Life on the Edge

A Universal Grammar of Class D Amplification

Bruno Putzeys

Hypex Electronics, The Netherlands

On the occasion of the 124rd AES Convention, May, 2007

Copyright notice

- This presentation ©2008 Bruno Putzeys, Hypex Electronics.
- Do not distribute this file, instead link to this file on the Hypex web site.

Contents

- Definition
 - Basic principles
 - Class D as Power Converter
- Output stage distortion
- MOSFET switching behaviour
- Output filter errors
- Loop control
 - Topologies, equivalence
 - Effect of sampling
 - Effect on modulation linearity
- Self-oscillating loops
- EMI
 - Filter components
 - Board layout

Definition

A class D amplifier is a power amplifier where all active devices in the power stage are operating in on/off mode.

- On=current, but no voltage
- Off=voltage, but no current

Definition

"Digital amplifier" is an oxymoron

- Voltage, current and time are physical quantities (analogue).
- Digital is strings of numbers.
- Speakers don't understand numbers.
- Class D requires analogue design skills to make work.
- DSP control may help solve or exacerbate analogue issues.

PWM basics

PWM basics

Two-state clocked PWM

Some conventions

Spectrum of 2-state PWM

Full-Bridge amplifier in 2 state PWM

Three-state PWM (class BD)

Spectrum of 3-state PWM

2-State vs 3-State

Three-state...

- doubles sampling rate
 - Better efficiency vs bandwidth
- halves open-loop error
 Output filter?
 - Single-core
 - no excitation current
 - crossover distortion results
 - Two-core
 - excitation current doubles for constant sampling rate

Yet More Phases

It can get worse...

Class D as Power Converter

Half bridge

Class D as Power Converter

Inductor current

Inductor current

Large modulation index

Current sense does not change

Dead time effects

Simplified MOSFET model

Dead time effects

Small modulation index

Dead time effects

Large modulation index

Open-Loop Distortion

Analyser Reading

MOSFET parasitics

Parasitic capacitances

Gate Waveform (hard switching, ideal diode)

Gate Waveform (real diode)

Gate Gotchas

Until and during recovery

- Dissipated power = Vcc*Qrr
- Vds=Vcc
- Gate capacitance is low
- But we'd like to go slow

After recovery

- Vds<Vgs
- Gate capacitance is high
- Dissipated power = Vds*Id*time
- We'd like to finish quickly

Current limiting gate driver works the wrong way round.

Output filter

Desired function

• Attenuate the carrier

Undesired functions

- Restrict bandwidth
- Increase output impedance
- Modify the frequency response
- Add distortion

Load response of 2nd order LPF

Output Filter

The optimisation problem

- Reduce $Z_{out} \rightarrow$ Increase $f_c \rightarrow$ Reduce attenuation
- Improve Bandwidth \rightarrow Increase $f_c \rightarrow$ Reduce attenuation
- Improve Flatness \rightarrow Increase $f_c \rightarrow$ Reduce attenuation
- Reduce distortion → Reduce L → Reduce attenuation

The root cause

- Controlled variable is an internal node
- Output voltage is uncontrolled

Summary of (analogue!) nonidealities

Power Supply Rejection

- PWM power stage is an AM modulator Switch Timing
- Dead time causes distortion Output Filter
 - Output impedance is infinity at fc
 - Inductor is non-linear

Feedback

Solves many problems at once

- Output impedance (post LPF only)
- Distortion
- Frequency response (post LPF only)
- Why many don't use it
 - Audio folk lore
 - "Feedback sounds bad"
 - "Class D is Digital"

Why global feedback is even rarer

- LC phase shift considered "insurmountable"
- No "rules of thumb"

Delay in the LC filter?

