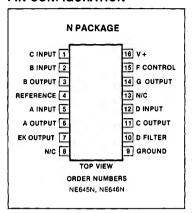
DOLBY NOISE REDUCTION CIRCUIT

DESCRIPTION

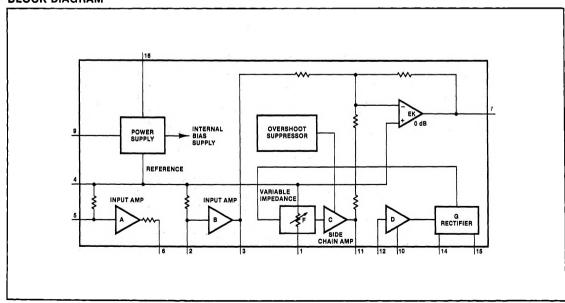
The NE645/646 is a monolithic audio noise reduction circuit designed as a direct replacement device for the NE645B/ NE646B in Dolby* B-Type noise reduction systems. The NE645/646 is used to reduce the level of background noise introduced during recording and playback of audio signals on magnetic tape, and to improve the noise level in FM broadcast reception. This circuit is available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, California.


NOTE

*T.M. Dolby Laboratories Licensing Corporation.

FEATURES

- Accurate record mode frequency response
- Excellent frequency response tracking with temperature and V_{CC} ± 0.4 dB typical
- Excellent back-to-back dynamic response — D.C. shift less than 20 mV typical
- . Improved stability of all op amps
- · High reliability packaging


PIN CONFIGURATION

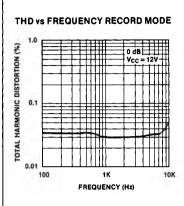
ABSOLUTE MAXIMUM RATINGS

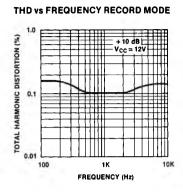
PARAMETER	RATING	UNIT		
Supply voltage	24	V		
Temperature range				
Operating	0 to +70	°C		
Storage	-65 to +150	°C		
Lead temperature (soldering, 60 sec)	+300	•c		

BLOCK DIAGRAM

NE645/46

ELECTRICAL CHARACTERISTICS

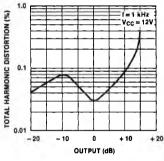

 $V_{CC}=12$ volts, f = 20 Hz to 20 kHz. All levels referenced to 580 mVrms (0 dB) at Pin 3, $T_A=+25\,^{\circ}C$ Unless otherwise noted.

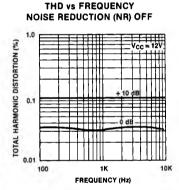

		NE645			NE646			
PARAMETER	TEST CONDITIONS	Min	Typ Max		Min Typ		Max	UNIT
Supply Voltage Range	ınge			20	8		20	V
Supply Current, I _{CC}	V _{CC} = 12V		16	24		16	24	mA
Voltage gain (Pins 5-3)	f = 1 kHz (Pins 6 and 2 connected)	24.5	26	27.5	24.5	26	27.5	dB
Voltage gain (Pins 3-7)	f = 1 kHz, 0 dB at pin 3, noise reduction out	- 0.5	0	+ 0.5	- 0.5	0	+ 0.5	dB
Distortion THD, 2nd and 3rd harmonic	f = 20 Hz - 10 kHz, 0dB f = 20 Hz - 10 kHz, + 10 dB		0.05 0.15	0.1 0.3		0.05 0.2	0.2 0.5	% %
Signal handling ¹ (V _{CC} = 12V)	1% dist at 1 kHz	+ 12	+ 15		+ 12	+ 15		dB
Signal-to-noise ratio ²	Record mode Playback mode	67 77	72 82	,	64 74	72 82		dB dB
Record mode Frequency response (at pin 7) referenced to encode monitor point (pin 3)	f = 1.4kHz	- 1 - 16.6 - 23.5	0 - 15.6 - 22.5	+ 1 - 14.6 - 21.5	- 1.5 - 17.1 - 24.0	0 - 15.6 - 22.5	+ 1.5 - 14.1 - 21.0	dB dB dB
	f = 5kHz 0dB - 20dB - 30dB - 40dB	- 0.7 - 17.8 - 22.8 - 30.2	+ 0.3 - 16.8 - 21.8 - 29.7	+ 1.3 - 15.8 - 20.8 - 28.7	- 1.2 - 18.3 - 23.3 - 30.2	+ 0.3 - 16.8 - 21.8 - 29.7	+ 1.8 - 15.3 - 20.3 - 28.2	dB dB dB
	f = 20kHz 0dB - 20dB - 30dB	- 0.3 - 18.3 - 24.5	+ 0.7 - 17.3 - 23.5	+ 1.7 - 16.3 - 22.5	- 0.8 - 18.8 - 25.0	+ 0.7 - 17.3 - 23.5	+ 2.2 - 15.8 - 22.0	dB dB dB
Back-to-back frequency response	Using typical record mode frequency response test points	-1	0	+1	- 1.5	0	+ 1.5	dB
Input resistance	Pin 5 Pin 2	35 3.1	50 4.2	65 5.3	35 3.1	50 4.2	65 5.3	kΩ kΩ
Output resistance	Pin 6 Pin 3 Pin 7	1.9	2.4 80 80	3.1 120 120	1.9	2.4 80 80	3.1 120 120	kΩ Ω Ω
Back-to-back frequency response shift Versus temperature Versus supply voltage	0°-70°C 8-20V		± 0.4 ± 0.4			± 0.4 ± 0.4		dB dB

