLOCK_DIV_1

value - 16-bit constant or variable to specify the time bases period.

Returns:

Function:
Enable the High Speed PWM module and set up the Primary and Secondary Time base of the
module.

498

Built-in Functions

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
setup hspwm (HSPWM ENABLED | HSPWM CLOCK DIV BY4, 0x8000);

See Also:

setup_hspwm _unit(), set_hspwm _phase(), set_hspwm _duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm _trigger(), set _hspwm _override(),

get _hspwm_capture(), setup_hspwm_chop clock(),

setup _hspwm_unit_chop clock(), setup _hspwm_secondary()

setup hspwm unit chop clock()

Syntax:
setup_hspwm_unit_chop_clock(unit, settings);

Parameters:
unit - the High Speed PWM unit chop clock to setup.

settings - a settings to setup the High Speed PWM unit chop clock. The valid options vary
depending on the device. See the device's .h file for all options. Some typical options include:
HSPWM_PWMH_CHOPPING_ENABLED
HSPWM_PWML_CHOPPING_ENABLED
HSPWM_CHOPPING_DISABLED
HSPWM_CLOP_CLK_SOURCE_PWM2H
HSPWM_CLOP_CLK_SOURCE_PWM1H
HSPWM_CHOP_CLK_SOURCE_CHOP_CLK_GENERATOR

Returns:

Function:
Setup and High Speed PWM unit's Chop Clock

Availability:

Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)
Requires:

Constants are defined in the device's .h file

499

CCS C Compiler

Examples:
setup _hspwm unit chop clock (1, HSPWM PWMH CHOPPING ENABLED|
HSPWM_ PWML CHOPPIJNG ENABLED|
HSPWM CLOP CLK SOURCE_ PWM2H) ;

See Also:

setup_hspwm _unit(), set_hspwm_phase(), set_hspwm _duty(), set_hspwm_event(),
setup_hspwm_blanking(), setup hspwm _trigger(), set_hspwm_override(),

get _hspwm_capture(), setup_hspwm_chop_clock(), setup _hspwm(),

setup _hspwm_secondary()

setup lcd

Syntax:
setup_lcd (mode, prescale, [segments0_31],[segments32_47]);

Parameters:
mode - may be any of the following constants to enable the LCD and may be or'ed with other
constants in the devices *.h file:

LCD_DISABLED, LCD_STATIC, LCD_MUX12, LCD_MUX13, LCD_MUX14

prescale - may be 1-16 for the LCD clock.

segments0-31 - may be any of the following constants or'ed together when using the
PIC16C92X series of chips::
SEGO0_4, SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEG20_26, SEG27_28,
SEG29 31 ALL_LCD_PINS

When using the PIC16F/LF1xxx or PIC18F/LFxxxx series of chips, each of the segments are
enabled individually. A value of 1 will enable the segment, O will disable it and use the pin for
normal 1/O operation.

segments 32-47 - when using a chip with more than 32 segments, this enables segments 32-
47. A value 1 will enable the segment, 0 will disable it. Bit O corresponds to segment 32 and
bit 15 corresponds to segment 47.

Returns:

Function:
Initialize the LCD Driver Module on the PIC16C92X and PIC16F/LF193X series of devices.

Availability:
Only on devices with built-in LCD Driver Module hardware.

500

Built-in Functions

Requires:
Constants are defined in the devices .h file

Examples:
setup lcd(LCD MUX14|LCD STOP ON SLEEP,2,ALL LCD PINS);

// PIC16C92X
setup lcd(LCD MUX13|LCD REF ENABLED|LCD B HIGH POWER, 0, O0xFF04
29);

// PICl6F/LF193X

//Enables
Segments

//0,3,5,10,16,17,
18,19,20,21,22,23

Example Files:
ex_92lcd.c

See Also:
Icd _symbol(), lcd load(), lcd contrast(), Internal LCD Overview

setup low volt detect()

Syntax:
setup_low_volt_detect(mode)

Parameters:
mode may be one of the constants defined in the devices .h file.
LVD_LVDIN
LVD_45
LVD_ 42
LVD_40
LVD_ 38
LVD_36
LVD_35
LVD_33
LVD_30
LVD_28
LVD 27
LVD 25
LVD 23
LVD 21
LVD_19
One of the following may be or'ed(via |) with the above if high voltage detect is also available in
the device
LVD_TRIGGER_BELOW

501

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
LVD_TRIGGER_ABOVE

Returns:

Function:

This function controls the high/low voltage detect module in the device. The mode constants
specifies the voltage trip point and a direction of change from that point (available only if high
voltage detect module is included in the device). If the device experiences a change past the
trip point in the specified direction the interrupt flag is set and if the interrupt is enabled the
execution branches to the interrupt service routine.

Availability:
Only available with devices that have the high/low voltage detect module.

Requires:
Constants are defined in the devices .h file

Examples:
setup low volt detect(LVD TRIGGER BELOW | LVD 36); //This
would trigger the
//interr
upt when the voltage
//1is
below 3.6 volts

setup motor pwm()

Syntax:
setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Parameters:
pwm - Defines the pwm module used.

Options - The mode of the power PWM module. See the devices .h file for all options
timebase - This parameter sets up the PWM time base pre-scale and post-scale.
prescale - This will select the PWM timebase prescale setting

postscale - This will select the PWM timebase postscale setting

Returns:

Built-in Functions

Function:
Configures the motor control PWM module.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:
setup motor pwm(l,MPWM FREE RUN | MPWM SYNC OVERRIDES,
timebase) ;

See Also:
get motor pwm count(), set motor pwm event(), set motor unit(), set motor pwm duty()

setup nco

Syntax:
setup_nco(settings,inc_value)

Parameters:
settings - setup of the NCO module. See the device's .h file for all options. Some typical
options include:

NCO_ENABLE

NCO_OUTPUT

NCO_PULSE_FREQ_MODE

NCO_FIXED_DUTY_MODE

inc_value - value to increment the NCO 20 bit accumulator by.

Returns:

Function:
Sets up the NCO module and sets the value to increment the 20-bit accumulator by.

Availability:
Devices with a NCO module.

Requires:

Examples:
setup nco (NCO_ENABLED|NCO OUTPUT |NCO_FIXED DUTY MODE|NCO CLOC
K _FOSC,8192) ;

503

CCS C Compiler

See Also:
get _nco_accumulator(), set nco_inc_value(), get nco_inc_value()

setup opampl() setup opamp2() setup opamp3()
setup opamp4()

Syntax:

setup_opampl(mode)
setup_opamp2(mode)
setup_opamp3(mode)
setup_opamp4(mode)

Parameters:
mode - The mode of the operation amplifier. See the devices .h file for all options. Some
typical options include:

OPAMP_ENABLED

OPAMP_DISABLED

Returns:

Function:
Enables or Disables the internal operational amplifier peripheral of certain devices.

Availability:
Devices with a built-in operational amplifier (for example, PIC16F785)

Requires:

Examples:
setup opampl (OPAMP ENABLED) ;
setup_ opampZ2 (OPAMP DISABLED) ;
|

setup_opamp3 (OPAMP _ENABLED | OPAMP I TO OUTPUT);

setup oscillator()

Syntax:
setup_oscillator(mode, finetune)

Parameters:

mode - is dependent on the chip. For example, some chips allow speed setting such as
OSC_8MHZ or OSC_32KHZ. Other chips permit changing the source like OSC_TIMERL.

504

Built-in Functions
finetune - (only allowed on certain parts) is a signed int with a range of -31 to +31.

Returns:
Some devices return a state such as OSC_STATE_STABLE to indicate the oscillator is stable.

Function:
This function controls and returns the state of the internal RC oscillator on some parts. See the
devices .h file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses and a #USE DELAY is used for a valid
speed option, then the compiler will do this setup automatically at the start of main().

WARNING: If the speed is changed at run time the compiler may not generate the correct
delays for some built in functions. The last #USE DELAY encountered in the file is always
assumed to be the correct speed. You can have multiple #USE DELAY lines to control the
compilers knowledge about the speed.

Availability:
Devices with a OSCCON register.

Requires:
Constants are defined in the .h file.

Examples:
setup oscillator(OSC_2MHZ);

See Also:
#FEUSES, Internal oscillator Overview

[PCD]

Syntax:
setup_oscillator(mode, target [,source] [,divide])

Parameters:

mode - is one of:
OSC_INTERNAL
OSC_CRYSTAL
OSC_CLOCK
OSC _RC
OSC_SECONDARY

target - is the target frequency to run the device it.

source - is optional. It specifies the external crystal/oscillator frequency. If omitted the value
from the last #USE DELAY is used. If mode is OSC_INTERNAL, source is an optional tune
value for the internal oscillator for devices that support it. If omitted a tune value of zero will be
used.

505

CCS C Compiler

divide in - is optional. For devices that support it, it specifies the divide ration for the Display
Module Interface Clock. A number from 0 to 64 divides the clock from 1 to 17 increasing in
increments of 0.25, a number from 64 to 96 divides the clock from 17 to 33 increasing in
increments of 0.5, and a number from 96 to 127 divides the clock from 33 to 64 increasing in
increments of 1. If omitted zero will be used for divide by 1.

Returns:

Function:

Configures the oscillator with preset internal and external source configurations. If the device
fuses are set and #use delay() is specified, the compiler will configure the oscillator. Use this
function for explicit configuration or programming dynamic clock switches. Please consult your
target data sheets for valid configurations, especially when using the PLL multiplier, as many
frequency range restrictions are specified.

Availability:
All Devices.

Requires:
Constants are defined in the .h file.

Examples:
setup oscillator(OSC_CRYSTAL, 4000000, 16000000);
setup oscillator(OSC_INTERNAL, 29480000);

See Also:
setup wdt(), Internal Oscillator Overview

setup pga()
Syntax:

setup_pga(module,settings)

Parameters:
module - constant specifying the Programmable Gain Amplifier (PGA) to setup.

Returns:

Function:
This function allows for setting up one of the Programmable Gain Amplifier modules.

Availability:
Devices with a Programmable Gain Amplifier module.

506

Built-in Functions
Requires:

Examples:

setup pga (PGA ENABLED | PGA POS INPUT PGAxPl | PGA GAIN 8X);

setup pid()
Syntax:

setup_pid([mode,[K1],[K2],[K3]);

Parameters:
mode - the setup of the PID module. The options for setting up the module are defined in the
device's header file as:
PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY WITH_ACCUMULATION
PID_MODE_SIGNED _ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_ WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED
PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if not specified. The K1
coefficient is used in the PID and ADD_MULTIPLY modes. When in PID mode the K1
coefficient can be calculated with the following formula:

K1=Kp+Ki*T+Kd/T
When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if not specified. The K2
coefficient is used in the PID mode only and is calculated with the following formula:
K2 = -(Kp + 2Kd/T)

K3 - optional parameter specifying the K3 coefficient, defaults to zero if not specified. The K3
coefficient is used in the PID mode, only and is calculated with the following formula:
K3 = Kd/T

T - is the sampling period in the above formulas.

Returns:

Function:
Setup the Proportional Integral Derivative (PID) module, and to set the input coefficients (K1,
K2 and K3).

507

CCS C Compiler

Availability:
Devices with built in PID module

Requires:
Constants are defined in the device's .h file.

