Mechanically scanned laser display

Project documentation
1. Principles

The key of a scanned display is the scanning method. The basic of this scanned laser display is a laser beam which is reflected by rotating mirrors giving a raster. The laser beam is modulated under PIC16F877 control and a stable image can be obtained.

The working principle can be seen in the below drawing.

[image: image1.wmf]Motor + head

Rotational

speed

sensor

PIC16F877 board

Laser

diode

POWER

SUPPLY

Rotation direction

displaying surface

Laser beam

Scanning direction


2. Mechanical and optical description
The mechanical parts are a cassette player motor and an octagonal prism with mirrors.

Nothing special about the motor, the speed of motor is not stabilized because the microcontroller measures the speed and makes the necessary corrections.

A picture showing the project and the parts identified by red text is given:

[image: image2.jpg]TATIONA

JLASER
LJHJLJL

MOUNTED
ON RU FOOTS

MICROCONTROLLER
BOARD




The special thing in this project is the octagonal prism detailed in the next drawing. All dimensions are in mm.
[image: image3.wmf]1

.

0

 

M

2

 

7.0 

10.0 

1

0

.

0

 

2

0

.

0

 

1

6

.

0

 

36.0 

15.0 

1.9 

A

A

A-A

2

0

.

0

 

15.0 

f

2.1

Lateral face with miror

Lateral face

Mirror

Screw

Spring


Each face corresponds to one horizontal line in the raster.
Each face is placed on a different angle by using the springs pressure and two screws which are used to adjust the distance between the horizontal lines.

The different angle gives different reflection angles of the laser beam in vertical plane.

In the bellow picture is shown how the prism is divided in 8 sectors and the correspondence between the sectors position and the raster lines.

[image: image4.wmf]
3. The microcontroller board
The heart of this board is a PIC16F877 microcontroller running at 20MHz.

The block diagram is:
[image: image5.wmf]MICROCONTROLLER

(PIC16F877)

ROTATIONAL SPEED

SENSOR INTERFACE

LASER DIODE

DRIVER

RS232 INTERFACE

KEYBOARD

POWER SUPPLY &

MOTOR DRIVER

OPTIONAL RTC &

TEMPERATURE

SENSOR


The Microcontroller board receives one pulse per rotation from the rotational speed sensor and calculates very precisely the moment for turning on/off the beam.

The power supply and motor supply block takes the input voltage (9-15Vdc) and prepares two voltages: 5V for the electronics and 3V for the motor.

4 keys are used to switch between the displaying modes (normal, mirrored, pause, display of current rotational speed) and for initial calibration of each line.

The RS232 interface provides the hardware support for PC communication in order to download the messages to be displayed.

There is a RTC (real time clock) and a temperature sensor block which is optional. The purpose of this block is to provide the corresponding data to the microcontroller for displaying. But, because the main goal was to test the possibility to build the display, I didn’t assembled the optional components so we’ll ignore these parts.
The following detailed description uses the schematic:
[image: image6.emf]MOTOR


