
 REMOTE CONTROL AND PROGRAMMING REFERENCE

 for the FLUKE 190 family

 of ScopeMeter test tools

 ===

 This file contains remote control and programming information
 for the above-mentioned models with use of the PM9080
 Optically Isolated RS232 Adapter/Cable.

 It consists of the following chapters:

 1. INSTALLING THE PM9080

 2. INTRODUCTION TO PROGRAMMING

 3. COMMAND REFERENCE

 APPENDIXES

 APPENDIX A ACKNOWLEDGE DATA
 APPENDIX B STATUS DATA
 APPENDIX C WAVEFORM DATA
 APPENDIX D ASCII CODES

 Page 1.1
 ===

 1. INSTALLING THE PM9080

 - Connect the PM9080 to the RS232 port of the computer.
 If necessary, use a 9-pin to 25-pin adapter and
 25-pin gender changer.

 - Hook the PM9080 cable to the ScopeMeter.

 - Turn on the computer and the ScopeMeter.

 - Make sure that the communication settings match for the
 RS232 port of the computer and the ScopeMeter.

 After power-on, the default settings of the ScopeMeter
 are as follows:

 1200 baud, No parity, 8 data bits, 1 stop bit

 You can modify the baud rate with the PC (Program
 Communication) command. See chapter 3 COMMAND REFERENCE.
 Other settings are fixed.

 You can modify the computer RS232 port settings to match
 the above ScopeMeter settings with the following
 DOS command:

 MODE COM1:1200,N,8,1

 This command assumes that COM1 is the RS232 port used on
 the computer. Replace COM1 in the above command with COM2,
 COM3, or COM4 if one of these ports is used. You can place
 this command in the computer startup file AUTOEXEC.BAT so
 that the default settings for the computer are the same as
 for the ScopeMeter. If you want to use a higher
 data transfer speed (baud rate), let your QBASIC program
 change the settings for both the computer and the
 ScopeMeter. See the example under the PC (Program
 Communication) command in chapter 3 COMMAND REFERENCE.

 Page 2.1
 ===

 2. INTRODUCTION TO PROGRAMMING

 ** Basic Programming Information **

 When you have installed the PM9080 as described in the
 previous chapter, you can control the ScopeMeter
 from the computer with simple communication facilities, such
 as GWBASIC, QuickBASIC and QBASIC (programming languages from
 Microsoft Corporation).

 All examples given in this manual are in the QBASIC language
 but will also run in QuickBASIC. QuickBASIC allows you to
 make executable files from programs so you can start such
 programs directly from DOS.
 It is assumed that you have knowledge of these programming
 languages. QBASIC is supplied with Microsoft MS-DOS 5.0 and
 higher and Windows 95, 98, and NT, including ’on-line’ Help.

 Features of the syntax and protocol for the ScopeMeter
 are as follows:

 - Easy input format with a ’forgiving’ syntax:
 All commands consist of two characters that can be
 UPPER or lower case.
 Parameters that sometimes follow the command may be
 separated from it by one or more separation characters.

 - Strict and consistent output format:
 Alpha character responses are always in UPPERCASE.
 Parameters are always separated by a comma
 ("," = ASCII 44, see Appendix D).
 Responses always end with the carriage return code
 (ASCII 13). Because the carriage return code is a
 non-visible character (not visible on the screen or on
 paper), this character is represented as <cr> in the
 command syntax.

 - Synchronization between input and output:
 After receipt of every command, the ScopeMeter
 returns an acknowledge character (digit) followed by the
 carriage return code (ASCII 13). This indicates that the
 command has been successfully received and executed.
 The computer program must always read this acknowledge
 response before sending the next command to the
 ScopeMeter.

 Page 2.2

 ** Commands sent to the ScopeMeter **

 All commands for the ScopeMeter consist of a header
 made up of two alpha characters sometimes followed by
 parameters. Example:

 RI This is the Reset Instrument command. It
 resets the ScopeMeter.

 Some of the commands are followed by one or more parameters
 to give the ScopeMeter more information.
 Example:

 SS 8 This is the Save Setup command. It saves the
 present acquisition settings in memory. The SS
 header is followed by a separator (space),
 then followed by the parameter "8" to
 indicate where to store the settings. The
 meaning of this parameter is described in
 Chapter 3 COMMAND REFERENCE.

 Some commands require several parameters.
 Example:

 WT 9,50,30 This is the Write Time command.
 This command requires three parameters. The
 parameters are separated by a comma, which is
 called the Program Data Separator. You may
 use only one comma between the parameters.
 Also refer to the section ’Data Separators’.

 A code at the end of each command tells the ScopeMeter
 that the command is ended. This is the carriage return
 code (ASCII 13) and is called the Program Message Terminator.
 This code is needed to indicate to the ScopeMeter
 that the command is completed so it can start executing the
 command. Also refer to the section ’Command and Response
 Terminators’.

 Page 2.3

 ** Responses received from the ScopeMeter **

 After each command sent to the ScopeMeter there
 is an automatic response from it, indicated as <acknowledge>
 (which you MUST input), to let the computer know whether or
 not the received command has been successfully executed.
 Refer to the ’Acknowledge’ section below.

 There are several commands that ask the ScopeMeter
 for response data. Such commands are called Queries.
 Example:

 ID This is the IDentification query, which asks for
 the model number and the software version of the
 ScopeMeter.

 When the ScopeMeter has received a query, it sends
 the <acknowledge> reply as it does after any command, but
 now it is followed by the queried response data.

 The format of the response data depends upon which query is
 sent. When a response consists of different response data
 portions, these are separated with commas (ASCII code 44).
 Also refer to the section ’Data Separators’.

 All response data, <acknowledge> as well as following
 (queried) response data are terminated with the carriage
 return code (<cr> = ASCII 13). Also refer to the section
 ’Command and Response Terminators’.

 Page 2.4

 ** Acknowledge **

 After receiving of a command, the ScopeMeter
 automatically returns the <acknowledge> response to let the
 computer know whether or not the received command has been
 successfully executed.
 This response is a one-digit number followed by <cr> as
 response terminator. If <acknowledge> is 0, it indicates
 that the ScopeMeter has successfully executed the
 command. If the command was a query, the <acknowledge><cr>
 response is immediately followed by the queried response data
 terminated with <cr>.
 If <acknowledge> is 1 or higher, it indicates that the
 ScopeMeter has not executed the command
 successfully. In that case, if the command was a query, the
 <acknowledge><cr> response is NOT followed by any further
 response data.
 There can be several reasons for a non-zero <acknowledge>
 response. For more information see Appendix A.
 In case of an error you can obtain more detailed status
 information by using the ST (STATUS) query.

 Note: YOU MUST ALWAYS INPUT <acknowledge>, EVEN WHEN
 THE COMMAND WAS NOT A QUERY.

 Page 2.5

 ** Data Separators **

 Data Separators are used between parameters sent to the
 ScopeMeter and between values and strings received
 from the ScopeMeter. Comma (",") is used as program
 data separator as well as response data separator:

 - Program Data Separator

 Name Character ASCII Value Comments
 Decimal
 --
 comma , 44 Single comma allowed

 - Response Data Separator

 Name Character ASCII Value Comments
 Decimal
 --
 comma , 44

 Page 2.6

 ** Command and Response Terminators **
 (Message Terminators)

 - Command (Program Message) Terminators

 A code is needed at the end of each command to tell the
 ScopeMeter that the command is ended, and that it
 can start executing the command. This code is called the
 Program Message Terminator. The code needed for the
 ScopeMeter is carriage return (ASCII code 13 decimal).
 Notes:

 1. The carriage return code is a non-visible ASCII
 character. Therefore this code is represented as <cr>
 in the Command Syntax and Response Syntax lines given
 for each command.
 2. The QBASIC programming language, which is used for
 all program examples, automatically adds a carriage
 return to the end of the command output. (In the QBASIC
 language, this is the PRINT #.... statement.)

 After <cr> is recognized by the ScopeMeter, the
 entered command is executed. After EACH command the
 ScopeMeter returns <acknowledge><cr> to the
 computer to signal the end of the command processing (also
 see the section ’Acknowledge’.)

 - Response (Message) Terminators

 The response from the ScopeMeter ends with a
 carriage return (ASCII 13). This is indicated as <cr> in
 the Response Syntax for each command.

 Page 2.7

 ** Typical program sequence **
 An example

 A typical program sequence consists of the following user
 actions:

 1. Set the communication parameters for the RS232 port of
 the computer to match the ScopeMeter settings.

 2. Output a command or query to the ScopeMeter.

 3. Input the acknowledge response from the ScopeMeter.

 If the response value is zero, go to step 4.

 If the response value is non-zero, the ScopeMeter did not
 execute the previous command. Read the error message from
 the following acknowledge subroutine, recover the error,
 and repeat the command or query. (This is not shown in the
 following program example.)

 4. If a query was output to the ScopeMeter, input its
 response.

 5. The sequence of points 2, 3, and 4 may be repeated for
 different commands or queries.

 6. Close the communication channel.

 Refer to the program example on the next page.

 Page 2.8

 ’Example of a typical program sequence:

 ’***************** Begin example program ****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1

 ’This QBASIC program line sets the parameters for the
 ’RS232 port (COM1 on the Computer) to match the
 ’ScopeMeter power-on default settings. It also opens a
 ’communication channel (assigned #1) for input or output
 ’through the COM1 port. Your ScopeMeter must be connected
 ’to this port. "RB2048" sets the size of the computer
 ’receive buffer to 2048 bytes to prevent buffer overflow
 ’during communication with the ScopeMeter.

 PRINT #1, "ID"

 ’Outputs the IDENTITY command (query) to the ScopeMeter.

 GOSUB Acknowledge

 ’This subroutine inputs the acknowledge response from
 ’the ScopeMeter and displays an error message if the
 ’acknowledge value is non-zero.

 INPUT #1, Response$

 ’This inputs the response data from the IDENTITY query.

 PRINT Response$

 ’Displays the queried data.

 CLOSE #1

 ’This closes the communication channel.

 END

 ’This ends the program.

 ’ Page 2.9

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program *****************

 Page 3.1
 ===

 3. COMMAND REFERENCE

 CONVENTIONS

 ** Page layout used for each command **

 - Header

 Each command description starts on a new page with a header
 for quickly finding the command. This header indicates the
 command name and the two-character header used for the
 command syntax. Example:

 ===
 AUTO SETUP AS

 Where AUTO SETUP is a descriptive name for the command
 (this is no syntax!),

 and AS are the first two characters used for
 the command syntax (not the complete
 syntax).

 - Purpose:
 Explains what the command does or what it is used for.

 - Command Syntax:
 Shows the syntax for the command. Parameters are separated
 by commas. Commands are terminated by <cr> (carriage
 return).

 - Response Syntax:
 Shows the format of the response from the ScopeMeter.
 Responses are terminated by <cr> (carriage return).
 Each Response Syntax starts with the <acknowledge>
 response, followed by the query response if the syntax
 relates to a query.

 - Example:
 This is an example QBASIC program which shows how you can
 use the command. The example may also include some other
 commands to show the relation with these commands.
 The following two comment lines (start with ’) successively
 indicate the beginning and the end of an example program.

 ’***************** Begin example program ****************

 ’****************** End example program *****************

 Page 3.2

 Use an MS-DOS Editor and copy the complete program between
 these two lines to a file name with the .BAS extension.
 Start QBASIC and open this file from the FILE menu.
 Long programs (longer than 55 lines) include page breaks.
 Such page breaks are preceded by the ’ (remark) character
 to prevent the QBASIC interpreter from interpreting them as
 an incorrect statement.
 When you have connected the ScopeMeter, you can start
 the program from the RUN menu.

 Page 3.3

 ** Syntax conventions **

 The Command Syntax and the Response Syntax may contain the
 following meta symbols and data elements:

 UPPERCASE These characters are part of the syntax.
 For commands, lower case is also allowed.

 <...> An expression between these brackets is a
 code, such as <cr> (carriage return) that can
 not be expressed in a printable character, or
 it is a parameter that is further specified.
 Do not insert the brackets in the command!

 [...] The item between these brackets is optional.
 This means that you may omit it for the
 command, or for a response it may not appear.
 Do not insert the brackets in the command!

 | This is a separator between selectable items.
 This means that you must choose only one of
 the items (exclusive or).

 {...} Specifies an element that may be repeated 0 or
 more instances.