Examples:

setup pid(PID MODE PID, 10, -3, 50);

See Also:
pid get result(), pid read(), pid write(), pid _busy()

setup pmp(option,address mask)

Syntax:
setup_pmp(options,address_mask);

Parameters:
options - The mode of the Parallel Master Port that allows to set the Master Port mode, read-
write strobe options and other functionality of the PMPort module. See the device's .h file for all
options. Some typical options include:

PAR_PSP_AUTO_INC

PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW I Interrupt on read write

PAR_INC_ADDR /I Increment address by 1 every read/write cycle
PAR_MASTER_MODE_1 /I Master Mode 1

PAR_WAITE4 /I 4 Tcy Wait for data hold after strobe

address_mask - this allows the user to setup the address enable register with a 16-bit value.
This value determines which address lines are active from the available 16 address lines
PMAO:PMA15.

Returns:

Function:

Configures various options in the PMP module. The options are present in the device's .h file
and they are used to setup the module. The PMP module is highly configurable and this
function allows users to setup configurations like the Slave module, Interrupt options, address
increment/decrement options, Address enable bits, and various strobe and delay options.

Availability:
Devices with built in Parallel Master Port module.

Requires:
Constants are defined in the device's .h file.
508

Built-in Functions

Examples:
setup psp (PAR_ENABLE | //Sets up Master mode with address
PAR MASTER MODE 1|PAR //1lines PMAOQO:PMA7

STOP_IN_ IDLE, Ox00FF) ;

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp_input full(), psp_overflow(), pmp output full(),

pmp_input full(), pmp_overflow()

setup power pwm()

Syntax:
setup_power_pwm(modes, postscale, time_base, period, compare, compare_postscale,
dead_time)

Parameters:

modes - values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_186,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_DISABLED, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale - is an integer between 1 and 16. This value sets the PWM time base output
postscale.

time_base - is an integer between 0 and 65535. This is the initial value of the PWM base
period - is an integer between 0 and 4095. The PWM time base is incremented until it reaches

this number.

509

CCS C Compiler

compare - is an integer between 0 and 255. This is the value that the PWM time base is
compared to, to determine if a special event should be triggered.

compare_postscale - is an integer between 1 and 16. This postscaler affects compare, the
special events trigger.

dead_time - is an integer between 0 and 63. This value specifies the length of an off period
that should be inserted between the going off of a pin and the going on of it is a
complementary pin.

Returns:

Function:
Initializes and configures the motor control Pulse Width Modulation (PWM) module.

Availability:
Devices with motor control or power PWM module.

Requires:

Examples:

setup power pwm(PWM CLOCK DIV 4|PWM FREE RUN|PWM DEAD CLOCK DIV 4,1,
10000,1000,0,1,0);

See Also:
set_power pwm override(), setup power pwm pins(), set power pwmX duty()

setup power pwm faults()

Syntax:
setup_power_pwm_faults(mode);

Parameters:
mode - to setup the Power PWM faults. Valid options vary by device. See the device's
header file for all options.

Returns:

Function:
Used to setup the power PWM faults for the Power Control PWM module.

Availability:
Devices with a Power Control PWM module.

510

Built-in Functions
Requires:

Examples:

setup_power pwm faults (PWM ENABLE FLTA | PWM AUTO CLEAR FLTA);

See Also:
set_power pwm_override(), setup _power pwm_pins(), set power pwmX_duty(),
setup _power pwm()

setup power pwm pins()

Syntax:
setup_power_pwm_pins(module0,modulel,module2,module3)

Parameters:
For each module (two pins) specify:
PWM_PINS_DISABLED

PWM_ODD_ON
PWM_BOTH_ON'PWM_COMPLEMENTARY
Returns:
Function:

Configures the pins of the Pulse Width Modulation (PWM) device.

Availability:
Devices with motor control or power PWM module.

Requires:

Examples:

setup power pwm pins(PWM PINS DISABLED, PWM PINS DISABLED,
PWM_PINS DISABLED,

PWM PINS DISABLED) ;
setup power pwm pins (PWM_COMPLEMENTARY,

PWM COMPLEMENTARY, PWM PINS DISABLED, PWM PINS DISABLED) ;

See Also:
setup _power pwm(), set power pwm_override(),set power pwmX_ duty()

511

CCS C Compiler

setup prgx()
Syntax:

setup_prgl(mode, current, rising_source, falling_source);
setup_prg2(mode, current, rising_source, falling_source);
setup_prg3(mode, current, rising_source, falling_source);
setup_prg4(mode, current, rising_source, falling_source);

Parameters:
mode - the mode to setup the PRGx module in. The valid options vary depending on the
device. See the device's header file for all options.

current - the current source/sink setting to set the PRGx module to and can be a value from 0
to 31. When using a value from 0O to 15, the current is calculated as: 2+(current / 2)
UA. When using a value from 16 to 31, the current is calculated as: 10+(current - 16) uA.

rising_source - used to set the rising timing source. The valid options vary depending on the
device. See the device's header file for all options.

falling_source - used to set the falling timing source. The valid options vary depending on the
device. See the device's header file for all options.

Returns:

Function:
Used to set the PRGx modules.

Availability:
Devices that have a Programmable Ramp Generator (PRG) module.

Requires:

Examples:

setup prgl (PRG_ENABLED | PRG_INPUT SOURCD FVR, 16,
PRG_RISING SOURCE CCPl, PRG RISING SOURCE CCP2);

See Also:

prgx_status()

512

Built-in Functions
setup psmc()

Syntax:
setup_psmc(unit, mode, period, period_time, rising_edge, rise_time, falling_edge,
fall_time);

Parameters:
unit - is the PSMC unit number 1-4

mode - is one of:
PSMC_SINGLE
PSMC_PUSH_PULL
PSMC_BRIDGE_PUSH_PULL
PSMC_PULSE_SKIPPING
PSMC_ECCP_BRIDGE_REVERSE
PSMC_ECCP_BRIDGE_FORWARD
PSMC_VARIABLE_FREQ
PSMC_3_PHASE

For complementary outputs use a bar (]) and or in PSMC_COMPLEMENTARY

Normally the module is not started until the psmc_pins() call is made. To enable immediately
orin PSMC_ENABLE_NOW.

period - has three parts or'ed together. The clock source, the clock divisor and the events that
can cause the period to start.

Sources:
PSMC_SOURCE_FOSC
PSMC_SOURCE_64MHZ
PSMC_SOURCE_CLK_PIN

Divisors:

PSMC_DIV_1
PSMC_DIV_2
PSMC _DIV_4
PSMC DIV_8

Events - Use any of the events listed below.

period_time - is the duration the period lasts in ticks. A tick is the above clock source divided
by the divisor.

rising_edge - is any of the following events to trigger when the signal goes active.

rise_time - is the time in ticks that the signal goes active (after the start of the period) if the
eventis SMC_EVENT_TIME, otherwise unused.

falling_edge - is any of the following events to trigger when the signal goes inactive.

513

CCS C Compiler

fall_time - is the time in ticks that the signal goes inactive (after the start of the period) if the
event is PSMC_EVENT_TIME, otherwise unused.

Events:
PSMC_EVENT_TIME
PSMC_EVENT_C10UT
PSMC_EVENT_C20UT
PSMC_EVENT_C30UT
PSMC_EVENT_C40UT
PSMC_EVENT_PIN_PIN

Returns:

Function:

Initializes a PSMC unit with the primary characteristics such as the type of PWM, the period,
duty and various advanced triggers. Normally this call does not start the PSMC. It is expected
all the setup functions be called and the psmc_pins() be called last to start the PSMC

module. These two calls are all that are required for a simple PWM. The other functions may
be used for advanced settings and to dynamically change the signal.

Availability:
Devices with built in PSMC module.

Requires:

Examples:

//Simple PWM, 10khz out on pin CO assuming a 20mhz crystal
// Duty is initially set to 25%

setup psmc(l, PSMC SINGLE,PSMC EVENT TIME | PSMC SOURCE FOSC, 100,
PSMC EVENT TIME, O,PSMC_EVENT_TIME, 25);
psmc_pins (1, PSMC A);

See Also:
psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freqg adjust(), psmc_pins()

setup psp(option,address mask)

Syntax:
setup_psp (options,address_mask);
setup_psp(options);

514

Built-in Functions

Parameters:
Option - The mode of the Parallel slave port. This allows to set the slave port mode, read-write
strobe options and other functionality of the PMP/EPMP module. See the devices .h file for all
options. Some typical options include:

PAR_PSP_AUTO_INC

PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /I Interrupt on read write
PAR_INC_ADDR /I Increment address by 1 every read/write cycle
PAR_WAITE4 /l 4 Tcy Wait for data hold after strobe

address_mask - This allows the user to setup the address enable register with a 16 bit or 32
bit (EPMP) value. This value determines which address lines are active from the available 16
address lines PMAO: PMA15 or 32 address lines PMAO:PMA31 (EPMP only)

Returns:

Function:

Configures various options in the PMP/EPMP module. The options are present in the device.h
file and they are used to setup the module. The PMP/EPMP module is highly configurable and
this function allows users to setup configurations like the Slave mode, Interrupt options,
address increment/decrement options, Address enable bits and various strobe and delay
options.

Availability:
Devices with Parallel Port module or Enhanced Parallel Master Port module.

Requires:
Constants are defined in the devices .h file.

Examples:
setup_psp (PAR_PSP AUTO INC| //Sets up legacy slave mode with
PAR STOP IN IDLE, OxOOFF); //read and write buffers auto
increment

See Also:

psp_output full(), psp_input full(), psp _overflow(),
tpco] setup _pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() , pmp_write()
,omp_output_full() , pmp_input_full() , pmp_overflow()

setup pwml() setup pwm2() setup pwm3() setup pwm4()

Syntax:

setup_pwml(settings);
setup_pwm?2(settings);
setup_pwm3(settings);

515

CCS C Compiler
setup_pwmd4(settings);

Parameters:
settings- setup of the PWM module. See the device's .h file for all options. Some typical
options include:
PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW
Returns:

Function:
Initializes the Pulse Width Modulation (PWM) device.

Availability:
Devices with PWM module.

Requires:

Examples:

setup pwml (PWM ENABLED|PWM OUTPUT) ;

setup gei()
Syntax:

setup_qgei(options, filter, maxcount);
[pco] setup_gei([unit,Joptions, filter, maxcount);

Parameters:
Options - The mode of the QEI module. See the devices .h file for all options. Some common
options are:

QEI_MODE_X2

QEI_MODE_X4

filter - This parameter is optional, the user can enable the digital filters and specify the clock
divisor.

maxcount - Specifies the value at which to reset the position counter.

rco] Options- The mode of the QEI module. See the devices .h file for all options. Some
common options are:

QEI_MODE_X2

QEI_TIMER_GATED

QEI_TIMER_DIV_BY_1

516

Built-in Functions
trepy filter - This parameter is optional and the user can specify the digital filter clock divisor.

pco] maxcount - This will specify the value at which to reset the position counter.

[pco] unit - Optional unit number, defaults to 1.
Returns:

Function:
Configures the Quadrature Encoder Interface. Various settings like mode and filters can be
setup.

Availability:
Devices with QEI module.

Requires:

Examples:

setup gei (QEI MODE X2 |QEI RESET WHEN MAXCOUNT,
EI FILTER ENABLE QEA|QEI FILTER DIV 2,0x1000);

(pcp] setup gei (QEI MODE X2 |QEI TIMER INTERNAL,QEI FILTER DIV 2,QEI F
ORWARD) ;

See Also:
gei_set count(), gei_get count() , gei_status()

setup rtc

Syntax:
setup_rtc(options, calibration);
[pco] setup_rtc(options, period, stability_time, sample_time); //RTCC with Timestamp

Parameters:
Options- The mode of the RTCC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value that will get
written to the calibration configuration register.

reo] Period - RTCC with Timestamp, sets the period of the clock divider counter. Value
should be set to achieve a period of 0.5 seconds.

peo] Stability _time - RTCC with Timestamp, sets the Power Control Stability Time (2-
255). This parameter is optional.

