Egyenfeszültségű
 tranzisztoros stabilizált tápegység

$15 \mathrm{~L} / 5 \mathrm{~A}$

Egyenfeszültségü stabilizált túpegység $15 \mathrm{~V}, 5 \mathrm{~A}$
Tipus: TR-925\% ${ }^{2}$

MÚSZERKÓNYV

Gyártja: FOK-GYEM Finommechanikai és Elektronikus Múszergyártó Szövetkezet
Budapest XI., Karinthy Frigyes út 22.
Forgalmazza: MIGÉRT

Taxatomeg wit

O.
 !
 5
万
6 Bothece 0 s
 \div
4.1. A howdor hicsomagolas? a
 10
5. Bayentatituatas 10
5.1. Bytonsth intakodés 16
 16
5.3. Senditios 13
 25
7. Mechanka homstroban 13
8. Kaphatutos 1.1
9. Javíás 1510. Alkatacsajegzed:
Abrák és rajork jegyzed
Fig. 1. töntyáxdt.
Fig. 2. túvérzék lés kaporolasa
Fig. 3. feszuiltsétéxan diąeram
Eig. 4. Kósculel kezelóssenci (ololap)
Fig. 5. készälék kezelöszervei (hátas)Fig. G. elektromoskapoolesi rage

1. A Részullélí rendeltetésc és felhasználási terüléo

A készülék megnevezése	Egyenfeszültségü stabilizált tápegység
Feszültségtartomány	$0-15 \mathrm{~V}$
Terheléstartomány	$0-5 \mathrm{~A}$

A tápegység a hálózati váltakozó feszültségnek stabilizált egyenfeszültséggé történô átalakítására szolgál
Alkalmazható különféle áramkörök működtetésére, mint kis belsőellenállású tápforrás. Felhasználható mérőhidak táplálására és hídág-feszültségként is, mivel feszültsége nagy stabilitású.
A készülék palástját leszedve kiegészítő szerelvénnyel rack-szekrénybe szerelhetô és így nagyobb berendezésekben használható épitoóegységként.
Mivel a tápegységben csak szilícium alapanyagú félvezetők vannak, nagy megbízhatósággal széles hőmérsékle thatárok közölt üzemelhet.

2. A készülék és tartozékainak specifikációja

Feszültségtartomány
A feszülitségbeállitás három kezelőgombbal történik
$20^{\circ} \mathrm{C}$-on a folyamatos szabályozó
„CAL" helyzetbe való álítása esetén
Terheléstartomány
A maximális terhelőáram beállítása
külön kezelőgombbal történik
A túláramvédő müködésbe lépése
A „CURRENT LIMIT" potenciométer ütközéséig balra csavart állásában
A „CURRENT LIMIT" potenciométer ütközéséig jobbra csavart állásában
A túláramvédő mû́ködését jelzőlámpa mutatja.
Túlterhelés megszűnése után a túláramvédő
automatikusan visszaáll használati
helyzetébe és a jelzőlámpa kialszik.
A kimenőáramot beépített ampermérő mutatja méréshatára.
pontossága
Hálózati stabilitás:
a kimnenőfeszültség változása,
ha a hálózati feszültség a névleges
érték $\pm 10 \%$-án belül változik

$$
2 \times 5 \mathrm{~V}
$$

$5 \times 1 \mathrm{~V}$
1 V-orı belül folyamatosan.
állitható.
$\pm 1 \%$ vagy $\pm 20 \mathrm{mV}$
0-5 A

Terhelésstabilitás:
A kimenöfeszültség változása,
ha a terhelöáram 0 és 5 A között változik
$0,02 \%+2 \mathrm{mV}$
A.z előlapon levö kivezetőkapcsokon
mérve az univerzálszorítók.
átmenetị ellenállása ($1-1$ mohm)
sorbakapcsolódik a kimenettel.
Kimenóimpe dancia