 (...) Grouping of multiple elements.

 <binary_character>= 0 to 255

 <digit> = 0 to 9

 <sign> = + | -

 <decimal_number>= <digit>{<digit>}

 <float> = <mantissa><exponent>
 <mantissa> = <signed_integer>
 <exponent> = <signed_byte>

 <signed_integer> = <binary_character><binary_character>
 Two bytes representing a signed
 integer value. The first byte is the
 most significant and contains the
 sign bit (bit 7).
 <signed_long> = four <binary_character>’s

 <unsigned_integer>= <binary_character><binary_character>
 Two bytes representing an unsigned
 integer value. The first byte is the
 most significant.
 <unsigned_long> = four <binary_character>’s

 Page 3.4
 ===

 ** Overview of commands for the ScopeMeter **

 COMMAND PAGE
 COMMAND NAME HEADER NUMBER

 AUTO SETUP AS 3.5
 ARM TRIGGER AT 3.7
 CLEAR MEMORY CM 3.9
 CPL VERSION QUERY CV 3.11
 DEFAULT SETUP DS 3.13
 GET DOWN GD 3.15
 GO TO LOCAL GL 3.17
 GO TO REMOTE GR 3.20
 HOLD HO 3.21
 IDENTIFICATION ID 3.23
 INSTRUMENT STATUS IS 3.25
 PROGRAM COMMUNICATION PC 3.28
 PROGRAM SETUP PS 3.30
 QUERY MEASUREMENT QM 3.34
 QUERY PRINT QP 3.38
 QUERY SETUP QS 3.42
 QUERY WAVEFORM QW 3.43
 READ DATE RD 3.59
 RESET INSTRUMENT RI 3.61
 REPLAY RP 3.63
 RECALL SETUP RS 3.65
 READ TIME RT 3.68
 SWITCH ON SO 3.70
 SAVE SETUP SS 3.71
 STATUS QUERY ST 3.72
 TRIGGER ACQUISITION TA 3.75
 WRITE DATE WD 3.77
 WRITE TIME WT 3.79

 Page 3.5
 ===
 AUTO SETUP AS

 Purpose:

 Invokes an automatic setup for the active mode. The result
 of this command is the same as pressing the AUTO key
 on the ScopeMeter.

 Note: You can select the items that are affected by the
 AUTO SET procedure via the USER OPTIONS key on
 the ScopeMeter.

 Command Syntax:

 AS<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program sends an AUTO SETUP command to
 the ScopeMeter. Connect a repetitive signal on
 INPUT A to see the effect of AUTO SETUP.

 ’ Page 3.6

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "AS" ’Sends AUTO SETUP command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.7
 ===
 ARM TRIGGER AT

 Purpose:

 Resets and arms the trigger system for a new acquisition.
 This command is used for single shot measurements.
 When the AT command is given while an acquisition is in
 progress, this acquisition is aborted and the trigger
 system is rearmed.

 Command Syntax:

 AT<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program arms the trigger system of
 the ScopeMeter with the AT command.
 This means that after this command the ScopeMeter starts an
 acquisition when a trigger occurs from the signal (when
 exceeding the trigger level) or from a TA (Trigger
 Acquisition) command.
 After the AT command it is assumed that the signal amplitude
 is sufficient to trigger the acquisition. If it is not, you
 can use the TA (TRIGGER ACQUISITION) command to force the
 acquisition to be triggered. But this is not useful if you
 want the acquisition to be started on a signal edge for
 synchronization purposes.

 Also see the example program for the IS command, which also
 uses the AT command for a single shot application.

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "AT" ’Sends the ARM TRIGGER command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END

’

’ Page 3.8

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.9
 ===
 CLEAR MEMORY CM

 Purpose:

 Clears all saved setups, waveforms, and screens from
 memory.

 Command Syntax:

 CM<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ’ Page 3.10

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"CM" ’Sends the Clear Memory command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.11
 ===
 CPL VERSION QUERY CV

 Purpose:

 Queries the CPL interface version.

 Command Syntax:

 CV<cr>

 Response Syntax:

 <acknowledge><cr>[<version><cr>]

 where,

 <version> is an ASCII string representing the year this
 version has been created.

 Example:

 ’ Page 3.12

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"CV" ’Sends CPL VERSION query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1,VERSION$ ’Inputs queried data.
 PRINT "CPL Version "; VERSION$ ’Displays version data.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.13
 ===
 DEFAULT SETUP DS

 Purpose:

 Resets the ScopeMeter to the factory settings at
 delivery, except for the RS232 communication settings such
 as baud rate, to keep the communication alive.
 A Master Reset (refer to the Users Manual) performs the
 same, but also resets the RS232 communication settings to
 the default values.

 Command Syntax:

 DS<cr>

 Response Syntax:

 <acknowledge><cr>

 Note: Wait for at least 2 seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Example:

 ’ Page 3.14

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 PRINT #1, "DS" ’Sends DEFAULT SETUP command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 SLEEP 2 ’Delay (2 s) necessary after "DS".
 PRINT #1, "ID" ’Sends the IDENTIFICATION query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, ID$ ’Inputs identity data from ScopeMeter.
 PRINT ID$ ’Displays identity data.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.15
 ===
 GET DOWN GD

 Purpose:

 Switches the instrument’s power off. If a power adapter
 is connected, you can use the SO command to switch power
 on again. If there is no power adapter connected, the
 instrument can only be switched on manually by pressing
 the Power ON/OFF key.

 Command Syntax:

 GD<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ’ Page 3.16

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 PRINT #1, "GD" ’Sends the GET DOWN command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT "The GET DOWN command switched the ScopeMeter off."
 PRINT "Press any key on the PC keyboard to switch "
 PRINT "the ScopeMeter on again."
 SLEEP
 PRINT #1, "SO" ’Sends the SWITCH ON command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.17
 ===
 GO TO LOCAL GL

 Purpose:

 Sets the ScopeMeter in the local operation mode
 so the keypad is enabled.
 Also refer to the GR (Go to Remote) command.

 Command Syntax:

 GL<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example uses the GR (GO TO REMOTE) command
 (refer to the description for this command) to set the
 ScopeMeter in the REMOTE state so that the keypad
 is disabled. After that, the GL (GO TO LOCAL) command
 is sent so that the keypad is enabled again.

 ’ Page 3.18

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "GR" ’Sends GO TO REMOTE command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT "All ScopeMeter keys (except the Power ON/OFF key)
 PRINT "are now disabled by the GR (GO TO REMOTE) command."
 PRINT "Check this."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 PRINT
 PRINT #1, "GL" ’Sends GO TO LOCAL command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT "The ScopeMeter keys are now enabled again by the "
 PRINT "GL (GO TO LOCAL) command."
 PRINT "Check this."
 CLOSE #1
 END

 ’

 ’ Page 3.19

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.20
 ===
 GO TO REMOTE GR

 Purpose:

 Sets the ScopeMeter in the remote operation mode
 so that the keypad is disabled.
 You can use the following methods to return to the
 local operation mode so that the keypad is enabled:
 1. Sending the GL (Go to Local) command.

 Command Syntax:

 GR<cr>

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under GO TO LOCAL (GL).

 Page 3.21
 ===
 HOLD HO

 Purpose:

 Sets the ScopeMeter in the Hold mode. In other words, the
 ScopeMeter stops sampling the input channels and
 calculating measurement results.

 Command Syntax:

 HO<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ’ Page 3.22

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 PRINT #1, "HO" ’Sends the HOLD command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT "The HOLD command has put the ScopeMeter in HOLD."
 PRINT "Check on the ScopeMeter screen."
 PRINT "Press any key on the PC keyboard to continue and"
 PRINT "enable acquisition again."
 SLEEP
 PRINT #1, "AT" ’Sends the ARM TRIGGER command to
 ’enable acquisition again.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.23
 ===
 IDENTIFICATION ID

 Purpose:

 Returns the ScopeMeter model identification information.

 Command Syntax:

 ID<cr>

 Response Syntax:

 <acknowledge><cr>[<identity><cr>]

 where,

 <identity> is an ASCII string containing the following
 data elements:
 <model_number>;<software_version>;
 <creation_date>;<languages>

 Example:

 The following example program queries the identity data of
 the ScopeMeter and displays this data on the PC
 screen.

 ’ Page 3.24

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "ID" ’Sends IDENTIFICATION query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, IDENT$ ’Inputs the queried data.
 PRINT IDENT$ ’Displays queried data.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.25
 ===
 INSTRUMENT STATUS IS

 Purpose:

 Queries the contents of the ScopeMeter’s status register.
 The returned value reflects the present operational status
 of the ScopeMeter. This is a 16-bit word, presented as an
 integer value, where each bit represents the Boolean value
 of a related event.

 Command Syntax:

 IS<cr>

 Response Syntax:

 <acknowledge><cr>[<status><cr>]

 where,

 <status> = integer value 0 to 65535

 <status>
 Bit Value Status Description
 --
 0 1 Maintenance mode
 1 2 Charging
 2 4 Recording
 3 8 AutoRanging
 4 16 Remote
 5 32 Battery Connected
 6 64 Power (Net) Adapter connected
 7 128 Calibration necessary
 8 256 Instrument Held (HOLD status)
 9 512 Pre Calibration busy
 10 1024 Pre Calibration valid
 11 2048 Replay buffer full
 12 4096 Triggered
 13 8192 Instrument On
 14 16384 Instrument Reset occurred
 15 32768 Next <status> value available

 Example:

 Page 3.26

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "IS" ’Sends the INSTRUMENT STATUS query
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter
 INPUT #1, Status$ ’Input Instrument Status
 StV = VAL(Status$) ’Decimal value of Instrument Status
 PRINT "Instrument Status : "; StV
 IF (StV AND 1) = 1 THEN PRINT " ScopeMeter in Maintenance mode."
 IF (StV AND 2) = 2 THEN PRINT " ScopeMeter charging."
 IF (StV AND 4) = 4 THEN PRINT " ScopeMeter recording."
 IF (StV AND 8) = 8 THEN PRINT " AutoRanging active"
 IF (StV AND 16) = 16 THEN PRINT " ScopeMeter remote."
 IF (StV AND 32) = 32 THEN PRINT " Battery connected."
 IF (StV AND 64) = 64 THEN PRINT " Power Adapter connected."
 IF (StV AND 128) = 128 THEN PRINT " Calibration necessary."
 IF (StV AND 256) = 256 THEN PRINT " ScopeMeter in HOLD."
 IF (StV AND 512) = 512 THEN PRINT " Pre-calibration busy."
 IF (StV AND 1024) = 1024 THEN PRINT " Pre-calibration valid."
 IF (StV AND 2048) = 2048 THEN PRINT " Replay-buffer full."
 IF (StV AND 4096) = 4096 THEN PRINT " ScopeMeter triggered."
 IF (StV AND 8192) = 8192 THEN
 PRINT " ScopeMeter On."
 ELSE
 PRINT " ScopeMeter Off."
 END IF
 IF (StV AND 16384) = 16384 THEN PRINT " Reset Instrument occurred."
 END
’

’ Page 3.27

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.28
 ===
 PROGRAM COMMUNICATION PC

 Purpose:

 Programs the baud rate for RS232 communication:

 Command Syntax:

 PC <baudrate>

 where,

 <baudrate> = 1200|2400|4800|9600|19200
 38400 (Fluke 19xC)
 57600 (Fluke 19xC, PM9080/101 required)

 The default baudrate is 1200. This is set at power-on or
 after a Reset Instrument command (command "RI")

 Notes:
 The Fluke 19x/19xC instruments support 1 stopbit,
 8 databits and software handshake (X-on X-off
 protocol).
 Hardware handshaking is not supported.

 Page 3.29

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under QUERY PRINT (QP).

 Page 3.30
 ===
 PROGRAM SETUP PS

 Purpose:

 Restores a complete setup, previously saved with the SS
 (Save Setup) command and queried with the QS (Query Setup)
 command and saved in a string variable or to a file.
 <Command 1> -> <Response 1> -> <Command 2> -> <Response 2>

 Command Syntax 1:

 PS [<saved_setup_no>]<cr>

 where,

 <saved_setup_no> = 0 : Actual setup

 Response Syntax 1:

 <acknowledge><cr>

 Command Syntax 2:

 <queried_setup><cr>

 <queried_setup> = The data returned with the QS command.
 (omit the <acknowledge><cr> response).