TX


S3


+


C11


47U


U5


LM78L05AC/TO92


3


2


1


VIN


GND


VOUT


U4


LM78L05AC/TO92


3


2


1


VIN


GND


VOUT


ROTATIONAL


SPEED


SENSOR


VDDPIC


TEMP


RTCCLK


SYNC


P1


CONNECTOR DB9


5


9


4


8


3


7


2


6


1


VDDPIC


BEAM


Q3


BC171


RS232 INTERFACE


RX232


VSS


MCLR


VDDPIC


D6


1N4148


RTCDATA


U6


MAX232


11


14


13


12


1


3


10


7


8


9


4


5


2


6


15


16


T1 IN


T1 OUT


R1 IN


R1 OUT


C1+


C1-


T2 IN


T2 OUT


R2 IN


R2 OUT


C2+


C2-


V+


V-


GND


VDD232


Q2


BC171


J1


9V


1


RTCCS


Q1


BC337


U3


LM35/TO


1


2


3


VS+


VOUT


GND


RB6


BT1


3.6V


S2


R5


2.2K


D2


PHOTODIODE


1


2


R1


10


U2


PIC16F877-20/P


13


14


7


33


34


35


36


37


38


39


40


15


16


17


18


23


24


25


26


19


20


21


22


27


28


29


30


6


5


4


3


2


1


8


9


10


32


11


31


12


OSC1/CLKIN


OSC2/CLKOUT


RA5/AN4/SS


RB0/INT


RB1


RB2


RB3


RB4


RB5


RB6


RB7


RC0/T1OSO/T1CKI


RC1/T1OSI/CCP2


RC2/CCP1


RC3/SCK/SCL


RC4/SDI/SDA


RC5/SDO


RC6/TX/CK


RC7/RX/DT


RD0/PSP0


RD1/PSP1


RD2/PSP2


RD3/PSP3


RD4/PSP4


RD5/PSP5


RD6/PSP6


RD7/PSP7


RA4/T0CKI


RA3/AN3/VREF


RA2/AN2


RA1/AN1


RA0/AN0


MCLR/VPP


RE0/RD/AN5


RE1/WR/AN6


RE2/CS/AN7


VDDPIC


VDDPIC


VSS


VSS


S1


BEAM


LAS2


CON1


1


TX


POWER SUPPLY &


MOTOR SUPPLY


RTCCLK


D5


3X1N4001


TEMP


+


C6


47U


D3


IR-LED


LASER DIODE


R7


100K


Y1


20MHz


+


C14


0.22U


R2


100


MOT2


CON1


1


RX


RX232


VDDPIC


RX


REAL TIME


CLOCK


C1


220N


UP


R6


8.2K


+


C13


0.22U


+


C12


0.22U


RTCCS


TEMPERATURE SENSOR


LAS1


CON1


1


U1


RTC4513


9


6


3


2


12


13


GND


VDD


STD_P


DATA


CE


CLK


RB5


C5


22U


R4


10K


C7


100N


TX232


+


C15


0.22U


C3


15P


C10


100N


RB4


D4


1N4001


J2


GNDIN


1


OPTIONAL


R3


5.6K


TX232


VDDPIC


VDDPIC


SHIFT


C4


15P


R8


100


GND


D1


1N4148


OPTIONAL


VDDPIC


RTCDATA


+


C8


470U


Features:


- displays text messages (1 row, 20 char's) using any


support (walls, transclucid glass, paper)


