
Order this document
by AN1771/D

Motorola Semiconductor Application Note

AN1771
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs
By Joe Haas

TSG Body Electronics and Occupant Safety Division
Austin, Texas

Introduction

The pervasive nature of the modern microcontroller (MCU) has resulted
in numerous products that now contain one or more MCUs as central
subsystems. Cell phones, base stations, repeaters, SLICs (subscriber
line interface cards), and cordless telephones are just a few of the many
products which have MCUs at the center of their functionality.

These products also require precision tone generators for functions such
as dual-tone-multi-frequency signaling (DTMF), call progress tones,
continuous tone-coded squelch system encode (CTCSS), digital
continuous tone-coded squelch system encode (DCTCSS), and user
interface chimes.

While off-the-shelf components generally are available for these
functions, the added cost can be greatly reduced by using the already
present MCU to synthesize the desired tones. This benefit is multiplied
in systems where many unrelated tone protocols are required, since the
same synthesis firmware/hardware can be used across a wide range of
frequencies.

This application note presents basic tone synthesis techniques and
illustrates their implementation using the HC08, HC05, HC11, and HC12
Families of MCUs.
© Motorola, Inc., 1998 AN1771

Application Note
Tone Synthesizer Basics

When an analog signal is stored in digital memory, an A/D (analog-to-
digital) converter is used to provide quantized samples at a specific data
rate (known as the sample rate or FS) to be stored in memory as binary
values. To retrieve the stored signal, the binary samples are extracted
from memory and sent to a D/A (digital-to-analog) converter at the same
rate at which they were stored. As long as the analog signal has no
frequency components greater than half the sample rate (as per the
Nyquist criteria), the reconstructed signal will appear to closely follow the
original waveform. (Quantization effects in the A/D will introduce some
errors.)

To generate a tone at a specific frequency, one can simply digitize a
sample of the tone to be reconstructed and store the sample in the
system memory for later recall. However, for a multi-tone system, each
tone requires a separate sample and thus its own memory storage. The
more tone frequencies required, the more storage needed to hold the
samples. In addition, the sample lengths for different frequencies will not
be consistent, since each stored sample must continue until the signal
repeats. This method would be tedious to maintain, use large amounts
of memory to store relatively few tones, and would be limited to only
those tones which were stored previously.

Another reconstruction method would be to generate a single sample
and vary the reconstruction sample rate. This would produce a signal
with a variable frequency with only one stored cycle, but it would yield a
variable and non-linear Fstep (Fstep is the smallest, non-zero increment
of frequency).

As an example, consider an 8-MHz master clock and a 256-byte sine
sample. The 8-MHz master clock is applied to a programmable 16-bit
divider which is used to set the sample rate. To obtain reconstructed
tones from near-DC to 3 kHz, the divider would range from 65535
(8E6 / 65535 / 256 = 0.477 Hz) to 10 (8E6 / 10 / 256 = 3.125 kHz).
AN1771

2 MOTOROLA

Application Note
Tone Synthesizer Basics
At the low end of the frequency range, the Fstep would be:

Fstep = Fdiv2 – Fdiv1

= (8E6 / 65534 / 256) – (8E6 / 65535 / 256)

= 0.47685 – 0.47684

= 0.00001 Hz

While at the high end:

Fstep = Fdiv2 – Fdiv1

= (8E6 / 10 / 256) – (8E6/11 / 256)

= 3125 – 2841

= 284 Hz

This illustrates that the example would exhibit an Fstep variation of
several orders of magnitude across the signal passband. Not only would
this complicate real-time frequency calculations on the target system,
but the Fstep granularity at the higher frequencies would severely limit
the utility of the system. (Typically, Fstep should be at least 0.5 Hz
across the passband for most applications.)

Filtering this system would also pose some problems. A reconstruction
filter (for instance, a low-pass filter with a cutoff frequency, Fc, just below
the Nyquist rate of Fs / 2) is used to remove the PWM (pulse width
modulation) sample frequency and higher order harmonics. If the
sample rate is varied, the user must undertake the difficult and
expensive task of designing a tunable filter that can track the sample rate
so that the reconstructed signal can have a flat response in the
passband. This would require additional hardware, MCU resources, and
firmware support which would increase the cost of both development
and production.

Direct Look-Up
Synthesis

The direct-look-up synthesis algorithm described here uses a
combination of the aforementioned schemes to produce precision
waveforms across a specific frequency band. A look-up table holds a
replica of the waveshape which is to be generated. (Typically, this is a
mathematically generated sine table with N entries.) At every sample
point, the algorithm uses the value of a phase accumulator to extract
AN1771

MOTOROLA 3

Application Note
data from the table which is sent to the D/A. The phase accumulator is a
software register used to keep a "running total" of the current phase
valve of the synthesized signal. The algorithm also updates the phase
accumulator to be used at the next sample point by adding a "delta
phase" value, or Delta.

NOTE: Look-up table accesses are modulo-N, such that any access beyond the
end of the table will wrap-around to the beginning.

To obtain finer Fstep granularity, Delta and the phase accumulator are
represented as fractional quantities with the integer portion being used
as the index into the sine table.

The frequency of the resulting tone can be deduced by setting Delta = 1.
At every sample point, the integer portion of the phase accumulator is
incremented by exactly 1. Since this corresponds to the index into the
sine table, the D/A output simply will follow the sine table. Since the table
holds one cycle, the frequency of the output will be 1/tgen, where tgen is
the time required for one full cycle.

With N table entries sent at 1/Fs per entry:

tgen = N * 1 / Fs.

If Delta is doubled, the table will be cycled in half the samples, which
results in:

tgen = N / (2Fs)

Thus, tgen is inversely proportional to the value of Delta. Since F = 1/t,
the frequency of the generated signal is given by this equation:

(1) Fgen = (Fs * Delta) / N

As noted, Delta is a fractional quantity valid in this range:

0 <= Delta < N / 2

For microcontroller applications, Delta is most easily represented as a
2-byte quantity (referred to here as Dreg) with the upper byte holding the
integer portion and the lower byte holding the fractional portion (thus, the
AN1771

4 MOTOROLA

Application Note
Tone Synthesizer Basics
radix lies between bits 7 and 8). The decimal value of Delta would be
represented as:

(2) Delta = Dreg[15:0] / mod(fractional)

Since the fractional portion is represented here as an 8-bit value,
mod(fractional) = 256 which yields:

(3) Delta = Dreg[15:0] / 256

and

Dreg[15:0] = 256 * Delta

The 16-bit Dreg value is thus added to the 16-bit phase accumulator at
each sample period to generate the table index and running phase
reference. The table index is extracted from the phase accumulator by
masking the integer portion with N – 1 (valid for N = 2^x, where x is a
positive integer). For an 8-byte table, the mask would be $07 (the lower
three bits) and for a 256-byte table the mask would be $FF (all eight bits
of the integer portion of Delta). This provides a simple and efficient
method of implementing the numerical values used to represent Delta.

Example:

Given: N = 8, Fs = 8 kHz, and Fgen = 800 Hz

From equation 1, solve for Delta,

Delta = (N * Fgen) / Fs

= (8 * 800) / 8000

= 0.8

The integer and fractional parts (high byte/low byte) are represented as:

Integer = 0

Fractional = 0.8 * 256 = 204.8 (round to the nearest integer) = $CD

Dreg = $00CD
AN1771

MOTOROLA 5

Application Note
The pointer mask, as noted, would be Accum[10:8] = [111], which is
used as an offset into the 8-byte sine table.

Table 1. Example of a 4-Bit, Unsigned Sine Table
(D/A = 8 + int(sin(2*pi*x / 16) * 15)

Offset, x D/A Degrees

0 8 0

1 13 45

2 15 90

3 13 135

4 8 180

5 2 225

6 0 270

7 2 315

Table 2. Example of Phase Accumulator History
(Each Line = 1 Sample Period)

Accum [15:0] Accum [10:8] D/A Value from Table

$0000 $00 $08

$00CD $00 $08

$019A $01 $0D

$0267 $02 $0F

$0334 $03 $0D

$0401 $04 $08

$04CE $04 $08

: : :

: : :
AN1771

6 MOTOROLA

Application Note
Tone Synthesizer Basics
Figure 1. Delta = 0.8 (800 Hz) Example Using 8-Byte Table

Figure 1 illustrates a full cycle of the reconstructed signal, with each
horizontal division representing one sample period
(1 / Fs = 1 / 8000 = 125 µs). From this, the period of the waveform can
be calculated by counting the number of sample periods for a full cycle
and multiplying by the sample period (in this case,
10 samples = 1.25 ms = 1 / 800 Hz).

As is apparent from the plot of Figure 1 , a table length of 8 results in a
coarse reconstruction; a longer sine table gives more resolution and
reduces harmonic distortion. Since the integer portion of Delta is eight
bits, a 256-byte table is easily indexed while not reserving an excessive
amount of memory. Linear interpolation can be used to increase
accuracy with a shorter table, but this is generally not feasible on most
MCUs due to processor bandwidth limitations. (However, the HC12 can
support this method as is described later in this application note.)

An interesting result of this reconstruction method is that the relationship
between Delta and Fs is linear, with each unit change in Delta resulting
in the same change in Fgen across the entire pass-band. This value was

Reconstructed signal (Delta = 0.8)
15

10

5

0
0 5 10 15

V
ol

ts

t/Fsamp
AN1771

MOTOROLA 7

Application Note
referred to earlier as Fstep and represents the smallest possible change
in Fgen.

Fstep can be found from equations 1 and 3 by:

Fstep = F1 – F2

Choose F1 and F2:

F1 = (Fs * Dreg / 256) / N

F2 = (Fs * (Dreg – 1) / 256) / N

Fstep = ((Fs * Dreg / 256) / N) – (Fs * (Dreg – 1) / 256) / N

= Fs / (256 * N) * (Dreg – (Dreg – 1))

(4) Fstep = Fs / (256 * N)

Thus, for any value of Dreg, the Fstep is always equal to Fs / (256 * N).
One result worth consideration is that for a given sample rate, the only
remaining variable to determine Fstep is the table length.