 Response Syntax 2:

 <acknowledge><cr>

 Note: Wait for at least two seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Remarks:

 The ScopeMeter sends the <acknowledge> reply
 after it has executed the setup from the PS command.
 You must send the <setup> string as a whole, exactly as
 returned from the QS (Query Setup) command.
 If you do not follow this rule, the ScopeMeter
 may crash. A Reset may then be necessary to recover
 the ScopeMeter. (Refer to the ScopeMeter Users Manual.)

 Example:

 The following example program demonstrates the use of the
 QS (QUERY SETUP) and the PS (PROGRAM SETUP) commands.
 The present setup is queried from ScopeMeter and saved to
 file. The program asks you to change the ScopeMeter settings.
 Then the original setup is read from file and sent back

 to the ScopeMeter.

 ’ Page 3.31

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 GOSUB ClearPort ’Clears pending data from port.
 PRINT #1, "QS" ’Queries the actual setup data.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 GOSUB Response ’Writes the setup data to file.
 PRINT "Present setup data are stored in the file SETUP0"
 PRINT "This setup will now be retrieved from the file and"
 PRINT "sent back to the ScopeMeter."
 PRINT "To see if this works, change the present settings and"
 PRINT "verify if the ScopeMeter returns to the previous"
 PRINT "settings."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 CLS
 PRINT #1, "PS" ’Program header for programming
 ’the setup data to the ScopeMeter.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 OPEN "SETUP0" FOR INPUT AS #2
 ’Opens file SETUP0 for data retrieval.
 DO WHILE NOT EOF(2)
 SUCHR$ = INPUT$(1, #2) ’Reads setup data from file
 PRINT #1, SUCHR$; ’Programs ScopeMeter with the"
 ’setup data stored in SETUP0$.
 LOOP
 PRINT #1, CHR$(13); ’Program message terminator
 CLOSE #2 ’Close file SETUP0.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 END
’

 ’ Page 3.32

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"

 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’******* Clears pending data from the RS232 port *********
ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

 ’

 ’ Page 3.33

 ’****************** Response subroutine *********************
 ’This subroutine reads bytes from the RS232 buffer as long
 ’as they enter. When no bytes enter for 1 second, the program
 ’assumes that the ScopeMeter has terminated its response.
 ’All bytes that enter the buffer are appended to the string
 ’Resp$.

Response:
 start! = TIMER
 ’Wait for bytes (maximum 1 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN ’If RS232 buffer contains bytes
 OPEN "Setup0" FOR OUTPUT AS #2 ’File for setup data
 DO
 ’ LOC(1) gives the number of bytes waiting:
 ScopeInput$ = INPUT$(LOC(1), #1) ’Input bytes
 PRINT #2, ScopeInput$;
 start! = TIMER
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 LOOP WHILE LOC(1) > 0 ’Repeat as long as bytes enter
 CLOSE #2
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.34
 ===
 QUERY MEASUREMENT QM

 Purpose:

 Queries for active readings (see Syntax 1) or measurement
 results from the ScopeMeter (see Syntax 2).

 Command Syntax 1:

 QM<cr>

 Command Syntax 2:

 QM <no>{,<no>}<cr>

 where in TrendPlot mode, **************************
 <no> = 11 | 21 *
 *
 where in Meter mode, **************************** *
 <no> = 11 | 19 * *
 * *
 where in Scope mode, ************************** * *
 <no> = 11 | 21 | 31 | 41 | * * *
 53 | 54 | 55 | 61 | 71 * * *
 * * *
 <no> MEASUREMENT TYPE / DESCRIPTION * * *
 * * *
 11 Measurement reading 1 |*| |*|
 Meter absolute reading | |*| |
 19 Meter relative reading (relative to | |*| |
 instrument setup reference value) | | | |
 21 Measurement reading 2 |*| |*|
 31 Cursor 1 absolute amplitude value |*| | |
 41 Cursor 2 absolute amplitude value |*| | |
 53 Cursor absolute amplitude value (Maximum) |*| | |
 54 Cursor absolute amplitude value (Average) |*| | |
 55 Cursor absolute amplitude value (Minimum) |*| | |
 61 Cursor relative amplitude value (Delta) |*| | |
 71 Cursor relative time value (delta T) |*| | |

 Notes: - Maximum 10 readings per command.
 - If one of the readings <no> is non-valid, no readings
 will be returned.
 - Only active (valid) readings will be returned.

 Page 3.35

 Response Syntax 1:

 <acknowledge><cr>[<reading>{,<reading>}<cr>]

 where,

 <reading> = <no>,<valid>,<source>,<unit>,<type>,<pres>,<resol>
 <no> see Command Syntax 2
 <valid> validity of the reading:
 1 reading valid
 0 reading non-valid
 <source> source of the reading:
 1 Voltage channel: Input A (Scope mode)
 2 Ampere channel: Input B (Scope mode)
 3 Input external: COM & V/Ohm/Diode (Meter mode)
 12 Input_AB (Phase A over B): A>B (Scope mode),
 or M (Mathematics A+B, A-B or AxB)
 21 Input_BA (Phase B over A): B>A (Scope mode)
 <unit> unit of the reading:
 0 None (off)
 1 Volt
 2 Ampere
 3 Ohm
 4 Watt
 5 Farad
 6 Kelvin
 7 seconds
 8 hours
 9 days
 10 Hertz
 11 Degrees
 12 Celsius
 13 Fahrenheit
 14 percentage (%)
 15 dBm 50 Ohm
 16 dBm 600 Ohm
 17 dBVolt
 18 dBAmpere
 19 dBWatt
 20 Volt * Ampere Reactive (VAR)
 21 Volt * Ampere (VA)
 <type> reading characteristic of the measurement:
 0 None
 1 Mean
 2 Rms
 3 True rms
 4 Peak peak
 5 Peak maximum
 6 Peak minimum
 7 Crest factor
 8 Period
 9 Duty cycle negative
 10 Duty cycle positive
 11 Frequency
 12 Pulse width negative

 13 Pulse width positive
 14 Phase
 15 Diode
 16 Continuity
 18 Reactive Power
 19 Apparent Power
 20 Real Power
 21 Harmonic Reactive Power
 22 Harmonic Apparent Power
 23 Harmonic Real Power
 24 Harmonic rms
 25 Displacement Power Factor
 26 Total Power Factor
 27 Total Harmonic Distortion
 28 Total Harmonic Distortion with respect
 to Fundamental
 29 K Factor (European definition)
 30 K Factor (US definition)
 31 Line Frequency
 32 Vac PWM or Vac+dc PWM
 33 Rise time
 34 Fall time
 <pres> presentation value of the reading:
 0 Absolute value
 1 Relative value
 2 Logarithmic value
 3 Linear value
 4 Fahrenheit
 5 Celsius
 <resol> resolution of the reading as <float> to
 determine the least significant digit

 Response Syntax 2:

 <acknowledge><cr>[<meas_value>{,<meas_value>}<cr>]

 where,

 <meas_value> = [<sign>]<decimal_number>E<sign><decimal_number>

 Notes: Only displayed results are available for output.
 Not all readings are available in all Fluke 19x/19xC
 models/versions.

 Page 3.36

 Example:

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "QM" ’Queries for active readings
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 ’*** Examines only the 7 inputs of the first reading <no> 11.
 INPUT #1, reading.no ’1st <decimal_number>
 IF reading.no = 11 THEN
 PRINT "Measurement reading 1";
 ELSEIF reading.no = 21 THEN
 PRINT "Measurement reading 2";
 ELSE
 PRINT "Unknown measurement reading";
 END IF
 INPUT #1, validity ’2nd <decimal_number>
 IF validity = 1 THEN
 PRINT " is valid"
 ELSE
 PRINT " is ’not’ valid"
 END IF
 INPUT #1, source ’3rd <decimal_number>
 PRINT "Source of reading = ";
 IF source = 1 THEN
 PRINT "Voltage channel Input A"
 ELSEIF source = 2 THEN
 PRINT "Ampere channel Input B"
 ELSEIF source = 3 THEN
 PRINT "Input External"
 ELSE
 PRINT "Unknown source?"
 END IF
 INPUT #1, unit ’4th <decimal_number>
 PRINT "Unit of reading = ";
 IF unit = 1 THEN
 PRINT "Volt"
 ELSEIF unit = 2 THEN
 PRINT "Ampere"
 ELSEIF unit = 3 THEN
 PRINT "Ohm"
 ELSE
 PRINT "Unexpected unit?"
 END IF
 INPUT #1, types ’5th <decimal_number>
 PRINT "Type of reading = ";
 IF types = 1 THEN
 PRINT "Mean value"
 ELSEIF types = 2 THEN
 PRINT "Rms value"
 ELSEIF types = 3 THEN
 PRINT "True rms value"
 ELSE
 PRINT "Unexpected characteristic?"

 END IF
 INPUT #1, presentation ’6th <decimal_number>
 PRINT "Presentation of reading= ";
 IF presentation = 0 THEN
 PRINT "Absolute value"
 ELSEIF presentation = 1 THEN
 PRINT "Relative value"
 ELSEIF presentation = 2 THEN
 PRINT "Logarithmic value"
 ELSE
 PRINT "Unexpected value?"
 END IF
 INPUT #1, resolution ’7th <decimal_number>
 PRINT "Resolution of reading ="; resolution
 GOSUB ClearReadings ’Clears rest of readings data from port
 ’
 PRINT #1, "QM 11" ’Queries Measurement reading 1 or
 ’Meter absolute reading (Meter mode).
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, result
 PRINT "Measurement value ="; result; "V"
 CLOSE #1
 END
’

 ’ Page 3.37

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’******* Clears pending data from the RS232 port *********
ClearReadings:
 WHILE LOC(1) > 0
 LINE INPUT #1, dummy$
 WEND
 RETURN

 ’****************** End example program ******************

 Page 3.38
 ===
 QUERY PRINT QP

 Purpose:

 Queries a screen dump of the ScopeMeter in different
 printer formats. This allows you to make a copy of the
 ScopeMeter screen on paper. Format ratios:
 1 : 1 = width x height = 240 x 240
 4 : 3 = width x height = 320 x 240

 Command Syntax:

 QP[<screen_number>,<output_format>[,<block_transfer>]]<cr>

 where,

 <screen_number> = 0 Always zero

 <output_format> = 0 Epson FX, LQ compatible
 Returns screen image 1:1 (Fluke 19x)
 Returns screen image 4:3 (Fluke 19xC)
 1 Laser Jet
 Returns screen image 4:3 (Fluke 19x)
 2 Desk Jet
 Returns screen image 4:3 (Fluke 19x)
 3 PostScript
 Returns screen image 4:3 (Fluke 19x)
 11 PNG format (<block_transfer> mandatory)
 Returns screen image 4:3 (Fluke 19xC)

 <block_transfer>= b binary format
 B Binary format

 Note: Sending QP without arguments returns the screen image
 in Epson format (i.e., this command is equivalent to
 QP 0,0).

 Response Syntax for QP or QP 0,0 or QP 0,1 or QP 0,2 or QP 0,3:

 <acknowledge><cr>[<printer_data>]

 <printer_data> This data can be sent directly to the printer
 to get a hard copy of the screen on paper.

 Page 3.39

 Example for QP 0,0 (or QP or QP 0,1 or QP 0,2 or QP 0,3):

 The following program reads the ScopeMeter screen (print)
 data and copies this data to the file Qpfile. This file can be
 copied to the printer port LPT1, for example.
 The Read Buffer length for the PC is set to 7500 bytes to
 prevent buffer overflow during input from the ScopeMeter.
 The communication speed (baud rate) is set to 19200 and after
 the data transfer it is reset to 1200 (default baud rate).

 ’***************** Begin example program *****************

 CLS
 OPEN "COM1:1200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 ’Programs COM1 port parameters to
 ’match with the ScopeMeter power-on
 ’defaults.
 PRINT #1, "PC 19200" ’Programs ScopeMeter to the maximum
 ’baud rate.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 OPEN "COM1:19200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 ’Programs COM1 port parameters to
 ’match with the new ScopeMeter
 ’settings.
 PRINT #1, "QP 0,0" ’Sends QUERY PRINT data command.
 ’(actual screen for EPSON print)
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT
 PRINT "Busy reading print data !"
 PRINT
 GOSUB Response
 PRINT #1, "PC 1200" ’Programs ScopeMeter back to the
 ’default baud rate.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.