- extremly easy to use


- low power consumption


- extremly low cost


+


C9


100U


MODE


+


C2


470U


MOT1


CON1


1


SYNC


RB7


C16


0.1U


S4


DOWN




MOTOR

TX

S3

+

C11

47U

U5

LM78L05AC/TO92

3

2

1

VIN

GND

VOUT

U4

LM78L05AC/TO92

3

2

1

VIN

GND

VOUT

ROTATIONAL

SPEED

SENSOR

VDDPIC

TEMP

RTCCLK

SYNC

P1

CONNECTOR DB9

5

9

4

8

3

7

2

6

1

VDDPIC

BEAM

Q3

BC171

RS232 INTERFACE

RX232

VSS

MCLR

VDDPIC

D6

1N4148

RTCDATA

U6

MAX232

1114

1312

1

3

107

89

4

5

2

6

15

16

T1 INT1 OUT

R1 INR1 OUT

C1+

C1-

T2 INT2 OUT

R2 INR2 OUT

C2+

C2-

V+

V-

GND

VDD232

Q2

BC171

J1

9V

1

RTCCS

Q1

BC337

U3LM35/TO

12

3

VS+VOUT

GND

RB6

BT1

3.6V

S2

R5

2.2K

D2

PHOTODIODE

1

2

R1

10

U2

PIC16F877-20/P

13

14

7

3334353637383940

15

16

17

18

23

24

25

26

1920212227282930

6

5

4

3

2

1

89103211

3112

OSC1/CLKIN

OSC2/CLKOUT

RA5/AN4/SS

RB0/INTRB1RB2RB3RB4RB5RB6RB7

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RC4/SDI/SDA

RC5/SDO

RC6/TX/CK

RC7/RX/DT

RD0/PSP0RD1/PSP1RD2/PSP2RD3/PSP3RD4/PSP4RD5/PSP5RD6/PSP6RD7/PSP7

RA4/T0CKI

RA3/AN3/VREF

RA2/AN2

RA1/AN1

RA0/AN0

MCLR/VPP

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

VDDPICVDDPIC

VSSVSS

S1

BEAM

LAS2

CON1

1

TX

POWER SUPPLY &

MOTOR SUPPLY

RTCCLK

D5

3X1N4001

TEMP

+

C6

47U

D3

IR-LED

LASER DIODE

R7

100K

Y1

20MHz

+

C14

0.22U

R2

100

MOT2

CON1

1

RX

RX232

VDDPIC

RX

REAL TIME

CLOCK

C1

220N

UP

R6

8.2K

+

C13

0.22U+C12

0.22U

RTCCS

TEMPERATURE SENSOR

LAS1

CON1

1

U1

RTC4513

9

6

3

2

12

13

GND

VDD

STD_P

DATA

CE

CLK

RB5

C5

22U

R4

10K

C7

100N

TX232

+C15

0.22U

C3

15P

C10

100N

RB4

D4

1N4001

J2

GNDIN

1

OPTIONAL

R3

5.6K

TX232

VDDPIC

VDDPIC

SHIFT

C4

15P

R8

100

GND

D1

1N4148

OPTIONAL

VDDPIC

RTCDATA

+

C8

470U

Features:

- displays text messages (1 row, 20 char's) using any

support (walls, transclucid glass, paper)

- extremly easy to use

- low power consumption

- extremly low cost

+

C9

100U

MODE

+

C2

470U

MOT1

CON1

1

SYNC

RB7

C160.1U

S4

DOWN


3.1. The rotational speed sensor
This is a very simple IR LED coupled with a photodiode and the associated transistors. Nothing is special here. The IR LED is always lighting and the optical contact with the photodiode is obstructed every rotation.
3.2. Laser driver

Because the laser diode which I used is from a key chain laser pointer, there is no feedback or control of laser beam other than turning on/off. So, the supply voltage is filtered with R1-C1-C2 and the current through laser diode is switched with Q1 by the BEAM signal coming from microcontroller.
3.3. RS232 interface
It uses a MAX232 IC in a PDIP package (U6), which is very simple and easy to use. The circuit is connecter to the microcontroller with RX232 and TX232 signals and to DB9 connector.
3.4. PIC16F877microcontroller

First of all, the PIC must have a 20MHz clock because of high precision calculations that must be performed for every pixel. The maximum number of displayed characters depends of PIC speed. The power-on reset is given by R4-C5-D6.
In order to obtain the desired high precision in controlling the laser beam, both CCP (Capture/Compare/PWM) modules available on PIC are used. The CCP1 is used in capture mode to measure the rotation period. To do this the SYNC signal coming from the speed sensor is connected to RC2/CCP1 pin of microcontroller.

The CCP2 is used in compare mode set/clear output on match, turning on or off the laser beam at a pre-calculated moment of time. The RC1/T1OSI/CCP2 pin is the output for the BEAM signal.

Both CCP modules use the same time base: TMR1.

The hardware UART is used to perform the serial communication, so the allocated pins for this are RC7 and RC6.

Four keys are connected to RB4-RB7 which are configured to have internal pull-ups.

The keys are used as follows:

· MODE switch between MIRRORED/NORMAL mode

· SHIFT switch the PAUSE/RUN mode

· MODE+SHIFT toggles between displaying the current rotational speed and the user messages

· UP+DOWN enters the calibration mode. Once this mode is entered, UP+DOWN change the line which is currently adjusted

· UP in calibration mode increments the calibration value for the current line

· DOWN in calibration mode decrements the calibration value for the current line

In the calibration mode the start of each line can be adjusted giving the possibility to align the vertical pixels.