$0-100 \mathrm{~Hz}$	$\max 1$ mohm
$100 \mathrm{~Hz}-1 \mathrm{kHz}$	$\max 20$ mohm
$1 \mathrm{kHz}-10 \mathrm{kHz}$	$\max 0,2$ ohm
$10 \mathrm{kHz}-100 \mathrm{kHz}$	$\max 0,5$ ohm
$100 \mathrm{kHz}-1 \mathrm{MHz}$	$\max 2$ ohm

Tranziens feléle dési idő
kimenöfeszültség visszaállásának ideje, miután a készülék terhelőárama
0 A-ról 5 A-ra növekedett $\max 50$ usec
Zaj- és búgófeszültség kisebb mint
Hosszúidejű stabilitás a kimenöfeszültség
változása a kimenet 5 A -es
terhelése esetén 8 órán keresztül $\pm 0,3 \%$ vagy $\pm 30 \mathrm{mV}$
Hômérsékletstabilitás
Hálózati tápfeszültség

Fogyasztás
Kimenőkapcsok szigetelése a készülék fémvázához
$1 \mathrm{mV}_{\mathrm{cs} \text {-cs }}$

Klímaállóság
környezeti hőmérséklet, ahol
a készülék múködtethető
Szállítási és raktározási hőmérséklet
Megengedett légnedvesség csomagolt állapotban
Méretek
$\pm 0,\left.05 \%\right|^{\circ} \mathrm{C}$ vagy $\pm\left. 2 \mathrm{mV}\right|^{\circ} \mathrm{C}$
$110,127,220 \mathrm{~V} \pm 10 \%$
$50-60 \mathrm{~Hz}$
max 180 VA
$250 \mathrm{~V}=$

Súly
$-10{ }^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
$\max 98 \%$
kb. $130 \times 450 \times 210 \mathrm{~mm}$
kb. 12 kg

Tartozékok: (a készülék árába beszámítva)
1 db porvédơ huzat,
1 db hálózati csatlakozó kábel,
1 db műszerkönyv.

Tartalékalkatrészek: (a készülék árába beszámítva)
2 db üvegcsöves biztosítóbetét $1,6 \mathrm{~A}, \mathrm{~B} 20 / 5,2 \mathrm{~N} 1,6 \mathrm{~A}$
2 db üvegcsồves biztositóbetét $3,15 \mathrm{~A}, \mathrm{~B} 20 / 5,2 \mathrm{~N} 3,15$ Á
4 db jelzőizzó $6 \mathrm{~V}, 0,1 \mathrm{~A}, \mathrm{BA} 7 \mathrm{~s}$. "

Külön megrendelésre: (a készuülék árába nincs beszámítva)
2 db előlaptoldat: Hsz-Da-03.

3. Míködesi elv

A készülák tömbvázlata a Fig. 1. ábrán látható.
Villamos felépátés szempontjából a következö főbỏ részekre tagolódil:

1. Hálózati transzformátor
2. Egyenirányító egység
3. Áteresztố transzformátor $\left(T_{S}\right)$
4. Figyelő ellenállás $\left(R_{s}\right)$
5. Referencia feszültségforrás ($\mathrm{U}_{\mathrm{ref}}$)
6. Feszültségvisszacsatoló lánc (P_{u})
7. Feszültségvisszacsatoló erősitő (A_{u})
8. Áramvisszacsatoló potenciométer (P_{i})
9. Áramgenerátor (I_{g})
10. Túláramvédőerősítő $\left(\mathrm{A}_{\mathrm{i}}\right)$
11. Kapcsolóelem (D)
12. Elszívóelem (T)
M. Áramméró.