From the previous example, Fs = 8000 Hz and N = 8, which gives
Fstep = 3.906 Hz. Increasing the table size to N = 256 results in
 Fstep = 0.122 Hz. Fstep specifies the maximum gross frequency error
for any given tone frequency allowing system accuracy within
 ± Fstep/2 of any desired frequency.

After signal purity considerations, Fstep typically is the next most
important design parameter as it determines how accurately generic
tone frequencies can be generated. Generally, a designer is faced with
the need to generate tones over a specific frequency range with some
degree of accuracy. Typically, this is specified in terms of %error (plus
or minus) of the desired frequency, but also may be expressed as
+/–∆F(Hz). (Of course, specifying the error in this manner is trivial
because Fstep < 2∆F is all that is required for the design to meet the
specification.)
AN1771

8 MOTOROLA

Application Note
Tone Synthesizer Basics
For systems that express error in terms of percent, use this equation to
determine the maximum allowed Fstep:

(5) Fstep(max) = (Fmin * %error) / 2

Where Fmin is the minimum desired frequency to be generated

Of course, this equation represents the design minimum, and usually it
is desirable to choose as small an Fstep as is practical. Actual Fstep
should be at least 50 percent of Fstep (max) from equation (5) to allow
for round-off errors and normal variations in system clock frequency.

Dual Tone (Chord)
Synthesis

Applications such as DTMF and call progress signaling require dual tone
synthesis which is simply the generation of two mixed tones of unrelated
frequencies. The term "chord" is sometimes used to describe this
technique, even though the two tones are not necessarily related by
harmonics. In direct look-up synthesis, dual tone generation is a
straightforward extension of the single tone case described earlier. Two
separate tones can be generated by maintaining two separate Dreg and
phase accumulator registers. For each sample period, the system adds
Dreg1 to accumulator1 and Dreg2 to accumulator2. The index extracted
from each accumulator is used to separately extract D/A values from the
same look-up table. Before sending to the D/A, however, these two
values are added in software, with the resulting D/A output representing
the algebraic sum of the two unrelated tones.

When mixing two signals on the same D/A channel in this manner, it is
important to avoid overflow. Overflow occurs when a value is calculated
that exceeds the D/A maximum range. If the two signals are of the same
amplitude, the range of instantaneous amplitude can vary from a
minimum of 0 to a maximum of 2A, where A is the maximum amplitude
of the individual signals. Thus, the maximum allowed value is
D/A(max) = 2A, or A = D/A(max) / 2.

This can most easily be accomplished by "pre-dividing" the sine table
values by 2 so that when any two values are summed, the result won't
overflow the D/A.

While pre-division minimizes the real-time effort required by the
firmware, it also increases the round-off error (because the D/A LSB
AN1771

MOTOROLA 9

Application Note
(least significant bit) of the original sine table values are lost). A better
method is to use the original table and perform the division in real time
(post-division). While this adds some overhead to the system, it reduces
round-off error which results in improved dynamic range.

With an 8-bit D/A implementation on an 8-bit MCU, the most efficient
way to implement post-division is to simply add the byte values and
perform an ROR instruction on the result (divide by 2). When the two
8-bit values are added, the carry becomes the ninth bit. The effect of the
ROR instruction is to divide this 9-bit value by two with the 8-bit result
being the desired D/A value. While the LSB of the final D/A result is lost,
it should be noted that this represents only one round-off error instead of
the two errors introduced by the pre-division method.

Look-Up Table
Requirements

The length of the look-up table is a primary design variable and is
determined by available memory and desired Fstep resolution. D/A
dynamic range also contributes to the length of the table as some
systems can accommodate 10-, 12-, or 16-bit D/A sub-systems. This
mandates more memory to hold the longer D/A values in the look-up
table.

Another factor in determining table length derives from the nature of the
accumulator/pointer system employed. To reduce firmware overhead,
the look-up table length should be an exponential multiple of 2 (given
earlier as N = 2^x). This simplifies the modulo bit mask to extract the D/A
pointers which can save several execution cycles in code that is typically
very time sensitive. Optimally, an 8-bit mask is chosen because this
requires no extra cycles to extract the pointer which results in a code-
optimal table length of 2^8 or 256 bytes. While this may result in an Fstep
which is much smaller than required for some applications and increase
the table memory required, the reduction in execution cycles can
overshadow memory availability concerns in systems where ancillary
firmware load is high.
AN1771

10 MOTOROLA

Application Note
D/A Methods
D/A Methods

Two of the most popular D/A methods are direct conversion and pulse
width modulation (PWM, also referred to as pulse length modulation,
PLM). While direct D/A is the easier to implement (in terms of firmware
support) and can result in less distortion and noise than PWM methods,
typically, it is more expensive and therefore not as desirable in cost-
sensitive systems.

For this reason, the bulk of the following discussion focuses on PWM
methods for some of the 8- and 16-bit Motorola microcontrollers. In
general, buffered PWM is preferred over non-buffered because the
signal-to-noise ratio of the output can be adversely affected by even
slight timing variations in the PWM signal.

Filtering The sample frequency should be as high as possible (relative to the
reconstructed signal) to relax the filtering requirements. The lower the
sample frequency, the sharper the filtering required to effectively
eliminate the stop-band frequency components. Some of the PWM
methods described here are limited to carrier frequencies of around
8 kHz or less (due to timer and/or MCU clock speed limits), which can
require very sharp filtering to sufficiently remove the PWM carrier and
signal aliases from the D/A output for some applications.

Sample rate and filter order are the prime cost factors in a synthesis
system. As the sample rate is increased, more D/A performance is
required which typically increases costs by forcing the designer to
exercise one or more of these choices:

• Use a higher frequency crystal

• Use a PWM module only available on a more expensive MCU

• Use an external D/A

The filter costs also are related to sample rate, but are inversely
proportional, which has the effect of countering the cost issues. Thus, it
usually is possible for the designer to reach a cost compromise which
allows the system performance specifications to be met.
AN1771

MOTOROLA 11

Application Note
To approach the issue of filtering, the user first must consider the
spectral content of the signal that is to be filtered. Sampling theory
dictates that when a continuous time signal is sampled at a regular rate
(for example, a sine table), the spectrum of the reconstructed signal will
be comprised of the spectrum of the original signal plus the original
spectrum translated to harmonics of the sample frequency as illustrated
in Figure 2 . To recover the original signal, minus the translated spectra,
a reconstruction filter is needed as indicated in the figure.

Figure 2. Reconstructed Signal Spectra
and Filter Response (Fc = ± Fs/2)

The ideal filter described in Figure 2 would pass all signals below Fc,
and reject all signals above Fc. Unfortunately, it is impossible to
construct an ideal filter, which forces the designer to consider real filter
performance when designing a synthesis system. The impact of this can
be seen in Figure 3 which shows a synthesized signal, Fgen (Fgen <
Fs / 2), inside a real filter passband. The real filter has a cutoff frequency
(Fc) that is less than the Nyquist rate, Fs/2. The stop-band aliases Fa =
Fs ± Fgen and sample clock are also shown. The intersection of the filter
curve with that of the stop-band alias determines the degree of
attenuation of the alias component.

Filter

–2Fs –Fs –Fc 0 Fc Fs 2Fs
AN1771

12 MOTOROLA

Application Note
D/A Methods
Figure 3. Example Signal and Real Filter Response
O = Order of Filter (1st, 2nd, and 4th Shown)

Filters for signal reconstruction have three important design rules:

1. The passband response should be reasonably flat.

2. The filter cutoff must be somewhat less than the Nyquist rate, but
greater than Fgen(max).

3. The required filter order is determined by the separation between
Fgen(max) and Fs – Fgen(max).

The flat passband requirement is dictated by the application. Most
applications require that signal amplitudes only vary by a small amount
across the passband. Typically, Butterworth response is preferred as it
has essentially no amplitude ripple in its passband. If the cutoff
frequency is chosen too far inside the desired passband (for example, to
increase the stop-band attenuation), amplitude distortion (known as
twist) can also result which can disrupt the function of tone receivers or
detectors (particularly important for dual tone systems).

Once the cutoff frequency is chosen so as to minimize the pass-band
distortion, the filter order (for example, the slope of the stop-band
attenuation) can be determined by the amount of stop-band alias
attenuation required and the system parameters. Better than 40db

Filter

A
m

pl
itu

de
 (

db
)

0

–10
0 Fgen Fc Fs/2 Fa Fs

Frequency

O = 4

O = 1

O = 2
AN1771

MOTOROLA 13

Application Note
attenuation in the stop-band is generally a safe figure, although more or
less attenuation may be appropriate for a particular system design.

Each order of filtering results in an attenuation slope of approximately
6db/octave in the filter stop-band. Given filter cutoff, Fc, and a target
frequency, F, the following equation relates Fc and F in terms of octaves:

(7) Fc * 2^x = F, or

2^x = F/Fc

where x = number of octaves of separation.

To solve for x, the log function is used:

(8) x = log (F / Fc) / log(2)

For a given filter order, O, and cut-off frequency, Fc, the attenuation at a
particular frequency, A(F), can be calculated from this formula:

(9) A(F) = (O * 6db / octave) * x octaves

= (6 db * O) * (log (F / Fc) / log(2))

Which can be quickly re-arranged to solve for O:

(10) O = A(F) * log(2) / (6 db * log (F / Fc))

O is a unitless quantity and is rounded to the nearest integer.

If the user assumes that the alias and Fs components are approximately
equal to the amplitude of the fundamental signal (This is generally true
± a few db for PWM and DAC systems.), A(F) can be taken as the
absolute desired attenuation floor and equation 10 can be used to
determine the required filter order based on the fundamental stop-band
alias, Fs–Fgen(max) (which is typically the most important component to
eliminate).

