DESIGNING

NDFL AMPS

The use of nested differentiating feedback loops (NDFLs) is a
new technique for reducing audible-frequency distortion in an
amplifier to a vanishingly low level. As the name implies, NDFLs
rely on negative feedback, but they use it in a new way. Edward
M. Cherry, Associate Professor of the Department of Electrical
Engineering, Monash University, explains the theory involved.

n order to understand just how far the new NDFL
Itechnique can improve an amplifier, we first need to

know the fundamental limits to the reduction of distor-
tion that can be achieved with conventional techniques.
To begin with, we survey familiar negative-feedback:
theory.

Figure 1 is a block diagram of an amplifier with
negative feedback. In this diagram, the forward path cor-
responds to the amplifier before feedback is applied, and
its gain is traditionally designated by the Greek letter u.
The feedback network returns a fraction 8 of the output to
the input circuit, where it is in some way subtracted from
the true input to provide the actual input to the forward
path.

In many practical amplifiers, the subtraction is ac-
complished by applying the input and feedback signals to
the two inputs of a balanced differential first stage of the
forward path. Figure 2 is an outline practical circuit. In this
circuit the feedback factor g is the attenuation of the net-
work comprising R, and Ry,

o5 R:
B = Re + Re M

A typical value for an audio power amplifier might be

1/20. The forward-path gain g in Fig. 2 corresponds to gain .

from input to output when the feedback network is remov-

ed. A typical value for a simple audio power amplifier
might be 1000.

For Fig. 1, the overall closed-loop gain A is given

precisely by "

. Output. /. I

A lnpout - — . T =+ §g 2)

The quantity g8 is called the loop gain. Physically, loop
gain is the gain that would be observed if the feedback
“loop’ in Fig. 1 was cut at some point, a signal was injected
into one side of the cut, and the resulting signal at the
other side of the cut was measured. 4

If the values of x and f are such that loop gain is small
compared with unity, the closed-loop gain is very nearly
equal to the forward-path gain (that is, the gain without
feedback)

A= u (3)
pB<l
However, if loop gain is large compared with unity, the

closed-loop gain approaches the reciprocal of the feed-

SUBTRACTOR

back factor and becomes
almost independent of the
_ - forward-path gain

A—1/8
uB >

The quantity 1/B is often
called the demanded gain,
as it is the value the overall
closed-loop gain would
take in ideal circumstances.

As a numerical example, if we substitute the above
values p = 1000 and 8 = 1/20 into Equation 2, the gain of
our ‘typical’ audio power amplifier works out as A = 19.6.
The approximate Equation 4 predicts A — 20, within 2% of
the correct answer.

The quantity 1 + u8 occurs often in feedback theory.
It is called the return difference F.

F=1+pB
Physically, return difference has the significance
Fo forward-path gain ©)
~ closed-loop gain
For values of loop gain greater than about 10, loop gain
and return difference are almost equal — in our ‘typical’
example the value are 50 and 51 respectively.

Simplified treatments of feedback theory show that, if
the distortion generated in the forward path (that is, the
amplifier without feedback) at a particular output signal
amplitude is D,, then the resulting closed-loop distortion
D, at the same output signal amplitude is

D= DJF (7)
Distortion is improved when feedback is applied to an
amplifier by a factor equal to the return difference. In our
‘typical’ amplifier, F = 51; if the distortion without feed-
back happened to be 10%, then feedback should reduce
the distortion to 0.196%.

More rigorous treatments of feedback theory show
that Equation 7 is no more than a poor approximation to
the truth. In the first place, real amplifiers are far more
complicated than Fig. 1 suggests, because several different
feedback paths (not all intentional!) can be identified. For
example, the collector-base capacitances of transistors in-
evitably provide some unintended feedback at high fre-
quencies. There is a very real problem in interpreting just
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Fig. 2 Outline circuit of an audio power amplifier.

what loop gain and return difference mean when there is
more than one feedback loop. Once the correct inter-
pretation is established, return difference invariably turns
out to be a function of frequency, and the reduction of
distortion corresponding to Equation 7 depends on the
value of return difference at the frequency of the distor-
tion, not the frequency of the input. Feedback therefore,
does not reduce all distortion components equally.

Finally, it is found that the closed-loop distortion of an
amplifier can contain new components that were not pre-
sent in the distortion that existed in the forward path
before feedback was applied. These new distortion com-
ponents initially increase as loop gain is increased, but
fhey fall away again towards zero as loop gain is made
arge.

Despite all these complications, the fact remains that
adequate negative feedback, properly applied, does
reduce distortion. Why, then, do amplifier designers not
simply apply some arbitrarily large amount of feedback
and reduce amplifier distortion to the vanishing point?