A hálózati transzformátor (1) a hálózati feszültséget alakítja a megfelelố értékre és ezt az egyenirányító egység (2.) egyenirányítja. Az egyenirányított feszültség negatív ága a negatív kimenetre (-U) csatlakozik. A pozitív ág az áteresztő tranzisztor (3) (T_{S}) kollektorára kapcsolódik. Az áteresztô tranzisztor (3) (T_{S}) ernittere a figyelőellenálláson $(4)\left(R_{s}\right)$ keresztül csatlakozik a pozitív kimenetre $(+U)$. A figyelőellenâlláson eső feszültség mérésével az M múszer a kimenőáramot mutatja. Az áteresztő tranzisztor (3) (T_{s}) bázisảt a feszültségvisszacsatolóerősitő (7) (A_{u}) vezérli. Ủzemi állapotban a +S és +U , ill. -S és -U kapcsok össze vannak kötve. Mivel a feszültségvisszacsatoló-erősitő (7) (A_{u}) bemenetei között a maradék feszültség kb. 0 V , a kimeneti feszültség $\mathrm{U}_{\mathrm{ki}}=\mathrm{U}_{\mathrm{ref}} \frac{\mathrm{Pu}}{\mathrm{r}}$, vagyis P_{u} értékének lineáris függvénye. A feszültségvisszacsatoló-erősítơ (7) ($A_{\mathfrak{u}}$) erősitése elég nagy, igy a kimeneti feszültség a terheléstől igen kismértékben függ. A Fig. 2-ön ábrázolt módon lehetôség van arra, hogy a tápegység ne a kimeneten hozza létre a kis belsô ellenállást, hanern kompenzálva a hozzávezetést, közvetleriül a terhelésen. Ilyenkor az áramvezető kábeleken kívül a két érzékelő huzalt $(+S,-S)$ is közvetlenül. a terhelésre kell kapcsolni a Fig. 2-ôn látható módon.

Fig. 2

A túláramvédő egységben az áramvisszacsatoló potenciométeren (8) $\left(\mathrm{P}_{\mathrm{i}}\right)$ az áramgenerátor (9) (I_{g}) hoz létre P_{i} értékétôl függő feszültséget, mely ellenkező irányú, mint a figyelő ellenállás (4) (R_{S}) kapcsain levő feszültség, melyet a kimeneti áram okoz. Ha a kimeneti áram olyan nagy, hogy a figyelő ellenállás (4) (R_{s}) feszültsége eléri az áramvisszacsatoló potenciométer (8) (P_{i}) feszültségét, akkor a túláramvédő erősítő (10) $\left(\mathrm{A}_{\mathrm{i}}\right)$ a kapcsolóelemen (11) (D) keresztül lezárja az áteresztỏ egység (3) $\left(\mathrm{T}_{\mathrm{s}}\right)$ bázisát, miáltal a kimeneti feszültség csökken. Túlterhelés esetén a kimenőfeszültség relatív csökkenésével arányos áram fog az elszívóelemen (12) (T) folyni, mely így az áramgenerátor (9) $\left(\mathrm{I}_{\mathrm{g}}\right)$ áramát szívja el. Kimeneti rövidzár esetén $\left(\mathrm{U}_{\mathrm{ki}}=0\right)$ az elszívó elemen (12) (T) átfolyó áram az áramgenerátor (9) (I_{g}) áramával lesz egyenlő, vagyis ilyenkor az áramvisszacsatoló potenciométeren (8) $\left(\mathrm{P}_{\mathrm{i}}\right)$ nem esik feszültség. Ezáltal az áteresztőtranzisztort (3) (T_{S}) a túláramvédőerôsítő (4) $\left(R_{S}\right)$ kapcsain is kb. 0 V legyen a feszültség, vagyis rövidzár esetén a kimeneti áram igen kis értékű.

Kiemeneti feszültség-áram diagramot mutat a Fig. 3. különbözö beállitott feszültség (Fig. 3/a) és maximális áram (Fig. 3/b) esetén.

Fig. 3.

4. El6́zetes útmutatások

4.1. A készülék kicsomagolása.

A ládát a használati helyzetnek megfelelő (ládán megjelölt) helyzetben bontjuk ki és kellớ óvatossággal emeljük ki a készüléket.

A készülékrôl a csomagolópapírokat lebontjuk.
A védőzsírral ellátott alkatrészekről a zsiradékot letöröljük. A tartozékok meglevőségét ellenőrizzünk.
4.2. A készülék üzembe helyezésének előkészítése.

