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Carrier Distortion in Hysteretic Self-Oscillating
Class-D Audio Power Amplifiers:
Analysis and Optimization

Mikkel C. W. Hgyerby, Member, IEEE, and Michael A. E. Andersen, Member, IEEE

Abstract—An important distortion mechanism in hysteretic self-
oscillating (SO) class-D (switch mode) power amplifiers-—carrier
distortion-—is analyzed and an optimization method is proposed.
This mechanism is an issue in any power amplifier application
where a high degree of proportionality between input and output
is required, such as in audio power amplifiers or xDSL drivers.
From an average-mode point of view, carrier distortion is shown to
be caused by nonlinear variation of the hysteretic comparator input
average voltage with the output average voltage. This easily causes
total harmonic distortion figures in excess of 0.1-0.2 %, inadequate
for high-quality audio applications. Carrier distortion is shown to
be minimized when the feedback system is designed to provide
a triangular carrier (sliding) signal at the input of a hysteretic
comparator. The proposed optimization method is experimentally
proven in an audio power amplifier leading to THD figures that
are comparable to the state of the art. Experimental hardware
is a hysteretic SO bandpass current-mode-controlled single-ended
audio power amplifier capable of 45 W into 8 2 or 80 W into 4 2
from a +£34 V supply with less than 0.03% THD from 100 Hz to
6.7 kHz. Carrier distortion is shown to account for this limitation
in THD performance.

Index Terms—Audio, class-D, hysteretic, power amplifier,
sliding.

I. INTRODUCTION

WITCH-MODE (class D) audio power amplifiers have
S been a commercial success over the past decade, replacing
traditional linear (class A/AB/B) amplifiers in many applica-
tions. The main driver has been the reduction in physical size
resulting from the increased efficiency [1].

It is generally well understood that errors in the switching
stage of the class-D amplifier can introduce significant har-
monic distortion to the amplifier output [1]-[3]. However, with
the ever-increasing performance of modern power MOSFETs,
the significance of switching stage errors diminishes [4], [5].
As a result, the distortion generated by the pulsewidth modu-
lation (PWM) and control process itself becomes visible. An
excellent illustration of this is given in [5], where the distor-
tion generated by the injection of switching ripple components
from the feedback circuitry into the PWM is analyzed by the
use of discrete-time system theory. As presented, this analysis is
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only applicable to clocked/driven control systems, such as those
based on the traditional triangle-and-comparator PWM.

For self-oscillating (SO) control systems, which have been
successfully commercialized [6] for class-D audio, details on
the distortion generated by the modulation and control process
are more scarce, although a very good example is given in [7]
for SO systems without comparator hysteresis. However, design
suggestions on how to affect the amount of distortion generated
by the modulation process are not offered, nor does the anal-
ysis directly apply to SO systems with comparator hysteresis.
For these systems, only a few hints on optimizing modulation
linearity are offered [8]-[10].

This paper examines distortion generated by the modulation
process in the hysteretic SO class of control systems, a class
that has yielded some of the most impressive [9], [11] THD
figures published for switch-mode audio power amplifiers. The
analysis is carried out using the well-established average mod-
eling approach, leading to an optimization method proposal that
is consistent with prior art findings, and complemented by ex-
perimental results on a representative, nontrivial, hysteretic SO
class-D audio power amplifier. Although this paper is focused
on audio power amplification, other applications exist where
accurate amplification of ac signals is required. One example is
various digital subscriber line (xDSL) drivers [7], where high
output spectral purity is required. Another example is tracking
power supplies in high-efficiency RF power amplification sys-
tems [12]. Here, the tracking power supply in some schemes
directly modulates the output of an RF power amplifier, adding
any distortion introduced by the tracking power supply to the
RF power amplifier output. A final example is ac transmission
systems [13], [14].

II. HYSTERESIS-BASED SO CONTROLLERS

The hysteresis-based SO controllers reviewed in this pa-
per can be considered a small, low-complexity subset of the
very large set of sliding-mode control (SMC) systems. For au-
dio power amplification using a single-phase buck-type power
stage, the hysteretic SO control system will generally con-
tain one comparator with hysteresis, which, based on a linear
combination of system states and the audio input, selects one
of the two possible switching states (high/low) for the power
stage.

A very simple but applicable example of such a control system
is the astable integrating multivibrator (AIM) [8], [15] shown
in Fig. 1. Capable of good results [8] in practice, it has the

0885-8993/$25.00 © 2009 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 4, 2010 at 09:33 from IEEE Xplore. Restrictions apply.



HOYERBY AND ANDERSEN: CARRIER DISTORTION IN HYSTERETIC SELF-OSCILLATING CLASS-D AUDIO POWER AMPLIFIERS

715

Ko
Integrator \J/—s
V, - Verr Vcarrier _i L
ref — 3 E’ S — Vout
a Vewm C

with hysteresis

Fig. 1.

disadvantage of not having feedback around the output fil-
ter, increasing the impact of the output filter design on am-
plifier distortion levels, output impedance, and frequency re-
sponse [6], [9], [11]. Several alternative hysteretic SO con-
troller implementations have been proposed in the context of
audio power amplification, where the main difference lies in
the way in which the output inductor current is effectively fed
back, since this is the most difficult system state to measure.
Some solutions opt for feeding back the output capacitor cur-
rent instead, since this is the same as the inductor current with
output current feedforward added [16]. The capacitor current
can either be estimated by differentiation of the capacitor volt-
age [9], [17] and added to the raw capacitor voltage as done
by proportional-derivative (PD) feedback, or measured directly
with a current sense transformer [11], [18]. Alternatively, the
inductor current can be estimated by low-pass filtering of the
inductor voltage [10], effectively leading to bandpass current
control [19]. In all cases, the use of postfilter feedback generally
serves to lessen the negative effects of the output filter. Many
very similar solutions have appeared in the somewhat wider
context of single-phase buck dc/dc converters, where PD-based
capacitor voltage feedback is richly represented [20]-[23] along
with capacitor current feedback [24], [25] and direct inductor
current feedback [26]. It has also been shown that the equiv-
alent series resistance of the output capacitor can be usefully
incorporated into the capacitor current estimation system [27],
relaxing the demands on the differentiation circuitry.