Simple RC stages can be used for applications where order is calculated
at 2 or less. However, higher order filters usually require an active design
(such as switched capacitor or op-amp based filters) to reduce the pass-
band attenuation inherent in passive RC filters.

For most of the firmware examples presented here, these parameters
were used:
AN1771

14 MOTOROLA

Application Note
D/A Methods
Fs = 7.812 kHz

Fgmax = 2.6 khz

Fc = 3 kHz

A(Fmas) = 40 db

from equation 10,

O = A(Fmax) * log(2) / (6 db * log((Fs – Fgmax) / Fc)

= 40 db * log(2) / (6 db * log [(7812 – 2600) / 3000)]

= 8.36

Thus, an eighth order filter would ensure that the stop-band aliases
would be better than 40 db below the fundamental. The most effective
filter method for higher order designs is a switched capacitor filter such
as the MF-4. These devices allow relatively high filter orders with few
parts.

The schematic of Figure 4 shows an eighth order filter with RC input and
output filters (needed to remove high frequency noise) for a total filter
order of 10, or about 60db/octave. This is the reconstruction filter used
with the all of the following examples.
AN1771

MOTOROLA 15

Application Note
Figure 4. Example Filter Based on
the MF-4 Switched Capacitor Building Clock

ROSC*

COSC*

1

2

3

4

CLKIN

CLKR

LS

VSS

VI

VDD

AGND

VO

MF4
8

7

6

5

IN
1.0 µF 3.3 kΩ

Rf

0.01 µF

Cf

1

2

3

4

CLKIN

CLKR

LS

VSS

VI

VDD

AGND

VO

MF4
8

7

6

5

0.01 µF

OUT

0.1 µF

+5 V

+5 V

0.
01

µF

0.1 µF
10 kΩ

10 kΩ
10

 k
Ω

* ROSC and COSC set Fc
AN1771

16 MOTOROLA

Application Note
D/A Methods
One of the results of equation 10 (with respect to the primary stop-band
alias, Fs - Fgen) is that the filter order can be reduced by increasing Fs.

If Fs from the previous example is increased to 31.2 kHz:

Fs = 31.2 kHz

Fgmax = 2.6 kHz

Fc = 3 kHz

A(Fmax) = 40 db

O = A(Fmax) * log(2) / (6 db * log ((Fs-Fgmax) / Fc)

= 40 db * log(2) / (6 db * log((31200 – 2600) / 3000))

= 2.05

Thus, by simply increasing the sample rate by a factor of 4, the two
MF-4s in the example filter can be eliminated. This greatly reduces the
filter cost.

Sine Table Each of the following examples uses a unique sine table. While some
effort was made to keep the examples consistent, subtle variations from
one MCU implementation to the next can impact the data contained in
the sine table. Most of this variation is due to PWM latencies in some of
the implementations. The D/A code used also can have a drastic impact
on the composition of the sine table (a codec versus a linear D/A, for
example).

In general, all of the examples presented here follow the same basic
format: The sine table varies between a min and max binary value with
a mid-point (or 0) reference that lies at:

D/A(0) = min + ((max – min) / 2)

Thus, all of the tones generated will have a DC offset. Since min and
max typically are close to 0 and 255, respectively, the 0 reference will
generally be close to D/A (255) / 2.

Since buffered PWM and direct D/A systems generally don't exhibit
latency problems, the examples here use a sine table that varies from 1
to 255 (or 0 to 254 for the HC12 PWM) with the 0 reference at 128.
AN1771

MOTOROLA 17

Application Note
However, unbuffered PWM systems can have min/max values that are
not so straightforward and require a different sine table. The C program
in Sine Table Generator C Program illustrates a simple method of
generating a generic sine table given minimum, maximum, and number
of entries and formats it for assembly as an include file.

Tone Generator
Algorithm

Each of the D/A examples to follow are shaped by the subtleties of the
particular MCUs chosen for this application note. However, the central
tone generator algorithm is substantially similar in all cases. Some
MCUs require more memory and/or execution time to code and execute,
but they all perform the same tasks in the same fashion to generate the
sine wave signal. Figure 5 illustrates the flowchart for this algorithm
which is the basis for all of the following examples.

The flow chart has two basic variations. Figure 5A is for non-buffered
systems and uses a temporary holding register for the D/A value. The
previously calculated D/A is loaded from the temporary register at the
start of the interrupt and immediately transferred to the PWM duty cycle
register.

In Figure 5B , for buffered systems, this value can be stored as soon as
it is calculated.

HC05 Family Two different PWM modules are available in the HC05 Family. The
HC05B16, HC05B32, and HC05X32 variants have a simple PLM
module that can provide an 8-bit PWM output at one of two rates, fast
and slow.

At maximum MCU clock rates, the fast mode allows only a 1.95-kHz
PWM rate, which limits the utility of tone synthesis since the maximum
allowed tone frequency would be only Fs / 2 = 975 Hz. Still, this might
prove useful in several applications, especially in the generation of
CTCSS tones. (The highest CTCSS tone is approximately 250 Hz.)

Another HC05 variant, the MC4, has a more flexible PWM module which
can generate buffered PWM at rates of up to about 24 kHz and is
buffered.
AN1771

18 MOTOROLA

Application Note
D/A Methods
Figure 5. Tone Generator Interrupt Service Flowchart

Move Temporary Value
to D/A Register

Index = SIN_TAB + ACFX[15:8]
Get Sine Value in (A)

Index = SIN_TAB + ACFY[15:8]
Add Sine Value to (A)

RORA (Divide by 2)
and

Store (A) to Temperature Register

Add Dreg1 (DX)
to Accumulator 1

(ACFX)

Interrupt

Timer = 0?

Clear Interrupt Flags

RTI

Decrement Timer

Add Dreg2 (DY)
to Accumulator 2

(ACFY)

Y

N

Index = SIN_TAB + ACFX[15:8]
Get Sine Value in (A)

Index = SIN_TAB + ACFY[15:8]
Add Sine Value to (A)

RORA (Divide by 2)
and

Store (A) to D/A Register

Add Dreg1 (DX)
to Accumulator 1

(ACFX)

Interrupt

Timer = 0?

Clear Interrupt Flags

RTI

Decrement Timer

Add Dreg2 (DY)
to Accumulator 2

(ACFY)

Y

N

(b) Buffered(a) Non-Buffered
AN1771

MOTOROLA 19

Application Note
HC05 PLM Since the PLM system is not buffered, a crude yet effective technique is
used to provide a synchronous interrupt to service the tone generator
algorithm. The PWM output is simply connected to one of the input
captures which is then configured for falling edge operation. This
configuration is effective, but care must be taken to ensure that the PWM
avoid 0 percent and 100 percent duty cycles. The PLM does not allow a
100 percent duty cycle, but 0 percent is achievable and must be avoided.
If 0 percent is generated by the PLM, the output is a steady logic 0, which
effectively disables the tone interrupt. The easiest method to address
this situation is to code the sine table so that the min value is at least 1.

NOTE: It should be noted that, due to interrupt latency, the full 8-bit dynamic
range of the PLM is not available.

The amount of degradation is determined by the interrupt latency, and
the amount of time it takes for the interrupt routine to write a new D/A
value to the PWM duty cycle register. Because of this requirement, the
flowchart of Figure 5A is used for this example. Since the PLM rate is
so low, the MCU latency does not significantly impact the sine table min
value. The interrupt latency is 10 cycles, plus a maximum instruction
latency of 11 cycles, plus seven cycles of transfer latency equals 28
cycles of latency. However, at a 1.95-kHz PLM rate, it takes four MCU
cycles for every PLM counter tick, so the minimum PLM duty cycle is
latency / 4 = 7.

HC05MC4 PWM The MC4 implementation is similar to that of the PLM version in that an
input capture is used to source the tone generator interrupt service
routine. The MC4 PWM setup is somewhat more complicated in that it
offers several features that are targeted at motor applications. For this
application, however, we simply want a buffered PWM at a single port
pin, which is easily configured as shown in MC4 PWM. Since the PWM
is buffered, the D2A temp register that was used in the PLM version can
be eliminated and the new D/A value can be written directly to the duty
cycle register (PWMAD).
AN1771

20 MOTOROLA

Application Note
D/A Methods
HC08 Buffered
PWM

The HC08 PWM module offers a buffered mode by linking two PWM
duty cycle registers. Application firmware must track which register was
last written to maintain the buffered operation, but this is easily
accomplished with a simple counter which is incremented each time a
duty cycle register is written. Bit 0 of this counter is used to select which
duty cycle register is to be written during any particular interrupt cycle.
Since the HC08 PWM uses timer overflow to operate its PWM, it serves
as the obvious choice to source the interrupt which drives the tone
generator service routine.

HC11Synchronous
PWM

While there are HC11 variants with PWM modules, this example uses
two output compares to generate the PWM signal and is thus applicable
to all HC11 variants. It is synchronous because the update operation is
integrated into the OC interrupt which forces the update to be
synchronized with the start of the PWM cycle. However, since the
operation is not buffered, dynamic range is affected by response latency
(Figure 5A applies).

On the HC11, only one output compare, OC1, can affect any of the OC
port pins. All other output compares are tied to a dedicated pin so that
the selection of the second OC is tied to a port pin selection and vice
versa. For this example, OC1 generates the main interrupt and sets the
PWM port pin (PA6) while OC2 clears the port pin.

As illustrated in Figure 6 , the OC1 interrupt routine sets both the OC2
and OC1 time-outs and updates the D/A value to be used for the next
cycle.