 PRINT "Print data copied to file ’QPFILE’."
 PRINT "You can copy the file contents to the EPSON Printer."
 PRINT "DOS-example: COPY Qpfile LPT1"
 CLOSE ’Close all files.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";

 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 CLOSE ’Close all files.
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** Response subroutine *********************
 ’This subroutine reads bytes from the RS232 buffer as long
 ’as they enter. When no bytes enter for 1 second, the program
 ’assumes that the ScopeMeter has terminated its response.
 ’All bytes that enter the buffer are appended to the string
 ’Resp$.

Response:
 start! = TIMER
 ’Wait for bytes (maximum 2 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 2)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN ’If RS232 buffer contains bytes
 Resp$ = ""
 OPEN "Qpfile" FOR OUTPUT AS #2 ’File for print data
 DO
 ’ LOC(1) gives the number of bytes waiting:
 ScopeInput$ = INPUT$(LOC(1), #1) ’Input bytes
 PRINT #2, ScopeInput$;
 start! = TIMER
 WHILE ((TIMER < (start! + 2)) AND (LOC(1) = 0))
 WEND
 LOOP WHILE LOC(1) > 0 ’Repeat as long as bytes enter
 CLOSE #2
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.40

 Response Syntax for QP 0,11,b or QP 0,11,B:

 <acknowledge><cr><png_data_length>,<png_data>

 where,

 <png_data_length> = <digit>{<digit>}
 This field indicates the total number of
 bytes in the <png_data>.

 <png_data> = <segment>{<segment>}

 <segment> = <acknowledge><cr>#0<block_header><block_length>
 <block_data><check_sum><cr>

 <block_header> = <binary_character>
 When the most significant bit (bit 7) is set,
 this block (segment) is the last one in the
 sequence.

 <block_length> = <unsigned_integer>
 Specifies the number of <binary_character>’s
 that follow in the <block_data> field.

 <block_data> = {<binary_character>}
 Part of the graphics (PNG) data.

 <check_sum> = <binary_character>
 One binary character which represents the sum
 of all the <binary_character>’s sent after
 the <block_length> and before the <check_sum>.

 The <png_data> is sent in blocks (segments). When the <block_data>
 parts of all <segment>’s are concatenated, they form a PNG-format
 graphics file of length <png_data_length> bytes.
 The instrument has to be prompted for every block (segment):

 Command syntax for block transfer:

 <segment_acknowledge><cr>

 where,

 <segment_acknowledge> = 0 Continue: Request the next segment.
 1 Retransmit: Request retransmission
 of the just transferred segment.
 2 Terminate: Abort block transfer for
 this QP command.

 The PNG format is specified in: "PNG (Portable Network Graphics)
 Specification, Version 1.2", G. Randers-Pehrson et al. (PNG
 Development Group), July 1999; This document is available from
 www.libpng.org/pub/png/.

 The PNG file consists of the following chunks:

 IDHR: Header chunk describing the image characteristics.

 PLTE: Palette chunk. The first 96 entries form the color palette
 table, the next 96 entries form the grey-scale palette table
 for conversion to Black & White.
 Notice that the index numbers in the IDAT chunk only refer
 to the first 96 palette entries. To retrieve the grey-scale
 values, add 96 to the index numbers.

 tEXt: Text chunk specifying the acquisition date and time of the
 screen. The Keyword is "Creation Time", the Text field
 format is "dd-mm-yyyy,hh:mm:ss".

 IDAT: The image data chunk.

 IEND: The image end chunk.

 Page 3.41

 Example for QP 0,11,b or QP 0,11,B:

 The following program reads screen (print) data in PNG format
 from a Fluke 19xC instrument and copies this data to the file
 SCREEN.PNG. This file can be viewed by loading it into a
 graphics editor or browser.
 The Read Buffer length for the PC is set to 7500 bytes to
 prevent buffer overflow during input from the ScopeMeter.
 The communication speed (baud rate) is set to 19200 and after
 the data transfer it is reset to 1200 (default baud rate).

 ’***************** Begin example program *****************

 CLS
 OPEN "COM1:1200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 ’Programs COM1 port parameters to
 ’match with the ScopeMeter power-on
 ’defaults.
 PRINT #1, "PC 19200" ’Programs ScopeMeter to the maximum
 ’guaranteed baud rate.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 OPEN "COM1:19200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 ’Programs COM1 port parameters to
 ’match with the new ScopeMeter
 ’settings.
 PRINT #1, "QP 0,11,B" ’Sends QUERY PRINT data command.
 ’(actual screen in PNG format)
 PRINT
 PRINT "Busy reading screen data !"
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 ’(This may take 5 to 10 seconds)

 ScreenDataLength$ = ""
 DO
 C$ = INPUT$(1, #1)
 ScreenDataLength$ = ScreenDataLength$ + C$
 LOOP WHILE C$ <> ","
 BytesToReceive& = VAL(ScreenDataLength$)

 OPEN "SCREEN.PNG" FOR OUTPUT AS #2 ’File for PNG data.
 BlockNumber% = 1
 DO
 PRINT "Reading block "; BlockNumber%
 GOSUB ReadBlock ’Read data into BlockData$
 PRINT #2, BlockData$;
 BlockNumber% = BlockNumber% + 1
 LOOP WHILE LastBlock% = 0
 CLOSE #2

 IF BytesToReceive& <> 0 THEN
 PRINT "Block transfer protocol error."
 END IF

 PRINT #1, "PC 1200" ’Programs ScopeMeter back to the
 ’default baud rate.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1

 PRINT "Print data copied to file ’SCREEN.PNG’."
 PRINT "You can use a browser program or a graphics editor"
 PRINT "to view this file."

 END

 ’****************** ReadBlock subroutine *********************
 ’This subroutine reads one block of data from the RS232 port.
 ’The actual data bytes received (i.e., excluding the block
 ’header, checksum and acknowledge bytes) are stored in the
 ’string BlockData$.
 ’LastBlock% indicates whether the received block is the last
 ’one (1) or not (0).

ReadBlock:
 PRINT #1, "0" ’Request the next data block.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.

 BlockHeader$ = INPUT$(5, #1) ’Read the block header.

 IF LEFT$(BlockHeader$, 2) <> "#0" THEN
 PRINT "Block transfer protocol error."
 CLOSE ’Close all files.
 PRINT "Program aborted."
 END
 END IF

 IF (ASC(MID$(BlockHeader$, 3, 1)) AND 128) = 128 THEN
 LastBlock% = 1 ’This is the last block.
 ELSE
 LastBlock% = 0
 END IF

 BlockLenHigh% = ASC(MID$(BlockHeader$, 4, 1))
 BlockLenLow% = ASC(MID$(BlockHeader$, 5, 1))
 BlockLength& = (256 * BlockLenHigh%) + BlockLenLow%

 BlockData$ = INPUT$(BlockLength&, #1) ’Read the block data.

 CheckSum$ = INPUT$(2, #1) ’Read the checksum
 ReceivedCheckSum% = ASC(LEFT$(CheckSum$, 1))
 CalculatedCheckSum% = 0
 FOR I& = 1 TO BlockLength&
 Byte% = ASC(MID$(BlockData$, I&, 1))
 CalculatedCheckSum% = CalculatedCheckSum% + Byte%
 CalculatedCheckSum% = CalculatedCheckSum% MOD 256
 NEXT I&
 IF CalculatedCheckSum% <> ReceivedCheckSum% THEN
 PRINT "Checksum error"
 PRINT #1, "2" ’Terminate (abort) QP command.
 ’(We could send "1" instead to request

 ’the block again)
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE ’Close all files.
 PRINT "Program aborted."
 END
 END IF

 BytesToReceive& = BytesToReceive& - BlockLength&

 RETURN

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 CLOSE ’Close all files.
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.42
 ==
 QUERY SETUP QS
 --

 Purpose:

 Queries the present acquisition setup data from the
 ScopeMeter.

 Command Syntax:

 QS [<setup_no>]<cr>

 where,

 <saved_setup_no> = 0 : Actual setup

 Response Syntax:

 <acknowledge><cr>[#0{<node>}<cr>]

 where,

 <node> = <node_header><node_identifier><node_length>
 [<node_data>]<check_sum>
 <node_header> = <binary_character>
 Possible values:
 20 hex All nodes except the last (end
 node)
 A0 hex End node
 <node_identifier> = <binary_character>
 Unique number for each specific node.
 <node_length> = <unsigned_integer>
 Specifies the number of <binary_character>
 fields that follow in the <node_data>
 field.
 <node_data> = {<binary_character>}
 The contents of <node_data> depends on the
 <node_identifier> and the selected setup.
 <check_sum> = <binary_character>
 Contains the sum of all the binary bytes
 in the <node_data> field.

 Note: Also see the Program Setup (PS) command.

 See an example for this command under PROGRAM SETUP (PS).

 Page 3.43
 ===
 QUERY WAVEFORM QW

 Purpose:

 Queries the trace data (administration and/or sample data)
 related to the waveform from the ScopeMeter.

 When a waveform is queried that is still under processing,
 the processing is finished first (no half traces returned).

 Command Syntax:

 QW <trace_no>[,V|S]

 <trace_no> = <decimal number>

 <trace_no> Trace Source: (only for Fluke 19x)

 10 Scope mode:
 Normal trace INPUT A
 Min/Max trace INPUT A
 Scope Record:
 Min/Max trace INPUT A
 11 TrendPlot 1:
 Min/Max/Average trace
 20 Scope mode:
 Normal trace INPUT B
 Min/Max trace INPUT B
 Scope Record:
 Min/Max trace INPUT B
 21 TrendPlot 2:
 Min/Max/Average trace
 30 Scope mode, Mathematics
 (not available in all versions):
 Min/Max trace A+B, A-B or AxB

 <trace_no> Trace Source: (only for Fluke 19xC)

 10 Scope mode:
 Normal trace INPUT A
 Min/Max trace INPUT A
 Scope Record:
 Min/Max trace INPUT A
 11 TrendPlot 1:
 Min/Max/Average trace
 12 Scope mode:
 Min/Max trace INPUT A ENVELOPE
 13 Scope mode:
 Min/Max trace INPUT A REFERENCE
 20 Scope mode:
 Normal trace INPUT B
 Min/Max trace INPUT B
 Scope Record:
 Min/Max trace INPUT B

 21 TrendPlot 2:
 Min/Max/Average trace
 22 Scope mode:
 Min/Max trace INPUT B ENVELOPE
 23 Scope mode:
 Min/Max trace INPUT B REFERENCE
 30 Scope mode, Mathematics:
 Min/Max trace A+B, A-B or AxB

 V | v Trace values (samples) only
 S | s Setup (administration) data only. When V or S is
 omitted, trace values and setup data are returned.

 Response Syntax:

 <acknowledge><cr>[<trace_data><cr>]

 where,

 <trace_data> = <trace_admin> | <trace_samples> |
 <trace_admin>,<trace_samples>

 If the optional parameter (V or S) is omitted:

 <trace_data> = <trace_admin>,<trace_samples><cr>
 This includes the complete information about the trace
 (waveform). For detailed descriptions about the waveform
 structure, refer to Appendix C.

 Page 3.44

 If option V or v (value only) is given:

 <trace_data> = <trace_samples><cr>

 For detailed descriptions about the waveform structure,
 refer to Appendix C.

 If option S or s (Setup data only) is given:

 <trace_data> = <trace_admin><cr>

 where,

 <trace_admin> = string of hexadecimal characters,
 representing the setup related to the given
 <trace_no>.