517

CCS C Compiler

rco] Sample_time - RTCC with Timestamp, sets the Power Control Sample Time Window (2-
255). This parameter is optional.
Returns:

Function:
Configures the Real Time Clock and Calendar module. The module requires an external
32.768 kHz clock crystal for operation.

Availability:
Devices with RTCC module.

Requires:

Examples:

setup rtc(RTC _ENABLE | RTC OUTPUT SECONDS, 0x00) ;
// Enable RTCC module with seconds clock and no
calibration

rpcp] setup rtc (RTC _ENABLE |RTC CLOCK SOSC, 16383);
// Enable RTCC with Timestamp module from an external
32.768Khz crystal

See Also:
ric_read(), ric_alarm_read(), rtc_alarm_write(), setup _rtc_alarm(), rtc_write(,

setup_rtc()

setup rtc_alarm()

Syntax:
setup_rtc_alarm(options, mask, repeat);

Parameters:
options - The mode of the RTCC module. See the devices .h file for all options

mask - specifies the alarm mask bits for the alarm configuration.
repeat - Specifies the number of times the alarm will repeat. It can have a max value of 255.

Returns:

Function:
Configures the alarm of the RTCC module.

518

Built-in Functions

Availability:
Devices with RTCC module.

Requires:

Examples:

setup_rtc alarm(RTC_ALARM ENABLE, RTC_ALARM HOUR, 3);

See Also:
ric_read(), rtc_alarm_read(), rtc_alarm_write(), setup rtc_alarm(), rtc_write(),

setup_rtc()

setup sd adc()

Syntax:
setup_sd_adc(settingsl, settings 2, settings3);

Parameters:

settings1 - settings for the SD1CONL1 register of the SD ADC module. See the device's .h file
for all options. Some options include:

SDADC_ENABLED

SDADC_NO_HALT

SDADC_GAIN_1

SDADC_NO_DITHER

SDADC_SVDD_SVSS

SDADC_BW_NORMAL

N

o0k W

settings2 - settings for the SD1CONZ2 register of the SD ADC module. See the device's .h file
for all options. Some options include:

7 SDADC_CHOPPING_ENABLED

8 SDADC_INT_EVERY_SAMPLE

9 SDADC_RES_UPDATED_EVERY_INT

10 SDADC_NO_ROUNDING

settings3 - settings for the SD1CONS register of the SD ADC module. See the device's .h file
for all options. Some options include:

11 SDADC_CLOCK_DIV_1

12 SDADC_OSR_1024

13 SDADC_CLK_SYSTEM

Returns:

Function:
Setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.
519

CCS C Compiler

Availability:
Devices with SD ADC module.

Requires:

Examples:

setup_sd_adc (SDADC_ENABLED | SDADC DITHER LOW, SDADC CHOPPING ENABLED
|
SDADC_INT EVERY S5TH SAMPLE |SDADC RES UPDATED EVERY INT,
SDADC CLK_SYSTEM |SDADC CLOCK DIV 4);

See Also:
set sd adc_channel(), read sd adc(), set sd adc_calibration()

[PcD]_setup sent()

Syntax:
setup_sent(module, settings, tick_time);
setup_sent(module, settings, tick_time, [frame_time]);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

settings - the mode to setup the SENT peripheral in. Constants for setting up the peripheral
are defined in the device's header file. See the device's header file for all the possible options.

tick_time - the tick time to set the SENT peripheral to, value is a time in us from 3 to 90.

fame_time - optional parameter unless peripheral is set-up for transmitter mode and
sent_uses_pause_pulse is used in settings parameter. It is used to set the frame time in us
of the message.

Returns:

Function:
Used to setup the Single-Edge Nibble Transmission (SENT) peripheral.

Availability:
Devices with a SENT peripheral.

Requires:

Built-in Functions
Examples:

//Setup SENT1 peripheral for asynchronous transmitter
//mode with HW CRC generation enabled, pause pulse
//enabled, and to send 6 data nibbles with a tick time
//90us and a frame time of 50ms.

setup sent (1, SENT MODE TRANSMITTER ASYNCHRONOUS |

SENT ENABLE HW CRC |

SENT USES PAUSE _PULSE | SENT DATA NIBBLES 6, 90, 50000);

Example Files:
ex_sent_transmitter.c, ex_sent _receiver.c

See Also:
sent_getd(), sent_putd(), sent_status()

setup smtx()

Syntax:
setup_smtl(mode,[period]);
setup_smt2(mode,[period]);

Parameters:
mode - The setup of the SMT module. See the device's .h file for all options. Some typical
options include:

SMT_ENABLED

SMT_MODE_TIMER

SMT_MODE_GATED_TIMER

SMT_MODE_PERIOD_DUTY_CYCLE_ACQ

period - Optional parameter for specifying the overflow value of the SMT timer, defaults to
maximum value if not specified.

Returns:

Function:
Configures the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

Requires:

Examples:

521

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

CCS C Compiler

setup smtl (SMT_ENABLED | SMT MODE PERIOD DUTY CYCLE ACQ|
SMT REPEAT DATA ACQ MODE | SMT CLK FOSC) ;

See Also:
smitx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_reset timer(),
smitx _read(), smtx_ write()

setup spi()
setup spi2()

setup_spi3()
setup_spi4()

Syntax:
setup_spi(mode)
setup_spi2(mode)
setup_spi3(mode)
setup_spi4(mode)

Parameters:

mode may be:
SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED
SPI_L_TO H,SPI.H TO L
SPI_CLK_DIV_4, SPI_CLK_DIV_186,
SPI_CLK_DIV_64, SPI_CLK_T2
SPI_SAMPLE_AT _END, SPI_XMIT_L TO H
rco] SPI_MODE_16B, SPI_XMIT_L_TO H

Constants from each group may be or'ed together with |

Returns:

Function:

Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire serial devices that follow a

common clock/data protocol.

treo] Configures the hardware SPI™ module.
SPI_MASTER will configure the module as the bus master
SPI_SLAVE will configure the module as a slave on the SPI™ bus
SPI_SS_DISABLED will turn off the slave select pin so the slave module receives any
transmission on the bus.
SPI_x_to_y will specify the clock edge on which to sample and transmit data
SPI_CLK_DIV_x will specify the divisor used to create the SCK clock from system
clock.

Availability:
Devices with SPI hardware module.

522

Built-in Functions

Requires:
Constants are defined in the device's .h file

Examples:

setup spi(spi master |spi 1 to h | spi clk div 16);
setup spi (SPI_MASTER | SPI_L TO H | SPI DIV BY 16);

Example Files:
ex_spi.c

See Also:
spi_write(), spi_read(), spi_data is_in(), spi_set txcnt(), SPI Overview

setup _timerx()

Syntax:
setup_timerX(mode)
setup_timerX(mode,period)

Parameters:
mode - is a bit-field comprised of the following configuration constants:
TMR_DISABLED: Disables the timer operation.

TMR_INTERNAL: Enables the timer operation using the system clock. Without
divisions, the timer will increment on every instruction cycle. On PCD, this is half the
oscillator frequency.

TMR_EXTERNAL: Uses a clock source that is connected to the SOSCI/SOSCO pins

TMR_EXTERNAL_SYNC: Uses a clock source that is connected to the SOSCI/SOSCO

pins. The timer will increment on the rising edge of the external clock which is
synchronized to the internal clock phases. This mode is available only for Timerl.

TMR_EXTERNAL_RTC: Uses a low power clock source connected to the
SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode is used, the low

power oscillator will be enabled by the setup_timer function. This mode is available only

for Timerl.

TMR_DIV_BY_X: X is the number of input clock cycles to pass before the timer is
incremented. X may be 1, 8, 64 or 256.

TMR_32_BIT: This configuration concatenates the timers into 32 bit mode. This
constant should be used with timers 2, 4, 6 and 8 only.

Period is an optional 16 bit integer parameter that specifies the timer period. The default

value is OxFFFF.
523

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Returns:

Function:
Sets up the timer specified by X (May be 1 — 9). X must be a valid timer on the target device.

Availability:
This function is available on all devices that have a valid timer X. Use getenv or refer to the
target datasheet to determine which timers are valid.

Requires:
Constants are defined in the device's .h file

Examples:

/* setup a timer that increments every 64th instruction cycle with
an overflow period of 0xA010 */

setup timer2 (TMR INTERNAL | TMR DIV BY 64, 0xA010);
/* Setup another timer as a 32-bit hybrid with a period of

OxFFFFFFFF and a interrupt that will be fired when that timer
overflows*/

setup timerd4 (TMR 32 BIT); //use get timer45() to get
the timer value
enable interrupts(int timer5); //use the odd number timer for

the interrupt

See Also:
Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

setup timerA()

Syntax:
setup_timer_A (mode);

Parameters:

mode values may be:
TA_OFF, TA_INTERNAL, TA EXT H TO L, TA EXT L TO H
TA DIV_1, TA DIV_2, TA DIV_4, TA DIV_8, TA DIV_16, TA DIV_32,
TA_DIV_64, TA_DIV_128, TA_DIV_256

Constants from different groups may be or'ed together with |.

524

Built-in Functions
Returns:

Function:
Sets up Timer A.

Availability:
This function is only available on devices with Timer A hardware.

Requires:
Constants are defined in the device's .h file

Examples:
setup timer A(TA OFF);

setup timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

See Also:
get_timerA(), set_timerA(), TimerA Overview

setup timerB()

Syntax:
setup_timer_B (mode);

Parameters:

mode values may be:
TB_OFF, TB_INTERNAL, TB_EXT H_TO L, TB_EXT_L_TO_H
TB_DIV_1,TB DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16, TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256

Constants from different groups may be or'ed together with |.

Returns:

Function:
Sets up Timer B.

Availability:
This function is only available on devices with Timer B hardware.

Requires:
Constants are defined in the device's .h file

525

CCS C Compiler
Examples:
setup timer B(TB OFF);

setup_timer B(TB_ INTERNAL | TB DIV 256);
setup timer B(TA EXT L TO H | TB DIV 1);

See Also:
get_timerB(), set_timerB(), TimerB Overview

setup timer0()

Syntax:
setup_timer_0 (mode);

Parameters:
mode - constants defined in the device's .h file. Some typical defines are:
TO_INTERNAL
TO_EXT_L_TO_H
TO_EXT _H_TO |
TO DIV _2, TO DIV 4
(See device's .h file for all possible defines.)

One constant may be used from each group or'ed together with the | operator.

Returns:

Function:
Sets up the timer 0 (aka RTCC).

Availability:
All Devices. (WARNING: On older PIC16 devices, set-up of the prescaler may undo the WDT
prescaler)

Requires:
Constants are defined in the device's .h file

Examples:

setup timer 0 (TO INTERNAL|TO DIV2);

See Also:
get _timer0(), set_timer0(), setup counters()

526

Built-in Functions

setup timer1()

Syntax:
setup_timer_1 (mode);

Parameters:

mode
T1_DISABLED, T1_INTERNAL, T1_EXTERNAL, T1_EXTERNAL_SYNC
T1_CLK_OUT
T1 DIV_BY_1,T1 DIV_BY_ 2, T1 DIV_BY_4,T1 _DIV_BY_8

One constant may be used from each group or'ed together with the | operator.

Returns:

Function:
Initializes timer 1. The timer value may be read and written to using SET_TIMER1() and
GET_TIMER1()Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer will increment
every 1.6us. It will overflow every 104.8576ms.

