AMC7585

DESCRIPTION

The AMC7585 is a high performance low dropout regulator rated for 5A output current with fixed 2.5V/3.3V/5.0V and adjustable output. It is designed for use in applications requiring low dropout characteristics over the rated current range.

On chip trimming adjusts the reference voltage to 1%. These features are ideal for low voltage microprocessor applications requiring a regulated 2.5V to 3.6V power supply.

In addition, the AMC7585 provides the device protections including over current and thermal shutdown. Also, reverse battery protection scheme limits the reverse current when the input voltage falls below the output.

5A LOW DROPOUT REGULATOR

FEATURES

- Output current is excess of 5A
- Fast transient response
- Reverse battery protection

PACKAGE PIN OUT

- Short circuit protection
- Internal thermal overload protection
- Available in 3L plastic TO-220 and surface mount 3L TO-263/252 packages
- Pin assignment identical to EZ1585B and LT1585A series.

APPLICATIONS

- Pentium® Processor Supplies
- PowerPCTM Supplies
- Computer Add-On Cards
- Other Applications Requiring Low Dropout Voltage Over Rated Current

VOLTAGE OPTIONS

AMC7585-2.5 – 2.5V Fixed AMC7585-3.3 – 3.3V Fixed AMC7585-5.0 – 5.0V Fixed AMC7585-ADJ – Adjustable

3.V_{IN}

3-Pin Plastic TO-263 (ST) Surface Mount

(Top View)

3-Pin Plastic TO-263-3 (ST3) Surface Mount

(Top View)

ORDER INFORMATION

T (0 C)	ТО-220	ST TO-263	TO-263-3	TO-252				
$T_A (^{o}C)$	3-pin	3-pin	ST3 3-pin	SJ 3-pin				
0 to 70	AMC7585-X.XT	AMC7585-X.XST	-	AMC7585-X.XSJ				
0 to 70	AMC7585-X.XTF(Lead Free)	AMC7585-X.XSTF(Lead Free)	-	AMC7585-X.XSJF(Lead Free)				
0 to 70	AMC7585-ADJT	AMC7585-ADJST	AMC7585-ADJST3	AMC7585-ADJSJ				
0 to 70	AMC7585-ADJTF(Lead Free)	AMC7585-ADJSTF(Lead Free)	AMC7585-ADJST3F(Lead Free)	AMC7585-ADJSJF(Lead Free)				
Note: 1. All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e., AMC7585-X.XSTT, AMC7585-X.XSTT, 2. The letter "F" is marked for Lead Free process.								

AMC7585

TYPICAL APPLICATION

AMC7585-ADJ Application Schematic

AMC7585

ABSOLUTE MAXIMUM RATINGS (Note)	
Input Voltage (V _{IN})	7V
Operating Junction temperature	150°C
Storage Temperature Range	-65 $^{\circ}$ C to 150 $^{\circ}$ C
Lead temperature (Soldering, 10 seconds)	300°C
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground.	Currents are positive into, negative

A DOOL LITE

out of the specified terminal.

	POWER DISSIPATION TABLE								
Package	θ_{JT} (°C /W)	θ _{JA} (°C /W)	Derating factor ($mW/^{\circ}C$) $T_A \ge 25^{\circ}C$	$T_A \le 25 \degree C$ Power rating (mW)	T _A =70 °C Power rating (mW)	$T_A = 85 ^{\circ}C$ Power rating (mW)			
Т	6	45	22.2	2775	1776	1443			
TF	6	45	22.2	2775	1776	1443			
ST/ST3	6	45	22.2	2775	1776	1443			
STF/ST3F	6	45	22.2	2775	1776	1443			
SJ	7	80	12.5	1562	1000	812			
SJF	7	80	12.5	1562	1000	812			

Note: $T_J = T_A + (P_D \times \theta_{JA})$

P_D: Power dissipation.

 θ_{JA} : Thermal resistance from Junction to Ambient.

For T and ST/ST3 packages, $\theta_{\rm JT}$ = 6.0 °C / W. For SJ package, $\theta_{\rm JT}$ = 7.0 °C /W.

 $T_{J} = T_{TAB} + (P_{D} \times \theta_{JT})$ $T_{TAB}: Tab temperature.$ $\theta_{JT}: Thermal resistance from junction to tab of the package.$

1. The θ_{IA} numbers are guidelines for the thermal performance of the device/PC-board system.

2. All of the above assume no ambient airflow.

3. If power consumption is over above rating, adequate heat sink is required to dissipate heat.

RECOMMENDED OPERATING CONDITIONS

Parameter		Recommen	Units			
	Symbol	Min.	Тур.	Max.	emis	
Input Voltage	V _{IN}	2.75		7	V	
Load Current (with adequate heatsinking)	Io	0.010		5	А	
Input Capacitor (V _{IN} to GND)		1			μF	
Output Capacitor with ESR of 10Ω max., (V _{OUT} to GND)		10			μF	
Operating Ambient Temperature Range		0		70	°C	
Operating junction temperature	T _J			125	°C	

Copyright © 2007 ADDtek Corp.