 Example:

 ’***************** Begin example program *****************
 ’
 ’***** If an error occurs in the waveform data,
 ’***** the program stops.
 ’
 C65536 = 65536 ’2-bytes Maximum constant
 C32768 = 32768 ’2-bytes Sign-bit constant
 C256 = 256 ’1-byte Maximum constant
 C128 = 128 ’1-byte Sign-bit constant
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 GOSUB ClearPort ’Clears pending data from port
 ’
 Query$ = "QW 10" ’Queries normal trace INPUT A when you
 ’select "Display Glitches No".
 ’Queries min/max trace INPUT A when you
 ’select "Persistence" or "Display
 ’Glitches Yes"; see also Command Syntax.
 ’*****
 ’* A normal trace is a series of waveform samples consisting
 ’* of single waveform points.
 ’* A min/max trace is a series of waveform samples consisting
 ’* of minimum and maximum waveform points.
 ’* A min/max/average trace is a series of waveform samples
 ’* consisting of minimum, maximum, and average waveform points.
 ’*****
 PRINT #1, Query$ ’Response = <trace_admin>,<trace_samples>
 GOSUB Acknowledge ’Inputs acknowledge from ScopeMeter
 Resp$ = "" ’Clears the total Response string
 GOSUB Response ’Writes waveform data to Resp$ & files
 GOSUB Interpret.Admin ’Interprets waveform administration data
 ’See also Appendix C
 GOSUB Interpret.Samples ’Interprets waveform sample data
 GOSUB Create.CSV ’Creates Wave.CSV file from waveform data
 ’as input for Excel, for example.
 END

’

 ’ Page 3.45

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’******* Clears pending data from the RS232 port *********
ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

’

 ’ Page 3.46

 ’****************** Response subroutine *********************
 ’This subroutine reads bytes from the RS232 buffer as long
 ’as they enter. When no bytes enter for 1 second, the program
 ’assumes that the ScopeMeter has terminated its response. All
 ’bytes that enter the buffer are appended to the string Resp$
 ’and are written to the following files:
 ’File Waveform : the waveform data bytes
 ’File Waveresp : the waveform ASCII values
 ’
Response:
 start! = TIMER
 ’Wait for bytes (maximum 1 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN ’If RS232 buffer contains bytes
 OPEN "WaveForm" FOR OUTPUT AS #2
 ’File to contain the waveform data bytes
 docount = 1
 total.count& = 0
 DO
 ’ LOC(1) gives the number of bytes waiting:
 total.count& = total.count& + LOC(1)
 ScopeInput$ = INPUT$(LOC(1), #1) ’Input bytes
 PRINT #2, ScopeInput$;
 PRINT total.count&;
 Resp$ = Resp$ + ScopeInput$
 start! = TIMER
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 docount = docount + 1
 LOOP WHILE LOC(1) > 0 ’Repeat as long as bytes enter
 CLOSE #2
 PRINT
 END IF
 ’
 ’***** Write the total Response string to file WaveResp
 ’
 OPEN "WaveResp" FOR OUTPUT AS #3
 PRINT "Response data length = "; LEN(Resp$)
 PRINT #3, "Response data length = "; LEN(Resp$)
 FOR i = 1 TO LEN(Resp$)
 PRINT #3, ASC(MID$(Resp$, i, 1));
 NEXT i
 CLOSE #3: RETURN
’

’ Page 3.47
Interpret.Admin:
 Resp.Count = 1 ’Byte counter for Resp$
 SumCheck1% = 0 ’Sumcheck byte for Resp$
 ’
 ’***** Interpret the <trace_admin> waveform data bytes
 ’***** in the Resp$ string (see appendix C).
 ’
 ’***** 2 bytes <trace_admin> block trailing : #0
 IF MID$(Resp$, Resp.Count, 2) <> "#0" GOTO Wave.Error
 Resp.Count = Resp.Count + 2
 ’
 ’***** 1 byte <block_header>
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb <> 128 AND nb <> 0 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 ’
 ’***** 2 bytes <block_length>
 Block1.Length = ASC(MID$(Resp$, Resp.Count, 1)) * 256
 Block1.Length = Block1.Length + ASC(MID$(Resp$, Resp.Count + 1, 1))
 Resp.Count = Resp.Count + 2
 ’
 ’***** 1 byte <trace_result> : 0, 1, or 2
 Trace.Result = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Trace.Result
 IF Trace.Result < 0 OR Trace.Result > 2 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 ’
 ’***** 1 byte <y_unit>
 Y.Unit = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Y.Unit
 Resp.Count = Resp.Count + 1
 PRINT "<y_unit> ="; Y.Unit,
 ’
 ’***** 1 byte <x_unit>
 X.Unit = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + X.Unit
 Resp.Count = Resp.Count + 1
 PRINT " <x_unit> ="; X.Unit
 ’
 ’***** 2 bytes <y_divisions>
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Sample.Byte
 Y.Divisions = Sample.Byte * 256
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + 1, 1))
 SumCheck1% = SumCheck1% + Sample.Byte
 Y.Divisions = Y.Divisions + Sample.Byte
 Resp.Count = Resp.Count + 2
 PRINT "<y_divisions> ="; Y.Divisions,
 ’
 ’***** 2 bytes <x_divisions>
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Sample.Byte
 X.Divisions = Sample.Byte * 256
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + 1, 1))
 SumCheck1% = SumCheck1% + Sample.Byte
 X.Divisions = X.Divisions + Sample.Byte

 Resp.Count = Resp.Count + 2
 PRINT " <x_divisions> ="; X.Divisions
’

’ Page 3.48
’
DIM expscale(2) ’Exponents for Y/X.Scale
DIM YXscale#(2) ’Values for Y/X.Scale
 ’
 ’***** 3 bytes <y_scale> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <y_scale> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 expscale(1) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXscale#(1) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <x_scale> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <x_scale> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 expscale(2) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXscale#(2) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 1 byte <y_step>
 Y.Step = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Y.Step
 Resp.Count = Resp.Count + 1
 PRINT "<y_step> ="; Y.Step,
 ’
 ’***** 1 byte <x_step>
 X.Step = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + X.Step
 Resp.Count = Resp.Count + 1

 PRINT " <x_step> ="; X.Step
’

’ Page 3.49
’
DIM exponent(6) ’Exponents for Y/X.Zero & Y/X.Resol & Y/X.At.0
DIM YXvalue#(6) ’Values for Y/X.Zero & Y/X.Resol & Y/X.At.0
 ’
 ’***** 3 bytes <y_zero> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <y_zero> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(1) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(1) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <x_zero> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <x_zero> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(2) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(2) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <y_resolution> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <y_resolution> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value

nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 ELSE
’

’ Page 3.50
’

nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(3) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(3) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <x_resolution> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <x_resolution> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(4) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(4) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <y_at_0> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <y_at_0> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(5) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(5) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 3 bytes <x_at_0> = <mantissa_high><mantissa_low><exponent>
 ’***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 ’***** <x_at_0> = <sign><mantissa> E <sign><exponent>
 ’***** Example: +123E-4 = 123 / 10000 = 0.0123

’

’ Page 3.51
’
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN

nb = - (256 - nb) * 256 ’Negative value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 ELSE
nb = nb * 256 ’Positive value
nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))

 END IF
 exponent(6) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(6) = nb
 Resp.Count = Resp.Count + 3
 ’*****
 ’* Further calculation after ’Signed.Samples’ determination
 ’*****
 ’***** 8 bytes <year><month><date>
 FOR i = 0 TO 7
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 Year$ = MID$(Resp$, Resp.Count, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 1, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 2, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 3, 1)
 Month$ = MID$(Resp$, Resp.Count + 4, 1)
 Month$ = Month$ + MID$(Resp$, Resp.Count + 5, 1)
 Day$ = MID$(Resp$, Resp.Count + 6, 1)
 Day$ = Day$ + MID$(Resp$, Resp.Count + 7, 1)
 Resp.Count = Resp.Count + 8
 PRINT "<date_stamp> = "; Year$ + "-" + Month$ + "-" + Day$;
 ’
 ’***** 6 bytes <hours><minutes><seconds>
 FOR i = 0 TO 5
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$,Resp.Count+i,1))) MOD 256
 NEXT i
 Hours$ = MID$(Resp$, Resp.Count, 1)
 Hours$ = Hours$ + MID$(Resp$, Resp.Count + 1, 1)
 Minutes$ = MID$(Resp$, Resp.Count + 2, 1)
 Minutes$ = Minutes$ + MID$(Resp$, Resp.Count + 3, 1)
 Seconds$ = MID$(Resp$, Resp.Count + 4, 1)
 Seconds$ = Seconds$ + MID$(Resp$, Resp.Count + 5, 1)
 Resp.Count = Resp.Count + 6
 PRINT " <time_stamp> = "; Hours$+":"+Minutes$+":"+Seconds$
 ’
 ’***** 1 byte <check_sum>
 Check.Sum% = ASC(MID$(Resp$, Resp.Count, 1))
 IF Check.Sum% <> (SumCheck1% MOD 256) GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 PRINT "<check_sum> ="; Check.Sum%; " & ";
 PRINT "SumCheck1 MOD 256 ="; SumCheck1% MOD 256
 RETURN
Wave.Error:
 PRINT "Waveform admin error at byte :"; Resp.Count
 PRINT "Waveform decimal byte value ="; ASC(MID$(Resp$,Resp.Count,1))

 PRINT "SumCheck so far (MOD 256) ="; SumCheck1% MOD 256
 CLOSE: END
’

’ Page 3.52
Interpret.Samples:
 ’
 ’***** Interpret the <trace_samples> waveform data bytes
 ’***** in the Resp$ string (see appendix C).
 ’*****
 ’***** 1 byte separator admin/samples : ,
 ’***** 2 bytes <trace_samples> block trailing : #0
 ’
 SumCheck2% = 0
 IF MID$(Resp$, Resp.Count, 3) <> ",#0" GOTO Wave2.Error
 Resp.Count = Resp.Count + 3
 ’
 ’***** 1 byte <block_header>
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb <> 144 GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 ’
 ’***** 4 bytes <block_length>
 Block2.Length& = ASC(MID$(Resp$, Resp.Count, 1))
 FOR i = 1 TO 3
 Block2.Length& = Block2.Length& * 256
 Block2.Length& = Block2.Length& + ASC(MID$(Resp$,Resp.Count+i,1))
 NEXT i
 Resp.Count = Resp.Count + 4
 PRINT "Number of sample chars ="; Block2.Length&
 OPEN "Samples" FOR OUTPUT AS #4
 PRINT #4, "Number of sample chars ="; Block2.Length&
 ’
 ’***** 1 byte <sample_format>
 Sample.Format = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Format
 IF (Sample.Format AND 128) = 128 THEN
 Signed.Samples = 1
 ELSE
 Signed.Samples = 0
 END IF
 IF (Sample.Format AND 112) = 64 THEN ’bits 6, 5, 4
 MinMax.Samples = 1 ’Min/Max=100
 ELSEIF (Sample.Format AND 112) = 96 THEN
 MinMax.Samples = 2 ’Min/Max/Ave=110
 ELSEIF (Sample.Format AND 112) = 0 THEN
 MinMax.Samples = 0 ’Normal=000
 ELSEIF (Sample.Format AND 112) = 112 THEN
 IF MID$(Query$, 5, 1) = "1" THEN ’TrendPlot
 MinMax.Samples = 2 ’Min=Max=Ave=111
 ELSE ’Average Min/Max
 MinMax.Samples = 1 ’Min=Max=111
 END IF
 ELSE
 MinMax.Samples = 7 ’Unknown format!
 END IF
 Sample.Bytes = Sample.Format AND 7
 IF Sample.Bytes = 1 THEN ’Single-byte samples

CLimit = C128 : CMaxim = C256
 ELSE ’Double-byte samples

CLimit = C32768 : CMaxim = C65536

 END IF
’

’ Page 3.53
’
 Resp.Count = Resp.Count + 1
 PRINT "Signed.Samples = ";
 PRINT #4, "Signed.Samples = ";
 IF Signed.Samples = 1 THEN
 PRINT "TRUE "; : PRINT #4, "TRUE"
 ELSE
 PRINT "FALSE "; : PRINT #4, "FALSE"
 END IF
 PRINT "Sample.Format = ";
 PRINT #4, "Sample.Format = ";
 IF MinMax.Samples = 0 THEN
 PRINT "Single"
 PRINT #4, "Single"
 ELSEIF MinMax.Samples = 1 THEN
 PRINT "Min/Max"
 PRINT #4, "Min/Max"
 ELSEIF MinMax.Samples = 2 THEN
 PRINT "Min/Max/Ave"
 PRINT #4, "Min/Max/Ave"
 ELSE
 PRINT "Unknown: "; OCT$(Sample.Format); " octal"
 PRINT #4, "Unknown: "; OCT$(Sample.Format); " octal"
 END IF
 PRINT "Number of Sample.Bytes ="; Sample.Bytes
 PRINT #4, "Number of Sample.Bytes ="; Sample.Bytes
 ’*****
 ’* Further calculation now that ’Signed.Samples’ is determined
 ’*****
 FOR j = 1 TO 2
 IF expscale(j) > 127 THEN ’Negative exponent
 expscale(j) = 256 - expscale(j)
 FOR i = 1 TO expscale(j)
 YXscale#(j) = YXscale#(j) / 10
 NEXT i
 ELSE ’Positive exponent
 FOR i = 1 TO expscale(j)
 YXscale#(j) = YXscale#(j) * 10
 NEXT i
 END IF
 NEXT j
 Y.Scale = YXscale#(1)
 X.Scale = YXscale#(2)
 PRINT "<y_scale> ="; Y.Scale,
 PRINT " <x_scale> ="; X.Scale
 ’
 FOR j = 1 TO 6
 IF exponent(j) > 127 THEN ’Negative exponent
 exponent(j) = 256 - exponent(j)
 FOR i = 1 TO exponent(j)
 YXvalue#(j) = YXvalue#(j) / 10
 NEXT i
 ELSE ’Positive exponent
 FOR i = 1 TO exponent(j)
 YXvalue#(j) = YXvalue#(j) * 10
 NEXT i