Availability:
Available only on devices with timer 1 hardware.

Requires:
Constants are defined in the device's .h file

Examples:
setup timer 1 (Tl DISABLED);

setup timer 1 (T1 INTERNAL | Tl DIV BY 4);
setup_timer 1 (T1 INTERNAL | Tl DIV BY 8);

See Also:
get timerl(), set timerl(), Timerl Overview

setup timer2()

Syntax:
setup_timer_2 (mode, period, postscale);

Parameters:
mode

527

CCS C Compiler

T2_DISABLED
T2_DIV_BY_1, T2_DIV_BY_4, T2_DIV_BY_16

period - is a int 0-255 that determines when the clock value is reset

postscale - is a number 1-16 that determines how many timer overflows before an interrupt: (1
means once, 2 means twice, an so on).

Returns:

Function:

Initializes timer 2. The mode specifies the clock divisor (from the oscillator clock). The timer
value may be read and written to using GET_TIMER2() and SET_TIMERZ2(). 2 is a 8-bit
counter/timer.

Availability:
Available only on devices with timer 2 hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup_timer 2 (T2 DIV BY 4, 0xcO, 2) //at 20mhz, the timer will
increment

//every 800ns will overflow
every 154.4us,

//and will interrupt every
308.us

See Also:
get timer2(), set_timer2() , Timer2 Overview

setup timer3()

Syntax:
setup_timer_3 (mode);

Parameters:

mode - may be one of the following constants from each group or'ed (via |) together:
T3_DISABLED, T3_INTERNAL, T3_EXTERNAL, T3_EXTERNAL_SYNC
T3_DIV_BY_1,T3_DIV_BY_2, T3_DIV_BY_4, T3 DIV_BY_8

Returns:

Built-in Functions

Function:

Initializes timer 3 or 4.The mode specifies the clock divisor (from the oscillator clock). The
timer value may be read and written to using GET_TIMER3() and SET_TIMER3(). Timer 3is a
16 bit counter/timer.

Availability:
Available only on devices with timer 3 hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup_timer_3 (T3_INTERNAL | T3_DIV_BY_2);

See Also:
get _timer3(), set_timer3()

setup timer4()

Syntax:
setup_timer_4 (mode);

Parameters:
mode - may be one of:
T4 DISABLED, T4 DIV_BY 1, T4 DIV_BY 4, T4 DIV_BY_16

period - is a int 0-255 that determines when the clock value is reset

postscale - is a number 1-16 that determines how many timer overflows before an interrupt: (1
means once, 2 means twice, and so on).

Returns:

Function:

Initializes timer 4. The mode specifies the clock divisor (from the oscillator clock). The timer
value may be read and written to using GET_TIMER4() and SET_TIMER4(). Timer 4 is a 8 bit
counter/timer.

Availability:
Available only on devices with timer 4 hardware.

Requires:
Constants are defined in the device's .h file

529

CCS C Compiler
Examples:

setup timer 4 (T4 DIV BY 4, 0xcO, 2); // At 20mhz, the timer will
increment

// every 800ns,will overflow
every 153.6us,

// and will interrupt every
307.2us

See Also:
get _timer4(), set_timer4()

setup timer5()

Syntax:
setup_timer_5 (mode);

Parameters:

mode - may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or T5_EXTERNAL_SYNC
T5_DIV_BY_1, T5_DIV_BY_2, T5_DIV_BY_4, T5 _DIV_BY_8
T5_ONE_SHOT, T5_DISABLE_SE_RESET, or T5_ENABLE_DURING_SLEEP

Returns:

Function:

Initializes timer 5. The mode specifies the clock divisor (from the oscillator clock). The timer
value may be read and written to using GET_TIMER5() and SET_TIMERS5(). Timer 5 is a 16 bit
counter/timer.

Availability:
Available only on devices with timer 5 hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup_timer 5 (T5 INTERNAL | T5 DIV BY 2);

See Also:
get timer5(), set _timer5(), Timer5 Overview

530

Built-in Functions

setup uart()

Syntax:

setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters:
baud - is a constant representing the number of bits per second. A one or zero may also be
passed to control the on/off status.

Stream - is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to match.
UART_AUTODETECT_NOWAIT Same as above function, except returns before 0x55
is received. KBHIT() will be true when the match is made. A call to GETC() will clear
the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from high to
low

clock - If specified this is the clock rate this function should assume. The default comes from
the #USE DELAY.

Returns:

Function:

Similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is turned on, and if 0
is passed, UART is turned off. If a BAUD rate is passed to it, the UART is also turned on, if not
already on.

Availability:
Available only on devices with built in UART.

Requires:
#USE RS232

Examples:

setup uart (9600) ;
setup uart (9600, rsOut);

531

CCS C Compiler

See Also:
#USE RS232, putc(), getc(), RS232 1/0 Overview

setup vref()

setup_vref2()

Syntax:
setup_vref (mode | value)

Parameters:

mode - may be one of the following constants:
FALSE (off)
VREF_LOW for VDD*VALUE/24
VREF_HIGH for VDD*VALUE/32 + VDD/4
any may be or'ed with VREF_A2.

value - is anint 0-15.

rco] mode - is a bit-field comprised of the following constants:
VREF_DISABLED
VREF_LOW (Vdd * value / 24)
VREF_HIGH (Vdd * value / 32 + VVdd/4)
VREF_ANALOG

Returns:

Function:

Establishes the voltage of the internal reference that may be used for analog compares and/or
for output on pin A2.

reo] Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the comparator
module may use. You may use the Vdd and Vss voltages as your reference or you may
specify VREF_ANALOG to use supplied Vdd and Vss. Voltages may also be tuned to specific
values in steps, 0 through 15. That value must be or’ed to the configuration constants.

Availability:
This function is only available on devices with VREF hardware.
rco] Some devices, consult the device datasheet.

Requires:
ipcp] Constants are defined in the devices .h file

Examples:

setup vref (VREF HIGH | 6);
// At VDD=5, the voltage is 2.19V

532

[pcpj /* Use the 15th step on the course setting */

setup vref (VREF LOW | 14);

Example Files:
ex_comp.c

See Also:
Voltage Reference Overview

setup wdt()

Syntax:
setup_wdt (mode)

Parameters:

Constants:
WDT_18MS
WDT_36MS
WDT_72MS
WDT_144MS
WDT_288MS
WDT_576MS
WDT_1152MS
WDT_2304MS

For some parts:
WDT_ON
WDT_OFF

rco] Mode is a bit-field comprised of the following constants:

WDT_ON
WDT_OFF

Specific Time Options vary between chips, some examples are:

WDT_2ms
WDT_64MS
WDT_1S
WDT_16S

Returns:

Function:

Setup-wdt is used to set the timer that is allowed between calls to restart-wdt () before the chip

Built-in Functions

is reset. Some parts also allow the wdt to be enabled/disabled and to run time by this

function. Some parts do not allow the time to be changed at run time. The watchdog timer is

533

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

used to cause a hardware reset if the software appears to be stuck. The timer must be
enabled, the timeout time set and software must periodically restart the timer.

Note: For PCH parts and PCM parts with software controlled WDT, setup_wdt() would
enable/disable watchdog timer only if NOWDT fuse is set. If WDT fuse is set, watchdog timer
is always enabled.

Note: WDT_OFF should not be used with any other options.
Warning: Some chips share the same prescaller between the WDT and Timer0. In these
cases a call to setup_wdt may disable the TimerO prescaller.

rep] Configures the watchdog timer. The watchdog timer is used to monitor the software. If
the software does not reset the watchdog timer before it overflows, the device is reset,
preventing the device from hanging until a manual reset is initiated. The watchdog timer is
derived from the slow internal timer.

Availability:
All Devices (WARNING: On older PIC16 devices, set-up of the prescaler may undo the timer0
prescaler)

Requires:
Constants are defined in the devices .h file

Examples:

#fuses WDT1l, WDT // PIC18 example, See restart wdt for a
PIC18 example
main () {
setup wdt (WDT_18MS) ;
while (TRUE) {
restart wdt();
perform activity();

}

rpcp] setup wdt (WDT_ON) ;

Example Files:
[pco] €x_wdt.c

See Also:

#EUSES , restart wdt() , WDT or Watch Dog Timer Overview , Internal Oscillator
Overview

534

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup zcd()

Syntax:
setup_zdc(mode);

Parameters:
mode- the setup of the ZDC module. The options for setting up the module include:
ZCD_ENABLED
ZCD_DISABLED
ZCD_INVERTED
ZCD_INT_L_TO_H
ZCD_INT_H_TO_L

Returns:

Function:
Set-up the Zero_Cross Detection (ZCD) module.

Availability:
Devices with a ZCD module.

Requires:

Examples:

setup zcd (ZCD _ENABLE|ZCD INT H TO L);

See Also:

zcd_status()

shift left()

Syntax:
shift_left (address, bytes, value)

Parameters:
address - is a pointer to memory.

bytes - is a count of the number of bytes to work with
value - is a 0 to 1 to be shifted in.

Returns:
0 or 1 for the bit shifted out

535

CCS C Compiler

Function:
Shifts a bit into an array or structure. The address may be an array identifier or an address to a
structure (such as &data). Bit O of the lowest byte in RAM is treated as the LSB.

Availability:
All Devices.

Requires:

Examples:

byte buffer[3];
for (i=0; i<=24; ++i){ // Wait for clock high

while (!input(PIN A2));

shift left (buffer,3,input (PIN _A3)); // Wait for clock low

while (input (PIN A2));
} // reads 24 bits from pin
A3,each bit

//is read on a low to high on

pin A2

Example Files:
ex_extee.c, 9356.c

See Also:
shift_right(), rotate right(), rotate left()

shift_right()
Syntax:

shift_right (address, bytes, value)

Parameters:
address - is a pointer to memory.

bytes - is a count of the number of bytes to work with
value - is a 0 to 1 to be shifted in.

Returns:
0 or 1 for the bit shifted out

Function:
Shifts a bit into an array or structure. The address may be an array identifier or an address to a
structure (such as &data). Bit O of the lowest byte in RAM is treated as the LSB.

536

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Availability:
All Devices.

Requires:

Examples:

//reads 16 bits from pin
Al, each bit is read
// on a low to high on pin A2

struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=16; ++i) {

while (!input (PIN A2));

shift right (&msg, 3, input (PIN _Al));

while (input (PIN A2)) ;} // This shifts 8 bits out
PIN_AO, LSB first.
for (1=0;1<8;++1)

output bit (PIN AO0,shift right(&data,1,0));

Example Files:
ex_extee.c, 9356.c

See Also:
shift_left(), rotate_right(), rotate left()

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()

Syntax:

val = sin (rad)

val = cos (rad)

val = tan (rad)

rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters:
rad is a float representing an angle in Radians -2pi to 2pi.

537

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

reo] rad is any float type representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.

rpco] is any float type with the range -1.0 to 1.0.