At this time, it is useful to formally define the class of sys-
tems studied as any system with a hysteretic comparator driving
a linear time-invariant system with relevant feedback and refer-
ence inputs added, as shown in Fig. 2. Of particular interest, it
turns out, is the generation of the carrier signal (V¢ayrier ), Which
is described by the effective controller transfer function (a.k.a.
“loop filter” [5]), Getn1 (8):

‘/carrier (S)
Vewwm (s)

Gctﬂ(s) (1)

These generalizations allow all of the aforementioned systems
to be represented, and are often adopted in prior art [28]-[30].

As sliding mode controllers, extensive theory [31] exists for
dealing with the stability and dynamics of hysteretic SO con-
trollers. In the application of controlling simple switch-mode

omparator

Simple hysteretic SO audio power amplifier example—the AIM [8], [15].

power converters, classical sliding mode theory is based on the
assumption

‘/carrier =0 (2)

where Vi,yrier 18 the input to the hysteretic comparator, generally
known as the “sliding variable” in SMC context or the “carrier
signal” in SO control context. This approximation can be very
useful [32], but also has its shortcomings [16]. For the presented
study of linearity and distortion in sliding mode controllers, it
is absolutely essential to depart from this basic assumption. The
carrier voltage is still usefully described as almost zero, but the
implications of “almost” need to be considered

charricr ~0

3

Prior art has demonstrated several examples of this; a nonzero
carrier average was used in [33] to assign a low-frequency gain
to the hysteretic comparator, and it is well known [34] that a
describing function can be used to find its gain at the switch-
ing/oscillation frequency of the control loop. These two methods
can even be combined to yield an estimated, but still quite ac-
curate, transfer function for the hysteretic comparator [35]. A
nonzero carrier average caused by delays in the comparator and
power stage is shown in [36] to lead to inaccuracy in the av-
erage output current of a hysteretic current control loop. In the
following, the effects of nonzero carrier average caused by the
properties of Gt,1(s) are examined.

III. CARRIER DISTORTION

The carrier distortion [8] mechanism in hysteretic SO con-
trollers is claimed [8]—-[10] to be a function of the shape of the
carrier signal waveform, with a triangular waveform being the
optimum. In order to properly explain this proposed distortion
mechanism, it is useful to examine the simplest conceivable
hysteretic SO control system: the AIM. The approach adopted
is to analyze the average (dc) carrier voltage variation with the
amplifier dc operating point, expressed as a steady-state duty
cycle D for different degrees of integrator ideality. Under the
assumption of quasi-stationary behavior, the dc characteristics
of the loop will also apply at audio frequencies [5]. Practically,
the integrator in the AIM is replaced with a pole and a gain
to provide variable carrier signal “straightness” in a way that
is simple enough to allow exact analysis. With this imperfect
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Fig. 2. Generalized views of hysteretic SO control systems for audio applications. (a) Overall system. (b) Carrier generation process.
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: Aty PooAt, ! (Vewm)r, =2(D—1)= Vi =2(D—1)  (8)

The input to the loop filter is given by
Fig. 3. AIM carrier waveform (D = 1/3) with single-pole G,1(s) as con-
sidered for carrier distortion analysis. Ve ayrier.dcis the average of the carrier _ _ Viet +1, Vpwn = —1
waveform, which evidently can be nonzero in spite of a symmetrical hysteresis Verr = Viet = Vpwm = Ve — 1. Vownr — 1 C))
window £V}, and zero delay. ref ) PWM —
This can be rewritten as
integrator, a representative example of the carrier signal in the 2D, Vowm = —1
AlIM is shown in Fig. 3. Note that zero time delay in the compara- Verr = { (10)
2(D-1), Wwwu=1

tor and power stage has been assumed for the analysis performed
hereafter. &V}, denotes the hysteresis window. Likewise, it
has been assumed that V; = 1 and Ky, = 1 in order to clarify
the analysis.

The AIM loop integrator is replaced with the transfer function
G(s), which also becomes the G..,1(s) of the system

Gy

G (8) = Gctr] (S) = W
p

“
Note that G, is a gain that numerically equals 7,,, a distinction
made to avoid unit confusion in the following analysis. The
purpose of this particular choice of Gy, is to ensure that G,1(s)
converges toward the ideal integrator when 7, is made large
. 1
lim Gy (s) = 5 5)

Tp —00
The step response of Ge,1($) is given by
step {Getrt (5)} = G (1 — e /7)) ©

Assuming that the feedback system has high loop gain, the
steady-state PWM voltage per-cycle average will represent the

In this case, D and (D — 1) both stringently have the unit of
V. Since the PWM signal can be considered as a series of step
functions, a segment of the carrier voltage can be found by using
the step response of G.,1(s) and observing that an initial value
has to be added to reflect the presence of the hysteresis window
£WViyst- The carrier voltage will change exponentially with time
constant 7, and initial and final values as given in Table I.

The carrier voltage can thus be described as

V:tarrier (t)

. *‘/hyst+ (ZDG[7+‘/I1ySt) (I*ei(t/q—p)) ) VP\V]\'I =-1
‘/hyst+ (2 (D - 1) Gp_‘/hyst) (l_ei(t/%)) ) VP\Vle
(11)

The up/down-slope periods At,,, and Atg4, can now be found
by adding the boundary condition of the carrier signal hitting
the hysteresis window, leading to the equations

_Vvhyst + (ZDGp + Vvhyst) (1 - ei(At"p/Tp)):Vvhyst A Vilyst
+(2(D = 1)G) = Vigst) (1 — e B0/m))= — Vi (12)
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AIM carrier DC voltage vs duty cycle for different values of Vi
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Fig. 4. Modeled (16) and simulated carrier dc voltages plotted for variable
duty cycle. Modeled results match simulated results very well.

These equations can be solved easily, leading to
2‘/11 st

—7r,ln(1—- —— ¥

TI " < 2DG]) + ‘/hyst

2‘/11 st
=—7,In{1- s 13
%“< 2ODM%+%W) (13)

Atup = > A Atdn

In order to provide a more general view of the influence of
T, on system behavior, 7, can be normalized to the nominal
(D = 0.5) switching period (Tiy nom) of the loop

Tp Tp

B Atup + Atdn

Thorm = T (14)

Sw,nom

D=0.5

Now, the only problem is to find the average (dc) value of
the carrier voltage with the given variables. This is done by
calculating the per-cycle average of the carrier by integrating
the carrier voltage over one switching period

1 Atup +Atdn
/ charrier (t) dt
0

Vearrierde (D) = ———————
o e7d(( ) Atup Atdn
(15)

Solving this integral (Mathematica was used for symbolic
solution) results in (16) as shown at the bottom of this page.