 END IF
 NEXT j
’

’ Page 3.54
’
 Y.Zero = YXvalue#(1)
 X.Zero = YXvalue#(2)
 Y.Resol = YXvalue#(3)
 X.Resol = YXvalue#(4)
 Y.At.0 = YXvalue#(5)
 X.At.0 = YXvalue#(6)
 PRINT "<y_zero> ="; Y.Zero,
 PRINT " <x_zero> ="; X.Zero
 PRINT "<y_resolution> ="; Y.Resol,
 PRINT " <x_resolution> ="; X.Resol
 PRINT "<y_at_0> ="; Y.At.0,
 PRINT " <x_at_0> ="; X.At.0
 ’
 ’***** <Sample.Bytes> bytes <overload> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN

Sample.Byte = - (256 - Sample.Byte)
 END IF
 Overload& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Overload& = Overload& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Overload& < CLimit) THEN

Overload.Value = Overload& * Y.Resol ’Positive value
 ELSE ’Negative value

Overload.Value = - ((CMaxim - Overload&) * Y.Resol)
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Overload sample value ="; Overload&; Overload.Value
 PRINT #4, "Overload sample value ="; Overload&; Overload.Value
 ’
 ’***** <Sample.Bytes> bytes <underload> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN

Sample.Byte = - (256 - Sample.Byte)
 END IF
 Underload& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Underload& = Underload& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Underload& < CLimit) THEN

Underload.Value = Underload& * Y.Resol ’Positive value
 ELSE ’Negative value

Underload.Value = - ((CMaxim - Underload&) * Y.Resol)
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Underload sample value ="; Underload&; Underload.Value
 PRINT #4, "Underload sample value ="; Underload&; Underload.Value
’

’ Page 3.55
’
 ’***** <Sample.Bytes> bytes <invalid> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN

Sample.Byte = - (256 - Sample.Byte)
 END IF
 Invalid& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Invalid& = Invalid& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Invalid& < CLimit) THEN

Invalid.Value = Invalid& * Y.Resol ’Positive value
 ELSE ’Negative value

Invalid.Value = - ((CMaxim - Invalid&) * Y.Resol)
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Invalid sample value ="; Invalid&; Invalid.Value
 PRINT #4, "Invalid sample value ="; Invalid&; Invalid.Value
 ’
 ’***** 2 bytes <nbr_of_samples>
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Nbr.Of.Samples = Sample.Byte
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Nbr.Of.Samples = Nbr.Of.Samples * 256 + Sample.Byte
 IF MinMax.Samples = 1 THEN ’Min/Max pair of samples
 Nbr.Of.Samples = Nbr.Of.Samples * 2
 END IF
 IF MinMax.Samples = 2 THEN ’Min/Max/Ave samples
 Nbr.Of.Samples = Nbr.Of.Samples * 3
 END IF
 Resp.Count = Resp.Count + 2
 PRINT "Number of samples ="; Nbr.Of.Samples
 PRINT #4, "Number of samples ="; Nbr.Of.Samples
 ’
 ’***** <Sample.Bytes> bytes <sample_value>’s
 ’
DIM Sample.Value(Nbr.Of.Samples) AS LONG
 FOR i = 1 TO Nbr.Of.Samples ’Sample loop
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256

IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN
 Sample.Byte = - (256 - Sample.Byte)
END IF

 Sample.Value&(i) = Sample.Byte
IF Sample.Bytes > 1 THEN ’More sample bytes
 FOR j = 2 TO Sample.Bytes

Sample.Byte = ASC(MID$(Resp$, Resp.Count + j - 1, 1))
SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
Sample.Value&(i) = Sample.Value&(i) * 256 + Sample.Byte

 NEXT j
END IF

 Resp.Count = Resp.Count + Sample.Bytes
’

’ Page 3.56
’
 IF i=1 OR i=2 OR i = Nbr.Of.Samples-1 OR i = Nbr.Of.Samples THEN

 IF (Signed.Samples = 0) OR (Sample.Value&(i) < CLimit) THEN
Ampl.Value = Sample.Value&(i) * Y.Resol ’Positive value

 ELSE ’Negative value
Ampl.Value = - ((CMaxim - Sample.Value&(i)) * Y.Resol)

 END IF
 PRINT "Sample"; i; "="; Sample.Value&(i); Ampl.Value

 END IF
 PRINT #4, "Sample"; i; "="; Sample.Value&(i); Ampl.Value
 NEXT i
 ’
 ’***** 1 byte <check_sum>
 Check.Sum% = ASC(MID$(Resp$, Resp.Count, 1))
 IF Check.Sum% <> (SumCheck2% MOD 256) GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 PRINT "<check_sum> ="; Check.Sum%; " & ";
 PRINT "SumCheck2 MOD 256 ="; SumCheck2% MOD 256
 PRINT #4, "<check_sum> ="; Check.Sum%; " & ";
 PRINT #4, "SumCheck2 MOD 256 ="; SumCheck2% MOD 256
 ’
 ’***** 1 byte CR
 C.R = ASC(MID$(Resp$, Resp.Count, 1))
 IF C.R <> 13 GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 CLOSE #4: RETURN
Wave2.Error:
 PRINT "Waveform sample error at byte :"; Resp.Count
 PRINT "Waveform decimal byte value ="; ASC(MID$(Resp$,Resp.Count,1))
 PRINT "SumCheck so far (MOD 256) ="; SumCheck2% MOD 256
 CLOSE: END
’

’ Page 3.57
Create.CSV:
 ’
 ’*****
 ’***** Convert the total Response string to file Wave.CSV
 ’***** as input file for Excel (spreadsheet), for example.
 ’*****
 ’
 OPEN "Wave.CSV" FOR OUTPUT AS #4

PRINT #4, "Title , ";
IF MID$(Query$, 4, 2) = "10" THEN
 PRINT #4, "Input A"
ELSEIF MID$(Query$, 4, 2) = "11" THEN
 PRINT #4, "TrendPlot Reading 1"
END IF
IF Trace.Result = 0 OR Trace.Result = 1 THEN
 PRINT #4, "ID ,"; Trace.Result ’Acquisition trace
 PRINT #4, "Type , "; "Acquisition trace"
ELSEIF Trace.Result = 2 THEN
 PRINT #4, "ID ,"; 2 ’TrendPlot trace
 PRINT #4, "Type , "; "TrendPlot trace"
END IF
PRINT #4, "Date , "; Month$+"/"+Day$+"/"+MID$(Year$,3,2)
PRINT #4, "Time , "; Hours$+":"Minutes$+":"+Seconds$
’
’***** X.Scale = time per division (over 10 divisions)
PRINT #4, "X Scale ,"; X.Scale
PRINT #4, "X At 0% ,"; X.Zero
PRINT #4, "X Resolution ,"; X.Resol
PRINT #4, "X Size ,"; Nbr.Of.Samples
PRINT #4, "X Unit , ";
IF X.Unit = 7 THEN PRINT #4, "s"
IF X.Unit = 10 THEN PRINT #4, "Hz"
PRINT #4, "X Label ,";
IF X.Unit = 7 THEN PRINT #4, X.Scale; "s/Div"
IF X.Unit = 10 THEN PRINT #4, X.Scale; "Hz/Div"
’
PRINT #4, "Y Scale ,"; Y.Scale
PRINT #4, "Y At 50% ,"; Y.Zero
PRINT #4, "Y Resolution ,"; Y.Resol
PRINT #4, "Y Size ,";
IF Sample.Bytes = 1 THEN ’1-byte samples
 PRINT #4, 256
END IF ’Range = 256
IF Sample.Bytes = 2 THEN ’2-byte samples
 PRINT #4, 65536
END IF ’Range = 256*256
PRINT #4, "Y Unit , ";
IF Y.Unit = 1 THEN PRINT #4, "V"
IF Y.Unit = 2 THEN PRINT #4, "A"
IF Y.Unit = 3 THEN PRINT #4, "Ohm"
PRINT #4, "Y Label ,";
IF Y.Unit = 1 THEN PRINT #4, Y.Scale; "V/Div"
IF Y.Unit = 2 THEN PRINT #4, Y.Scale; "A/Div"
IF Y.Unit = 3 THEN PRINT #4, Y.Scale; "Ohm/Div"
PRINT #4,

’

’ Page 3.58
’

’***** Sample values x,y (time,amplitude)
Time.Value = X.Zero ’Start at x-offset
MinMax.Flag = MinMax.Samples ’Switch flag (2, 1, 0)
FOR i = 1 TO Nbr.Of.Samples
 IF (Signed.Samples = 0) OR (Sample.Value&(i) < CLimit) THEN

’Positive value
Amplit.Value = Sample.Value&(i) * Y.Resol

 ELSE
’Negative value
Amplit.Value = - ((CMaxim - Sample.Value&(i)) * Y.Resol)

 END IF
 IF MinMax.Samples = 2 THEN ’Min/Max/Ave waveform

IF MinMax.Flag = 2 THEN
 MinMax.Flag = MinMax.Flag - 1

 PRINT #4, Time.Value; ","; Amplit.Value; ",";
ELSEIF MinMax.Flag = 1 THEN
 MinMax.Flag = MinMax.Flag - 1

 PRINT #4, Amplit.Value; ",";
ELSE
 MinMax.Flag = 2

 PRINT #4, Amplit.Value
 Time.Value = Time.Value + X.Resol
END IF

 END IF
 IF MinMax.Samples = 1 THEN ’Min/Max waveform

IF MinMax.Flag = 1 THEN
 MinMax.Flag = 0

 PRINT #4, Time.Value; ","; Amplit.Value; ",";
ELSE
 MinMax.Flag = 1

 PRINT #4, Amplit.Value
 Time.Value = Time.Value + X.Resol
END IF

 END IF
 IF MinMax.Samples = 0 THEN ’Single waveform

PRINT #4, Time.Value; ","; Amplit.Value
Time.Value = Time.Value + X.Resol

 END IF
NEXT i

 CLOSE #4: RETURN
 ’
 ’****************** End example program ******************

 Page 3.59
 ===
 READ DATE RD

 Purpose:

 Reads the real time clock date settings.

 Command Syntax:

 RD<cr>

 Response Syntax:

 <acknowledge><cr>[<date><cr>]

 where,

 <date> = string of the following format:
 <year>,<month>,<day>
 e.g. 1999,8,14

 Example:

 The following example program reads the date setting from
 the ScopeMeter.

 ’ Page 3.60

 ’***************** Begin example program *****************

 CLS
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RD" ’Sends the READ DATE query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, SMYear$, SMMonth$, SMDay$ ’Inputs the date string.
 PRINT "Date "; SMYear$; "-"; SMMonth$; "-"; SMDay$
 ’Displays the date string.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.61
 ===
 RESET INSTRUMENT RI

 Purpose:

 Resets the entire instrument, including the CPL interface.
 The baud rate remains unchanged.

 Command Syntax:

 RI<cr>

 Response Syntax:

 <acknowledge><cr>

 Note: Wait for at least 2 seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Example:

 The following example resets the ScopeMeter and waits for 2
 seconds to let the ScopeMeter execute the reset and become
 ready for next commands.
 The ScopeMeter is queried for the identification data; this
 data is input and displayed on the PC screen.