Figure 6. OC1 and OC2 PWM Timings

Interrupt
OC1 OC2

Interrupt
OC1 OC2

ton

tpwm
AN1771

MOTOROLA 21

Application Note
As indicated in HC11 PWM Listing , the OC1 interrupt requires 29 MCU
cycles to stack the registers and update the OC2 timer, which dictates
the minimum pulse width. Proper use of the WAI instruction (which pre-
stacks the registers on the HC11) can save up to 11 cycles. (WAI takes
14 cycles: 11 cycles to stack registers, plus 3 cycles to fetch the interrupt
vector.) Since the vector fetch comes after the interrupt, it gets counted
as latency in this example, which reduces the minimum pulse width to
29 – 11 = 18 cycles. The only restriction on the high end of duty cycle is
that the OC2 time-out be less than (for instance, occur prior to) the OC1
time-out value.

NOTE: The interrupt latency does not account for the instruction that is
executing at the time of the interrupt.

For applications where WAI can not be used or guaranteed, the wide
variation in instruction cycles can make the latency calculation a difficult
task. Worst case instruction latency would add an additional 41 cycles
(IDIV and FDIV) but this can be an excessive step as these instructions
are not encountered often in real applications. If the IDIV and FDIV
instructions are not used, the figure can be reduced to 10 cycles which
will cover all of the remaining instructions while only adding a moderate
degree of overhead to the PWM duty cycle.

The following equations determine the critical design constants:

TSAMP = PWM cycle time (cycles)
= (XTAL / 4) / Fsamp
= E / Fsamp

TMIN = minimum pulse width (cycles)
= Tint_resp + Tinstr + Toc2_update + 1
= 14 + 10 + 15 + 1 = 40 (no WAI)
= 3 + 0 + 15 + 1 = 19 (guaranteed WAI)

TMAX = maximum pulse width (cycles)
= TSAMP – 1

RANGE = # discrete steps from min to max
= TMAX – TMIN

DUTY = duty cycle (%)
= D2A / TSAMP
AN1771

22 MOTOROLA

Application Note
D/A Methods
For this example, a 9.83-MHz crystal was used which gives the following
values. The 8-MHz case is also shown.

While this example limits the maximum "on" time to eight bits, or 255
timer cycles, the above calculations indicate that greater than eight bits
of dynamic range are possible for E > 2.32 MHz (for Fsamp as shown).
If maximum dynamic range is of importance and the MCU oscillator
design will allow higher crystal frequencies to be selected, the excess
RANGE value can be used to absorb the latency figure. This is done by
adding the latency into the updated TOC2 value at the end of the OC1
interrupt routine. This method would add nine cycles to the length of the
interrupt routine, but would allow a full 8-bit D/A implementation. In this
case, the sine table could be calculated to swing from 1 to 255.

HC12 Buffered
PWM

For this example (see HC12 PWM Listing), the HC12 PWM is operated
in 8-bit buffered mode. The original design used an output compare
interrupt to update the PWM where the OC period was an integer
multiple of the PWM period. However, this design exhibited noise
problems at high values of PWDT0 and the system was re-worked to
follow the HC05 PLM case where the PWM drives an input capture.
(PP0 is connected to TC7 as a falling edge triggered interrupt.) For the
HC12 PWM module, the duty cycle ranges from 1 / 256 to 256 / 256 for
values of PWDT0 that range from 0 to 255. Since the input capture
system cannot tolerate duty cycles of 0 percent or 100 percent, these
values must be eliminated from the sine table, thus the HC12 PWM sine
table should range from 0 to 254 for proper operation.

One difference worthy of note in the HC12 allows the reduction in the
length of the sine table. In systems where memory must be conserved,

Table 3. HC11 Design Examples

9.83-MHz Crystal 8-MHz Crystal

TSAMP = (9.8304E6/4) /
7.812 kHz = 314cycles

TMIN = 40 cycles (worst case)
TMAX = 313 cycles
RANGE = 313 – 40

= 273

TSAMP = (8E6/4) /
7.812 kHz = 256 cycles

TMIN = 40 cycles (worst case)
TMAX = 255 cycles
RANGE = 255 – 40

= 215
AN1771

MOTOROLA 23

Application Note
the addition of the linear interpolate instruction, TBL, can greatly reduce
the size of the 256-byte sine table of the previous examples without
seriously impacting signal quality. A reduction in N by a factor of 4 or 8
(64- or 32-byte sine length) can be achieved by using the fractional
portion of the phase accumulators to supply the interpolation operator
used by the TBL instruction. This is a direct extension of the indexing
principal defined for the phase accumulators. If the integer portion of the
accumulator determines the position in the sine table, the fractional
portion determines the fractional phase distance to the next entry.

To keep the system parameters the same as the 256-byte case (same
Fstep, Fsamp, Fgen, etc.), the decimal radix for Dreg and the phase
accumulators are moved up rather than reducing the range of the integer
portion. Since the interpolate operation has the effect of "filling in" the
"missing" table entries, the position of the radix is chosen to yield an
effective table length of 256 (which simply allows the same Dreg values
to be used).

This is accomplished by moving the radix in proportion to the factor of
reduction in table length. If the table is divided by a factor of 2^x, then the
radix is moved up "x" bits. The example in Interpolated Table Lookup
uses a 32-byte table, which is a factor of 2^3 reduction, thus moving the
radix to lie between bits 10 and 11. Shift instructions are used to byte
align the radix when extracting the table index and interpolate values.

Direct D/A

A direct D/A interface is a worthwhile alternative to PWM methods in
those situations where PWM is not suitable and the additional cost is
justified. (See HC12 DAC Listing .) Signal-to-noise improvements can
be achieved over most PWM methods, and system clock frequencies
can be reduced in some cases to reduce power consumption. There are
several well documented methods that can be employed for direct D/A;
for this reason, the discussion here focuses on the importance of timing
in writing the D/A value to the D/A sub-system.

As mentioned earlier regarding PWM systems, buffered operation is
preferred over non-buffered due to the way in which changes in the duty
AN1771

24 MOTOROLA

Application Note
Direct D/A
cycle (for instance, new D/A values) are synchronized to the sample
clock. This is also important in direct D/A sub-systems because a
statistical variation of even a single CPU clock cycle can result in
significant noise in the output. For interrupt-driven systems, instruction
latencies introduced in the interrupt dispatch can easily account for
several CPU cycles of variation in the timing of the D/A update. A simple
mechanism for precisely controlling the D/A update is needed.

The simplest approach is to use the WAI (or WAIT, depending on the
processor source form) instruction to ensure that the CPU has been
configured in anticipation of the coming interrupt. Once the wait
instruction is complete, the subsequent interrupt response latency will be
consistent for each iteration of the interrupt.

This approach has two basic difficulties:

1. The designer must make sure that a wait instruction is executed
prior to each and every interrupt. While this is relatively
straightforward for simple systems, it may not be feasible to
maintain for more complicated systems, especially if interrupt
recursion is used.

2. Other interrupt sources may disrupt the D/A update process which
dictates, in general, that other interrupts must be disabled during
tone generation.

Another approach requires the addition of a latch and the use of an
output compare signal to latch the new value into the D/A after the
interrupt firmware has written the D/A update. The output compare will
then be synchronized to the CPU clock with no excessive firmware
maintenance issues. As long as the tone generator interrupt can be
adequately serviced, the D/A latch can be precisely synchronized to the
CPU clock. The external latch approach also allows I/O (input/output)
expansion to reclaim the bits used to drive the D/A for other I/O
functions.

This method is illustrated in Figure 7 . The DAC0832 is designed to
interface to a processor bus and features a built-in double-buffered latch.
One interface signal (~WR) latches the initial write, while another
interface signal (~XFER) transfers the latched data to the D/A.
AN1771

MOTOROLA 25

Application Note
An output compare signal drives the ~XFER signal which assures that
the data is always presented to the D/A at the exact sample point relative
to the previous sample period.

Figure 7. DAC MCU Connections

The output compare also serves as the tone generator interrupt source
as it occurs at the sample rate. Once the interrupt is processed, the code
clears the XFER signal and updates the phase accumulators. The
updated values are then used to calculate the new D/A value which is
then written to the D/A port which arms the D/A transfer mechanism.
When the next output compare is issued, the D/A will transfer the value
previously written and repeat the procedure.

19

7
6
5
4

16
15
14
13

2
1

18
17

PA1

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PA0

PT7

A0

D0
D1
D2
D3
D4
D5
D6
D7

WR1
CS

WR2
XFER

DAC0832

20
8

10

VREF

Rfb

IO1

IO2

AGND

VCC

OUT

9

11

12

3

2

3
LF353

OR EQUIVALENT

1

+5 V

+

–

AN1771

26 MOTOROLA

Application Note
DTMF and Call-Progress Tones
DTMF and Call-Progress Tones

TELCO and wireless applications are two areas which make wide use of
DTMF and call-progress signaling. Both DTMF and call-progress
signaling systems make use of dual tones to signify a unique system
state.

Tone Definitions Table 4 lists the tone formats for the various signaling states.

Table 4. TDMF and Call Progress Frequency List

State
Description

High
Tone

Low Tone
 (Hz)

Fs = 7.812 kHz

High Tone
Dreg (Decimal)

Low Tone
Dreg (Decimal

Dial tone 440 ± 5% 350 ± 0.5% 3691 2936

Busy * 620 ± 5% 480 ± 0.5% 5201 4026

Ringback * 480 ± 5% 440 ± 0.5% 4026 3691

Note: All DTMFs ± 0.5%

DTMF "1" 1209 ± 5% 697 ± 5% 10142 5847

DTMF "2" 1336 697 11207 5847

DTMF "3" 1477 697 12316 5847

DTMF "4" 1209 770 10142 6459

DTMF "5" 1336 770 11207 6459

DTMF "6" 1477 770 12316 6459

DTMF "7" 1209 852 10142 7147

DTMF "8" 1336 852 11207 7147

DTMF "9" 1477 852 12316 7147

DTMF "0" 1336 941 11207 7894

DTMF "*" 1209 941 10142 7894

DTMF "#" 1477 941 12316 7894

DTMF "A" 1633 697 13698 5847

DTMF "B" 1633 770 13698 6459

DTMF "C" 1633 852 13698 7147

DTMF "D" 1633 941 13698 7894

* Busy tone cycles on/off at 0.5 s/0.5s, ringback tone cycles on/off at 2 s / 4 s.
AN1771

MOTOROLA 27

Application Note
To calculate the absolute frequency tolerance one must take the lowest
frequency in the table, 350 Hz, and apply equation 6:

Fstep(max) = Fmin * %error
= 350 * 0.005
= 1.75 Hz

All of the examples presented here meet this Fstep specification with no
difficulty (although the HC05 PWM example would not be able to
generate the DTMF tones due to its limitation on Fs).