Bekapcsolás elött ellenőrizzük, hogy a hálózati feszültség megfelel-e a készüléken beállított hálózati feszültségnek.

Ellenőrizzük a biztosítóbetétek értékét.
110, 127 V-os hálózati feszültség esetén 3,15 A
220 V-os hálózati feszültség esetén 1,6 A-nak kell lenni.
A készüléket csak védőfölddel ellátva szabad hasznạ́ni. A hálózati dugó csatlakoztatásával a készülék fémváza az érintésvédelmi vezetékkel össze van kötve, ha a dugaszolóaljzat érintésvédelem szempontjából a biztonsági előírásoknak megfelel.
Amennyiben a készüléket rack-szekrénybe kívánjuk szerelni, vegyük le róla a palástot, majd szereljük a fogantyúk alá a két előlaptoldatot.
A hátlapról a plexi takarólemezt leszedve lehetőség van a kimenet sorozatkapcsokon való csatlakoztatására.

5.1. Biztonsági intézkedések

A készülék hálózati csatlakozó kábele csak érintésvédelemmel (védőföldelés) rendelkező csatlakozóaljzatba dugaszolható. A készülék fémváza az érintésvédelmi vezetékkel a fenti esetben galvanikus kapcsolatban van.

Előlap (Fig. 4.)

1. MAINS $=$ Hálózat
2. MAINS $=$ Hálózat
kapcsoló (S1) a hálózati feszültség bekapcsolására szolgál.
Bekapcsolt állapotban a Fig. 4-2.
jelzôlámpa ég.
$\mathrm{OFF}=\mathrm{Ki}$, kikapcsolt állapot.
jelzölámpa (L1) a Fig. 4-1. hálózati kapcsoló bekapcsolt állapotában ég.
3.
4. D.C. $O F F=$ egyẹnáram ki

Ampermérő műszer (M1) a kimeneti áramot méri.
kapcsoló (S3) a kimeneti feszültség ki- és bekapcsolására. Ezt a kapcsolót mérés alkalmával használjuk, amikor a kimenő feszültséget kb. 0 v-ra akarjuk kapcsolni anélkül, hogy a készüléket a hálózatról lekapcsolnánk.

Hátlap (Fig. 5.)

1. 180 VA
$50-60 \mathrm{~Hz}$
csatlakozóaljzat a hálózati csatlakozózsinór csatlakoztatására.
2. 110

127 3,15 A
1,6 A
3.
(F1) biztosító

Sorozatkapocs (J6) kimeneti feszültség és távérzékelés (remote sonsing) részére.

Figyelem! A betétet csak a készülék feszültségmentesítée után lehet cserélni, ezután szerszámmal kell olyan erősen meghưzni, hogy kezzel ne lehessen kicsavarni!

5.3. Beállítás

A készüléket hálózati csatlakozózsinórjával csatlakoztassuk érintésvédelemmel ellátott dugaszolóaljzatra. A „MAINS" - hálózat Fig. 4-1. kapcsoló bekapcsolása után a Fig. 4-2. jelzőizzó kigyullad. Bekapcsolás után a készülék azonnal üzemkész. Pontos méréseket azonban csak egy óra melegedés után végezzünk.
A „CURRENT LIMIT" (áramhatár) potenciométerrel (Fig. 4-8.) állítsuk be a kívánt maximális áramot a következő módon: alacsony beállított feszültség esetén ($0,2-0,5 \mathrm{~V}$) zárjuk rövidre a kimenetet és a beépített ampermérő (Fig. 4-3.) segitségével - mely a kimenő áramot méri - beállítjuk a kívánt maximális áramot.
Túlterhelés esetén az „OVERLOAD" (túlterhelés) jelzőizzó (Fig. 4-9.) kigyullad. Túlterhelés megszünése után a jelzőizzó elalszik és a tápegység automatikusan visszaáll eredeti állapotába.
A „VOLTS" (voltok) feliratú 3 kezelögombbal (Fig. 4-5-6-7.) állítsuk be a kívánt egyenfeszültséget. A kezelőgombokkal beállitott feszültségértékek a feliratok szerint összeadódnak.
Hátsó kivezetőkapcsok (Fig. 5-4.) használata esetén a Fig. 2. szerinti összeállításban a tápegység hatástalanitja a terheléshez vezető kábelele ellenállását és közvetlenül a terhelés sarkain valósitja meg a minimális belső ellenállást. Ilyenkor a $+S$ és $+U$, valamint $-S$ és $-U$ kapcsok közötti rövidrezáró lemezt ki kell venni.
Vigyázni kell arra, hogy az áramvezető kábeleken a feszültségesések összege 1 V-nál kisebb legyen.
Távérzékelés alkalmazásakor a tápegység előlapján levő kivezetőkapcsokon (Fig. 4-10.) a feszültség erősen függ a terhelőáramtól, ezért ilyenkor ide müködő áramkört ne csatlakoztassunk!