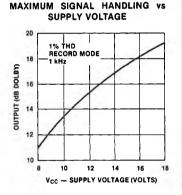
^{1.} See maximum signal handling versus supply voltage characteristics.
2. All noise levels are measured CCIR/ARM weighted using a 10K source with respect to Dolby level. See Dolby Laboratories Bulletin 19.

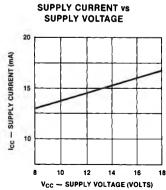
DOLBY NOISE REDUCTION CIRCUIT

PERFORMANCE CHARACTERISTICS





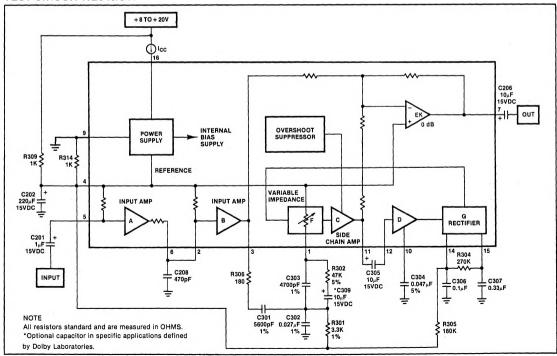



= 1 kHz Vcc = 12V

THD vs OUTPUT RECORD MODE

APPLICATION INFORMATION

The NE645/646 is a direct replacement for the NE645B/646B. The NE645/646 incorporates improved design techniques to insure excellent performance required in Dolby B and C Type Audio Noise Reduction Systems. Critical component values are unchanged except for C309 on Pin 1 which is now an optional component in specific applications defined by Dolby Laboratories. All circuit parameters are guaranteed at 12V $V_{\rm CC}$.


DOLBY ENCODER Output for constant level input (single tone frequency response)

•	Input Level (dB)								
Frequency (kHz)	0 (Dolby Level)	-5	-10	-15	-20	-25	-30	-35	-40
0.1	0	0.1	0	0.1	0	0	0	0	0
0.14	0	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.1
0.2	0	0.3	0.4	0.5	0.5	0.6	0.6	0.5	0.5
0.3	0	0.3	0.6	1.1	1.3	1.3	1.3	1.3	1.3
0.4					2.0	2.1	2.2	2.3	2.1
0.5	0	0.3	0.8	1.8	2.6	2.9	2.9	3.0	2.9
0.6						3.6	3.7	3.8	3.7
0.7	0	0.4	0.9	2.1	3.5	4.3	4.4	4.5	4.4
0.8						4.8	5.0	5.3	5.1
0.9							5.6	5.8	5.6
1.0	0	0.4	1.0	2.3	4.2	5.7	6.1	6.3	6.2
1.2							6.9	7.1	7.1
1.4	0	0.3	0.9	2.3	4.4	6.6	7.5	7.7	7.7
2.0	0.1	0.4	0.9	2.2	4.3	7.0	8.5	8.9	8.9
3.0	0.2	0.6	0.9	1.9	3.9	6.6	8.8	9.7	9.7
5.0	0.3	0.6	1.0	1.7	3.2	5.4	8.2	10.0	10.3
7.0	0.3	0.6	1.0	1.7	2.8	4.7	7.3	9.7	10.4
10.0	0.4	0.7	1.1	1.7	2.6	4.2	6.5	9.1	10.4
14.0	0.5	0.8	1.1	1.8	2.7	4.4	6.5	8.7	10.3
20.0	0.7	0.7	1.2	1.9	2.7	4.4	6.5	8.7	10.3

NOT

The figures given in this table are the average response of many of Dolby Laboratories' professional encoders, and are not intended to be taken as required consumer equipment performance characteristics. Thus, no inference should be drawn on the tolerances which licensees must retain in consumer equipment. The figures can, however, be used to plot typical characteristics.

TEST CIRCUIT NE645/646