This expression is best analyzed by plotting the expression
output for different parameter inputs as in Fig. 4. It is obvious
that the carrier dc voltage varies with D in a nonlinear manner
when the loop filter is not an integrator. If 7, approaches infinity,
this expression can be shown to converge toward zero. Since the

GHC,DC vs duty cycle for different values of R
60
= T = 0.81 (model)
norm
— T =0.83 (model)
50 norm
T =0.81 (sim.)
’ norm )
X T, 083 (sim)
40+
2 L Xx
8 30t 4
o
N o
0]
X
20+
101
0 : : . i |
0 0.2 0.4 0.6 0.8 1
Duty cycle (D)
Fig.5. Modeled [using numerical evaluation of (17)] and simulated hysteretic

comparator dc gain Gyc,q.. Deviation from the ideal loop filter (7, = o)
causes reduction and nonlinearity in Gxc qc- Results for 7, = oo would be
a horizontal line at Gxc qc = oo. The nonlinearity is symmetrical around
D = 0.5, so only odd harmonic distortion is produced.

gain of the hysteretic comparator can be defined as

_ ((0(Vewm)r,, )/OD)
GHCde (D) B ((8errier,dc ?D))/aD)

2
= (@ermorae @pjoD) 1P

it is also obvious that the hysteretic comparator exhibits a non-
constant gain at dc. In other words, a nonlinear element has been
introduced into the loop, leading to harmonic distortion. This
distortion generated by the nonlinear variation of Viaprier,ac With
D is exactly what has previously been named carrier distortion.

For the AIM with the considered, imperfect loop filter, even
with all the simplifications made (zero time delay, only dc con-
sidered), the analytical expression for Grc 4. gets too com-
plicated to be of real value, so numerical differentiation was
used for finding the carrier dc voltage derivative. Analytical
and simulated values of G 4. are shown in Fig. 5. Since
Vearrier,dc (D) is generally larger and more variable for smaller
values of 7,4, , the dc gain of the hysteretic comparator also
decreases with 7,01, . Since the average of a perfectly triangular
carrier oscillating within =V}, is zero, the dc gain of the hys-
teretic comparator could theoretically be infinite. In practice,
time delay in the comparator (and power stage) ensures that this
never happens [33], [35].

In order to evaluate the effect of the found variation of
Vearrier,dc With D on amplifier distortion, the system is modeled
as shown in Fig. 6.

(1= D)In (1~ (2Viyst/(2G, (1 = D) + Vigsr))) = DIn (1 = (Vigss /26, D + Vigar))

V::arrier,dc (D) = _2Gp

In (1 — (2Vhyst/(2G, (1 — D) + Viyst))) + In (1 — (2WViyst /(2Gp D + Viyst)))

(16)
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Fig. 6. Model of the AIM loop used for determination of output voltage
waveform when taking carrier distortion into consideration. Reference signal
Viet (t) is assumed to be dc or “almost dc.”

The output of the AIM model in Fig. 6 is given by

‘/carrier,dc (‘/I'ef (t))
Gctrl (0)

The output, V,, is here formally defined as the per-(switch)-
cycle average PWM voltage

Vout (t) = Vier (1) — (18)

Vout = (VewM) 71, (19)

Assuming that the output voltage has relatively low distortion,
the D of the AIM will be determined almost exclusively by Vies.
Thus, for a given V¢, D is approximated as

1
D=5 (Viet +1) (20)
For a sinusoidal input
Viet (t) = M sin (27 frert) (21)
the duty cycle is therefore approximated as
1
D(t) = 3 [M sin (27 frert) + 1] (22)

Note that since the studied AIM has a reference-to-output
gain of unity and conceptually operates from 1 V supplies, the
amplitude M of the sine wave corresponds to the modulation
index of the PWM signal. The peak duty cycle D, and the
modulation index M are generally related as follows:

1
Dhax =-(1+ M)

23
> (23)
Thus, the output of the AIM is
1
Vout () = 3 [M sin (27 froft) + 1]
_ V;‘,arrier,dc (% [M sin (27rfreft) + 1]) (24)

Gctrl (0)

This expression is best evaluated numerically, yielding the
averaged output of the AIM, complete with carrier distortion.
As shown in the calculated example waveforms in Fig. 7, the
distortion generated by using a pole as a loop filter in the AIM
is of expansive character, causing the peaks of the reference
signal to come out at a higher level than desired. This is per-
haps surprising, since G 4. i reduced at high D. However,
this compressive action is more than counteracted by the re-
quirement for a specific carrier dc voltage Viarrier,dc t0 be
present for a given D. As an example, assume that the refer-
ence is +0.5. The loop will attempt to establish a D of 0.75,
but looking at Fig. 4, the carrier voltage must contain a small,
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AIM output with sine wave input for different values of I

=0.81 (model)
=0.82 (model)
=« (model)

T
norm

— T

norm

0.6 — T orm

0.4

Average output voltage, V om(t) V]
o

0 0.2 0.4 0.6 0.8 1
Normalized time (t*fref)

Fig. 7. Calculated AIM output with values of 70, (M = 0.65). Carrier
distortion caused by small time constants causes signal expansion at high output
levels.

negative dc component. Looking at Fig. 6, this can only be pro-
duced by an output dc voltage that is slightly higher than pre-
scribed by the reference, causing the expansion effect apparent
in Fig. 7.

From the AIM output, harmonic distortion products are found
by Fourier analysis. The output waveform is expressed by the
Fourier series (with complex coefficients) given by

t=(1/ fret) )
Cout,n = frcf/ V:)ut (t) 67]27Tfr(tfndt (25)
t

t=0

where |cout,1,| corresponds to the fundamental amplitude,
|Cout,3, | corresponds to the third-harmonic distortion product,
etc. The THD generated by carrier distortion can be calculated
from these numbers by evaluating the following expression:

\/‘cout,2|2 + |Cout,3|2 +--+ |Cout,n |2

THD =
|Cout71|

(26)

In practice, the following expression is a good approximation
since there are no even harmonics:

\/‘Cout,3|2 + |Cout,5

|Cout,1|

2 + -+ |Cout.n|2

THD =~

27)

In the studied AIM example, we numerically evaluate har-
monics and THD from the derived analytical expressions and
compare them with simulations results in the numbers shown in
Figs. 8—11. It is evident that the analysis approach shown is ca-
pable of describing the carrier distortion mechanism very well.
It is also evident that this mechanism can easily produce signif-
icant harmonic distortion in an amplifier with a perfect power
stage with stiff supply voltage, and no delay and no dead-time
distortion, justifying the analysis performed. Finally, the gener-
ated distortion exhibits strong variation with 7,4,y in the area
of 0.80-0.85. This simply reflects that the first segment (well
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Modeled output voltage harmonics for different values of -

ok o o 0.81 (model) THD=0.078%

= O % =0.82 (model) THD=0.031%
[as] norm
= O  uom = 0.83 (model) THD=0.0041%
3 20 O o = (model) THD=2¢-006%

2 40t
o
()
°
2
a -60F
£
©
e
Q
N
g -80+
5 o

-100
1 3 -4 7 9
Normalized frequency (n)
Fig. 8. Output harmonics from AIM found by calculation; M = 0.2.