A tápegység előlapján és hátlapján levő kivezetéseket egyszerre ne használjuk, mert ez rontja a készülék stabilitását.

Távérzékelés alkalmazásakor az áramvezető és érzékelő huzaloknál kerüljük a felesleges hurkokat és a lehető legrövidebb úton vezessük a kábeleket a tápegységtől a mérőhelyig.

Ajánlatos árnyékolt kábelt használni úgy, hogy az áramvezető rész az árnyékolás, az érzékelő huzal pedig a belsó ér.
Több tápegységet, mivel földfüggetlenek, egymással sorba lehet kapcsolni, így ugyanilyen áram mellett nagyobb feszültséget lehet elérni.

Ha a kiṃeneti feszültségeket előzőleg azonosra állítottuk, hasonló típusú készülékeket párhuzamosan lehet kapesolni.

6. Az áramkörök részletes ismertetése

A hálózati feszültség az F1 biztosítékon és az S1 kétsarkú kapcsolón keresztül jut az S2 feszültségválasztóra, amely a megfelelő módon kapcsolja ezt a hálózati transzformátorra. A transzformátor kivezetései szolgáltatják azt a feszültséget, amit egyenirányítás után az áramkör stabilizál.
Az S4 és S5 kapcsolók a kimeneti feszültséggel együtt megfelelôen kapcsolják a kivezetéseket a D15-D18 diódákból álló egyenirányítóra. Az R66, R67 ellenállások csak az 5 V-os kapcsoló átkapcsolásakor játsszanak szerepet -az érintkezők közötti szikrázását akadályozzák meg. Az R61, R62 ellenállásoknak hasonló a szerepük, ezenkívül egyes feszültségleágazásoknál előtétellenállásként is szerepelnek. Az R32 ellenállás az egyenirányító diódákon a csúcsáramot korlátozza

A stabilizálatlan egyenfeszültség pozitív ága T15 áteresztő tranzisztor kollektorára kapcsolódik és ennek emittere az R24 ellenálláson keresztül csatlakozik a kimenetre. A T15 tranzisztort a T8, T9 tranzisztorokból álló teljesítményerôsítő vezérli, ezáltal az áteresztő egység nem terheli a T1, T2, T3 tranzisztorokból âlló feszültségvisszacsatoló erôsítőt. A differenciálerősitő egyik bemenete a pozitív érzékelő kapocsra, a másik bemenete pedig az R41-R60 ellenállásokból és P5 potenciométerből álló osztóra kapcsolódik. Az osztó stabil áramát az R6, P2 elemek biztosítják a C2 kondenzátor pozitív oldalán megjelenő referencia feszültség segítségével. A referenciafeszültséget hídkapcsolás állítja elő, melynek egyik ágában D7 és R3, R4 elemek, másik ágában pedig P1 és R5 elemek nyertek elhelyezést. A híd tápfeszültségét - mely egyben a vezérlőáramkörök tápfeszültsége - a D5, D6 Zener-diódák stabilizálják a D1-D4 diódák által egyenirányított és C 1 sarkain megjelenő feszültségből. P1 potenciométer segítségével a hid úgy van beállítva, hogy C2 sarkain megjelenő feszültség érzéketlen legyen a hálózati feszültségingadozásra. P2 segítségével az osztó áramát és ezzel a kimeneti feszültséget lehet beállítani.