Some control theory basics

ETF & STF

$$\mathsf{ETF}(s) = \frac{1}{1 - \mathsf{A}(s) \cdot \mathsf{B}(s)}$$

$$STF(s) = \frac{A(s)}{1 - A(s) \cdot B(s)}$$

Various permutations

Various permutations

Loop needs

ETF must be stable and not have excessive gain

• Poles well left of imaginary axis

ETF must have very low gain in audio band

• Zeros close to or on imaginary axis

Loop function A_L

- Loop poles=zeros of ETF
- Loop zeros must be freely settable

Universal loop control function

If $A_L \dots$

- has n poles and n-1 zeros
- has independently settable zeros
 ...then
- a stable loop is always possible

$$A_{L}(s) = k \cdot \frac{\prod_{i=1}^{n-1} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} = \frac{\sum_{i=0}^{n-1} a_i \cdot s^i}{\sum_{i=0}^{n} b_i \cdot s^i}$$

1 pole, no zeros, pre-filter f/b only

2 poles, 1 zero, pre-filter f/b only

3 poles, 2 zeros, mixed feedback

3 poles, 2 zeros, global feedback

...also known as...:

...PID!

PI(I...)D control for global loops

Pro

- Very low output impedance
- Minimum 3rd order loop
 - Large loop gain
- Nonlinear distortion from inductor is reduced
- Known art

Contra

• Can't get away with bad PCB layout

No good excuses for not using global feedback Pre-LC and mixed f/b are provably suboptimal

Digital PWM + local loop ("edge error correction")

Hidden "analogue" amplifier:

No news at all, really:

Indirect "digital feedback"

...a remarkable similarity...

Full ADC based feedback

Full ADC based feedback

Reasons for use

- Silicon area of ADC + loop control < equivalent analogue loop.
- Complicated linearization circuits
- Start/stop/overload recovery

Not reasons for use

- Nearly anything else:
 - "digital, hence better"
 - investor retention

Effect of sampling on loop control

Effect of sampling on loop control

Noise Shaper Theorem holds

- Transform A_L to z domain
- Highly optimised A_{L} may seem instable in linear analysis and be critically damped in sampled system!

Effect of sampling on loop control

Most PWM is double-sided

- $f_s = f_{sw}$ (low modulation index)
- $f_s = 0.5 \cdot f_{sw}$ (clipping)

• ETF (NTF) becomes modulation dependent

Ripple aliasing

Ripple aliasing

Ripple distorts carrier

Local Error Feedback (PEDEC etc)

- Operation
 - Minimal ripple in feedback loop.
- Pro
 - Theoretically perfect regardless of loop order
- Contra
 - Gains must be matched: 1-bit DAC and PWM must scale with supply
 - PWM generator is a problem in its own right
 - Not compatible with post-filter feedback

Carrier slope correction (Candy)

- Operation
 - Dynamically modify triangle wave slopes
- Pro
 - Theoretically perfect for 1st order loop
 - Reasonably compatible with higher order including mixed post-filter f/b
- Contra
 - Complex triwave generation

Minimum Aliasing Error filter (Risbo)

- Operation
 - Ripple in feedback loop not reduced, phase shift optimised for minimum impact.
- Pro
 - Grafts well onto "standard" control circuit.
 - Compatible with post-filter feedback (perhaps not fully global)

"Invariant PWM" (Yours Truly)

- Operation
 - Secret
- Pro
 - Perfectible for any loop (5th order with global f/b demonstrated)
 - Compatible with global f/b
 - Closed-form analysis and design
- Contra
 - Complex triwave generation
 - High sensitivity to parts tolerance

Self-Oscillating Loops

Aim

- Getting rid of the oscillator
- Improving maximum modulation index

Self-Oscillating Loops

Hysteresis modulator

Operation

Improved version

Output Signal

- Completely linear
- Switching frequency falls early
 - becomes audible near clip

Post-LPF added

- Less linear
- No-load stability not guaranteed

Capacitor current feedback (Mueta)

- Global loop
- Good linearity
- Current sense has low EMI sensitivity

Phase-shift controlled oscillation

Operation

Oscillation frequency set by loop phase

Output signal

- Nonlinear, depends on design
- Switching frequency is more stable

Phase shift controlled oscillator with global loop (UcD)

UcD

Operation

- Combined phase shift of output filter, lead network and propagation delay set f_{osc}.
- Extra pole may be added

UcD

Modulator gain

Small-signal linearized model

$$A_{DC} = 2 \cdot V_{CC} \cdot f_{sw} \cdot \left(\frac{1}{dV1/dt} - \frac{1}{dV2/dt}\right)$$

Low-frequency EMI: Carrier and low harmonics.