TIM, 1IM, PIM, . ..

In the last 10 years or so, readers of audio magazines
have been made aware of a conjecture that goes
something like this:

""Harmonic distortion and the usual intermodulation
distortion decrease with increasing feedback. Tran-
sient intermodulation distortion (TIM) increases with
increasing feedback, and is approximately directly
proportional to the feedback. Therefore, there is an
optimum value for the feedback at which the subjec-
tive distortion sensation is least. This optimum feed-
back is unlikely to exceed about 20 dB.”

More recently, there has been conjecture that heavy
overall feedback should be applied with caution if inter-
face intermodulation distortion (IIM) is to be avoided. An
amplifier should provide a low open-loop output im-
pedance so that the need for feedback-generated
loudspeaker damping is minimised.

There has also been conjecture that negative feed-
back, which reduces the usual intermodulation distortion,
may increase phase intermodulation distortion (PIM) by
converting amplitude nonlinearities into phase non-
linearities.

Unequivocally, none of these conjectures has any
basis in the new NDFL amplifiers. As an aside, there is a
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substantial body of opinion that none of these conjectures
has any basis, full stop; interested readers should refer to
References 1-9.

Instability And Oscillation

A fundamental limit to the amount of feedback that
can be applied to an amplifier is set by the onset of in-
stability and oscillation.

If the magnitudes of the forward-path gain and
demanded gain of the idealised Fig. 1 are plotted versus
angular frequency « (in radian/second) on logarithmic
scales, the resulting graph looks something like Fig. 3. The
3 dB bandwidth of the amplifier without feedback is 1/7,,
and the gain-bandwidth product (at which gain drops to
unity) is 1/7,.

Because the graph is on logarithmic scales, the separa-
tion between the curves of forward-path gain and
demanded gain is the loop gain (remember that, to divide
two numbers, you subtract their logarithms; if you divide p
by 1/8, you get gB). The magnitude of loop gain falls to uni-
ty at the frequency 1/7, where the curves intersect and
their separation is zero (remember that the logarithm of
unity is zero). ;

By a similar argument, return difference is the separa-
tion between the curves of forward-path gain and closed-
loop gain, as indicated in Fig. 3.

We could make a similar graph to Fig. 3, showing the
phases of pand 1/8. Again, the phase of loop gain would turn
out to be the separation between the two curves.
However, there is a remarkable piece of mathematics due
to Bode, who used a transformation evolved by Hilbert
(1862-1943), which shows that there is a relation between
the magnitude and phase of the response of any linear
system. Subject to some gualifications, our proposed
graph of the phases is completely predictable from Fig. 3
and contains no new information. Interested readers may
refer to Chapter 14 of Bode's book (Reference 10) but are
warned that it is anything but easy going!

As an example, many readers will know that, if the
forward-path in Figs. 1 and :_“as a high-frequency cut-off
rate variously described as single pole, 20 dB/decade, or 6
dB/octave, then its phase shift is 45° at the 3 dB cut-off fre-
quency 1/7, and is asymptotic to 90° at very high
frequencies.

In 1932, Nyquist applied a theorem which dates back
to Cauchy (1789-1857) to derive the condition for a feed-
back amplifier to be stable and free from oscillation. If a
polar plot is made of the magnitude and phase of return
difference as frequency is varied, a vaguely ‘snail-shaped’
curve results. Such a polar plot is called a Nyquist
diagram. Subject again to some qualifications, the stability
criterion for a feedback amplifier is that its polar plot of
return difference should not enclose the origin. Figure 4
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Fig. 3 Logarithmic plots of gain versus frequency for Fig. 1.’
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shows one example each of a stable situation and an
unstable situation.

Because the phase of return difference can be
predicted from Fig. 3 via Bode’s result a Nyquist diagram
can also be constructed from Fig. 3 and the onset of in-
stability can be predicted. In 1945 Bode showed that Ny-
quist’s criterion could in fact be expressed in terms of the
gradients of the curves in Fig. 3, t ereby eliminating the
work of finding the phase explicitly and plotting the Ny-
quist diagram. Bode’s exact rule is complicated, but a
useful paraphrase is

“If in graphs such as Fig. 3 the separation between
the forward-path gain and demanded gain decreases
toward zero at a rate not exceeding 30 dB/decade,
the amplifier is unlikely to oscillate.”