A C4, C5 és P4 elemek gerjedésgátló szerepet játszanak. P4 segítségével a tranziens feléledési időt lehet beállítani.

A DC kapcsoló kikapcsolt állapotában egyik áramköre a feszültségvisszacsatoló-erősitő kimenetét hatástalànítja, másik áramköre pedig a kimenetet zárja rövidre R36 ellenálláson keresztül.
Az R7 ellenállás a készülék terhelt állapotában kis áramot visz az osztóba, ezáltal a tápegység belső ellenállása kisebb lesz.

A P6 „CURRENT LIMIT" potenciométeren a T4 tranzisztor hajt át állandó áramot. P6 feszültségének és R24 feszültségének (amit a kimeneti áram okoz) különbsége kerül rá T6, T7 tranzisztorokból álló túláramvédőerősítő bemenetére.

A Fig. 1-en látható D kapcsolóelem szerepét itt T11 tranzisztor tölti be. Amikor a kimeneti áram olyan nagy lesz, hogy P6 és R24 feszültségeinek különbsége nullává, vagy ellenkező irányûvá válik, akkor a T6, T7 tranzisztorokból álló túláramvédőerősítő T 11 tranzisztoron keresztül a teljesítményerősítő fokozat bemenetét negatív irányba húzza el és ezáltal a kimenőfeszültség csökken. A kimenöfeszültség relatív csökkenésével arányos áram fog folyni a T5 tranzisztoron keresztül is - amely eddig lezárt állapotban volt -, ezért P6 feszültsége, ezzel együtt a kimeneti áram is csökken.

Amikor a túláramvédő beavatkozik, a T1, T2, T3 erősitő kimeneti árama T11 tranzisztoron fog átfolyni. Ez az áram kinyitja T-12 tranzisztort, ami által kigyullad az „OVERLOA D" (L2) jelzöizzó.

A C3 konđenzátor váltakozó feszültség szempontjából kis ellenállást képvisel - zajcsökkentő szerepe van. A C12 és C18 kondenzátorok a kimeneti impedanciát csökkentik.
A D14 dióda az ellenkező polaritású feszültségektől védi meg a tápegységet.

7. Mechanikai konstrukcio

A készülék rack-rendszer ṡzerinti méretekkel készült ($3 \mathrm{~m}^{\circ}$) és az elôlaptoldatokkal mint építôegység, nagyobb bérendezésekben is használható. Rack-szekrénybe helyezéskor a készülék palástját le kell szedni.

8. Karbantartás

A készülék különösebb karbantartást nem igényel.
A múszereknél szokásos általánios tisztítỏ eljárásokat a kapcsolókon évenként ajánlatos végrehajtani.
A karbantartáshoz a készülék palástját szedjük le!
A készüléket kidobozolni csak feszültségmentes állapotbản szabad!

9. Javítás

A meghibásodott készüléket dobozoljuk ki a 8. pontban leírtak szerint.
Elsôsorban a segédfeszültségek értékét ellenőrizzük!
Ezután a vezérlő elektronika egyes pontjain mérjünk feszültséget!
A hibás alkatrész kicserélése után a készülék elektromos jellemzőit újból be kell allitani a következő potenciométerek segítségével

P1 - hálózati stabilitás
P2 - kimenőfeszültség
P3 - maximális tèrhelőáram
P4 - tranziens feléledési idő.
Az alábte táblázat mutatja az egyes mérőpontokon a helyes feszültségértéket.
A mért értékek a „+, ${ }_{\text {, }}$, kivezetőkapocshoz képest értendők. A méréseket min $20000 \mathrm{ohm} / \mathrm{V}$-os múszerrel vègezzük.