As can be seen there are few used pins of PIC16F877 used and PIC16F876 could also be used. But this is the PIC which I had in my hands.
3.5. The power supply and motor driver
This block consists in two linear voltage regulators: one for the motor and one for the rest of electronics. It must be two regulators because of the big noise generated by the motor. D4 prevents the reverse input voltage damages. U4 provides 5V for the electronics and U5 – D5 for the motor. D5 is 3 diodes which I used to reduce the voltage for the motor in order to obtain the desired rmp. (2000 rpm = 33Hz scanning frequency). The motor speed can vary as long as the electronics makes the corrections on each rotation so, no speed regulation is necessary for the motor.
The electronics of this project is simple. The big job is performed by PIC16F877 and the challenge was to write the software.
The parts list is:
	Item
	Quantity
	Type
	Reference
	Part

	1
	1
	C
	C1
	220N

	2
	2
	CP
	C2,C8
	470U

	3
	2
	C
	C4,C3
	15P

	4
	1
	CP
	C5
	22U

	5
	2
	CP
	C11,C6
	47U

	6
	2
	C
	C7,C10
	100N

	7
	1
	CP
	C9
	100U

	8
	4
	CP
	C12,C13,C14,C15
	0.22U

	9
	1
	C
	C16
	0.1U

	10
	2
	DIODE
	D6,D1
	1N4148

	11
	1
	PHOTODIODE
	D2
	PHOTODIODE

	12
	1
	IR LED
	D3
	IR-LED

	13
	4
	DIODE
	D4,D4
	1N4001

	14
	1
	CONNECTOR
	P1
	CONNECTOR DB9

	15
	1
	T
	Q1
	BC337

	16
	2
	T
	Q3,Q2
	BC171

	17
	1
	R
	R1
	10

	18
	2
	R
	R8,R2
	100

	19
	1
	R
	R3
	5.6K

	20
	1
	R
	R4
	10K

	21
	1
	R
	R5
	2.2K

	22
	1
	R
	R6
	8.2K

	23
	1
	R
	R7
	100K

	24
	4
	R
	S1,S2,S3,S4
	SW

	25
	1
	IC
	U2
	PIC16F877-20/P

	26
	2
	IC
	U4,U5
	LM78L05AC/TO92

	27
	1
	IC
	U6
	MAX232CPE

	28
	1
	XTAL
	Y1
	20MHz


All parts are through hole parts with no special requirements.

The PCB:

[image: image7.png]


[image: image8.png]



TOP SIDE





BOTTOM SIDE

Assembly drawing:

[image: image9.png]



4. Software description
4.1. General considerations

The software is divided into the following sections:

· the main loop (main)

· the interrupt service routine (isr)

· displaying effects functions (grouped in the “effects.c” file)
· serial communication functions (grouped in the “uart.c” file)
Definitions (as is the meaning in this document):

· Message is the piece of user text to be displayed with a specified effect

· Show means all the user messages in the user whished order

The flash memory is divided in three parts:
· 0x0000-0x1000: program space

· 0x1000-0x1800: show space, I used the internal flash memory to store the messages to avoid an external memory. The self writing feature of program memory space is very useful for this purpose. The show space is covered by a const string called “show”, uninitialized at the compile time.
· 0x1F00-0x2000: bootloader space. During the development phase I used a bootloader in order to have easier program update.

The messages are stored in the next format:

	HEADER(1byte)
	MESSAGE
	EndOfMessage(1byte)


There are two important strings which are used for data preparing and are declared in RAM:
· “disp_mirror” – display mirror - which keeps the characters to be displayed

· “ldimage” – laser display image – which keeps a binary image of the display. Each vertical line corresponds to a byte in this string. For example one character occupies have 7x5 pixels which means 5 used bytes + 1 byte for guard. Because of banked PIC memory, one string can have maximum 96 bytes. But for 20 characters are necessary at least 20x6=120bytes. So, I used 2 strings (ldimage1+ldimage2) to store the entire binary image of the display.
The internal EEPROM memory of PIC16F877 is used to store the calibration data for each line. The addresses are 0x00-0x07.
I used the PICC compiler from HI-TECH (version 7.87PL2) with one source file passed to the compiler driver (other files are included). The compilation is performed by launching the “compile.bat” file which executes the compiler driver with the parameters contained in the “ldisp.cmd” file.
4.2. The main program loop is a software section that performs few “organizational” jobs: launch the PC communication function, to prepare the data for the display, various tasks. The software is “interrupt driven” which means that the most important tasks are performed when interrupts appears.
The initial configuration of the PIC is performed by the “device_config” function which sets the ports direction, configures the CCP modules, interrupts and the UART.