This paraphrase makes no allowance for the
tolerances on components. It assumes, in effect, that
everything about the forward path is well known and con-
stant. In the audio context, the paraphase takes no
cognizance of the fact that the capacitance of the leads
that connect an amplifier and loudspeaker is anything but
well known. A more conservative rule, applicable to the
audio context, is therefore

“In graphs such as Fig. 3, the separation between the
forward-path gain and demanded gain should not
decrease towards zero at a rate exceeding 20
dB/decade.”
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transistors is a fraction of a nanosecond, but for power

transistors of the ubiquitous 2N3055 class the transit time

may be as long as a few tenths of a microsecond. Thus, the

J'r\);‘.uft{put stage of Fig. 2 may have a pole in the vicinity of 1
Z!

As we saw in the previous section, the unity-loop-gain
frequency 1/7x in Fig. 3 must be substantially less than the
frequency of all poles exce t the dominant pole 1/7, if an
amplifier is to be stable. If the power transistors are of the
3055 class then, no matter how fast the other transistors
may be, there is going to be one pole at about 1 MHz.
Therefore 1/7x must be chosen to correspond to something
like 200 kHz. Even with more modern power transistors,
1/7, is restricted to about 1 MHz. The art of designing a
stable power amplifier involves choosing the lag compen-
sating capacitor C such that 1/, is appropriate to the tran-
sistors actually used.

The geometry of Fig. 3 is such that, no matter how g, 8
and 7, are separately chosen, the return difference F(cw) at
any angular frequency « cannot exceed

Flw) < Twry (8)
Thus, if 1/7y is designed to correspond to 200 kHz, return
difference at 20 kHz cannot exceed 10 (= 20 dB), and
cannot exceed 200 (= 46 dB) at 1 kHz. An amplifier that
boasts 80 dB of feedback (F = 10,000 at low frequencies)
must have 1/, corresponding to about 20 Hz; return dif-
ference must begin falling agove 20 Hz, and the former
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Fig. 4 Nyquist's stability
criterion. The curves are
polar plots of return
difference for changing
frequency.

Fig. 5 Block diagram of an

NDFL amplifier.

The practical consequence is that the forward path of
an audio amplifier with conventional resistive feedback
should have a single dominant pole which sets the fall-off
of gain at frequencies above 1/1,. The second and subse-
quent poles should lie at frequencies substantially above
1/7, (the frequency where the separation reaches zero),
because each pole contributes a 20 dB/decade
downwards slope to the graph of forward-gain path.

Maximum Available Feedback

In Fig. 2, the first stage is a long tailed pair with a cur-
rent mirror at its output; the input and feedback signals are
applied to the two bases to perform the subtraction pro-
cess of Fig. 1. The second stage provides a large voltage
gain, and the lag compensating capacitor C provides the
dominant pole of the forward path corresponding to 1/, in
Fig. 3. The third stage is a complementary class-B emitter
follower whose function is to transfer the output voltage
from the second stage to the loudspeaker load. In practice,
the transistors in the second and third stages are often
Darlingtons, and the input transistors are often replaced
by FETs.

In any similar amplifier, there is at least one pole
associated with the finite transit time of electrons through
each transistor. The transit time for typical small-signal
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values at 1 kHz and 20 kHz (46 dB and 20 dB) still apply.

Returning now to Equation 7, the effectiveness of feed-
back in reducing distortion is set by the frequency of the
distortion, not the frequency of the input. The audible fre-
quency range is generally reckoned to extend to about 20
kHz and, with the foregoing constraints, return difference
at this frequency cannot exceed 10. Remembering that 20
KkHz is the third harmonic of 6.667 kHz, we see that feed-
back cannot reduce offensive odd-harmonic distortion of
mid-treble input signals by more than a factor of 10.
Remembering too that 20 kHz is the seventh harmonic of
2.857 kHz, we see that feedback cannot reduce crossover
d}stortion of mid-range input signals by more than a factor
of 10.

Until recently there has been no way around this pro-
blem except to increase the unity-loop-gain frequency
1/7,, and this demands that the frequencies of the tran-
sistor poles must be increased if stability is to be preserved.
Fragile, expensive power transistors, with narrow bases to
achieve short transit times, become mandatory.

The NDFL Approach

There is, however, another solution to the stability
problem. If the forward-path gain has two dominant Foles,
so that its gain falls at 40 dB/decade, the rate of closure
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between the graphs of forward-path gain and demanded
gain would still be 20 dB/decade provided the demandad
gain itself were to fall at 20 dB/decade. In essentials, this
requires that the usual frequency-independent resistive
feedback factor 8 should be replaced by something having
a frequency dependence of the form wr. (remember that
the demanded gain is the reciprocal of the feedback fac-
tor). Mathematicians tell us that a linearly rising frequency
response corresponds to differentiation with respect to
time and, in hardware terms, a capacitive feedback net-
work will perform just this action.