Mérőpont	Mért érték	Eltérés	Megiegyzés	
C1	$(+)$	$+5,6 \mathrm{~V}$	$\pm 10 \%$	
C 1	$(-)$	-39 V	$\pm 15 \%$	
D 5	A	$-6,1 \mathrm{~V}$	$\pm 10 \%$	
T 4	B	$-1,5 \mathrm{~V}$	$\pm 10 \%$	
C 8	$(+)$	+7 V	$\pm 10 \%$	terheletlenül
C 9	$(-)$	-7 V	$\pm 10 \%$	terheletlenül
T 1	B	0 V	$\pm 15 \mathrm{mV}$	
T 8	B	$+0,8 \mathrm{~V}$	$\pm 20 \%$	terheletlenül
T7	B	$0 \mathrm{~V}--1,2 \mathrm{~V}$		P6 állásától függóen
T11	B	$+5,6 \mathrm{~V}$	$\pm 10 \%$	
C8	$(+)$	+5 V	$\pm 20 \%$	névleges terheléssel
T11	B	$+0,5 \mathrm{~V}$	$\pm 20 \%$	túlterhelve

10. Alkatrészjegyzék

Tranzisztorok

T1	BC 107 B	Tungsram
T2	BC 107 B	Tungsram
T3	BC 212	Texas
T4	BC 107 B	Tungsram
T5	BC 212	Texas
T6	BC 107 B	Tungsram
T7	BC 107 B	Tungsram
T8	BFY 34	Tungsram
T9	2 N 2905	Texas
T11	BC 212	Texas
T12	BFY 34	
T15	2 N 3055	

Diódák

D1	BAY 44	Tungsram
D2	BAY 44	Tungsram
D3	BAY 44	Tungsram
D4	BAY 44	Tungsram
D5	ZG 5,6	ITT
D6	ZG 5,6	ITT
D7	ZG 5,6	ITT
D8	BAY 44	Tungsram
D9	BAY 44	Tungsram
D10	BAY44	Tungsram
D11	BAY44	Tungsram
D12	BAY 44	Tungstám
D13	-	নi'
D14	D242	Szovjet
D15	D242	Szovjet
D16	D242	Szovjet
D17	D242	Szovjet
D18	D242	Szovjet
D19	BY 236	Jugoszláv

Ellenállások

Potenciométerek

Poz.	Érték (ohm)	Terhelhetőség (Wz.	Türés $(\%)$	Típus	Gyártmány
P1	470	0,7	10		
P2	270	0,7	10	P 8102	Remix
P3	470	0,7	10	P 8102	Remix
P4	1 k	0,1	30	NPB-32	Remix
P5	300	1	5	P 812	Remix
P6	300	1	5	P812	Remix

Kondenzátorok

Egyéb		FOK-GYEM
Tr1	hálózati transzformátor	EKM
M1	áramméró 71 DA-2	Kontakta
J1	hálózati csatlakozóalj Mkof 2-62 b	Kontakta
J2	szorítócsavaros egysarkú csatlakozóhüvely DA 114-n	Kontakta
J3	szorítócsavaros egysarkú csatlakozóhüvely DA 114-n	Kontakta
J4	szorítócsavaros egysarkú csatlakozóhüvely DA 114-n	Tungsram
L1	jelzőizzó 6 V, 0,1 A, BA 7s fejjel	Tungsram
L2	jelzőizzó 6 V, 0,1 A, BA 7 s fejjel	Kontakta
S1	billenókapcsoló Kbmo 56	EMG
S2	szerelt csőfoglalat N-DEB 07 R	EMG
S3:	hálózati feszültségváltó-dugó N-CAD 09 Y	Kontakta
S4	billenőkapcsoló KBmo 56	Kontakta
S5	kefeérintkezős műanyag tárcsás kapcsoló KT 1211	Kontakta
S6	kefeérintkezős műanyag tárcsás kapcsoló KT 1211	Kontakta
F1	G20 biztositószerelvény	VTV