Due to the legacy of the original Bell Telephone DTMF keypad layout, it
is still common to depict the DTMF row/column format as shown in
Figure 8 . This layout is helpful in that the intersecting rows and columns
correspond to the frequencies of each signal. A binary "2 of 8" code is
often used to represent DTMF digits as the row and column frequencies
can be easily extracted. In the 2 of 8 code, four bits are used to represent
the 16 DTMF signals. The upper two bits specify the row frequency,

12
09

 H
z

13
36

 H
z

14
77

 H
z

16
33

 H
z

697 Hz 1 2 3 A

770 Hz 4 5 6 B

752 Hz 7 8 9 C

941 Hz * 0 # D

Figure 8. Standard DTMF Keypad Layout
and Frequency Matrix
AN1771

28 MOTOROLA

Application Note
Sample TELCO Routines
while the lower two bits specify the column frequency as illustrated in
Table 3 .

.

Sample TELCO Routines

TELCO Subroutines shows the HC11/HC12 routines that are used to
demonstrate the DTMF and call-progress tones. The main subroutine is
DTMFstr which takes an EOL ($0D) terminated ASCII string and
converts it to the DTMF equivalents for each tone using ASCdtmf. The
constants "toneon" and "toneoff" specify the on and off timings for the
DTMF signals and are shown at their typical values in this listing
 (40 ms on/off).

Table 5. ASCII to 2 of 8 Conversion Matrix

2 of 8 ASCII

0000 1

0001 2

0010 3

0011 A

0100 4

0101 5

0110 6

0111 B

1000 7

1001 8

1010 9

1011 C

1100 *

1101 0

1110 #

1111 D
AN1771

MOTOROLA 29

Application Note
ASCdtmf converts the ASCII character in (A) to a 2 of 8 code using the
ordered ASC_T look-up table. The 2 of 8 code is then used to access the
DTMFlo and DTMFhi look-up tables to extract the desired Dreg values
which are copied to the DX and DY registers. Lastly, the ASCdtmf uses
the tontimer to time the on and off portions of the tone before exiting.

Since most of the MCU execution time is spent waiting for tontimer to
count down to 0, these loops can contain a JSR to a system polling
subroutine to perform non-critical real-time system functions. As long as
the polling routine takes less than (1 / Fs) – Tinterrupt, the system
throughput will not be impacted inversely.

The call-progress tones are generated by CPsub. The tone generated is
determined by the contents of the (A) register upon entry into the routine.
(A) = "D" generates a dial tone, (A) = "B" generates a busy tone, while
(A) = "R" generates a ringback tone. All of the call progress tones
continue until an SCI character is detected. In a real-world application,
an I/O signal and/or timer combination likely would be used to terminate
these tones.

Conclusion

The techniques described herein demonstrate the feasibility of
implementing a sine-wave-based tone generation system on a variety of
Motorola microcontroller families. By using interrupts to synchronize the
tone generation algorithm, the system may be integrated easily in to any
system without having to re-calibrate machine cycles in timing loops.
The interrupt nature of the system also allows for real-time I/O service
for application specific functions. This allows a wide variety of tone
signaling protocols to be supported easily with a minimum of code and
data overhead.
AN1771

30 MOTOROLA

Application Note
Listings
Listings

HC05 PWM Listings

HC05 PLM

Setup:

188 ; init pwm (PLMA)
189 ; NOTE: MOR must select /1 clock prescale
190

0401 B60C 191 LDA MISC
0403 A4F5 192 AND #$FF^(SFA|SM) ; set pwm period = fast
0405 B70C 193 STA MISC ; = 1.92 kHz @ X = 8 Mhz
0407 A680 194 LDA #$80 ; preset @50% duty
0409 B70A 195 STA PLMA

196
197 ; init IC1
198

040B B612 199 LDA TCR
040D AA82 200 ORA #ICIE|IEDG1
040F B712 201 STA TCR

202
0411 9A 203 CLI

Interrupt service:

269 ; icii traps PLM edges to synch the PWM update
270 ; fsamp rate is determined by PLM period ...
271 ; new SIN_TAB pointers are calculated for next
272 ; sample period. D2A is < 8 bits due to
273 ; response latency of IC interrupt.
274

0430 B65A 275 icii LDA D2A
0432 B70A 276 STA PLMA ; update PLM
0434 B613 277 LDA TSR ; clear interrupt flags
0436 B615 278 LDA TIC1L
0438 B61D 279 LDA TIC2L
043A B651 280 LDA DX+1 ; do accum for tone 1
043C BB57 281 ADD ACFX+1
043E B757 282 STA ACFX+1
0440 B650 283 LDA DX
0442 B956 284 ADC ACFX
0444 B756 285 STA ACFX
0446 B653 286 LDA DY+1 ; do accum for tone 2
0448 BB59 287 ADD ACFY+1
044A B759 288 STA ACFY+1
044C B652 289 LDA DY
044E B958 290 ADC ACFY
AN1771

MOTOROLA 31

Application Note
0450 B758 291 STA ACFY
0452 BE56 292 LDX ACFX ; lookup tone 1
0454 D60474 293 LDA SIN_TAB,X
0457 BE58 294 LDX ACFY ; lookup tone 2
0459 DB0474 295 ADD SIN_TAB,X
045C 46 296 RORA ; div by 2 to get 8 bits
045D B75A 297 STA D2A ; store for next update
045F B654 298 LDA tontimer ; update duration count
0461 2604 299 BNE loop4 ; done,
0463 B655 300 LDA tontimer+1
0465 270C 301 BEQ icix ; done,
0467 B655 302 loop4 LDA tontimer+1 ; tontimer--
0469 A001 303 SUB #$01
046B B755 304 STA tontimer+1
046D B654 305 LDA tontimer
046F A200 306 SBC #$00
0471 B754 307 STA tontimer
0473 80 308 icix RTI

MC4 PWM

Setup:

28 ; init pwm
29

0101 A641 30 LDA #CSA1+POLA ; enable pwm1
0103 B714 31 STA CTLA
0105 A690 32 LDA #9*10 ; set 7.8 kHz pwm rate
0107 B716 33 STA RATE
0109 A680 34 LDA #$80 ; preset D/A @ zero
010B B710 35 STA PWMAD

36
37 ; init IC1
38

010D A682 39 LDA #ICIE2|IEDG2 ; ic2 on, rising edge
0111 B717 40 STA TCR

 Interrupt service:

110 ; ic1ii traps PLM edges to synch the PWM update
111 ; fsamp rate is determined by PWM period ... new
112 ; SIN_TAB pointers are calculated for next
113 ; sample period.
114

0132 B618 115 ic1ii LDA TSR ; clear int flags
0134 B61C 116 LDA TIC1L
0136 B61A 117 LDA TIC2L
0138 B651 118 LDA DX+1 ; do accum for tone 1
013A BB57 119 ADD ACFX+1
013C B757 120 STA ACFX+1
013E B650 121 LDA DX
0140 B956 122 ADC ACFX
AN1771

32 MOTOROLA

Application Note
Listings
0142 B756 123 STA ACFX
0144 B653 124 LDA DY+1 ; do accum for tone 2
0146 BB59 125 ADD ACFY+1
0148 B759 126 STA ACFY+1
014A B652 127 LDA DY
014C B958 128 ADC ACFY
014E B758 129 STA ACFY
0150 BE56 130 LDX ACFX ; lookup tone 1
0152 D60172 131 LDA SIN_TAB,X
0155 BE58 132 LDX ACFY ; lookup tone 2
0157 DB0172 133 ADD SIN_TAB,X
015A 46 134 RORA ; div by 2 to get 8 bits
015B B710 135 STA PWMAD ; store to d/a
015D B654 136 LDA tontimer ; update duration count
015F 2604 137 BNE loop4 ; done,
0161 B655 138 LDA tontimer+1
0163 270C 139 BEQ icix ; done
0165 B655 140 loop4 LDA tontimer+1 ; tontimer--
0167 A001 141 SUB #$01
0169 B755 142 STA tontimer+1
016B B654 143 LDA tontimer
016D A200 144 SBC #$00
016F B754 145 STA tontimer
0171 80 146 icix RTI
AN1771

MOTOROLA 33

Application Note
HC08 PWM Listing
Setup:

489 ; init pwm
490

6E07 B620 491 LDA TSC ; stop timer
6E09 AA30 492 ORA #TSTOP|TRST
6E0B B720 493 STA TSC
6E0D 4500FF 494 LDHX #pwper ; set pwm period
6E10 3524 495 STHX TMOD
6E12 450080 496 LDHX #$0080 ; init duty cycle
6E15 3527 497 STHX TCH0
6E17 A601 498 LDA #1 ; init tracking register
6E19 B75A 499 STA track
6E1B A62A 500 LDA #MS0B|TOV0|ELS0B
6E1D B726 501 STA TSC0 ; init ch1 = buffered
6E1F B620 502 LDA TSC ; stop timer
6E21 A4DF 503 AND #$FF^TSTOP
6E23 AA40 504 ORA #TOIE
6E25 B720 505 STA TSC
6E27 9A 506 CLI

Interrupt service:
562 ; tovi sets the fsamp rate and calculates new
563 ; SIN_TAB pointers for next sample period. D2A
564 ; is 8 bits only!
565