Simulated output voltage harmonics for different values of -
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Fig. 9. Output harmonics from AIM found by simulation; M = 0.2.

below t = 7,) of an exponentially shaped carrier has almost-
constant slope, with curvature becoming significantly closer
to 7.

Several implications result from this analysis. First, it allows
for proper explanation of the carrier distortion phenomenon by
reference to the average modeling technique used. The expla-
nation offered is that a nontriangular carrier signal (the result
of not having an integrator-type Ge,1(s)) requires voltages that
are a nonlinear function of the reference voltage to be present
at the hysteretic comparator input, directly causing distortion,
and in the process causing the hysteretic comparator to exhibit a
nonconstant small-signal dc gain. Second, it allows the amount
of carrier distortion in a class-D audio amplifier design to be
predicted analytically from data on the carrier signal dc voltage.
This is useful information in that it provides a designer with a
tool for determining just how “perfect” the carrier signal should
be to meet a target THD specification without time-consuming,
repetitive simulations of multiple reference signal periods. Fi-
nally, the analysis supports statements in prior art [8] claiming
that the carrier signal should be triangular (resulting from the
use of an integrator as loop filter in the AIM), arguing from the

Modeled output voltage harmonics for different values of -
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m norm
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Fig. 10.  Output harmonics from AIM found by calculation; M = 0.65.
Simulated output voltage harmonics for different values of -
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Fig. 11.  Output harmonics from AIM found by simulation; M = 0.65.

point of view that the carrier voltage dc component should be a
linear function of duty cycle to avoid causing nonlinearity. It is
then taken as a trivial matter to show that a perfectly triangular
carrier oscillating between +/— Viyst has to have an average
of zero for any D.

IV. CARRIER DISTORTION OPTIMIZATION

The previous section provided an analytical justification for
pursuing a triangular carrier signal. In an AIM, this is easy; any
practical operational amplifier has enough dc gain for realizing a
loop filter that sufficiently resembles an integrator. In other feed-
back configurations, however, the problem is much more severe.
For example, considering the hysteretic bandpass current-mode
(BPCM) control topology demonstrated in [10] (and illustrated
in Fig. 12), it is not obvious how to make the output of the
combined voltage and current estimate feedbacks respond with
a ramp to a step input, except perhaps by perfect estimation
of the inductor current and removal of the output voltage feed-
back. This would make the amplifier a current source instead of
the desired voltage source. The hysteretic BPCM topology has
still been demonstrated to be capable of very good THD figures
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Fig. 12.  Simple single-ended BPCM amplifier implementation [10].
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(0.01%-0.03% range) with a modest control system complex-
ity. It is a dual-loop feedback system, which incorporates the
output filter dynamics, making the loop design nontrivial in
comparison with the AIM. As such, it is an ideal test vehicle
for the demonstration of a new analytical carrier distortion min-
imization technique based on the pursuit of a triangular carrier
signal.

The carrier linearization approach that is proposed has the
objective of shaping the step response of G.i,1(s) as a ramp.
The proposed method for minimization and evaluation of carrier
distortion is simply as follows.

1) Compute the step response of G.4,1(s) analytically.

2) Compute second (time-) derivative of G.iy1(s) step re-

sponse.

3) Usesecond derivative to find criteria for ensuring constant-

sloping step response.

4) Use found criteria to design control loop.

5) Optional: fine-tune design by iterative simulations.

6) Optional: Evaluate Veayrier,dc (D) of design and determine

carrier distortion-caused THD.

Step 3 is the main part of the method-—since a constant-
sloping (carrier) signal is characterized by its second derivative
being zero, forcing the second derivative of the carrier signal
response to a PWM step to be zero should lead to a constant-
sloping (linear) carrier signal. Step 5 is typically the only tool

Output filter

1 I Ricad Vou

\A sL 1+ SR|°adC

Small-signal model of BPCM amplifier [10] using infinite-gain (equivalent to assuming sliding-mode operation [23], [31]) hysteretic comparator model.

available. It has been included since a number of approximations
must be made when computing the step response of Get,1(s),
resulting in a design that may be slightly suboptimal. Still, the
proposed method saves considerable design time by reducing
the number of iterative simulations required or removing these
completely. Step 6 allows for a prediction of the minimum
level of THD that can be expected from the optimized de-
sign, providing a second-source reference for comparison with
simulated THD. The remaining parts of this section illustrate
the proposed approach with the BPCM-controlled amplifier.
Fig. 13 shows how the BPCM amplifier may be broken down
to block diagram form, with relevant parameters summarized in
Table II.

For the carrier generation, the contributions from two feed-
back paths (current estimate and output voltage) can be ex-
pressed by the following transfer functions:

Vearrier,BPCM (S) N,
G ' = - - 7 = c -
BPCM (S) Vown (5) fb X 1+ 57
% 1 XSLX1+5RloadC
SQLC + (L/Rload)s +1 Rload
V:zarricr.out (3) 1
Gowt (8) = ——————2 =K., X
«(5) Vew () PSP LCH(L/ Rigaa)s+1

(28)
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TABLE II

PARAMETERS IN HYSTERETIC BPCM AMPLIFIER MODEL
Load resistance Riaa
Output filter capacitance C
Output filter inductance L
Inductor sense winding ratio N,
Current estimator time constant Test
Current feedback coefficient Ko
Voltage feedback coefficient Ky
Reference feed-forward coefficient Koy

From these transfer functions, G, (s) is found to be
Vearrier. BPeM (8) + Vearrier out (8)
Vewu ()
B 1
~ 82LC + s(L/Ripaq) + 1
Np, sL (SRloadC + 1)
1+ 5Test Rioad

Gctrl (5) =

X | Kem + Ko

(29)