Value is a float

tpep] Value is any float type

Returns:
rad - is a float representing an angle in Radians -pi/2 to pi/2

val - is a float with the range -1.0 to 1.0.
radl - is a float representing an angle in Radians 0 to pi
rad2 - is a float representing an angle in Radians -pi to pi

Result is a float
trcp] rad is a float with a precision equal to val representing an angle in Radians -pi/2 to pi/2

rrcp] val is a float with a precision equal to rad within the range -1.0 to 1.0.
rrep] radl is a float with a precision equal to val representing an angle in Radians 0 to pi
rpeo] rad2 is a float with a precision equal to val representing an angle in Radians -pi to pi

rco] Result is a float with a precision equal to value

Function:

These functions perform basic Trigonometric functions.
sin - returns the sine value of the parameter (measured in radians)
cos - returns the cosine value of the parameter (measured in radians)
tan - returns the tangent value of the parameter (measured in radians)
asin - returns the arc sine value in the range [-pi/2,+pi/2] radians
acos - returns the arc cosine value in the range [0,pi] radians
atan - returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan?2 - returns the arc tangent value of y/x in the range [-pi,+pi] radians
sinh - returns the hyperbolic sine of x
cosh - returns the hyperbolic cosine of x
tanh - returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

538

Built-in Functions

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability:
All devices

Requires:
#INCLUDE <math.h>

Examples:
float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);;

Examples Files:
ex_tank.c

See Also:
lod(), log10(), exp(), pow(), sqrt()

slee

Syntax:
sleep(mode)

Parameters:
mode - for most chips this is not used. Check the device header for special options on some
chips.

rco] mode configures what sleep mode to enter, mode is optional. If mode is SLEEP_IDLE,
the PIC will stop executing code but the peripherals will still be operational. If mode is
SLEEP_FULL, the PIC will stop executing code and the peripherals will stop being clocked,
peripherals that do not need a clock or are using an external clock will still be

operational. SLEEP_FULL will reduce power consumption the most. If no parameter is
specified, SLEEP_FULL will be used.

Returns:

Function:
Issues a SLEEP instruction. Details are device dependent. However, in general the part will
enter low power mode and halt program execution until woken by specific external

539

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

events. Depending on the cause of the wake up execution may continue after the sleep
instruction. The compiler inserts a sleep() after the last statement in main().

Availability:
All Devices.

Requires:

Examples:

SLEEP () ;
[pcpj
disable interrupts (INT_ GLOBAL) ;
enable interrupt (INT EXT);
clear interrupt();
sleep (SLEEP_FULL) ; //sleep until an INT EXT interrupt
//after INT EXT wake-up,
//will resume operation from this
point

Example Files:
ex_wakup.c

See Also:

reset cpu()

sleep ulpwu()

Syntax:
sleep_ulpwu(time)

Parameters:
time - specifies how long, in us, to charge the capacitor on the ultra-low power wakeup pin (by
outputting a high on PIN_AO).

[pco] time - specifies how long, in us, to charge the capacitor on the ultra-low power wakeup
pin (by outputting a high on PIN_BO).

Returns:

Function:

Charges the ultra-low power wake-up capacitor on PIN_AO for time microseconds, and then
puts the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change' after the charge
on the cap is lost.

540

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

rco] Charges the ultra-low power wake-up capacitor on PIN_BO for time microseconds, and
then puts the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change' after the
charge on the cap is lost.

Availability:
Devices with Ultra Low Power Wake-Up.

Requires:

Examples:

while (TRUE)
{
if (input (PIN_Al)) //PCD devices use (PIN _BO)
//do something
else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep
}

See Also:
#USE DELAY

smtx_read()

Syntax:
value_smtl_read(which);
value_smt2_read(which);

Parameters:
which - Specifies which SMT registers to read. The following defines have been made in the
device's header file to select which registers are read:

SMT_CAPTURED_PERIOD_REG

SMT_CAPTURED_PULSE_WIDTH_REG

SMT_TMR_REG

SMT_PERIOD_REG

Returns:
32-bit value

Function:
Read the Capture Period Registers, Capture Pulse Width Registers, Timer Registers or Period
Registers of the Signal Measurement Timer module.

Availability:
Devices with SMT module.

541

CCS C Compiler

Requires:

Examples:

unsigned int32 Period;
Period = smtl read(SMT CAPTURED PERIOD REG);

See Also:
smitx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_reset timer(),
setup_SMTx(), smtx_write()

smtx reset timer()

Syntax:
smtl_reset_timer();
smt2_reset_timer();

Parameters:

Function:
Manually reset the Timer Register of the Signal Measurement Timer module.

Availability:
Devices with SMT module.

Requires:

Examples:
smtl reset timer();

See Also:
setup_smix(), stmx_start(), smtx_stop(), smtx_update(), smitx_status(), smtx read(),

smtx_write()

542

Built-in Functions

smtx start()

Syntax:
smtl_start();
smt2_start();

Parameters:

Function:
Allow the Signal Measurement Timer (SMT) module start acquiring data.

Availability:
Devices with SMT module.

Requires:

Examples:
smtl start();

See Also:
smtx_status(), setup_smitx(), smtx_stop(), smtx_update(), smtx_reset timer(),
smtx_read(), smtx_write()

smtx status()

Syntax:
value = smtl_status();
value = smt2_status();

Parameters:

Returns:
The status of the SMT module.

Function:
Return the status of the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

543

CCS C Compiler

Requires:

Examples:
status = smtl status();

See Also:
setup_smtx(), stmx_start(), smtx_stop(), smtx update(), smtx_reset_timer(),smtx_r
ead(), smtx_write()

smtx_stop()

Syntax:
smtl_stop();
smt2_stop();

Parameters:

Function:
Configures the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

Requires:

Examples:
smtl stop();

See Also:
smitx_status(), stmx_start(), setup_smtx(), smtx _update(), smix _reset timer(),
smtx_read(), smtx_write()

544

Built-in Functions

smtx_write()

Syntax:
smtl_write(which,value);
smt2_write(which,value);

Parameters:
which - Specifies which SMT registers to write. The following defines have been made in the
device's header file to select which registers are written:

SMT_TMR_REG

SMT_PERIOD_REG

value - The 24-bit value to set the specified registers.

Returns:

Function:
Write the Timer Registers or Period Registers of the Signal Measurement Timer (SMT)
module.

Availability:
Devices with SMT module.

Requires:

Examples:
smtl write (SMT_ PERIOD REG, 0x100000000);

See Also:
smitx_status(), stmx_start(), setup_smtx(), smtx _update(), smix_reset timer(),
smtx_read(), setup_smtx()

smtx update()

Syntax:
smtl_update(which);
smt2_update(which);

Parameters:
which - Specifies which capture registers to manually update. The following defines have
been made in the device's header file to select which registers are updated:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

545

CCS C Compiler

Returns:

Function:
Manually update the Capture Period Registers or the Capture Pulse Width Registers of the
Signal Measurement Timer module.

Availability:
Devices with SMT module.

Requires:

Examples:
smtl update (SMT CAPTURED PERIOD REG);

See Also:
setup _smitx(), stmx_start(), smtx_stop(), smtx_status(), smtx_reset timer(),
smtx_read(), smtx_write()

spi data is in()
spi data is in2()

spi_data_is_in3()
spi_data_is_in4()

Syntax:

result = spi_data_is_in()
result = spi_data_is_in2()
result = spi_data_is_in3()
result = spi_data_is_in4()

Parameters:

Returns:
0 (FALSE) or 1 (TRUE)

Function:
Returns TRUE if data has been received over the SPI.

Availability:
Devices with SPI hardware.

Requires:

Built-in Functions

Examples:

spi data is in() && input (PIN B2));
if(spi _data is in())
data = spi read();

See Also:
spi_read(), spi_write(), spi_set_txcnt(), SPI Overview

spi_init()

Syntax:
spi_init(baud);
Spi_init(stream,baud);

Parameters:
stream —is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

band - the band rate to initialize the SPI module to. If FALSE it will disable the SPI module, if
TRUE it will enable the SPI module to the baud rate specified in #use SPI.
Returns:

Function:
Initializes the SPI module to the settings specified in #USE SPI.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:
while #use spi (MATER, SPI1, baud-1000000, mode=0, stream=SPI1 MODEO)

spi_spi init (SPI1_MODEO, TRUE) ; //initialize and
enable

//SPI1 to setting
in #USE SPI1
spi_spi_init (FALSE); //disable SPI1
spi spi init (250000); //initialize and
enable SPI1

//to a baud rate
of 250K

547

CCS C Compiler

See Also:
#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi prewrite()

Syntax:
spi_prewrite(data);
spi_prewrite(stream, data);

Parameters:
stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

data - the variable or constant to transfer via SPI
Returns:

Function:

Writes data into the SPI buffer without waiting for transfer to be completed. Can be used in
conjunction with spi_xfer() with no parameters to transfer more then 8 bits for PCM and PCH
device, or more then 8 bits or 16 bits (XFER16 option) for PCD. Function is useful when using
the SSP or SSP2 interrupt service routines for PCM and PCH device, or the SPIx interrupt
service routines for PCD device.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:

spi_prewrite (data out);

Example Files:
ex_spi.c

See Also:
#USE SPI, spi_xfer(), spi_xfer _in(), spi_init(), spi speed()

548

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
spi read() spi read2()

spi_read3()
spi_read4()

[pco] Spi_read_16()

[pco] Spi_read2_16()
[pco] Spi_read3_16()
[pco] Spi_read4_16()
tpco] spi_read_32()

[pco] Spi_read2_32()
pco] spi_read3_32()
pco] Spi_read4_32()

Syntax:

value = spi_read([data])

value = spi_read2([data])

value = spi_read3([data])

value = spi_read4([data])

pco] value = spi_read_16([data])
pco] value = spi_read2_16([data))
rpco] value = spi_read3_16([data])
[rco] value = spi_read4_16([data])
[pco] value = spi_read_32([data])
pco] value = spi_read2_32([data))
tpco] value = spi_read3_32([data))
pco] value = spi_read4_32([data))

Parameters:

data — optional parameter and if included is an 8 bit int.

[pco] data — optional parameter and if included is an 16 bit or 32 bit int.
Returns:

An 8-bit int

tpco] A 16-bit or 32-bit int.

Function:

Return a value read by the SPI. If a value is passed to the spi_read() the data will be clocked
out and the data received will be returned. If no data is ready, spi_read() will wait for the data
is a SLAVE or return the last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data) followed by a spi_read() or do a
spi_read(data). These both do the same thing and will generate a clock. If there is no data to
send just do a spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the clock and data or
use_spi_data_is_in() to determine if data is ready.

549

CCS C Compiler

Availability:
Devices with SPI hardware.

Requires:

Examples:

data in = spi read(out data);

Example Files:
ex_spi.c

See Also:
spi_write(), spi_data is_in(), spi_set txcnt(), SPI Overview

spi_set txcnt()

Syntax:
spi_set_txcnt (count)

Parameters:
count - intl6 value indicating number of SPI transfers that SS1 pin will be driver to active level
for.

Returns:
Undefined

Function:

Used to control the number of SPI transfers that the SS1 pin is driven to the active level for
when SPI peripheral is setup as SPI Master. Once the value is written, the SS1 pin will be
driver to the active state. Also requires that the #pin_select be used to assign a pin as the
SS1 output pin.

Availability:
Only on PIC18 devices with a dedicated SPI peripheral.

Requires:

Examples:
#pin select SCK1OUT=PIN CO
#pin select SDO1=PIN Cl1
#pin select SDI1=PIN C2
#pin select SS10UT=PIN C4

550

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup spi (SPI_MASTER|SPI_SCK_IDLE LOW|SPI_XMIT L TO H|
SPI_CLK_FOSC,500000) ;

spi_set txcnt(3);

spi write (WRITE COMMAND) ;
spi_write (Address) ;
spi_write(Data);

See Also:
setup_spi(), spi_write(), spi_read(), spi_data is_in(), SPI Overivew

sSpi speed

Syntax:

spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);

Parameters:
stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

band - the band rate to set the SPI module to.

clock - the current clock rate to calculate the band rate with. If not specified it uses the value
specified in #use delay().
Returns:

Function:
Sets the SPI module's baud rate to the specified value.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:
spi_ speed(250000) ;

spi_ speed(SPI1 MODEO, 250000);
spi speed(SPI1 _MODEO, 125000, 8000000);

551

CCS C Compiler

See Also:
#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

[pcbD] _Spi transfer write()

Syntax:
spi_transfer_write([stream], data, count);

Parameters:
stream — an optional parameter specifying the SPI stream to transfer the data with. Defaults
to last used SPI stream in if not specified.

data - the pointer to an array of bytes to transfer via SPl. The pin used to transfer data is
defined in the DO=option in #use SPI.

clock - the number of bytes to transfer via SPI.
Returns:

Function:
Used to transfer multiple bytes to an SPI device.