6E44 B620 566 tovi LDA TSC ; clear int flag
6E46 A47F 567 AND #$FF^TOF
6E48 B720 568 STA TSC
6E4A B651 569 LDA DX+1 ; do accum for tone 1
6E4C BB57 570 ADD ACFX+1
6E4E B757 571 STA ACFX+1
6E50 B650 572 LDA DX
6E52 B956 573 ADC ACFX
6E54 B756 574 STA ACFX
6E56 B653 575 LDA DY+1 ; do accum for tone 2
6E58 BB59 576 ADD ACFY+1
6E5A B759 577 STA ACFY+1
6E5C B652 578 LDA DY
6E5E B958 579 ADC ACFY
6E60 B758 580 STA ACFY
6E62 8C 581 CLRH
6E63 BE56 582 LDX ACFX ; lookup tone 1
6E65 D66E84 583 LDA SIN_TAB,X
6E68 8C 584 CLRH
6E69 BE58 585 LDX ACFY ; lookup tone 2
6E6B DB6E84 586 ADD SIN_TAB,X
6E6E 46 587 RORA ; div by 2 to get 8 bits
6E6F 450028 588 LDHX #TCH0L ; test which pwm to write
6E72 015A03 589 BRCLR 0,track,loop3 ; is ch0,
6E75 45002B 590 LDHX #TCH1L ; switch to ch1
6E78 F7 591 loop3 STA ,X ; set for next cycle
6E79 3C5A 592 INC track ; update tracking reg
6E7B 5554 593 LDHX tontimer ; update duration count
6E7D 2704 594 BEQ loop4 ; done,
6E7F AFFF 595 AIX #-1t ; x--
6E81 3554 596 STHX tontimer
6E83 80 597 loop4 RTI
AN1771

34 MOTOROLA

Application Note
Listings
HC11 PWM Listing

Setup:

443 ; TON enables oc1 tone generator
444
445 8064 8640TONLDAA #OC1M6 ; oc1 sets PA6
446 8066 B7100C STAA OC1M
447 8069 8640 LDAA #OC1D6
448 806B B7100D STAA OC1D
449 806E B61020 LDAA TCTL1 ; oc2 clears PA6
450 8071 843F ANDA #~(OM2|OL2)
451 8073 8A80 ORAA #OM2
452 8075 B71020 STAA TCTL1
453 8078 FC100E LDD TCNT ; init oc1 rate
454 807B C30133 ADDD #TSAMP
455 807E FD1016 STD TOC1
456 8081 961E LDAA TMIN ; init d2a
457 8083 9708 STAA D2A
458 8085 FC100E LDD TCNT ; preset OC2 near bottom
459 8088 D31E ADDD TMIN
460 808A D31E ADDD TMIN
461 808C FD1018 STD TOC2
462 808F 86C0 LDAA #OC1F|OC2F ; pre-clear oc flags
463 8091 B71023 STAA TFLG1
464 8094 B61022 LDAA TMSK1 ; enable oc1 interrupt
465 8097 8A80 ORAA #OC1F
466 8099 B71022 STAA TMSK1
467 809C 39 RTS
468 ;
469 ;
470 ; TOFF disables oc1 tone generator
471
472 809D B61022 TOFF LDAA TMSK1 ; disable oc1 interrupt
473 80A0 847F ANDA #~OC1F
474 80A2 B71022 STAA TMSK1
475 80A5 7F100C CLR OC1M ; disconnect timer pins
476 80A8 B61020 LDAA TCTL1
477 80AB 843F ANDA #~(OM2|OL2)
478 80AD B71020 STAA TCTL1
479 80B0 39 RTS
AN1771

MOTOROLA 35

Application Note
Interrupt service:

482 ; OC1II handles oc1 interrupts by setting fsamp
483 ; pace and calculating new SIN_TAB pointers for
484 ; next sample period. D2A is 8bits only! Cycle
485 ; times assume DIR addressing for non-MCU
486 ; locs, & EXT addressing for all other locs.
487
488 ;~14 for interrupt
489 80B1 DC08 OC1I LDD D2A ;~4 get pwm from last d/a
490 80B3 F31016 ADDD TOC1 ;~6
491 80B6 FD1018 STD TOC2 ;~5
492 ; ~~= ~14 + ~15 = ~29
493
494 80B9 FC1016 LDD TOC1 ;~5 set pwm rate
495 80BC C30133 ADDD #TSAMP ;~4
496 80BF FD1016 STD TOC1 ;~5
497 80C2 DC00 LDD DX ;~4 do accum for tone 1
498 80C4 D304 ADDD ACFX ;~5
499 80C6 DD04 STD ACFX ;~4
500 80C8 DC02 LDD DY ;~4 do accum for tone 2
501 80CA D306 ADDD ACFY ;~5
502 80CC DD06 STD ACFY ;~4
503 80CE CE80F3 LDX #SIN_TAB ;~3 lookup tone 1
504 80D1 D604 LDAB ACFX ;~3
505 80D3 3A ABX ;~3
506 80D4 A600 LDAA 0,X ;~4
507 80D6 CE80F3 LDX #SIN_TAB ;~3 lookup tone 2
508 80D9 D606 LDAB ACFY ;~3
509 80DB 3A ABX ;~3
510 80DC AB00 ADDA 0,X ;~4 add to 1st tone
511 80DE 46 RORA ;~2 div by 2 to get 8 bits
512
513 IF BIT8 ; slower method (8 bit d/a)
514 80DF 16 TAB ;~2
515 80E0 4F CLRA ;~2
516 80E1 C3001E ADDD #TMIN ;~4 add TMIN to d/a
517 80E4 DD08 STD D2A ;~4 save for next sample
518
519 ELSE ; quick method(< 8 bit d/a)
520 ENDIF
521
522 80E6 DE0A LDX tontimer ;~5 update tone duration
523 80E8 2703 BEQ :03 ;~3 done,
524 80EA 09 DEX ;~3
525 80EB DF0A STX tontimer ;~5
526 80ED 86C0:03LDAA #OC1F|OC2F ;~2
527 80EF B71023 STAA TFLG1 ;~4
528 80F2 3B RTI ;~12
529 ; ~~ = 134 (BIT8 = false)
530 ; ~~ = 143 (BIT8 = true)
AN1771

36 MOTOROLA

Application Note
Listings
HC12 PWM Listing

Setup:

1034 ; timer inits
1035
1036 0820 8600 LDAA #0 ; TC7 = IC
1037 0822 5A80 STAA TIOS
1038 0824 8680 LDAA #EDG7B ; falling edge
1039 0826 5A8A STAA TCTL3
1040 0828 8680 LDAA #TEN ; enable timer
1041 082A 5A86 STAA TSCR
1042 082C 8608 LDAA #TCRE
1043 082E 5A8D STAA TMSK2
1044 0830 8680 LDAA #C7I
1045 0832 5A8C STAA TMSK1
1046 0834 CC0871 LDD #tc7ii ; init the interrupt vector
1047 0837 7C0B20 STD tc7vec
1048
1049 ; init pwm channel 0
1050
1051 083A 8600 LDAA #0 ; 32 kHz sample rate ;PCKA1
1052 083C 5A40 STAA PWCLK ; separate PWMs, /1 prescale
1053 083E 790041 CLR PWPOL ; clock A for PWM0
1054 0841 790054 CLR PWCTL ;non-center,PWM runs in wait
1055 0844 86FF LDAA #255
1056 0846 5A4C STAA PWPER0 ; set pulse period
1057 ; = (chA period) * (255 + 1)
1058 ; = 1/E * 256
1059 ; = 32 µS (31.25 kHz) @ E = 8 MHz
1060 ; this is exactly 4x Fsamp
1061 0848 8601 LDAA #PWEN0 ; enable PWM0
1062 084A 5A42 STAA PWEN
1063 084C CC0000 LDD #0
1064 084F 8680 LDAA #$80
1065 0851 5A50 STAA PWDTY0 ; init d/a register
1066
1067 0853 10EF CLI
AN1771

MOTOROLA 37

Application Note
Normal Table Lookup

Interrupt service:

1113 ; tc7ii sets the fsamp rate and calculates new
1114 ; SIN_TAB pointers for next sample period.
1115
1116 ;~9 for interrupt
1117 0871 8680 tc7iiLDAA #C7F ;~1
1118 0873 5A8E STAA TFLG1 ;~3
1119 0875 FC0800 LDD DX ;~3 do accum for tone 1
1120 0878 F30806 ADDD ACFX ;~3
1121 087B 7C0806 STD ACFX ;~2
1122 087E FC0802 LDD DY ;~3 do accum for tone 2
1123 0881 F30808 ADDD ACFY ;~3
1124 0884 7C0808 STD ACFY ;~2
1125 0887 CE0D00 LDX #SIN_TAB ;~2 lookup tone 1
1126 088A F60806 LDAB ACFX ;~3
1127 088D 1AE5 ABX ;~2
1128 088F A600 LDAA 0,X ;~3
1129 0891 CE0D00 LDX #SIN_TAB ;~2 lookup tone 2
1130 0894 F60808 LDAB ACFY ;~3
1131 0897 1AE5 ABX ;~2
1132 0899 AB00 ADDA 0,X ;~3 add to 1st tone
1133 089B 46 RORA ;~1 div by 2 to get 8 bits
1134 089C 5A50 STAA PWDTY0 ;~3 save to d/a
1135 089E FE0804 LDX tontimer ;~3 update tone duration?
1136 08A1 2704 BEQ L3 ;~3 no, done,
1137 08A3 09 DEX ;~1 decrement tone timer
1138 08A4 7E0804 STX tontimer ;~2
1139 08A7 0B L3 RTI ;~8
1140 ; ~~ = 70

Interpolated Table Lookup

Interrupt service:

 1340 ; tc7ii sets the fsamp rate and calculates new
 1341 ; SIN_TAB pointers for next sample period.
 1342
 1343 ;~9 for interrupt
 1344 0D4E 8680 tc7ii LDAA #C7F ;~1
 1345 0D50 5A8E STAA TFLG1 ;~3
 1346 0D52 FC0800 LDD DX ;~3 do accum for tone 1
 1347 0D55 F30806 ADDD ACFX ;~3
 1348 0D58 7C0806 STD ACFX ;~2
 1349 0D5B FC0802 LDD DY ;~3 do accum for tone 2
 1350 0D5E F30808 ADDD ACFY ;~3
 1351 0D61 7C0808 STD ACFY ;~2
AN1771

38 MOTOROLA

Application Note
Listings
 1352
 1353 ; interpolate lookup goes here
 1354
 1355 ; INCLUDE "LOOKUP.ASM" ;~20
 1356 INCLUDE "INTERP.ASM" ;~45
 1357 ; interpolate table lookup code
 1358 ; Adds 25 MCU cycles over standard version
 1359 ; uses 32 byte sine table.
 1360
 1361 0D64 FC0806 LDD ACFX ;~3 move radix (tone 1)
 1362 0D67 49 LSRD ;~1
 1363 0D68 49 LSRD ;~1
 1364 0D69 49 LSRD ;~1
 1365 0D6A B781 EXG A,B ;~1 calculate table address
 1366 0D6C CE0D9B LDX #SIN_TAB ;~2
 1367 0D6F 1AE5 ABX ;~2
 1368 0D71 B781 EXG A,B ;~1 B = fractional phase
 1369 0D73 183D00 TBL 0,X ;~8 interpolate
 1370 0D76 7A080A STAA temp ;~2
 1371 0D79 FC0808 LDD ACFY ;~3 move radix (tone 2)
 1372 0D7C 49 LSRD ;~1
 1373 0D7D 49 LSRD ;~1
 1374 0D7E 49 LSRD ;~1
 1375 0D7F B781 EXG A,B ;~1 calculate table address
 1376 0D81 CE0D9B LDX #SIN_TAB ;~2
 1377 0D84 1AE5 ABX ;~2
 1378 0D86 B781 EXG A,B ;~1 B = fractional phase
 1379 0D88 183D00 TBL 0,X ;~8 interpolate
 1380 0D8B BB080A ADDA temp ;~3 add to 1st tone
 1381 ; ~~ = 45
 1382
 1383 ; end of lookup, (A) = PWM value
 1384
 1385 0D8E 46 RORA ;~1 div by 2 to get 8 bits
 1386 0D8F 5A50 STAA PWDTY0 ;~3 save to d/a
 1387 0D91 FE0804 LDX tontimer ;~3 update tone duration?
 1388 0D94 2704 BEQ L8 ;~3 no, done,
 1389 0D96 09 DEX ;~1 decrement tone timer
 1390 0D97 7E0804 STX tontimer ;~2
 1391 0D9A 0B L8 RTI ;~8
 1392 ; ~~ = 70 (~95 for interpolate version)
 1393 ;
AN1771

MOTOROLA 39

Application Note
HC12 DAC Listing

Setup:

1038 ; timer inits
1039
1040 0820 8680 LDAA #IOS7
1041 0822 5A80 STAA TIOS
1042 0824 8680 LDAA #TEN
1043 0826 5A86 STAA TSCR
1044 0828 8608 LDAA #TCRE
1045 082A 5A8D STAA TMSK2
1046 082C 8680 LDAA #OM7
1047 082E 5A88 STAA TCTL1
1048
1049 0830 8680 LDAA #C7I
1050 0832 5A8C STAA TMSK1
1051 0834 CC0400 LDD #1024 ; 7.8125 kHz fsamp
1052 0837 5C9E STD TC7
1053 0839 CC0870 LDD #tc7ii
1054 083C 7C0B20 STD tc7vec
1055
1056 ; init DAC port I/O
1057
1058 083F 86FF LDAA #$FF
1059 0841 5AAF STAA DDRT
1060 0843 86FF LDAA #$FF
1061 0845 5A03 STAA DDRB
1062 0847 86FF LDAA #$FF
1063 0849 5A02 STAA DDRA
1064 084B 8606 LDAA #$06
1065 084D 5A00 STAA PORTA
1066 084F 8680 LDAA #DACXFR
1067 0851 5AAE STAA PORTT
1068
1069 0853 10EF CLI
AN1771

40 MOTOROLA

Application Note
Listings
Interrupt service:

1113 ; tc7ii sets the fsamp rate and calculates new
1114 ; SIN_TAB pointers for next sample period.
1115 ; D2A is 8 bits only!
1116
1117 086C 8680 tc7iiLDAA #C7F
1118 086E 5A8E STAA TFLG1
1119 0870 86C0 LDAA #OM7+OL7 ; reset XFER pin to "1"
1120 0872 5A88 STAA TCTL1
1121 0874 8680 LDAA #FOC7
1122 0876 5A81 STAA CFORC
1123 0878 A7 NOP
1124 0879 8680 LDAA #OM7
1125 087B 5A88 STAA TCTL1
1126 087D FC0800 LDD DX ; do accum for tone 1
1127 0880 F30806 ADDD ACFX
1128 0883 7C0806 STD ACFX
1129 0886 FC0802 LDD DY ; do accum for tone 2
1130 0889 F30808 ADDD ACFY
1131 088C 7C0808 STD ACFY
1132 088F CE0D00 LDX #SIN_TAB ; lookup tone 1
1133 0892 F60806 LDAB ACFX
1134 0895 1AE5 ABX
1135 0897 A600 LDAA 0,X
1136 0899 CE0D00 LDX #SIN_TAB ; lookup tone 2
1137 089C F60808 LDAB ACFY
1138 089F 1AE5 ABX
1139 08A1 AB00 ADDA 0,X
1140 08A3 46 RORA ; div by 2 to get 8 bits
1141 08A4 5A01 STAA PORTB ; write data to port
1142 08A6 84FD ANDA #$FD ; strobe write
1143 08A8 5A00 STAA PORTA
1144 08AA A7 NOP
1145 08AB A7 NOP
1146 08AC 8A02 ORAA #DACS
1147 08AE 5A00 STAA PORTA
1148 08B0 FE0804 LDX tontimer ; update tone duration
1149 08B3 2704 BEQ L3 ; done,
1150 08B5 09 DEX
1151 08B6 7E0804 STX tontimer
1152 08B9 0B L3 RTI
AN1771

MOTOROLA 41

Application Note
TELCO Subroutines

1036 0F42 halfsecEQU 3906 ; = time * Fsamp
1037 04B0 toneon EQU 1200 ; = time * Fsamp
1038 0258 toneoffEQU 600 ; = time * Fsamp
1039 000D EOL EQU $0D ; end of line
1040 0B78 dialow EQU 2936 ; dial low tone
1041 0E6B dialhi EQU 3691 ; dial high tone
1042 0032 ringcount EQU 50 ; max # ring cycles
1043 0E6B ringlowEQU 3691 ; ring low tone
1044 0FBA ringhi EQU 4026 ; ring high tone
1045 3D09 ringon EQU 15625 ; ring ton = 2 s
1046 7A12 ringoffEQU 31250 ; ring toff = 4 s
1047 0032 busycount EQU 50 ; max # busy cycles
1048 0FBA busylowEQU 4026 ; busy low tone
1049 1451 busyhi EQU 5201 ; busy high tone
1050 0F42 busyon EQU 3906 ; busy ton = 0.5 s
1051 0F42 busyoffEQU 3906 ; busy toff = 0.5 s
1052 ;
1053 ;
1054
1055 0823 doapp
1056
1057 ; The following demonstration code sends the test_str
1058 ; string as DTMF signals. Tone on/off times are
1059 ; 40ms/40ms. Any SCI character received aborts
1060
1061 0823 TESTDTMF
1062 0823 CC0000 LDD #0
1063 0826 7C0806 STD ACFX ; clear phase accumulator
1064 0829 7C0808 STD ACFY ; clear phase accumulator
1065 082C 7C0804 STD tontimer ; clear tone timer
1066 082F 7C0800 STD DX ; init tone 1 (off)
1067 0832 7C0802 STD DY ; init tone 2 (off)
1068
1069 ; send a dial tone
1070
1071 0835 8644 LDAA #'D'
1072 0837 1608E9 JSR CPsub
1073
1074 ; send some DTMFs
1075
1076 083A CE085C LDX #test_str ; get test string
1077 083D 072B BSR DTMFstr ; send it
1078
1079 ; send ring back
1080
1081 083F 8652 LDAA #'R'
1082 0841 1608E9 JSR CPsub
1083
AN1771

42 MOTOROLA

Application Note
Listings
1084 ; send busy
1085
1086 0844 8642 LDAA #'B'
1087 0846 1608E9 JSR CPsub
1088
1089 0849 CC0000 LDD #0
1090 084C 7C0800 STD DX
1091 084F 7C0802 STD DY
1092 0852 86C0 LDAA #$C0
1093 0854 7A0806 STAA ACFX
1094 0857 7A0808 STAA ACFY
1095 085A 20FE L1BRA L1 ; stop execution
1096
1097
1098 085C 392C35353537test_str FCB "9,5557579,,,,",EOL
1099
1100 ; DTMFstr sends the string pointed at (X) as
1101 ; DTMF digits until EOL is detected.
1102 ; USES: A,B,X,Y
1103
1104 086A A600 DTMFstr LDAA 0,X ; get string character
1105 086C 08 INX
1106 086D 810D CMPA #EOL ; end of string?
1107 086F 2704 BEQ L2 ; yes,
1108 0871 0703 BSR ASCdtmf ; send the tone
1109 0873 24F5 BCC DTMFstr ; no interrupt,
1110 0875 3D L2 RTS
1111 ;
1112 ;
1113 ; ASCdtmf converts the ASCII in (A) to DTMF frequencies in DX
1114 ; & DY and times t-on. NON-DTMF characters result in a 0.5
1115 ; sec pause. DTMF characters are: {0-9}, {A-D}, {*}, and {#}
1116 ; USES: A,B,Y
1117
1118 0876 C7 ASCdtmf CLRB
1119 0877 CD08C9 LDY #ASC_T ; init table index
1120 087A A140 L3CMPA 0,Y ; in table?
1121 087C 270B BEQ gotASC ; yes,
1122 087E 02 INY
1123 087F 52 INCB
1124 0880 C10F CMPB #maxDTMF ; end of table?
1125 0882 23F6 BLS L3 ; no,
1126 0884 CC0F42 LDD #halfsec ; delay 1/2 sec
1127 0887 2034 BRA waitone
1128
1129 0889 37 gotASC PSHB ; save for later
1130 088A C403 ANDB #$03 ; mask hi tone
1131 088C 58 LSLB ; construct index (*2)
1132 088D CD08E1 LDY #DTMFhi
1133 0890 19ED ABY
1134 0892 ED40 LDY 0,Y ; get hi tone
AN1771