- Close match with theory.
- Ripple cancelling possible.
- Not an EMI issue except for long cables
- Not a tweeter issue (come off it!)

Common and Differential Mode in H-Bridge Class D

• "Class AD". Carriers and modulation are out of phase

"Class BD".

• Carriers are in phase. Modulation is out of phase.

Half bridge vs Full Bridge, Class AD vs BD

- Half-bridge
 - Can't cancel either CM or DM
 - Common-mode is half of differential mode
- AD
 - Common-mode voltage theoretically 0
 - Differential mode same as half bridge
- BD
 - Differential mode cancels at low modulation... ...but that was not really a problem anyway.
 - Common-mode voltage same as half bridge

High-Frequency EMI: Leaking switching transients

- Theoretical modeling is useless.
 - Capacitors become inductive
 - Inductors become capacitive
 - PCB becomes jumble of L's and C's.
- No tricks. Only good hardware design helps.
- Direct EMI problem under all circumstances.

Sensitive item 1: The capacitor.

- Myth of the "Low Inductance Capacitor". (An Audiophile Favourite)
 - All modern film caps have sprayed end contacts.
 - Inductance is determined by geometry only (mostly size).

Period.

Sensitive item 2: The inductor.

• Stray fields out of toroids

• Upright mounted toroids are worst.

Sensitive item 2: The inductor.

- Beware of indirect Capacitive Coupling through Core
 - Tight windings are better magnetically but worse electrostatically.
 - No external electrostatic shield: Capacitive coupling to chassis etc. can get significant.
- Toroids are not always optimal

Sensitive item 2: The inductor.

• Ferrite inductors: avoid direct capacitive coupling between windings

- "Hot" end sees "Cold" end
- 2 layers is worst case situation
- 1 layer is best

Sensitive item 3: The PCB layout.

- Contiguous ground plane
 Keep connectors together
- Avoid capacitive coupling to external parts
- Minimize loop area (≠short traces)

Checking for EMI without Spectrum Analyser

- Just probe around the external connections with a scope!!!
- If you see rubbish, there is rubbish
- The higher the frequency, the more you should worry

(sketch of circuit board found in commercially available amp)

Amplifier A, one output line

• 1V/div. Probe clip at RCA ground.

Amplifier A, common mode

500mV/div. Amp is claimed to pass FCC???

Amplifier A, differential mode

• 500mV/div. Note: relatively clean.

Example: Amplifier B, rated 2kW

Amplifier B, common mode

• 250mV/div. Probe clip at power GND faston tab

Amplifier B, differential mode

• 500mV/div.

Class D EMI is no mystery

- Eyeballing components and PCB gives good indication
- Invest in an analogue scope
- Don't bother EMC testing if the scope pic isn't squeaky clean

Summary

All "Unique Class D Technologies" are related

- All draw from a limited set of concepts
 - Modulation technique
 - Power stage arrangement
 - Loop control
- Not all are optimal
 - Too complex
 - Missed opportunities

Summary

Good design criteria: "black box"

- Audio performance
- Robustness
- Simplicity
- EMC, efficiency...

Bad design criteria: "open box"

- Perceived novelty and uniqueness
- Belief system
 - Digitalness
 - Feedbacklessness
- Powerpoint appeal

Summary of summaries

The Road To Heaven

• Specify the performance and accept the design

The Road To Hell

• Specify the design and accept the performance

Thank you!