Obviously, this transfer function cannot be reduced to a simple
integrator provided that the poles of the output filter are complex
and that 7.5y < 00, thus making the carrier optimization nontriv-
ial as previously stated. With the output filter transfer function
Giilter (8) as a factor in G, (s), it makes sense to start by com-
puting the step response of the output filter transfer function,
Grilter (), given as

1
s2LC + S(L/Rload) +1

Gﬁlter (S) = (30)

Assuming Rj,.q to be very high (a “high-Q)” approximation),
this simplifies to

1 /(JI0) an

Giitter (8) =~ S2LC+1 &2 4 (1/LC)

QR>>1
Combining this with the Laplace transform of a step function
(1/s) results in an expression that can be easily reverse Laplace
transformed. The response of the output voltage to a PWM
voltage step is hereby found to be

V:Jut step (t) = 871 {1 X (I/IC)}
’ s s24+4/(1/LC)

=1—cos (&t) (32)

The output voltage feedback component of the carrier signal
thus exhibits the following step response:

1
Vcarrier,out?step (t) = vab |:1 — COS <\/ﬁt>:| (33)

The current estimator output can be usefully reexpressed as

K., N,
Vearrier,.BPeM (8) =Vow (8) [1—Giiter ()] 1_:% (34)
est

Note that at the frequencies of interest for carrier shaping (fre-
quencies in the range around the switching frequency), Gier ()
is negligible compared to 1 (the filter cutoff can be more than a
decade away from the switching frequency), allowing this con-
tribution to be neglected. Practically, this corresponds to assum-
ing the output voltage to be constant, i.e., free from switching
ripple. This is also intuitively reasonable since the ac component
in the PWM signal will be much larger than the ripple voltage
in any practical design. Therefore

Ng

35
1+ STest (33)

Vearrier,BPCM (8) = Veww (8) Koy X

The response of the BPCM component of the carrier to a
PWM step is hereby

1 N,
V:"erior Istep (£) = 671 — X Kc py X ——— 36
arrier,BPCM,step (t) {s X T } (36)

Again, doing a reverse Laplace transformation, this can be
reexpressed as

‘/carricr,BPCM,stcp (t) = chb X NL X [1 - eiTCS”‘] (37)

Hereby, it has been found that the carrier response to a PWM
voltage step is approximately

Vcarrier,step (t) = step {Gctrl (S)}

1
~ Ko |1 —cos | —=t || + Koo N1, [1 — e7Testt] (38
b [ (\/Li(] )] wNL | | 38)

Now, the carrier signal slope can expressed as

Ko, sin( 1 t) n K Np
vV LC vV LC Test (39)

To ensure that this signal has a constant slope (at least over a
brief time horizon following the step), the following optimality
criterion is applied as per step 3) in the optimization method:

X e_'rest t

‘./::a‘rrier,step (t) =

%arricr,stop (0) =0

Of course, it would be preferable to demand this for all time
instances-—but this cannot be solved for the BPCM control sys-
tem since only an integrator has an ideal, constant-sloping step
response and G;1(s) of the BPCM amplifier is indeed not an
integrator. It should also be noted that this criterion is only use-
ful in a controller structure that is actually capable of producing
a triangular carrier signal. This will be the case if the inductor
current, or a high-frequency estimate of this is fed back, since
the inductor current is (almost) triangular, especially at high
switching frequencies. Differentiating the carrier slope leads to

) K Np

2
Test

(40)

—Testt

- vab 1
V;arrienstep (t) - COs X e

LC vLC
(4D

Applying the optimality criterion results in the following sim-
ple expression that should be satisfied for an optimal design of
the considered BPCM controller:

Kom _ Kem x Ng
LC T2

est

(42)
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TABLE III
PROTOTYPE BPCM AMPLIFIER DESIGN CONSTANTS
Component Value
L 20.25uH
C 2uF
Ny, 2:9
Test 3.3us

V. EXAMPLE PROTOTYPE AMPLIFIER DESIGN

To demonstrate the usefulness of the proposed optimization
method, a practical amplifier design is considered. Initial design
constants are summed up in Table III. The design considered is
single-ended and based on the use of 100-V switching compo-
nents and a 20.25-pH dual-winding power inductor on a gapped
RM10 ferrite core, combined with 2 ©F of output capacitance.
For the typical speaker load of 4-8 ), this leads to a minimum
filter @ of 1.26, not exactly infinite as approximated, but still
underdamped. The current estimator time constant (7.s;) was
set at 3.3 us, realized with Resy = 100 Q and Cosy = 33 nF.

In order to increase the amplifier immunity to low-frequency
supply voltage perturbations, as well as to help establish the car-
rier voltage dc operating point, the basic BPCM control system
is augmented with a parallel integrating control loop as shown
in Fig. 14. Equation (42) can still be used to predict the optimum
feedback coefficients given that the integrator time constant is
kept slow enough compared to the switching frequency, which
ensures that the G.,1(s) step response is not significantly influ-
enced within a time frame of one switching cycle. Note that the
paralleling of proportional and integral output voltage feedback
effectively provides PI output voltage feedback, hence the term
BPCM —+ PI used for describing this topology. In the imple-
mentation shown, the comparator and the operational amplifier
run off a single +5 V supply (V..) generated from +V; (34 V.)
This is permissible since the operational amplifier has rail-to-
rail inputs and the comparator inputs have dc offsets added via
resistors to V..

Taking into account the carrier voltage dc bias resistor Ry;as,
the BPCM controller gain constants are given as

vab ‘ |RVH ‘ |Rbias

K, =
7 (Rt |[Rutt || Rotas) + et
K o Rcfb | ‘vaf | |Rbias
vib =
(Rcfb | ‘Rvﬂ | ‘Rbias> + vab
Rv') R,') R)ias
Kog = ft H cft H 1 (43)

(vab ‘ |Rcfb ‘ |Rbias) + vaf

From these expressions, the ratio Ky, /K.f, can be derived
as

Ko

K,

R,
R

(44)

Setting R.g, = 10 k€, the analytically predicted optimal
R, is 8.264 kS), which was rounded off to 8.2 k{2 in the
prototype design. In order to get a closed-loop gain of 20 dB,
R.g was set to 1 k). The carrier dc bias point Viayrier,bias Was
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set using Ryi,s from the following expression:

vab | |Rcfb | |vaf
Ry || Rew || Rvir + Rbias

The choice of Ryi.s = 3.3 kS thus lifts the carrier dc oper-
ating point to 1 V, to ensure that the carrier stays within the
common-mode input range of the comparator. The prototype
design gain coefficients are summed up in Table IV along with
the true optimum coefficients and two sets of suboptimal coef-
ficients. The suboptimal designs represent the lumped effect of
component tolerances that are likely to be significant in the out-
put filter components. Although K.p, is physically determined
only by resistors, deviations in L and C' require proportional
changes in K, for optimality to be preserved, so tolerances on
L and C can be directly mapped to a tolerance on K.y, as far as
carrier distortion is concerned. Practically, the suboptimal de-
signs were implemented by changing R., to 10 k€2 and 6.2 k€2,
respectively.