Availability:
All devices

Requires:
#USE SPI

Examples:

spi_transfer write(Data, 128);

See Also:
#USE SPI, spi_xfer(),

spi write() spi write2()
spi_write3()
spi_write4()

[pco] spi_write_16()
[pco] Spi_write2_16()
[pco] Spi_write3_16()
[pco] Spi_writed_16()
[pco] Spi_write_32()
[pco] spi_write2_32()

552

tpco] spi_write3_32()
tpco] spi_write4_32()

Syntax:

spi_write([wait],value);
spi_write2([wait],value);
spi_write3([wait],value);
spi_write4([wait],value);

[pco] spi_write_16([wait],value);
[pco] Spi_write2_16([wait],value);
[pco] Spi_write3_16([wait],value);
[pco] Spi_write4_16([wait],value);
[pco] spi_write_32([wait],value);
[pco] Spi_write2_32([wait],value);
[pco] spi_write3_32([wait],value);
[pco] spi_writed4_32([wait],value);

Parameters:
value - is an 8 bit int

pco] value - is an 16 bit or 32 bit int

Built-in Functions

wait- an optional parameter specifying whether the function will wait for the SPI transfer to

complete before exiting. Default is TRUE if not specified.

Returns:

Function:

Sends data out the SPI interface. This will cause clocks to be generated. This function will
write the value out to the SPI. At the same time data is clocked out data is clocked in and
stored in a receive buffer. The spi_read() may be used to read the buffer.

Availability:
Devices with SPI hardware.

Requires:

Examples:

spi write(data out);
data in = spi read();

Example Files:
ex_spi.c

See Also:

spi_read(), spi_data is_in(), SPI Overview, spi_set _txcnt()

553

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

spi_xfer()

Syntax:

spi_xfer(data)

spi_xfer(stream, data)
spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters:

data - is the variable or constant to transfer via SPI. The pin used to transfer data is defined in
the DO=pin option in #USE SPI.

stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

bits - is how many bits of data will be transferred.

Returns:

The data read in from the SPI. The pin used to transfer result is defined in the DI=pin option in
#USE SPI.

Function:
Transfers data to and reads data from an SPI device.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:

int 1 = 34;

spi_xfer(i); // transfers the number 34 via SPI
int trans = 34, res;
res = spi xfer(trans); // transfers the number 34 via SPI
// also reads the number coming in
from SPI
See Also:
#USE SPI

554

Built-in Functions

spi_xfer_in()
Syntax:

value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);

Parameters:
stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

bits - is how many bits of data will be received.
Returns:
The data read in from the SPI.

Function:
Reads data from the SPI, without writing data into the transmit buffer first.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave device.

Examples:
data in = spi xfer in();

Example Files:
ex_spi.c

See Also:
#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax:
sprintf(string, cstring, values...);
bytes=sprintf(string, cstring, values...)

Parameters:
string - is an array of characters.

cstring - is a constant string or an array of characters null terminated.

values - are a list of variables separated by commas. Note that format specifies do not work in
ram band strings.

555

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Returns:
Bytes is the number of bytes written to string.

Function:

This function operates like printf() except that the output is placed into the specified string. The
output string will be terminated with a null. No checking is done to ensure the string is large
enough for the data. See printf() for details on formatting.

Availability:
All Devices

Requires:

See Also:

printf()

sqart()

Syntax:
result = sqrt (value)

Parameters:

value - is a float

[pco] value - is any float type

Returns:

A float

pco] Returns a floating point value with a precision equal to value

Function:
Computes the non-negative square root of the float value x. If the argument is negative, the
behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable. The
user can check the errno to see if an error has occurred and print the error using the perror
function.

Domain error occurs in the following cases: sqrt: when the argument is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

556

Built-in Functions
Examples:

distance = sqrt(pow((x1-x2),2)+pow((yl-y2),2));

srand()

Syntax:
srand(n)

Parameters:
n - is the seed for a new sequence of pseudo-random numbers to be returned by subsequent
calls to rand.

Returns:

Function:

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand() is then called with same seed
value, the sequence of random numbers shall be repeated. If rand is called before any call to
srand() have been made, the same sequence shall be generated as when srand() is first called
with a seed value of 1.

Availability:
All Devices

Requires:
#INCLUDE <STDLIB.H>

Examples:

srand (10) ;
I=rand();

See Also:

rand()

557

CCS C Compiler
STANDARD STRING FUNCTIONS

memchr() memcmp() strcat() strchr()
strcmp() strcoll() strcspn() strerror()
stricmp() strlen() striwr() strncat()
strncmp() strncpy() strpbrk() strrchr()
strspn() strstr() strxfrm()
Syntax:

ptr=strcat (s1, s2) Concatenate s2 onto sl

ptr=strchr (s1, c) Find c in s1 and return &s1[i]

ptr=strrchr (s1, c) Same but search in reverse

cresult=strcmp (s1,s2) Compare sltos2

iresult=strncmp (s1, s2, Compare sl to s2 (n bytes)
iresult=stricmp (s1,s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (s1,s2) Count of initial chars in s1 not in s2
iresult=strspn (s1,s2) Count of initial chars in s1 also in s2

iresult=strlen (s1) Number of characters in s1

ptr=strlwr (s1) Convert string to lower case

ptr=strpbrk (s1, s2) Search sl for first char also in s2

ptr=strstr (s1, s2) Search for s2 in s1

ptr=strncat(s1,s2, n) Concatenates up to n bytes of s2 onto s1

iresult=strcoll(s1,s2) Compares sl to s2, both interpreted as
appropriate to the current locale.

res=strxfrm(s1,s2,n) Transforms maximum of n characters of s2 and

places them in s1, such that strcmp(s1,s2) will gi
the same result as strcoll(s1,s2)
iresult=memcmp(m1,m2 Compare mlto m2 (n bytes)
ptr=memchr(m1,c,n) Find c in first n characters of m1 and return &m1l
ptr=strerror(errnum) Maps the error number in errnum to an error
message string. The parameters 'errnum'’ is an
unsigned 8 bit int. Returns a pointer to the string

Parameters:

s1 and s2 are pointers to an array of characters (or the name of an array).
Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n - is a count of the maximum number of character to operate on.

C - is a 8 bit character

m1 and m2 are pointers to memory.

Returns & Functions:
ptr is a copy of the s1 pointer
558

iresult is an 8 bit int
result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Availability:
All Devices

Requires:
#include <string.h>

Examples:

char stringl[10], string2[10];
stringl,"hi ");
string2, "there");

stringl,string2);
"Length is %ul\r\n", strlen(stringl));

strcpy
strcpy
strcat
printf

Example Files:
ex_str.c

See Also:

strepy(), strtok()

strepy()
strcopy()

Syntax:
strcpy (dest, src)
strcopy (dest, src)

Parameters:
dest - is a pointer to a RAM array of characters.

Built-in Functions

// Will print 8

src - may be either a pointer to a RAM array of characters or it may be a constant string.

Returns:

Function:

Copies a constant or RAM string to a RAM string. Strings are terminated with a 0.

Availability:
All Devices

Requires:

559

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Examples:

schar string[10], string2[10];

strcpy (string, "Hi There");
strcpy(string2, string) ;

Example Files:
ex_str.c

See Also:

Strxxxx()

strtod()

[PcD]_strtof()
[PcD] Strto48()

Syntax:

result=strtod(nptr,& endptr)

[pco] result=strtof(nptr,& endptr)
[pco] result=strtof48(nptr,& endptr

Parameters:
nptr and endptr are strings

Returns:

result is a float.
[PCD]

strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.

Returns the converted value in result, if any. If no conversion could be performed, zero is
returned.

Function:

The strtod function converts the initial portion of the string pointed to by nptr to a float
representation. The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the expected form,
no conversion is performed and the value of nptr is stored in the object pointed to by endptr,
provided endptr is not a null pointer.

560

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

float result; //PCD devices, replace "float"
with "double"

char str[12]="123.45hello";

char *ptr;

result=strtod(str, &ptr) ; //result is 123.45 and ptr is
"hello"

See Also:

strtol(), strtoul()

strtod()
[PcD]_strto48()

Syntax:

result=strtod(nptr,& endptr)

[pco] result=strtof(nptr,& endptr)
[pco] result=strtof48(nptr,& endptr

Parameters:
nptr and endptr are strings

Returns:

result is a float.
[PCD]

strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.

Returns the converted value in result, if any. If no conversion could be performed, zero is
returned.

Function:

The strtod function converts the initial portion of the string pointed to by nptr to a float
representation. The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the expected form,
no conversion is performed and the value of nptr is stored in the object pointed to by endptr,
provided endptr is not a null pointer.

561

CCS C Compiler

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

float result; //PCD devices, replace "float"
with "double"

char str[12]="123.45hello";

char *ptr;

result=strtod(str, &ptr) ; //result is 123.45 and ptr is
"hello"

See Also:

strtol(), strtoul()
strtok()

Syntax:
ptr = strtok(s1, s2)

Parameters:

s1 and s2 are pointers to an array of characters (or the name of an array).

Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to indicate a continue
operation.

Returns:

ptr points to a character in s1 oris 0

Function:
Finds next token in s1 delimited by a character from separator string s2 (which can be different
from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained in s2 and
returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then searches from there
for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent searches for a token
will return null.

If one is found, it is overwritten by "\O', which terminates current token. Function saves pointer
to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved pointer.
562

Built-in Functions

Availability:
All Devices

Requires:
#INCLUDE <string.h>

Examples:
char string[30], term[3], *ptr;

strcpy(string, "one, two, three;");
strcpy (term,",;");

ptr = strtok(string, term);
while (ptr!=0) {
puts (ptr) ;
ptr = strtok (0, term);
} // Prints: one, two, three

Example Files:
ex_str.c

See Also:
strxxxx(), strepy()

strtol()

Syntax:
result=strtol(nptr,& endptr, base)

Parameters:

nptr and endptr are strings and base is an integer

Returns:

Result is a signed long int.

Returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

Function:

The strtol function converts the initial portion of the string pointed to by nptr to a signed long
int representation in some radix determined by the value of base. The part of the string after
conversion is stored in the object pointed to endptr, provided that endptr is not a null pointer.
If nptr is empty or does not have the expected form, no conversion is performed and the value
of nptr is stored in the object pointed to by endptr, provided endptr is not a null pointer.

Availability:
All Devices

563

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Requires:
#INCLUDE <stdlib.h>

Examples:

signed long result;

char str[9]="123hello";

char *ptr;

result=strtol (str, &ptr,10); //result is 123 and ptr is "hello

See Also:

strtod(), strtoul()
strtoul()

Syntax:
result=strtoul(nptr,endptr, base)

Parameters:

nptr and endptr are strings pointers and base is an integer 2-36.

Returns:

Result is a signed long int.

Returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

Function:

The strtoul function converts the initial portion of the string pointed to by nptr to a long int
representation in some radix determined by the value of base. The part of the string after
conversion is stored in the object pointed to endptr, provided that endptr is not a null pointer.
If nptr is empty or does not have the expected form, no conversion is performed and the value
of nptr is stored in the object pointed to by endptr, provided endptr is not a null pointer.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

long result;

char str[9]="123hello";

char *ptr;

result=strtoul (str, &ptr, 10); //result is 123 and ptr is "hello

See Also:

strtol(), strtod()
564

Built-in Functions

swap()

Syntax:
swap (lvalue)
[pco] result = swap(lvalue)

Parameters:

Ivalue - is a byte variable

Returns:

undefined - WARNING: this function does not return the result
tpco] A byte

Function:
Swaps the upper nibble with the lower nibble of the specified byte. This is the same as:
byte = (byte << 4) | (byte >> 4);

Availability:
All Devices

Requires:

Examples:

x=0x45;
swap (x) ; //x now is 0x54

[PCD]

int x = 0x42;

int result;

result = swap(x); // result is 0x24;

See Also:
rotate right(), rotate left()

tolower()

toupper

Syntax:
result = tolower (cvalue)
result = toupper (cvalue)

Parameters:

cvalue - is a character
Returns:

An 8 bit character

565

CCS C Compiler

Function:
These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a"..'z" for X in 'A'.."Z" and all other characters are unchanged.
TOUPPER(X) will return 'A'.."Z' for X in 'a'..'’z"' and all other characters are unchanged.

Availability:
All Devices

Requires:

Examples:

switch (toupper (getc()) {

)
case 'R' : read cmd(); Dbreak;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

}

Example Files:
ex_str.c

touchpad getc()

Syntax:
input = TOUCHPAD_GETC();

Parameters:

Returns:
char (returns corresponding ASCII number is “input” declared as int)

Function:

Actively waits for firmware to signal that a pre-declared Capacitive Sensing Module (CSM) or
charge time measurement unit (CTMU) pin is active, then stores the pre-declared character
value of that pin in “input”.

Note: Until a CSM or CTMU pin is read by firmware as active, this instruction will cause the
microcontroller to stall.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

566

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
Examples:

//When the pad connected to PIN BO is activated, store the letter
lAl

#USE TOUCHPAD (PIN BO='A')
voild main (void) {
char c;
enable interrupts (GLOBAL) ;

c = TOUCHPAD GETC() ; //will wait until one of declared
pins is detected
//if PIN BO is pressed, c will get
value 'A'

}

See Also:
#USE TOUCHPAD, touchpad_state()

touchpad hit()

Syntax:
value = TOUCHPAD_HIT()

Parameters:

Returns:
TRUE or FALSE

Function:

Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time Measurement Unit
(CTMU) key has been pressed. If TRUE, then a call to touchpad_getc() will not cause the
program to wait for a key press.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

Examples:

//When the pad connected to PIN B0 is activated, store the letter
lAl

#USE TOUCHPAD (PIN_BO:'A')
void main (void) {

567

CCS C Compiler

char c;
enable interrupts (GLOBAL) ;
while (TRUE) {

if (TOUCHPAD HIT()) //wait until key on PIN BO
is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'
}
See Also:

#USE TOUCHPAD, touchpad state(), touchpad getc()

touchpad state()

Syntax:
TOUCHPAD_STATE (state);

Parameters:
state - is a literal 0, 1, or 2.
Returns:

Function:
Sets the current state of the touchpad connected to the Capacitive Sensing Module (CSM).
The state can be one of the following three values:

0 : Normal state

1: Calibrates, then enters normal state

2 : Test mode, data from each key is collected in the int16 array TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad will not calibrate
properly.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

Examples:

#USE TOUCHPAD (THRESHOLD=5, PIN_DS:'5', PIN_BO:'C')
void main (void) {

char c;

TOUCHPAD STATE (1) ; //calibrates, then enters normal
state

enable interrupts (GLOBAL) ;

568

Built-in Functions

while (1) {
c = TOUCHPAD GETC(); //will wait until one of declared
pins is detected
} //if PIN BO is pressed, c will
get value 'C'
} //if PIN D5 is pressed, c will

get value '5'

See Also:
#USE TOUCHPAD, touchpad _getc(), touchpad hit()

tolower()

toupper

Syntax:
result = tolower (cvalue)
result = toupper (cvalue)

Parameters:

cvalue - is a character
Returns:

An 8 bit character

Function:
These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a"..'z' for X in 'A'.."Z" and all other characters are unchanged.
TOUPPER(X) will return 'A'.."Z" for X in 'a'..'’z"' and all other characters are unchanged.

Availability:
All Devices

Requires:

Examples:

switch (toupper (getc()) {

)
case 'R' : read cmd(); Dbreak;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

}

Example Files:
ex_str.c

569

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
tx_buffer available()

Syntax:
value = tx_buffer_available([stream]);

Parameters:

stream — optional parameter specifying the stream defined in #USE RS232.
Returns:

Number of bytes that can still be put into transmit buffer.

Function:

Function to determine the number of bytes that can still be put into transmit buffer before it
overflows. Transmit buffer is implemented has a circular buffer, so be sure to check to make
sure there is room for at least one more then what is actually needed.

Availability:
All Devices

Requires:
#USE RS232

Examples:

#USE_RS232 (UART1,BAUD=9600, TRANSMIT BUFFER=50)
void main(void) {
unsigned int8 Count = 0;

while (TRUE) {
if (tx buffer available()>13)
printf ("/r/nCount=%3u", Count++) ;

See Also:
USE RS232(), tx_buffer full(), rcv_buffer bytes(),rcv_buffer full(), get(), putc()
Jrintf(), setup uart(), putc_send()

tx buffer bytes()

Syntax:
value = tx_buffer_bytes([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE RS232.

570

Built-in Functions

Returns:
Number of bytes in transmit buffer that still need to be sent.

Function:
Function to determine the number of bytes in transmit buffer that still need to be sent.

Availability:
All Devices

Requires:
#USE RS232

Examples:

#USE_RSZ32 (UART1, BAUD=9600, TRANSMIT_BUFFER=50)
void main (void) {

char string[] = “Hello”;

if (tx _buffer bytes() <= 45)

printf (“%s”,string);

See Also:
USE RS232(), tx_buffer full(), rcv_buffer bytes(), rcv_buffer full(), get(), putc()
Jprintf(), setup uart(), putc_send()

tx buffer full()

Syntax:
value = tx_buffer_full([stream])

Parameters:

stream — optional parameter specifying the stream defined in #USE RS232
Returns:

TRUE if transmit buffer is full, FALSE otherwise.

Function:
Function to determine if there is room in transmit buffer for another character.

Availability:
All Devices

Requires:
#USE RS232

571

CCS C Compiler
Examples:

#USE_RSZ32(UARTl,BAUD:9600,TRANSMIT_BUFFER:50)
void main (void) {

char c;

if (!tx buffer full())

putc(c);

See Also:
USE RS232(), tx_buffer bytes(), rcv_buffer bytes(), rcv_buffer full(), get(),
putc() ,printf(), setup uart(), putc_send()

va arg()

Syntax:
va_arg(argptr, type)

Parameters:
argptr - is a special argument pointer of type va_list

type - This is data type like int or char.

Returns:

The first call to va_arg after va_start return the value of the parameters after that specified by
the last parameter. Successive invocations return the values of the remaining arguments in
succession.

Function:
The function will return the next argument every time it is called.

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h>

Examples:

int foo(int num, ...)

{

int sum = 0;

int 1i;

va_ list argptr; // create special argument
pointer

va_ start (argptr,num) ; // initialize argptr

for (i=0; i<num; i++)

572

Built-in Functions

sum = sum + va_arg(argptr, int);
va_end (argptr) ; // end variable processing
return sum;

}

See Also:
nargs(), va_end(), va_start()

va end()

Syntax:
va_end(argptr)

Parameters:
argptr - is a special argument pointer of type va_list
Returns:

Function:
A call to the macro will end variable processing. This will facillitate a normal return from the
function whose variable argument list was referred to by the expansion of va_start().

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h

Examples:

int foo(int num, ...)

{

int sum = 0;

int 1i;

va_list argptr; // create special argument pointer
va_start (argptr,num) ; // initialize argptr

for (1=0; i<num; 1i++)

sum = sum + va_arg(argptr, int);
va_end (argptr) ; // end variable processing
return sum;

}

See Also:
nargs(), va_start(), va_arg()

573

CCS C Compiler
va staru [

Syntax:
va_start(argptr, variable)

Parameters:
argptr - is a special argument pointer of type va_list

variable — The second parameter to va_start() is the name of the last parameter before the
variable-argument list.
Returns:

Function:
The function will initialize the argptr using a call to the macro va_start().

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h

Examples:
int foo(int num, ...)

{

int sum = 0;

int 1i;
va_list argptr; // create special argument
pointer
va_start (argptr,num) ; // initialize argptr
for (1i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end (argptr) ; // end variable processing

return sum;

}

See Also:
nargs(), va_start(), va_arg()

write _bank()

Syntax:
write_bank (bank, offset, value)

Parameters:
bank - is the physical RAM bank 1-3 (depending on the device)

574

Built-in Functions

offset - is the offset into user RAM for that bank (starts at 0)

value - is the 8 bit data to write
Returns:

Function:

Write a data byte to the user RAM area of the specified memory bank. This function may be
used on some devices where full RAM access by auto variables is not efficient. For example
on the PIC16C57 chip setting the pointer size to 5 bits will generate the most efficient ROM
code however auto variables can not be above 1Fh. Instead of going to 8 bit pointers you can
save ROM by using this function to write to the hard to reach banks. In this case the bank may
be 1-3 and the offset may be 0-15.

Availability:
All devices but only useful on PCB parts with memory over 1Fh and PCM parts with memory
over FFh.

Requires:

Examples:

i=0; // Uses bank 1 as a RS232 buffer
do {

c=getc();

write bank(1l,i++,c);
} while (c!=0x13);

Example Files:
ex_psp.c

write configuration memory()

Syntax:
write_configuration_memory ([offset], dataptr,count)

Parameters:
dataptr - pointer to one or more bytes

count -: a 8 bit integer
offset - is an optional parameter specifying the offset into configuration memory to start writing
to, offset defaults to zero if not used.

Returns:

575

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler

Function:
Erases all fuses and writes count bytes from the dataptr to the configuration memory.
For Enhanced16 devices - erases and write User ID memory.

Availability:
All PIC18 Flash and Enhanced16 devices
All PIC24 Flash devices

Requires:

Examples:

int datal[6];
write configuration memory(data, 6

See Also:
WRITE PROGRAM MEMORY(), Configuration Memory Overview

write _eeprom()

Syntax:
write_eeprom (address, value)
[pco] Write_eeprom (address , pointer , N)

Parameters:
address - is a (8 bit or 16 bit depending on the part) int, the range is device dependent

value - is an 8 bit int

pco] address - is the 0 based starting location of the EEPROM write
reo] N - specifies the number of EEPROM bytes to write

pcp] value - is a constant or variable to write to EEPROM

[pcD] pointer - is a pointer to location to data to be written to EEPROM

Returns:

Function:

Write a byte to the specified data EEPROM address. This function may take several
milliseconds to execute. This works only on devices with EEPROM built into the core of the
device.

576

Built-in Functions

For devices with external EEPROM or with a separate EEPROM in the same package (like the
12CE671) see EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

rreo] This function will write the specified value to the given address of EEPROM. If pointers
are used than the function will write n bytes of data from the pointer to EEPROM starting at the
value of address.