AMC7585

BLOCK DIAGRAM

AMC7585-ADJ Circuit Schematic

AMC7585

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $V_{IN} = V_{OUT} + 1.5V$, $I_O = 10$ mA. These specifications apply operating ambient temperature range, and are for DC characteristics only. (Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter		Course 1 and	Test Carditians	AMC7585			II. See	
		Symbol	Test Conditions	Min.	Тур.	Max.	Units	
	AMC7585-2.5			2.475	2.500	2.525		
Output Voltage	AMC7585-3.3	V _{OUT}	$I_0 = 10mA, T_A = 25 ^{\circ}C$	3.267	3.300	3.333	V	
	AMC7585-5.0			4.950	5.000	5.050		
	AMC7585-2.5			2.450	2.500	2.550	v	
Output Voltage	AMC7585-3.3	V _{OUT}	$V_{IN} = V_{OUT} + 1.5V \text{ to } 10V,$ $I_{O} = 0\text{mA to } 5\text{A}$	3.234	3.300	3.366		
	AMC7585-5.0		-0	4.900	5.000	5.100		
Reference	Reference AMC7565 ADJ		(Note 1)	1.238	1.250	1.262	v	
Voltage	AMC7585-ADJ	V _{REF}	$I_0 = 10 \text{mA} \text{ to } 5\text{A}, \text{ (Note 1)}$	1.230	1.250	1.270]	
Line Regulation	Line Regulation (Note 2)		$(1.5V + V_{OUT}) \leq V_{IN} \leq 7V$		0.04	0.2	%	
Load Regulation	Load Regulation (Note 2)		I ₀ =10mA to 5A		0.2	0.4	%	
Dropout Voltag	e	$\Delta \mathbf{V}$	$I_{O} = 5A$ (Note 3)		1.30	1.50	V	
Quiescent Current (for AMC7585-X.X)		I _Q	$V_{IN} \leq 7V, I_O = 10mA$ to 3A		8	13	mA	
Adjust Pin Current (for AMC7585-ADJ)		I _{ADJ}			50	120	μΑ	
Current Limit		I _{CL}	(V _{IN} - V _{OUT})=2V	5.1	6.8		А	
Minimum Load Current (Note 4)		Imin			5	10	mA	
Ripple Rejection (Note 5)		R _R		60	80		dB	

Note 1 Output voltage is set to be 2.5V.

Note 2: Line and load regulations are guaranteed up to maximum power dissipation determined by input/output differential and the output current. However, the maximum power will not be available over the full input/output voltage range.

Note 3: The specifications represent the minimum input/output voltage required to maintain 1% regulation.

Note 4: The minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.

Note 5: These parameters, although guaranteed, are not tested in production prior to shipment

AMC7585

CHARACTERISTIC CURVES

 $C_{IN}\!\!=\!\!10uF\!, C_{OUT}\!\!=\!\!22uF\!, T_{A}\!\!=\!\!25\,^{\rm o}\!C\!,$ unless otherwise specified.

AMC7585

APPLICATION INFORMATION

The maximum power dissipation of a single-output regulator:

$$\begin{split} P_{D(MAX)} = \begin{bmatrix} (V_{IN(MAX)} - V_{OUT(NOM)}) \end{bmatrix} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_Q \\ V_{OUT(NOM)} = \text{the nominal output voltage} \\ I_{OUT(NOM)} = \text{the nominal output current, and} \\ I_Q = \text{the quiescent current the regulator consumes at } I_{OUT(MAX)} \end{split}$$

 $V_{IN(MAX)}$ = the maximum input voltage

Thermal consideration:

The AMC7585 series have internal power and thermal limiting circuitry designed to protect the device under overload conditions. However maximum junction temperature ratings should not be exceeded under continuous normal load conditions. The thermal protection circuit of AMC7585 series will prevent the device from damage due to excessive power dissipation. When the device temperature rises to approximately 150 °C, the regulator will be turned off.

When power consumption is over about 1.2W (for TO-220/ TO-263 package, 687mW for TO-252 package, at $T_A=70$ °C), additional heat sink is required to control the junction temperature below 125 °C.

The junction temperature is: $T_J = P_D \; (\theta_{JT} + \theta_{TS} + \theta_{SA} \;) + T_A$

- P_D : Dissipated power.
- θ_{JT} : Thermal resistance from the junction to the mounting tab of the package.

(For TO-220, TO-263, and TO-263-3 packages, θ_{JT} =6 °C /W. For TO-252 package, θ_{JT} =7 °C /W)

- θ_{TS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0$ °C / W)
- θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through hole vias.

PCB $\theta_{SA}(^{\circ}C / W)$	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000

Recommended figure of PCB area used as a heat sink.

(Bottom View)

through hole vias

AMC7585

PACKAGE

3-Pin Plastic TO-220 (T)

	I	NCHES	6	MIL	MILLIMETERS		
	MIN	MIN TYP MAX		MIN	TYP	MAX	
А	0.140	-	0.190	3.56	-	4.83	
b1	0.045	-	0.070	1.14	-	1.78	
b	0.020	-	0.045	0.51	-	1.14	
С	0.012	-	0.045	0.30	-	1.14	
D	0.560	-	0.650	14.22	-	16.51	
Е	0.380	-	0.420	9.65	-	10.67	
е	0.090	-	0.110	2.29	-	2.79	
e1	0.190	-	0.210	4.83	-	5.33	
F	0.020		0.055	0.51	-	1.40	
H1	0.230	I	0.270	5.84	I	6.86	
J1	0.080	-	0.115	2.03	-	2.92	
L	0.500	-	0.580	12.7	-	14.73	
Ρ	0.139	-	0.161	3.53	-	4.09	
Q	0.100	-	0.135	2.54	-	3.43	
L1	-	-	0.250	-	-	6.35	

3-Pin Surface Mount TO-263 (ST)

MAX

4.83

0.99

1.40

1.40

9.65

2.79

2.92

1.78

AMC7585

3-Pin Surface Mount TO-263 (ST3)

3-Pin Surface Mount TO-252 (SJ)

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp. 9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105 TEL: 2-25700299 FAX: 2-25700196

Copyright © 2007 ADDtek Corp.