 ’ Page 3.62

 ’***************** Begin example program *****************
 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RI" ’Sends the RESET INSTRUMENT command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 SLEEP 2 ’Delay (2 s) necessary after reset.
 GOSUB ClearPort ’Clears pending data from port.
 PRINT #1, "ID" ’Sends IDENTIFICATION query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, IDENT$ ’Inputs the queried data.
 PRINT IDENT$ ’Displays queried data.
 CLOSE #1
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’******* Clears pending data from the RS232 port *********
 ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

 ’****************** End example program ******************

 Page 3.63
 ===
 REPLAY RP

 Purpose:

 To select and setup the Replay analysis mode and to select
 a replay screen (see Syntax 2) or to query the total
 number of valid replay screens (see Syntax 1).

 Note: applicable for the Fluke 199 and 196 families

 Command Syntax 1:

 RP<cr>

 Command Syntax 2:

 RP <screen_index><cr>

 where,

 <screen_index> = 0 to -99 : Replay screen number
 0 = newest (current) screen
 -99 = oldest screen

 Response Syntax 1:

 <acknowledge><cr><nr_of_screens><screen_index><cr>

 where,

 <nr_of_screens> = 0 to 100 : number of valid screens
 0 = no valid screens

 <screen_screen> = 0 to -99 : index of the actual screen

 Response Syntax 2:

 <acknowledge><cr>

 As a result, the Replay function is started and the replay
 screen <screen_index> is shown on the instrument.

 Notes: - When <screen_index> is omitted, nothing happens.
 - Replaying screens works only in the SCOPE mode.

 Tips: - Use the QP, QS, QM, QW commands for information
 about the replayed screen and measurements.
 - Send the AT command to return to disable the Replay
 function and return to normal (running).

 Example:

 ’ Page 3.64

 ’***************** Begin example program *****************
 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RP" ’Queries for number of valid replay
 ’screens + active screen number
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1, nr.of.screens ’1st <decimal_number>
 IF (nr.of.screens < 0) OR (nr.of.screens > 100) THEN
 PRINT nr.of.screens; "is not a valid number of replay screens"
 ELSE
 PRINT "Number of valid replay screens ="; nr.of.screens
 END IF
 INPUT #1, current.index ’2nd <decimal_number>
 PRINT "Current replay screen number = "; current.index
 PRINT "Previous replay screen number = "; current.index - 1
 ’
 PRINT #1, "RP "; ’Queries for the current replay screen
 PRINT #1, current.index - 1
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT
 PRINT "View the previous Replay screen."
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 PRINT #1, "AT" ’Go back to normal mode (running)
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 CLOSE #1
 END
 ’
 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.
Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error; SCOPE mode selected?"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END

 END IF : RETURN
 ’****************** End example program ******************

 Page 3.65
 ===
 RECALL SETUP RS

 Purpose:

 Recalls an internally stored setup. This setup must have
 been stored in the ScopeMeter manually or with the SS
 (Save Setup) command.
 The effect of the RS command is that the instrument setup
 is recalled and the instrument forced to running state.

 Command Syntax:

 RS <setup_reg><cr>

 where,

 <setup_reg> = 1 to 15 : Screen/Setup memories
 1001 : Long Record/Replay memory Input A
 1002 : Long Record/Replay memory Input B

 Response Syntax:

 <acknowledge><cr>

 Note: The new setup is active when you have received the
 <acknowledge> response from the ScopeMeter.

 Example:

 The following example program saves the present setup in
 setup memory 8. You are requested to change the present
 settings. Then the original settings are recalled from
 setup memory 8 and made the actual setting.

 ’ Page 3.66

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "SS 8" ’Sends SAVE SETUP command.
 ’Setup saved in setup memory 8.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter
 PRINT "The present setup data are stored in setup memory 8."
 PRINT "The remainder of this program will restore these."
 PRINT "To test if this works, change the present settings"
 PRINT "and verify if the ScopeMeter returns to the original"
 PRINT "settings after continuing the program."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 PRINT #1, "RS 8" ’Sends RECALL SETUP command.
 ’Setup recalled from register 8.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 PRINT
 PRINT "Original settings restored"
 CLOSE #1
 END

 ’ Page 3.67

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.68
 ===
 READ TIME RT

 Purpose:

 Reads the real time clock time settings.

 Command Syntax:

 RT<cr>

 Response Syntax:

 <acknowledge><cr>[<time><cr>]

 where,

 <time> = string of the following format:
 <hours>,<minutes>,<seconds>
 e.g. 15,4,43

 Example:

 The following example program reads the time setting from
 the ScopeMeter.

 ’ Page 3.69

 ’***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"RT" ’Sends the READ TIME query.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 INPUT #1,SMhour$,SMmin$,SMsec$ ’Inputs the time strings.
 PRINT "Time "; SMhour$;":";SMmin$;":";SMsec$
 ’Displays the time string.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.70
 ===
 SWITCH ON SO

 Purpose:

 Switches the ScopeMeter on.
 This only works when the ScopeMeter is powered via the
 power adapter.

 Command Syntax:

 SO<cr>

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under GET DOWN (GD).

 Page 3.71
 ===
 SAVE SETUP SS

 Purpose:

 Saves the present setup in one of the battery-backup
 instrument registers.

 Command Syntax:

 SS <setup_reg><cr>

 where,

 <setup_reg> = 1 to 15 : Screen/Setup memories
 When <setup_reg> is omitted,
 number 1 is assumed.
 1001 : Long Record/Replay memory Input A
 1002 : Long Record/Replay memory Input B

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under RECALL SETUP (RS).

 Page 3.72
 ===
 STATUS QUERY ST

 Purpose:

 Queries the error status of the ScopeMeter.
 This is a 16-bit word, presented as an integer value,
 where each bit represents the Boolean value of a related
 error event. After the reply or after a RI (Reset
 Instrument) command, the value is reset to zero.
 A complete description of the status word is given in
 Appendix B.

 Command Syntax:

 ST<cr>

 Response Syntax:

 <acknowledge><cr>[<status>

 where,

 <status> = integer value 0 to 32767

 Example:

 The following example program sends a wrong command to the
 ScopeMeter to test the Acknowledge subroutine and to check
 the status returned from the ST query.
 The acknowledge subroutine contains a GOSUB Status.display
 to input the status data from the ScopeMeter when the
 acknowledge response is non-zero (ACK <> 0).

 ’ Page 3.73

 ’***************** Begin example program *****************

 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "PC 12345" ’Sends a baud rate value that is
 ’ out of range for the ScopeMeter.
 GOSUB Acknowledge.Status ’Input acknowledge from ScopeMeter
 ’and the status value if the
 ’acknowledge value is non-zero.
 END

 ’************* Acknowledge + Status subroutine ***********
 ’This subroutine inputs the acknowledge value from the
 ’ScopeMeter. If the acknowledge value is non-zero,
 ’the ST query is used to get further status information from
 ’the ScopeMeter with respect to the error.
 ’In case of an error the program is aborted.

 Acknowledge.Status:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 GOSUB Status.display ’Further specifies the error.
 PRINT "Program aborted."
 END
 END IF
 RETURN
’

 ’ Page 3.74

 ’************** Displays ScopeMeter status *****************

 ’This subroutine gives you further information if the
 ’acknowledge reply from the ScopeMeter is non-zero.

 Status.display:
 PRINT #1, "ST" ’Sends the STATUS query.
 GOSUB Acknowledge.Status ’Inputs acknowledge from ScopeMeter.
 INPUT #1, STAT ’Inputs status value.
 PRINT "Status " + STR$(STAT) + ": ";
 IF STAT = 0 THEN PRINT "No error"
 IF (STAT AND 1) = 1 THEN PRINT "Illegal Command"
 IF (STAT AND 2) = 2 THEN
 PRINT "Data format of parameter is wrong"
 END IF
 IF (STAT AND 4) = 4 THEN PRINT "Parameter out of range"
 IF (STAT AND 8) = 8 THEN
 PRINT "Invalid command in this CPL interface"
 END IF
 IF (STAT AND 16) = 16 THEN PRINT "Command not implemented"
 IF (STAT AND 32) = 32 THEN
 PRINT "Invalid number of parameters"
 END IF
 IF (STAT AND 64) = 64 THEN
 PRINT "Wrong number of data bits"
 END IF
 IF (STAT AND 512) = 512 THEN
 PRINT "Conflicting instrument settings"
 END IF
 IF (STAT AND 16384) = 16384 THEN
 PRINT "Checksum error"
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.75
 ===
 TRIGGER ACQUISITION TA

 Purpose:

 Triggers an acquisition. This command acts as a
 hardware trigger to start a new acquisition.
 In SINGLE shot acquisition mode the trigger system
 must have been armed with the AT (Arm Trigger)
 command.

 Command Syntax:

 TA<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ’ Page 3.76

 ’***************** Begin example program *****************
 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "TA" ’Sends TRIGGER ACQUISITION command.
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.77
 ===
 WRITE DATE WD

 Purpose:

 Writes the real time clock date settings.

 Command Syntax:

 WD <date><cr>

 where,

 <date> = string of the following format:
 <year>,<month>,<date>
 e.g. 1999,9,14

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program programs the ScopeMeter
 with a new date setting.

 ’ Page 3.78

 ’***************** Begin example program *****************
 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "WD 1999,9,14" ’Sets the real time clock
 ’to September 14, 1999
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page 3.79
 ===
 WRITE TIME WT

 Purpose:

 Writes the real time clock time settings.

 Command Syntax:

 WT <time><cr>

 where,

 <time> = string of the following format:
 <hours>,<minutes>,<seconds>
 e.g. 15,30,0

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program programs the ScopeMeter
 with a new time setting.

 ’ Page 3.80

 ’***************** Begin example program *****************
 CLS ’Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "WT 15,28,0" ’Sets the real time clock to
 ’03:28 p.m..
 GOSUB Acknowledge ’Input acknowledge from ScopeMeter.
 END

 ’**************** Acknowledge subroutine ******************
 ’Use this subroutine after each command or query sent to the
 ’ScopeMeter. This routine inputs the acknowledge
 ’response from the ScopeMeter. If the response is non-zero,
 ’the previous command was not correct or was not correctly
 ’received by the ScopeMeter. Then an error message is
 ’displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK ’Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 ’****************** End example program ******************

 Page A.1
 ===
 APPENDIX A ACKNOWLEDGE DATA

 The ScopeMeter returns an <acknowledge> reply after
 each command or query. The value indicates correct or
 incorrect operation. You always must read this reply to check
 for the correct operation and to achieve synchronization
 between your program and the RS232 interface of the
 ScopeMeter.

 <acknowledge>
 VALUE MEANING

 0 No Error
 1 Syntax Error (see Note)
 2 Execution Error (see Note)
 3 Synchronization Error
 4 Communication Error

 Note: The ST query may give you additional information.

 When the ScopeMeter detects an error during the
 execution of a command, it sends the corresponding
 <acknowledge> reply, terminates further execution of the
 command and will be ready to accept a new command.

 Syntax Error

 Returned when the command is not understood by the ScopeMeter
 for one of the following reasons :

 - Unknown header
 - Wrong instructions
 - Data format of body is wrong, e.g. alpha characters when
 decimal data is needed.

 Execution Error

 Returned when internal processing is not possible because of
 one of the following reasons:

 - Data out of range
 - Conflicting instrument settings

 Page A.2

 Synchronization Error

 Returned when the ScopeMeter receives data while it
 does not expect any data. This can occur as follows:

 - The ScopeMeter receives a new command while a
 previous command or query is not yet completely executed.
 You can prevent this error by doing the following:

 1. Read the <acknowledge> reply after each command or
 query.
 2. If this <acknowledge> is zero and if a query was sent to
 the ScopeMeter, read all available response
 data.

 Communication Error

 Any framing, parity or overrun error detected on the received
 data will cause Communication Error.

 Page B.1
 ===
 APPENDIX B STATUS DATA

 The Status word returned from the ST query gives you extra
 information when you have received a non-zero <acknowledge>
 reply.
 The Status word is a 16-bit binary word where each bit set
 true represents an error event with a decimal value
 determined by the bit position. (See the following table.)

 When more than one bit is set true in the status word, the
 response from the ST query will be the sum of the decimal
 values of the individual bits.