MOTOROLA 43

Application Note
1135 0894 7D0800 STY DX
1136 0897 33 PULB
1137 0898 C40C ANDB #$0C ; mask low tone
1138 089A 54 LSRB ; = hinyb * 2
1139 089B CD08D9 LDY #DTMFlo
1140 089E 19ED ABY
1141 08A0 ED40 LDY 0,Y ; get low tone
1142 08A2 7D0802 STY DY
1143 08A5 CC04B0 LDD #toneon ; set on time
1144 08A8 7C0804 STD tontimer
1145 08AB 3E L4 WAI
1146 08AC FC0804 LDD tontimer
1147 08AF 26FA BNE L4 ; not done yet,
1148 08B1 CC0000 LDD #0 ; tones off
1149 08B4 7C0800 STD DX
1150 08B7 7C0802 STD DY
1151 08BA CC0258 LDD #toneoff ; set off time
1152 08BD 7C0804 waitone STD tontimer
1153 08C0 3E L5 WAI
1154 08C1 FC0804 LDD tontimer
1155 08C4 26FA BNE L5 ; not done yet,
1156 08C6 10FE CLC
1157 08C8 3D RTS
1158
1159 ; Table of ASCII DTMF digits
1160
1161 08C9 313233413435 ASC_T FCB "123A456B789C*0#D"
1162 000F maxDTMF EQU 15
1163
1164 ; table of high tones for each DTMF character.
1165 ; Tone values calculated from:
1166 ; D = (Fgen * 65536) / Fsamp = Fgen * 8.3886
1167
1168 08D9 16D5 DTMFlo FDB 5845 ; 697 Hz
1169 08DB 193B FDB 6459 ; 770 Hz
1170 08DD 1BEB FDB 7147 ; 852 Hz
1171 08DF 1ED6 FDB 7894 ; 941 Hz
1172
1173 08E1 279E DTMFhi FDB 10142 ; 1209 Hz
1174 08E3 2BC7 FDB 11207 ; 1336 Hz
1175 08E5 3066 FDB 12390 ; 1477 Hz
1176 08E7 3583 FDB 13699 ; 1633 Hz
1177 ;
1179 ;
1180 ;
1181 ; CPsub uses (A) to select one of the following call
1182 ; progress tone pairs:
1183 ; (A) Signal state
1184 ; "D" dial tone (8 sec max)
1185 ; "R" ring back tone (100 rings)
1186 ; "B" Busy tone (50 burst cycles)
AN1771

44 MOTOROLA

Application Note
Listings
1187 ; USES: A,B,Y
1188
1189 08E9 D6C4 CPsub LDAB SC0SR1 ; preclear sci
1190 08EB D6C7 LDAB SC0DRL
1191 08ED 8144 CMPA #'D' ; dial tone?
1192 08EF 262E BNE nodial ; no,
1193 08F1 CC0B78 LDD #dialow ; set tones
1194 08F4 7C0800 STD DX
1195 08F7 CC0E6B LDD #dialhi
1196 08FA 7C0802 STD DY
1197 08FD CCFFFF LDD #$FFFF ; set maximum duration
1198 0900 7C0804 STD tontimer
1199 0903 3E waitall WAI
1200 0904 96C4 LDAA SC0SR1
1201 0906 8520 BITA #RDRF
1202 0908 1401 SEC ; preset SCI detect flag
1203 090A 2607 BNE killall ; got an SCI chr,
1204 090C FC0804 LDD tontimer
1205 090F 26F2 BNE waitall ; keep a' goin'...
1206 0911 10FE CLC ; clear SCI detect flag
1207 0913 96C7 killall LDAA SC0DRL
1208 0915 CC0000 LDD #0 ; turn off tones
1209 0918 7C0800 STD DX
1210 091B 7C0802 STD DY
1211 091E 3D RTS
1212
1213 091F 8152 nodial CMPA #'R' ; ring-back tone?
1214 0921 262D BNE noring ; no,
1215 0923 8632 LDAA #ringcount ; set ring counter
1216 0925 7A080B STAA count
1217 0928 CC0E6B ringlp LDD #ringlow ; set tones
1218 092B 7C0800 STD DX
1219 092E CC0FBA LDD #ringhi
1220 0931 7C0802 STD DY
1221 0934 CC3D09 LDD #ringon ; set ring on time
1222 0937 7C0804 STD tontimer
1223 093A 07C7 BSR waitall ; wait...
1224 093C 2511 BCS CPexit ; got an SCI, quit
1225 093E CC7A12 LDD #ringoff ; set ring off time
1226 0941 7C0804 STD tontimer
1227 0944 07BD BSR waitall ; wait again...
1228 0946 2507 BCS CPexit ; got an SCI, quit
1229 0948 73080B DEC count ; done 'em all yet?
1230 094B 26DB BNE ringlp ; no,
1231 094D 10FE CLC ; no SCI detected
1232 094F 3D CPexit RTS
1233
1234 0950 10FE noring CLC ; preclear SCI detect
1235 0952 8142 CMPA #'B' ; busy tone?
1236 0954 26F9 BNE CPexit ; no,
1237 0956 8632 LDAA #busycount ; set ring counter
AN1771

MOTOROLA 45

Application Note
1238 0958 7A080B STAA count
1239 095B CC0FBA busylp LDD #busylow ; set tones
1240 095E 7C0800 STD DX
1241 0961 CC1451 LDD #busyhi
1242 0964 7C0802 STD DY
1243 0967 CC0F42 LDD #busyon ; set ring on time
1244 096A 7C0804 STD tontimer
1245 096D 0794 BSR waitall ; wait...
1246 096F 25DE BCS CPexit ; got an SCI, quit
1247 0971 CC0F42 LDD #busyoff ; set ring off time
1248 0974 7C0804 STD tontimer
1249 0977 078A BSR waitall ; wait again...
1250 0979 25D4 BCS CPexit ; got an SCI, quit
1251 097B 73080B DEC count ; done 'em all yet?
1252 097E 26DB BNE busylp ; no,
1253 0980 10FE CLC ; no SCI detected
1254 0982 3D RTS

Sine Table Generator C Program

#include <stdio.h>
#include <math.h>

// This program constructs a sine table as specified by the user.
// min, max, and size are provided at run time with the output
// going to the display and a file named "SINE.ASM."
//
// Table entries are defined by the following:
// sin,x = int(MIDP + (swing * SIN (360 * x / 256)))
//
// where x = table offset

FILE *fi;
float max = 255;
float min = 1;
float size = 256;
const float pie = 3.141592654;
float x, y, MIDP, SWING, t;

void main(void)

{

AN1771

46 MOTOROLA

Application Note
Listings
printf("Sine table compiler, v1.00\n");
printf("Sending output to \"SINE.ASM\"...\n");
if ((fi = fopen("SINE.ASM", "w")) != NULL)

{

// get table parameters

printf("Enter table size (256 max): ");
scanf("%f", &size);
printf("Enter table min value (0-255): ");
scanf("%f", &min);
printf("Enter table max value (0-255): ");
scanf("%f", &max);
SWING = (max - min) / 2;
MIDP = min + SWING;

// put descriptor header in .asm file

printf("; sine lookup table\n");
fprintf(fi, "; sine lookup table\n");
printf("; size = %5.0f, min = %5.0f, max = %5.0f \n", size, min, max);
fprintf(fi,";size = %5.0f,min = %5.0f,max = %5.0f \n",size,min, max);
printf("; MID = %f SWING = %f\n",MIDP,SWING);
fprintf(fi, "; MID = %f SWING = %f\n",MIDP,SWING);
fprintf("SIN_TAB\n");// place table lable

// put table data as assembly source.

x = 0;
while (x <= size)
 {
 y = MIDP + (SWING * (sin (2 * pie * x / size)));
 printf("\tFCB\t");// display source
 printf("%5.0f",y);
 printf("\n");
 fprintf(fi, "\tFCB\t");// write source file
 fprintf(fi, "%5.0f",y);// for casm0x use "%5.0ft"
 fprintf(fi, "\n");
 x++;
 }
fclose(fi);
printf("Done.\n");
}

else
{
printf("File error.\n");
}

}

AN1771

MOTOROLA 47

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1771/D

© Motorola, Inc., 1998

Mfax is a trademark of Motorola, Inc.

	Introduction
	Tone Synthesizer Basics
	Direct Look-Up Synthesis
	Dual Tone (Chord) Synthesis
	Look-Up Table Requirements

	D/A Methods
	Filtering
	Sine Table
	Tone Generator Algorithm
	HC05 Family
	HC05 PLM
	HC05MC4 PWM

	HC08 Buffered PWM
	HC11 Synchronous PWM
	HC12 Buffered PWM

	Direct D/A
	DTMF and Call-Progress Tones
	Tone Definitions

	Sample TELCO Routines
	Conclusion
	Listings
	HC05 PWM Listings
	HC05 PLM
	MC4 PWM

	HC08 PWM Listing
	HC11 PWM Listing
	HC12 PWM Listing
	Normal Table Lookup
	Interpolated Table Lookup

	HC12 DAC Listing
	TELCO Subroutines
	Sine Table Generator C Program