Figure 5 shows the outline of an amplifier incor-
porating nested differentiating feedback loops. Notice
first that the forward path has been separated into a
number of stages, whose mid-frequency gains are u, to p.
respectively. The variable s is what mathematicians call
complex frequency; for sinusoidal signals its magnitude is
equal to the angular frequency o of the sinusoid. Factors of
the form (1 + s7,) represent a frequency response that rises
proportional to frequency above the frequency 1/7, — that
is, they represent a zero. Similarly, factors of the form
1/(1 + s7.) represent a frequency response that falls in-
versely proportional to frequency above the frequency
1/7, — that is they represent a pole. Thus, the stages in Fig:
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Fig. 8 The (N-2)th loop of Fig. 5.
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5 have special frequency responses: all stages except the
first have a pole at 1/7., and all except the first and last two
have a zero at 1/7..

Notice also that there are differentiating feedback net-
works, each denoted by s, linking the output back to
various points in the forward path. The resulting feedback
loops are arranged one inside another, like a nest of
Chinese boxes — hence the name nested differentiating
feedback loops.

The amplifier is completed by an overall resistive feed-
back network 8.

If we removed all the feedback from Fig. 5, the
forward-path gain would be shown in Fig. 6: constant up to
the frequency 1/7, then falling at an (N—1)-pole rate
(20(N —1) dBl/decade) up to 1/7, and finally levelling off
somewhat to a two-pole rate (40 dB/decade).

If we now applied just the overall resistive feedback g,
the return difference would be as shown in Fig. 6. Distor-
tion would be reduced by a constant large amount, ap-
proximately u, p, . .. py B, at all frequencies up to 1/7,.
Choosing 1/7, to correspond to 20 kHz would virtually
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Fig. 7 The inner loop of Fig. 5.

eliminate audible-frequency distortion. But the amplifier
would be unusable because of oscillation.

The rate of closure of the forward-path gain and
demanded gain curves breaks the rule of 20 dB/decade. Let
us see how inclusion of the nested differentiating feedback
loops solves the problem.

Figure 7 shows just the last two stages and the inner
differentiating feedback factor. This ‘clump’ is a feedback
amplifier in its own right, and Fig. 7 shows its forward-path
gain (that is, the gain of the last two stages without any
feedback), the demanded gain, and the resulting closed-
loop gain. Although the forward-path gain falls at a two-
pole rate (40 dB/decade), the demanded gain falls at a
one-pole rate (20 dB/decade), and their rate of closure is
20 dB/decade. By itself, this ‘clump’ is stable.

Figure 8 shows what happens when we add the
antepenultimate stage and another differentiating feed-
back factor. Again this ‘clump’ can be considered as a
teedback amplifier in its own right. Provided we choose.

Bnoz = TolTx

the various gains line up as shown. The forward-path gain
is the combined gain of stage (N - 2) and stages (N— 1) and
N with their local feedback, and this is the middle solid
curve in Fig. 8. The demanded gain is the dashed curve
passing through 1/7,. Once again the forward-path gain
and demanded gain close at 20 dB/decade, so the stability
criterion is satisfied for this larger ‘clump’.
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Fig. 9 Complete plots of gain versus frequency for Fig. 5.

And so it goes on. We can add more stages and dif-
ferentiating feedback factors, and each time the curves
line up as required for stability provided we choose

o i B = (177, 9)
Te = i By, (10)
wo = Tolrefor2 sk < N-2. amn

Figure 9 shows the gain curves for the complete amplifier.

In designing an NDFL amplifier, the starting point is to
choose the frequency 1/7, so that the various transistor
poles are sure to lie at substantially higher frequencies.
Next choose the frequency 1/7, up to which the return dif-
ference should remain constant; 20 kHz is a suitable value
for audio amplifiers. After this, the circuit more or less
designs itself via Equations 9-11. above.

Outline Practical Circuit

Figure 10 shows how an amplifier of the basic
topology of Fig. 2 can be modified to include two NDFLs.
Interested readers should refer to references 11, 12 for
more details.

Notice first that the lag compensating capacitor, C, in
the penultimate stage of Fig. 2 has been removed in Fig.
10. In its place are two capacitors (C) linking the output
back to various points in the forward path. These
capacitors are the feedback networks of the nested dif-
ferentiating feedback loops.

The output stage has been changed to include a
modified form of Thiele’s load-stabilising network. Some
form of LRC filter is required to locate one of the poles cor-
rectly, and with the circuit ;

PNP to provide a well-defined gain (13).