 Example:

 <status> = 34 This equals 32 + 2
 2 = Wrong parameter data format
 32 = Invalid number of parameters

 DECIMAL <acknowledge>
 BIT VALUE EVENT DESCRIPTION VALUE

 0 1 Illegal command 1
 1 2 Wrong parameter data format 1
 2 4 Parameter out of range 1 or 2
 3 8 Command not valid in present state 1
 4 16 Command not implemented 2
 5 32 Invalid number of parameters 2
 6 64 Wrong number of data bits 2
 7 128 Flash ROM not present 2
 8 256 Invalid flash software 2
 9 512 Conflicting instrument settings 2
 10 1024 User Request (URQ) device dependent
 11 2048 Flash ROM not programmable 2
 12 4096 Wrong programming voltage 2
 13 8192 Invalid keystring 1
 14 16384 Checksum error 2
 15 32768 Next <status> value available

 Remarks:

 1. A bit in the status word is set when the corresponding
 error event occurs.
 2. Bits do not affect each other.
 3. New error events will ’accumulate’ in the status word.
 This means existing bits remain set.

 The status word is cleared (all bits reset) as follows:

 1. After the response (the status word) from the ST query
 has been read.
 2. After the RI (Reset Instrument) command.

 Page C.1
 ===
 APPENDIX C WAVEFORM DATA

 The waveform data that is received from the QW (Query
 Waveform) query, consists of the following data.

 <trace_admin>,<trace_samples>

 where,

 <trace_admin> = #0<block_header><block_length><trace_result>
 <y_unit><x_unit><y_divisions><x_divisions>
 <y_scale><x_scale><y-step><x_step><y_zero>
 <x_zero><y_resolution><x_resolution><y_at_0>
 <x_at_0><date_stamp><time_stamp><check_sum>
 where,

 <block_header> = <binary_character>
 Possible values: 144 and 0.
 The value 0 is returned when also the
 <trace_samples> data block is requested.

 <block_length> = <unsigned_integer>
 This value gives the number of bytes that
 are transmitted after the <block_length>
 and before the <check_sum>.

 <trace_result> = <binary_character>
 If bit 0 is set (decimal value 1) the trace is a direct
 result of a trace acquisition.
 If bit 1 is set (decimal value 2) the trace is a result
 of the TrendPlot function (recording numerical results).
 If bit 2 is set (decimal value 4) either the trace itself
 is an envelope trace, or an envelope trace is available.
 If bit 3 is set (decimal value 8) either the trace itself
 is a reference trace, or a reference trace is available.
 If bit 4 is set (decimal value 16) either the trace itself
 is a mathematics trace, or a mathematics trace is
 available.
 Note: This <trace_result> information is not available in
 all instrument types/versions.

 <y_unit> = <unit>

 <x_unit> = <unit>
 The <unit> is a <binary_character> which
 value represents the unit:
 None = 0
 <Volt> = 1
 <Ampere> = 2
 <Ohm> = 3
 <Watt> = 4
 <Farad> = 5
 <Kelvin> = 6
 <seconds> = 7

 <hours> = 8
 <days> = 9
 <Hertz> = 10
 <Degree> = 11
 <degree_Celsius> = 12
 <degree_Fahrenheit> = 13
 <percentage> = 14
 <dBm 50 Ohm> = 15
 <dBm 600 Ohm> = 16
 <dB Volts> = 17
 <dB Ampere> = 18
 <dB Watts> = 19
 <Volt * Ampere Reactive> = VAR, 20
 <Volt * Ampere> = VA, 21

 Page C.2

 <y_divisions> = <unsigned_integer>
 Number of y divisions in which the waveform
 is displayed on the instrument screen.

 <x_divisions> = <unsigned_integer>
 Number of x divisions in which the waveform
 is displayed on the instrument screen.

 <y_scale> = <float>
 Number of units per y division.

 <x_scale> = <float>
 Number of units per x division.

 <y_step> = <binary_character>
 Specifies in which scale the <y_scale> is set
 by the instrument:
 1 = 1-2-5 range
 2 = 1-2-4 range

 <x_step> = <binary_character>
 Specifies in which scale the <x_scale> is set
 by the instrument:
 1 = 1-2-5 range
 3 = record range
 4 = variable range

 <y_zero> = <float>
 Measurement value for the samples with value
 zero (0) that you can see as offset value.

 <x_zero> = <float>
 This field specifies the x-offset of the
 first sample in <trace_samples>. (is time
 between trigger moment and first sample.)

 <y_resolution> = <float>
 This field contains the value that
 represents the step between two
 consecutive sample values or in other
 words the step per least significant bit.

 <x_resolution> = <float>
 This field contains the value (seconds)
 that represents the distance between two
 samples. (is time between two samples.)
 In the case of an FFT-trace, this value
 is the frequency of the fundamental (Hz).

 Page C.3

 <y_at_0> = <float>
 This field contains the value corresponding
 with the lowest horizontal grid line.

 <x_at_0> = <float>
 This field contains the value corresponding
 with the most left vertical grid line.
 Value = 0E0 (not used).

 <date_stamp> = <year><month><day>
 <year> = <digit><digit><digit><digit>
 <month>= <digit><digit>
 <day> = <digit><digit>

 <time_stamp> = <hours><minutes><seconds>
 <hours>= <digit><digit>
 <minutes>= <digit><digit>
 <seconds>= <digit><digit>

 <check_sum> = <binary_character>
 One binary character which represents the sum
 of all the <binary_character>’s sent after
 the <block_length> and before the <check_sum>.
 and where

 <trace_samples>= #0<block_header><block_length><sample_format>
 <overload><underload><invalid><nbr_of_samples>
 <samples><check_sum><cr>

 <block_header>= <binary_character> which is 129.

 <block_length>= <unsigned_long>
 This (4-bytes) value gives the number of bytes
 that are transmitted after the <block_length>
 and before the <check_sum>.

 <sample_format>= <binary_character>
 This byte specifies the format of the samples.
 The highest bit (7) defines whether the
 samples should be interpreted as signed (1)
 or unsigned values (0).
 Bit numbers 6, 5, and 4 in <sample_format>
 define the sample combination (bits 654):
 000 = normal trace samples
 100 = Min/Max trace samples
 110 = Min/Max/Average trace samples
 111 = Min=Max trace samples
 Min=Max=Average trace samples
 [Average & Display Glitches No]
 <nbr_of_samples> specifies the number of
 sample pairs in this case.
 The bits 0 to 2 in <sample_format> define the
 number of <binary_character>’s in which a
 sample value is represented.

 <overload> = <sample_value>
 This field specifies which value in the trace
 samples represents the overload value.

 Page C.4

 <underload> = <sample_value>
 This field specifies which value in the trace
 samples represents the underload value.

 <invalid> = <sample_value>
 This field specifies which value in the trace
 samples represents an invalid sample.
 Invalid samples can be present at locations
 in the trace that have not been filled (yet).
 This can e.g. occur in random sampling.

 <nbr_of_samples>=<unsigned_integer>
 Total number of samples, Min/Max sample pairs,
 or Min/Average/Max sample triplets that follow.

 <samples> = {<sample_value>}
 In total <nbr_of_samples> will be transmitted.

 <sample_value>= {<binary_character>}
 Depending on the number of <binary_character>’s
 in <sample_format>, each <sample_vale> is
 transmitted in a number of <binary_character>’s.
 In case, the <sample_value> contains multiple
 <binary_character>’s, the most significant
 byte is transmitted first.

 <check_sum> = <binary_character>
 One binary character which represents the sum
 of all the <binary_character>’s sent after
 the <block_length> and before the <check_sum>.

 Remarks: The instrument will finish any processing on the
 queried waveform first before sending the data to the
 remote device. This means that the remote device will
 not have to do any polling on status bits before the
 query is sent. When the waveform that was queried for,
 is still under processing, the processing is finished
 first. So no "half traces" will be returned. When the
 waveform under processing is in roll mode, the query
 will give an execution error.
 The remote device has the possibility to cancel the
 query, when waiting for response takes too long. This
 can be achieved by sending an <esc> or hardware break.

 Page D.1
 ===
 APPENDIX D ASCII CODES

 Hexadecimal value
 | ASCII character
 | | Decimal value
 | | |
 00 NUL 0 20 SP 32 40 @ 64 60 ‘ 96
 01 SOH 1 21 ! 33 41 A 65 61 a 97
 02 STX 2 22 " 34 42 B 66 62 b 98
 03 ETX 3 23 # 35 43 C 67 63 c 99
 04 EOT 4 24 $ 36 44 D 68 64 d 100
 05 ENQ 5 25 % 37 45 E 69 65 e 101
 06 ACK 6 26 & 38 46 F 70 66 f 102
 07 BEL 7 27 ’ 39 47 G 71 67 g 103
 08 BS 8 28 (40 48 H 72 68 h 104
 09 HT 9 29) 41 49 I 73 69 i 105
 0A LF 10 2A * 42 4A J 74 6A j 106
 0B VT 11 2B + 43 4B K 75 6B k 107
 0C FF 12 2C , 44 4C L 76 6C l 108
 0D CR 13 2D - 45 4D M 77 6D m 109
 0E SO 14 2E . 46 4E N 78 6E n 110
 0F SI 15 2F / 47 4F O 79 6F o 111

 10 DLE 16 30 0 48 50 P 80 70 p 112
 11 XON 17 31 1 49 51 Q 81 71 q 113
 12 DC2 18 32 2 50 52 R 82 72 r 114
 13 XOF 19 33 3 51 53 S 83 73 s 115
 14 DC4 20 34 4 52 54 T 84 74 t 116
 15 NAK 21 35 5 53 55 U 85 75 u 117
 16 SYN 22 36 6 54 56 V 86 76 v 118
 17 ETB 23 37 7 55 57 W 87 77 w 119
 18 CAN 24 38 8 56 58 X 88 78 x 120
 19 EM 25 39 9 57 59 Y 89 79 y 121
 1A SUB 26 3A : 58 5A Z 90 7A z 122
 1B ESC 27 3B ; 59 5B [91 7B { 123
 1C FS 28 3C < 60 5C \ 92 7C | 124
 1D GS 29 3D = 61 5D] 93 7D } 125
 1E RS 30 3E > 62 5E ^ 94 7E ~ 126
 1F US 31 3F ? 63 5F _ 95 7F 127

 Page D.2

 Hexadecimal value
 | ASCII character
 | | Decimal value
 | | |
 80 ? 128 A0 160 C0 À 192 E0 à 224
 81 129 A1 ¡ 161 C1 Á 193 E1 á 225
 82 ‚ 130 A2 ¢ 162 C2 Â 194 E2 â 226
 83 ƒ 131 A3 £ 163 C3 Ã 195 E3 ã 227
 84 „ 132 A4 ¤ 164 C4 Ä 196 E4 ä 228
 85 … 133 A5 ¥ 165 C5 Å 197 E5 å 229
 86 † 134 A6 ¦ 166 C6 Æ 198 E6 æ 230
 87 ‡ 135 A7 § 167 C7 Ç 199 E7 ç 231
 88 ˆ 136 A8 ¨ 168 C8 È 200 E8 è 232
 89 ‰ 137 A9 © 169 C9 É 201 E9 é 233
 8A Š 138 AA ª 170 CA Ê 202 EA ê 234
 8B ‹ 139 AB « 171 CB Ë 203 EB ë 235
 8C Œ 140 AC ¬ 172 CC Ì 204 EC ì 236
 8D 141 AD - 173 CD Í 205 ED í 237
 8E ? 142 AE ® 174 CE Î 206 EE î 238
 8F 143 AF ¯ 175 CF Ï 207 EF ï 239
 90 144 B0 ° 176 D0 Ð 208 F0 ð 240
 91 ' 145 B1 ± 177 D1 Ñ 209 F1 ñ 241
 92 ' 146 B2 ² 178 D2 Ò 210 F2 ò 242
 93 " 147 B3 ³ 179 D3 Ó 211 F3 ó 243
 94 " 148 B4 ´ 180 D4 Ô 212 F4 ô 244
 95 • 149 B5 µ 181 D5 Õ 213 F5 õ 245
 96 – 150 B6 ¶ 182 D6 Ö 214 F6 ö 246
 97 — 151 B7 · 183 D7 × 215 F7 ÷ 247
 98 ˜ 152 B8 ¸ 184 D8 Ø 216 F8 ø 248
 99 ™ 153 B9 ¹ 185 D9 Ø 217 F9 ù 249
 9A š 154 BA º 186 DA Ú 218 FA ú 250
 9B › 155 BB » 187 DB Û 219 FB û 251
 9C œ 156 BC ¼ 188 DC Ü 220 FC ü 252
 9D 157 BD ½ 189 DD Ý 221 FD ý 253
 9E ? 158 BE ¾ 190 DE Þ 222 FE þ 254
 9F Ÿ 159 BF ¿ 191 DF ß 223 FF 255