With the prototype design gain coefficients, the carrier signal
unity-step response slope is found to be

szarricr,bias = chc X (45)

K.m x Np

Test

V::arrier.step (0) = ~ 5.39 mV/us 46)

With a nominal supply voltage V; of 34 V, this means that a
34V step is applied to G.,1(s) for D = 0.5, leading to a carrier
signal slope of 183 mV/us. This means that the K [23] of the

design is

arrier K N
K = 9 x Wearsier =2V, x =L~ 0.366 V/us
dt D=0.5 Test
47)
where K can also be found as follows [23]:
K =2V, x step { lim Gctrl(s)} (48)

Since the switching frequency of a triangular-carrier hys-
teretic control system is a parabolic function of duty cycle [16],
[33], [35], [37] given quite precisely by

D(1-D)
f sw (D ) =
2(lest /K) + td

then, for a nominal (D = 0.5) switching frequency fsw nom of
350 kHz, assuming 100 ns comparator/power stage delay ¢, the
hysteresis level W,y should be
K 1
2 4fSVV ,2hom

Note that the hysteresis window of the comparator in this
case is still defined as V4,y4. The desired hysteresis window is
easily implemented by proper choice of the resistors (Ry1—FRp4)
attached to the noninverting comparator input. The prototype
design used R, = 33 k2, Ry = 3.3 k2, R3 = 22 k2, and
Rp4 = 3.3 k.

(49)

Viyst = — td} ~ 110mV (50)

VI. SIMULATED/CALCULATED RESULTS

The accuracy of the proposed carrier distortion optimization
method and the sensitivity of the optimum to parameter varia-
tions were examined by PSpice simulation and the results are
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Fig. 14. Hysteretic SO BPCM + PI controlled single-ended amplifier with single-supply (V4 ) control circuitry.
TABLE IV
OPTIMAL AND IMPLEMENTED BPCM AMPLIFIER DESIGN GAIN COEFFICIENTS
Parameter Optimal Prototype Sub-optimal design Sub-optimal design
design design I (“-20%”) I (“4+29%”)
K 0.0800 0.0800 0.0665 (-20%) 0.103 (+29%)
Ky 0.0661 0.0656 (-0.7%) 0.0665 (+0.7%) 0.0639 (-3.4%)
Koy 0.661 0.656 0.665 0.639
1 ' T ' T e This suggests that a true global optimum feedback coefficient
weighting does not exist and that each output level has its own
v, H . . . . .
'\,.. Predicted optimum optimum K.g, /Kys,. The amount of carrier distortion gener-
"\.,. ____‘_....--------- ated is seen to be relatively sensitive to component tolerances;
" k P o optimizing the amplifier for 24 dBV output by choosing a K1,
o**
0.1 = cenwerie®of 0.95, £10% K, variation is enough to cause a THD in-

e

8
[a}
T
—
0.01 5
sssennns Output 26dBV (M=0.83)
s Qutput 24dBV (M=0.66)
Output 22dBV (M=0.52)
0.001 . . A S e B
0.5 0.6 07 08 09 1.0 1.2 14 16 18 20
Normalized vab
Fig. 15.  Simulated THD (3rd + 5th harmonics only) with K¢}, values around

the predicted optimum.

shown in Fig. 15. A simulation model of the found optimum
BPCM + PI design was implemented, with the switching com-
ponents made ideal so that only carrier distortion was generated.
The output THD of the BPCM + PI amplifier simulation model
was evaluated for three different amplitudes of 5-kHz sine wave
output. In each case, voltage feedback coefficient K, was var-
ied from 0.5 to 2 times (6 dB) its predicted optimum value. As
can be seen, the proposed method succeeds in finding the K,
that leads to minimal THD for low output levels. The optimal
K, is seen to vary with output level, however, with a lower
K, (or a higher K g1,) being preferable at high output levels.

crease from 0.01% to 0.02% at 24 dBV output. For +20%, the
THD potentially increases to 0.03%. Still, these numbers are
far lower than what would probably be obtained by not pay-
ing attention to carrier distortion; for all three output levels,
THD varies by a factor of around 10 for relatively modest K,
variations of +6 dB around the predicted optimum. An inter-
esting point to note is that even though the amplifier loop gain
increases with K, ,, overall distortion also increases when K, g,
is too high, showing that loop gain maximization alone is not
necessarily the best strategy for linearizing SO class-D ampli-
fiers. When combined with minimization of carrier distortion,
however, maximized loop gain is still an advantage. This is be-
cause 1) high loop gain reduces the amplifier’s sensitivity to
other disturbances than carrier distortion and 2) loop gain still
has an effect on carrier distortion. As seen from (24), design-
ing for a high-gain G¢t,1(s) in the audio band directly reduces
sensitivity to carrier distortion. There is a complication asso-
ciated with this, however, since increasing the magnitude of
G.ty1(s) also requires an increase in the amount of hysteresis
needed for a given switching frequency thereby also increas-
ing the amount of carrier dc variation by the same amount.
To maximize loop gain while maintaining carrier distortion,
it is therefore necessary to increase the low-frequency mag-
nitude of G.,1(s) while still ensuring a linear step response
and not increasing K as seen from (48) and (49). A difficult
exercise, this is at least made somewhat easier by the avail-
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Simulated carrier DC voltage vs. duty cycle in different BPCM+PI amplifier designs
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Fig. 16.  Simulated carrier dc voltage versus steady-state duty cycle for pro-

totype and suboptimal BPCM + PI amplifier designs. Implemented design can
be expected to be very linear for duty cycles from 0.2 to 0.8 (corresponding to
an M < 0.6 or 23 dBV 5 sine wave from V; = 34 V).

ability of the proposed method for optimizing the Ge,1(s) step
response.