As already suggested, once the demanded gain 1/8
and the critical frequency 1/7¢ are chosen, the circuit
almost designs itself. The equations are:

R 13'1 B 7 e

RC = B, (13)
RyCy = 7%, (14)
7= (3 - . (15)

All stage gains and poles and zeros automatically look
after themselves. :

Figure 11(a) shows the 5 kHz square-wave response of
Fig. 10 as built from 5%-tolerance resistors, 20%-tolerance
capacitors, and unselected roduction transistors. Evident-
ly the circuit is ‘designable’; Equations 12-15 really do
predict component values for good transient response.

A nice feature of the modified Thiele circuit in Fig. 10
is that, when the load is made capacitive (a well-known
source of high-frequency oscillation in amplifiers), the
voltage waveform at the FEEDBACK POINT is the
waveform the amplifier would have delivered into its
nominal resistance load. Figures 11(b) and (c) illustrate
this; the violent ringing in Fig. 11(b) is simply an LC
resonance between the filter inductor and the load
capacitance, and is in no way indicative of approaching
instability. _

Figure 12 shows details of the 1 kHz sinusoidal
response under overdrive conditions. Note the quick,

shown we get double value
from the components.

The input stage itself is
unchanged, but an inex-
pensive small capacitor in
the overall feedback net-
work B can be used to cor-

rect the group delay and
improve the reproduction
of transient waveforms.
Another essential addi-
tion is an amplifying stage o
between the two nested dif-
ferentiating feeback factors.
This rather peculiar circuit
(which dates back to Rush

FEEDBACK
POINT

(o

in 1964) seems largely to

have been forgotten. It uses
one NPN transistor and one

Fig. 10 Outline circuit for an NDFL amplifier.
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Fig. 11 5 kHz square wave
response of Fig. 10.

(a) 8 ohm resistance load.

Fig., 12 Detail of output
waveform from Fig. 10
under overdrive.

Fig. 14 2 kHz crossover
distortion when bias is set
wrongly.

(c) waveform at feedback
point for (b).

| (a) Fig. 2 (conventional
5 : : amplifier).
g 001 st =ttt
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: il (b) Fig. 10 (NDFL amplifier).
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Fig. 13 1 kHz harmonic
distortion.

clean recovery.

An amplifier has been built in which the circuit can be
switched from Fig. 2 to Fig. 10, to illustrate the improve-
ment in performance of adding two NDFLs. Figure 13
compares the measured third-harmonic distortions of 1
kHz. Notice how the distortion of Fig. 10 drops away to
below three parts per million at small signal amplitudes.
Such behaviour is more typical of class-A amplifiers than
class-B amplifiers, and may account for the clean sound of
NDFL amplifiers.

Crossover distortion associated with incorrect bias of
the output stage is one of the most audibly annoying forms
of distortion. Audio amplifiers based on Fig. 2 sometimes
have a type of crossover distortion that does not show up
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in normal measurements. Correct biasing of the output
stage relies on close tracking of the thermally-
compensated biasing device and the power transistors. At
best the biasing device can be thermally bonded to the
power transistor case. More usually it is bonded to the
heatsink, but there is no way it can simultaneously sense
the actual junction temperatures of all the power tran-
sistors. Under rapidly-fluctuating dynamic signal condi-
tions, the glunction temperatures may be wildly different
from each other and from the case or heatsink
temperatures, and therefore the biasing may be wrong.

Figure 14 compares the static cross-over distortion of
Figs. 2 and 10 when the bias is deliberately set 0V5 too
low. Dynamic mistracking of the biasing circuit should not
introduce audible crossover distortion in an NDFL
amplifier.

One final point. The NDFL technique maximises the
return difference (and hence minimises distortion com-
ponents) at frequencies up to 1/7,. Above this frequency
the return difference falls away rapidly, and distortion
rises. Choosing 1/7, to correspond to 20 kHz minimises
audible-frequency distortion, but does not minimise
ultrasonic distortion.

For example, a common specification for audio power
amplifiers is their THD at 20 kHz. The harmonics of 20
kHz lie at 40 kHz, 60 kHz, 80 kHz, and so on. All are
ultrasonic (and hence inaudible) and the NDFL technique
does not minimise them. A measurement of THD at 20
kHz may therefore give a quite misleading indication of an
NDFL amplifier's audible performance. Valid objective
tests include the SMPTE and CCIF tests for two-tone inter-
modulation distortion, the proposed IEC test for TIM (14),
Cordell’s proposed three-tone test for TIM (15) and the
proposed test for input-output intermodulation distortion
IOD (6). The distinguishing feature of all these tests is that
they measure the distortion at audible frequencies.
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