In order to allow interrupts to occur while using the write operation, use the #DEVICE option
WRITE_EEPROM = NOINT. This will allow interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write operations has completed. Can be used
as long as no EEPROM operations are performed during an ISR.

Availability:
Devices with supporting hardware on chip.

Requires:

Examples:
#define LAST VOLUME 10 // Location in EEPROM

volume++;
write eeprom(LAST VOLUME,volume) ;

Example Files:
ex_intee.c, ex_extee.c, ce51x.c, ce62x.c, ceb67x.c

See Also:
read eeprom(), erase eeprom(), Data EEPROM Overview

write external memory()

Syntax:
write_external_memory(address, dataptr, count)

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts

dataptr - is a pointer to one or more bytes
count - is a 8 hit integer

Returns:

577

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink4.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink5.Click()

CCS C Compiler

Function:

Writes count bytes to program memory from dataptr to address.

Unlike write_program_eeprom() and read_program_eeprom() this function does not use
any special EEPROM/FLASH write algorithm. The data is simply copied from register address
space to program memory address space. This is useful for external RAM or to implement an
algorithm for external flash.

Availability:
PIC18 Devices Only

Requires:

Examples:

for (1=0x1000; i<=0x1fff;i++) {
value=read adc();
write external memory (i, value, 2);
delay ms (1000);

}

Example Files:
ex_load.c, loader.c

See Also:
write program_eeprom(), erase program eeprom(), Program Eeprom Overview

write extended ram()

Syntax:
write_extended_ram (page,address,data,count);

Parameters:
page — the page in extended RAM to write to

address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)

Returns:

Function:
Write data to the extended RAM of the microcontroller.

578

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Availability:
Devices with more then 30K of RAM.
Requires:
Examples:
unsigned int8 data[8] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1l,0x0000,data,8);

See Also:
read extended ram(), Extended RAM Overview

write program eeprom()

Syntax:
write_program_eeprom (address, data)

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts, data is 16 bits. The least
significant bit should always be 0 in PCH.

Returns:

Function:
Writes to the specified program EEPROM area.

See write_program_memory() for more information on this function.

Availability:
Devices that allow writes to program memory.

Requires:

Examples:
write program eeprom(0,0x2800); //disables program

Example Files:
ex_load.c, loader.c

579

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

CCS C Compiler

See Also:
read program_eeprom(), read eeprom(), write _eeprom(), write_program_memory(),
erase program_eeprom(), Program Eeprom Overview

write program memory()

Syntax:
write_program_memory(address, dataptr, count);

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts
[pco] address - is 32 bits

dataptr - is a pointer to one or more bytes

count - is a 8 hit integer on PIC16 and 16-bit for PIC18
[pcp] count - is a 16 bit integer

Returns:

Function:
Writes count bytes to program memory from dataptr to address. This function is most effective
when count is a multiple of FLASH_WRITE_SIZE. Whenever this function is about to write to a
location that is a multiple of FLASH_ERASE_SIZE then an erase is performed on the whole
block.
NOTES:Clarification about the functions to write to program memory:
In order to get the desired results while using write_program_memory(), the block of
memory being written to needs to first be read in order to save any other variables
currently stored there, then erased to clear all values in the block before the new values
can be written. This is because the write_program_memory() function does not save any
values in memory and will only erase the block if the first location is written to. If this
process is not followed, when new values are written to the block, they will appear as
garbage values.

For chips where getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, does not erase (use
erase_program_eeprom())

write_program_memory() - Writes any number of bytes, will erase a block whenever

the first (lowest) byte in a block is written to. If the first address is not the start of a
block that block is not erased.

580

Built-in Functions
erase_program_eeprom() - Will erase a block. The lowest address bits are not used.

For chips where getenv(“FLASH_ERASE_SIZE”) = getenv(“FLASH_WRITE_SIZE”)
write_program_eeprom() - Writes 2 bytes, no erase is needed.

write_program_memory() - Writes any number of bytes, bytes outside the range of the
write block are not changed. No erase is needed.

erase_program_eeprom() - Not available

rco] Writes count bytes to program memory from dataptr to address. This function is most
effective when count is a multiple of FLASH_WRITE_SIZE, but count needs to be a multiple of
MIN_FLASH_WRITE. Whenever this function is about to write to a location that is a multiple of
FLASH_ERASE_SIZE then an erase is performed on the whole block. Due to the 24 bit
instruction length on PCD parts, every fourth byte of data is ignored. Fill the ignored bytes with
0x00.

See Program EEPROM Overview for more information on program memory access

Availability:
Devices that allow writes to program memory.

Requires:

Examples:

wfor (i=0x1000;i<=0x1fff;i++) {
value=read adc();
write program memory (i, value, 2);
delay ms (1000) ;

}

[PCD]

for (1=0x1000; i<=0x1fff;i++) {
value=read adc();
write program memory (i, &value, 4);
delay ms (1000);

int8 write data[4] = {0x10,0x20,0x30,0x00};
write program memory (0x2000, write data, 4);

Example Files:
loader.c

See Also:
write _program_eepro, erase _program_eeprom, Program Eeprom Overview

581

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

CCS C Compiler
write program_memory8()

Syntax:
write_ PROGRAM_MEMORY8 (address, dataptr, count);

Parameters:
address is 16 bits to start writing data to the program memory.

dataptr is a pointer to an array of bytes containing data to write to program memory.
count is the number of bytes to write to program memory.

Returns:
Undefined

Function:

Write count bytes to program memory. This function only writes the least significant byte to
each address in program memory. See write_program_memory() for a function that can
write all the data to each address in program memory.

Availability:
Only on PCM devices with the ability to Read program memory.

Requires:

Examples:
write program memory8 (Address, Data, 128);

See Also:
read program_memory(), write program memory(), read program_memory8(
), Program Eeprom Overview

zcd status()

Syntax:
value=zcd_status()

Parameters:

Returns:
value - the status of the ZCD module. The following defines are made in the device's
header file and are as follows:

ZCD_IS_SINKING

ZCD_IS_SOURCING

582

Built-in Functions

Function:

Determine if the Zero-Cross Detection (ZCD) module is currently sinking or sourcing current.
If the ZCD module is setup to have the output polarity inverted, the value return will be
reversed.

Availability:
All devices with a ZCD module.

Requires:

Examples:

value=zcd status():

See Also:

setup_zcd()

583

CCS C Compiler

STANDARD C INCLUDE FILES

errno.h
EDOM Domain error value
ERANGE Range error value
errno error value
float.h
FLT_RADIX: Radix of the exponent representation

FLT_MANT DIG:

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number

FLT_DIG: with p radix b digits and back again without change to the q
decimal digits.
FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that

power minus 1 is a normalized floating-point number.

FLT_MIN_10_EXP:

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

FLT_MAX_EXP:

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

FLT_MAX_10_EXP:

Maximum negative integer such that 10 raised to that power is in
the range representable finite floating-point numbers.

FLT_MAX: Maximum representable finite floating point number.

FLT EPSILON: The difference bgtween 1 and the_ Ieast_value greater than 1 that
- is representable in the given floating point type.

FLT_MIN: Minimum normalized positive floating point number

DBL_MANT_DIG:

Number of base digits in the floating point significant
pcp] double significant

Number of decimal digits, g, such that any floating point
number or [pcp] double number with g decimal digits can be

DBL_DIG: rounded into a floating point number or [pco; double number
with p radix b digits and back again without change to the q
decimal digits.

Minimum negative integer such that FLT_RADIX raised to that

DBL_MIN_EXP: power minus 1 is a normalized floating point number or

pco] double number.

DBL_MIN_10_EXP:

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating point number or [pco] double
number.

DBL_MAX_EXP:

Maximum negative integer such that FLT _RADIX raised to that

584

Standard C Include Files

power minus 1 is a representable finite floating point number or
tpcp] double number.

DBL_MAX_10_EXP:

Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating point number or
pco] double number.

DBL_MAX: Maximum representable finite floating point number.

DBL EPSILON: The difference bgtween 1 and the_ Ieast_value greater than 1 that
— is representable in the given floating point type.

DBL MIN: Minimum normalized positive floating point number or

pco] double number.

LDBL_MANT DIG:

Number of base digits in the floating point significant

LDBL_DIG:

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q
decimal digits.

LDBL_MIN_EXP:

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

LDBL_MIN_10_EXP:

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

LDBL_MAX_EXP:

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

LDBL_MAX_10_EXP:

Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating-point numbers.

LDBL_MAX: Maximum representable finite floating point number.
LDBL EPSILON: The difference b(_etween _1 and the_ Ieast_value greater than 1 that
— is representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.

limits.h
CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int

585

CCS C Compiler

| ULONG_MAX: | Maximum value for an object of type unsigned long int
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point
stddef.h
ptrdiff_t: The basic type of a pointer
size_t: The type of the sizeof operator (int)
wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)
stdio.h
stderr The standard error s stream (USE RS232 specified as stream
or the first USE RS232)
o The standard output stream (USE RS232 specified as stream
last USE RS232)
stdin The standard input s stream (USE RS232 specified as stream
last USE RS232)
stdlib.h
div t structure type that contains two signed integers (quot and
- rem).
Idiv_t structure type that contains two signed longs (quot and rem

586

Standard C Include Files

EXIT_FAILURE returns 1
EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

Multibyte character anc
string functions:

Multibyte characters not supported

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

587

CCS C Compiler
SOFTWARE LICENSE AGREEMENT

Allm

Carefully read this Agreement prior to opening this package. By opening this package, you
agree to abide by the following provisions.

If you choose not to accept these provisions, promptly return the unopened package for a
refund.

aterials supplied herein are owned by Custom Computer Services, Inc. (“CCS”) and is protected by

copyright law and international copyright treaty. Software shall include, but not limited to, associated

medi

a, printed materials, and electronic documentation.

These license terms are an agreement between You (“Licensee”) and CCS for use of the Software
(“Software”). By installation, copy, download, or otherwise use of the Software, you agree to be bound by
all the provisions of this License Agreement.

1.

588

LICENSE - CCS grants Licensee a license to use in one of the two following options:

1) Software may be used solely by single-user on multiple computer systems;

2) Software may be installed on single-computer system for use by multiple users. Use of Software
by additional users or on a network requires payment of additional fees.

Licensee may transfer the Software and license to a third party; and such third party will be held to
the terms of this Agreement. All copies of Software must be transferred to the third party or
destroyed. Written notification must be sent to CCS for the transfer to be valid.

APPLICATIONS SOFTWARE - Use of this Software and derivative programs created by Licensee
shall be identified as Applications Software, are not subject to this Agreement. Royalties are not be
associated with derivative programs.

WARRANTY - CCS warrants the media to be free from defects in material and workmanship, and
that the Software will substantially conform to the related documentation for a period of thirty (30)
days after the date of purchase. CCS does not warrant that the Software will be free from error or will
meet your specific requirements. If a breach in warranty has occurred, CCS will refund the purchase
price or substitution of Software without the defect.

LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES — CCS and its suppliers
disclaim any expressed warranties (other than the warranty contained in Section 3 herein), all implied
warranties, including, but not limited to, the implied warranties of merchantability, of satisfactory
quality, and of fitness for a particular purpose, regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any incidental, special, indirect or
consequential damages whatsoever, including, without limitation, damages for loss of profits, loss of
data, business interruption, or any other commercial damages or losses, arising out of or related to
your use or inability to use the Software.

Licensee is responsible for determining whether Software is suitable for Applications.

©1994-2016 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDW!IDE
PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