In order to further quantify the carrier distortion mechanism,
the methodology already used for THD calculation on the simple
AIM controller was adapted for the BPCM + PI system. Due to
the complexity of G, (s) of the BPCM + PI controller, simula-
tion, rather than analysis, was used to determine Ve,yyier de (D).
The control loop time delay t; was set to zero to avoid mask-
ing of the nonlinear, dc variation caused by any nonintegrator
Getr1(s), by the linear, delay-induced variation [21], [35]. The
results are shown in Fig. 16 for the nearly-optimal implemented
design as well as for the suboptimal designs. It is generally
apparent that the relatively slight variation in K g, causes the
carrier average to exhibit significantly more nonlinear variation
with duty cycle; hence, the THD can also be expected to in-
crease. As shown in Fig. 17, the generated carrier distortion is
expansive (like in the AIM) when the current feedback com-
ponent is too high since this leads to an overemphasis of the
exponential carrier component. Conversely, the carrier distor-
tion instead becomes compressive when the output feedback
component is too high.

For THD calculations, the data from Fig. 16 was used (in-
terpolating between data points) to calculate the amplifier re-
sponse to a sine wave. The sine wave was assumed to have a
frequency above the PI corner frequency (i.e., integral output
voltage feedback is assumed negligible compared to propor-
tional feedback), allowing (29) to be used for Gi,(s), which
was then assumed to be flat within the audio band. This is jus-
tified by the fact that the inductor current signal is effectively
high-pass filtered (see (29)) by the current estimator, so that
the output voltage feedback via K, dominates at low frequen-
cies. With the low-frequency approximation G (s) = Ky,
the method used for the THD calculation in the AIM was ap-
plicable. Results for the prototype and suboptimal designs are
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Fig. 17. Calculated sine wave responses of optimal and suboptimal amplifier

implementations at 20 V},cak (23 dBVims or M = 0.6, Dyyax = 0.8) output
level. The optimized design is visibly more ideal than the suboptimal designs.

shown in Fig. 18, where it is confirmed that THD performance
is quite sensitive to the carrier composition. For example, in-
specting Fig. 18, an amplifier rated for 0.02% maximum THD
would have its rated output power reduced by a factor of two
(3 dB) with a K.g, tolerance of 20%. As will be demonstrated
in the experimental section, this is a reasonable claim since car-
rier distortion is shown to be the dominant nonlinearity at high
output levels. For the optimal design, THD is predicted to stay
at a very low level (less than 0.01%) up to 24 dBV,,5 output
level, where a sharp increase is observed as the carrier aver-
age voltage deviates strongly from zero at the peaks of the sine
wave.

VII. EXPERIMENTAL RESULTS

The BPCM + PI amplifier in Fig. 14 was implemented on a
four-layer printed circuit board (PCB) with one-sided compo-
nent placement as shown in Fig. 19. Small IRF6645 (28 mS2,
100 V, 14 nC gate charge) MOSFETSs were used together with
ample dead time (around 15 ns) to allow cooling via the PCB. A
standard HIP2100 with input-side residual current device net-
works for setting the dead time was used for the MOSFET
driver along with a discretely built phase-split/level-shift circuit
for interfacing with the LM'V7219 comparator.

THD + N measurements were performed using an Au-
dio Precision System 2 with 22 kHz bandwidth without
the Aux-25 prefilter. The raw distortion and noise gener-
ated by the control system are assessable from the no-load
THD + N versus output level measurements in Fig. 20. These
measured results are directly comparable to the calculated ones
in Fig. 18, since the third and fifth harmonics were found (via
the fast fourier transform function) to dominate the generated
THD. To ensure a flat G.,1(s) as assumed for the calculations
in Fig. 18, Cp; was temporarily doubled to 100 nF, effectively
halving the integral feedback term. The measurements confirm
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Calculated mid-band harmonic (Srd + 5“‘) distortion vs. output amplitude in BPCM+P| amplifiers
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Fig. 18.

Calculated THD (3rd + 5th harmonics only) caused by carrier distortion in optimum and implemented prototype BPCM + PI amplifier designs with

variable K g}, . For the implemented design, no-load THD is expected to be less than 0.02% below 25 dBV s (M = 0.74 or Dy ax = 0.87 output level.

Fig. 19.

Prototype hysteretic BPCM + PI amplifier PCB.

that even modest — 20% or 4+29% deviation from the optimal
carrier composition creates significant THD at high output lev-
els. Some deviation is evident below 25 dBV (particularly in the
“+29%” implementation), but agreement is very good above
this level.

Given that the optimized prototype design produces higher
THD at high levels than the “429%” design, it is of course
debatable whether or not it is in fact optimal. However, by
defining the optimal design as the one that provides the lowest
THD at low output levels, optimality has been achieved. As also
predicted by simulations in Fig. 15, linearity can be increased
at high output levels by increasing K.g, (or lowering K1)
thereby sacrificing low-level performance Such tradeoffs are
bestimplemented following a precise specification of the desired
THD and output power performance of the amplifier.

The noise generated by the BPCM + PI amplifier is 240 pV
since THD + N is 0.02% at 0 dBV ;5 output level where noise
is dominant (as seen by the 6 dB/octave slope of the THD +

N curve). This is a rather high number that could probably be
reduced by the use of a slower comparator. This is because [29]
the comparator integrates the circuit noise (generated by resis-
tors and active components) during the time when the switching
decision is made, and slower comparators have a longer decision
“window,” effectively averaging the applied noise for a longer
period.

The triangularity of the carrier signal in the three different
configurations is assessable from the measurements in Fig. 21.
Visually, the optimized carrier signal appears the most triangu-
lar, as also expected for the design with the lowest THD.

The performance of the implemented power switching
stage was examined using the “analog persist” function on
a Lecroy WaveRunner oscilloscope. This allowed observa-
tion of the total spread in variation of the switch node be-
havior with load current. For a sinusoidal output current of
+6.25A, a 15 ns spread in transition delay time was ob-
served as seen in Fig. 22. This is a result of the use of
15 ns dead time and a ripple current of 2.4 A, leading to
the power stage operating in both the zero current switch-
ing (ZCS) mode (for output currents less than £1.2A, given
enough dead time) and hard-switched mode (for higher output
currents).

The THD + N performance of the prototype design with
the usual 4 Q2 and 8 2 loads and three commonly used test
frequencies (100 Hz, 1 kHz and 6.7 kHz) is indicated in the
measurements in Figs. 23 and 24. The maximum frequency
of 6.7 kHz is often used for switch-mode amplifiers since the
third harmonic distortion of higher frequencies falls outside of
the commonly used 20-22 kHz measurement bandwidths. Due
to the dominance of the integral voltage feedback term at low
frequencies, the 100 Hz THD figures are very low. The use of
higher-order integral low-frequency feedback allows extremely
low THD to be obtained at low frequencies [5], [6], [9], but
usually does not help at higher frequencies since the loop gain
inevitably has to roll off. Additionally, it is obvious that taking
extra integral feedback too far will result in an increase in carrier
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Fig. 20. Unloaded prototype amplifier THD + N versus output level (0 dBV =1 V,,¢) at 1 kHz with optimal and suboptimal K g, for comparison with

Fig. 18. THD of the optimized design is less than 0.02% up to 25 dBV ;5. Suboptimal designs have higher THD as expected.
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Fig.21. Prototype carrier waveforms for D = 0.88 (peak of M = 0.76 sine

wave.) Optimized design runs at 150 kHz, indicating an idle switching frequency
of 350 kHz. The optimized carrier visually appears to be the most triangular, as
also targeted by the proposed optimization method.

distortion, since a higher-than-first-order integral of a PWM
signal is not triangular.

Overall, the presented design can be rated at 80/45 W with
less than 0.03% THD + N for 4/8 €, which is a very decent re-
sult for a design done purely by analysis. As indicated by Fig. 20
and the analysis performed, it would in fact be quite difficult
to come up with a significantly better design given the BPCM
feedback topology and the power stage used. This statement
is backed up by results from prior art, which are summarized
in Table V. Control schemes, power stage configurations, and
switching frequencies are also listed for reference. BTL refers
to “Bridge Tied Load,” i.e., the full-bridge configuration while
SE refers to “single-ended.” Other very noteworthy results ex-
ist [6], [11], but details are inadequate for comparative purposes.
It should of course be noted that the power stage components
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2331 sups 1
side gate driver
output SVidiv ™~
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point
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- — 2 0C -30.9 V
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Fig. 22.  Variation of switching behavior of prototype, measured using the

“analog persist” function. Output is an 80 W (25 V},cak) sine wave into 4
and there is evidently a switching transition point variation of around 15 ns due
to the combination of dead time and variation in load current.

used in the presented paper are nearly state of the art with dis-
crete components and that this of course impacts the results
positively. However, it was shown in Figs. 18 and 20 that carrier
distortion generates exactly 0.02-0.03% THD for M = 0.75,
so it is the carrier distortion that dictates the final THD specifi-
cation of the design. Hence, the presented optimization method
has been shown to be instrumental in obtaining the THD re-
sults in Figs. 23 and 24. This was indeed also the conclusion
in [5] for the discrete-time-based optimization method for fixed-
frequency PWM-based amplifiers. It is expected by the authors
that future publications will demonstrate a clear link between the
proposed averaging and time-domain-based view of “carrier dis-
tortion” and the discrete-time and frequency-domain-based view
of “aliasing distortion” [5]. The presented averaging approach
is principally also applicable for THD prediction in phase-shift
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Fig.24. Optimized prototype amplifier THD + N versus output power with an 8 €2 load. Distortion stays below 0.02% below 45 W, corresponding to A/ = 0.79.

SO control systems [6]-[8], where the carrier signal is sinu-
soidal and oscillation is induced by raw phase shift in the loop
filter G.;1(s) rather than by comparator hysteresis. The carrier
average in these systems will also potentially exhibit nonlinear
variation with duty cycle. However, averaging the carrier signal
in such systems is nontrivial since oscillation is only possible
if the loop filters are second-order or higher [7] or comparator
time delay is added to the analysis.

Finally, one important amplifier parameter that has not yet
been considered, namely the frequency response, is examined
in Fig. 25. For the typical 4-8 (2 load, the frequency response is
fortunately flat within 1.2 dB below 20 kHz. Prefiltering could
be used to straighten this out if desired. Computation of the fre-
quency response for verification is easily done using the classical
sliding mode approximation, but falls outside the scope of this

paper.
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TABLE V
REPRESENTATIVE PRIOR ART THD + N RESULTS FOR COMPARISON WITH PRESENTED STUDY
Reference THD+N, 49, THD+N, 8Q, Control topology Power stage,
M=0.75, 6.7kHz M=0.75, 6.7kHz supply voltage, f5,
[51 ? 0.018% Fixed-freq. PWM  BTL, 55V, 350kHz
+ “MAE filter”
[91 0.04% ? Hysteretic SO, SE, +/-40V,
“GLIM” 350kHz
[38] ? 0.05% One-cycle BTL, 54V, 250kHz
This work 0.03% 0.02% Hysteretic SO, SE, +/-34V,
BPCM+PI 350kHz
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Fig. 25. Measured frequency responses of prototype amplifier. With a typical speaker load (4-8 (2), response is flat within 1.2 dB over the audio band (20 Hz to
20 kHz.).

VIII. CONCLUSION

An approach for understanding, evaluating, and minimizing
the intrinsic distortion generated by hysteretic SO controllers
applied to buck-type power converters has been presented. The
term “carrier distortion” has been used for this intrinsic dis-
tortion phenomenon, referring to prior art. Carrier distortion is
mainly an issue of concern in switch-mode ac power amplifiers
where the signal bandwidth is high compared to the switching
frequency and where fast, high-quality switching components
are used. In such cases, distortion generated by imperfect switch-
ing is low while loop gain of the control system is limited at
high signal frequencies, making carrier distortion the dominant
nonlinearity in the power amplifier at high output levels. Class-
D audio power amplifiers are an obvious application for the
presented analysis, but reducing harmonic distortion of switch-
mode power amplifiers is also of interest in a variety of other
niche applications. Examples include xDSL drivers, envelope-
tracking power supplies, and ac transmission line filters.

In agreement with prior art statements, it has been found
that the carrier signal (a.k.a. sliding variable) should be made
triangular by proper design of the control loop(s) to minimize
this distortion. This directly resulted from an averaging analysis
of the steady-state hysteretic comparator input/output wave-
forms. It was shown that even an amplifier with a perfect power
stage supplied with a perfect dc supply voltage can in fact pro-

duce significant harmonic distortion due to the carrier distortion
mechanism. Based on the desire for a triangular carrier signal
for minimizing carrier distortion, a simple s-domain analyti-
cal approach was proposed and demonstrated on a nontrivial
control topology. An optimized prototype amplifier design was
implemented and verified against modeled results. The gener-
ated harmonic distortion was found to be well described by the
proposed methodology as well as quite sensitive to parameter
variation. The harmonic distortion results achieved with the pro-
totype design were at state-of-the-art level, verifying the validity
and usefulness of the presented approach.
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