CCP1 is configured in capture mode on every rising edge. The corresponding interrupt is enabled in PIE1 giving an interrupt at each rotation. CCP2 is configured for compare mode clear output on match.  The configuration is changed for every pixel in the ISR depending if the pixel must be on or off. If must be on, the configuration will be compare-set output on match.  The corresponding interrupt is enabled in PIE2 only after all the calculations are ready.

The USART is configured for 19200bps, 8bit for data, no parity, asynchronous mode. The interrupt on receive is enabled in order do detect when the PC wants to communicate.

The flowchart of the main and the initial setup is:

[image: image10.wmf]DEVICE CONFIGURATION

RESET

DELAY FOR MOTOR

SPEED STABILIZATION

PC

COMMUNI

CATION?

DOWNLOAD MESSAGES

FROM PC

PREPARE THE DATA FOR

THE CURENT STEP

DISPLAY

MODE

SWITCH?

NEW STEP

FOR THE

CURENT

EFECT?

PREPARE THE DATA FOR

THE CURENTMODE

NO

YES

YES

YES

THE MAIN LOOP

TMR0

OVERFLOW

?

SET THE NEWDATA BYTE

FOR RPM REFRESH IF IS

PERMITED

NO

NO

YES


4.3. The interrupt service routine
There are 5 used interrupts CCP1 capture, CCP2 compare, TMR1 overflow, PORTB change and serial receive interrupt.
4.3.1. CCP1 capture interrupt is used to measure the speed of the motor. The current value of Timer1 is added with Timer1 extension to have a very precisely measurement. Then if the measured period is in the limits accepted as good the first calculations are performed. The “pixel_prep” function called here will be discussed lather. The relationship between the microcontroller frequency, speed and the measuring result is:

period=(f/4)*(60/rpm).

For example: speed=2000rpm, f=20MHz, period=150000.
4.3.2. CCP2 compare interrupt is used to precisely turn on or off the laser beam. Because the data must be processed very fast, once this interrupt is entered, the microcontroller stays here until the current line is finished. The fist pixel is displayed using the settings from the pixel_prep called previously. The rest of pixels are prepared here: the compare mode is set according to the current pixel value (1 or 0) to set or clear the output on match. After displaying an entire line, the current line is changed and the data for the next line is prepared by calling the pixel_prep function. The next drawing shows an image about how the tasks are performed.
[image: image11.wmf]Rotation direction

CCP1 interrupt,

period measurement

complete

preparing data and

wait for CCP2 interrupt

CCP2 interrupt

dead areas

27deg

last pixel of curent

line displayed

prepare the data for the next line

then wait for CCP2 interrupt


4.3.3. TMR1 overflow interrupt serves to precisely measure the period by incrementing the Timer1 extension: “count”. This technique extends the resolution of TMR1 to 32 bits (only 24 are used, the MSB is 0).

4.3.4. PORTB change interrupt is intended to handle the keyboard. The action corresponding to the pressed key (keys) is performed after all the keys are released. During pressing, the PORTB value is and-ed in the ex_portb variable (of course after debouncing) and after releasing, the ex_portb is analyzed, taking the corresponding actions.
4.3.5. Serial receive interrupt takes the received byte and if it corresponds to the expected start of communication sets a flag and stops the TMR1 for freezing the displaying of messages. During the communication is not necessary to display messages. The PC communication protocol is discussed separately.
The pixel_prep function makes the preparations for the first pixel of each line. The initial value for which CCP2 is calculated, and the CCP2 interrupt is enabled. Because all the data preparations for effects must be done without affecting the displaying of pixels, all those preparations are made in the dead times after a rotation completed. So the flag for the next step oft the current effect is turned on.

The buil_image function takes the characters beginning with the character pointed by the nextcar and bulds the binary image of the display in the ldimage string. The function uses the char_map constant string to take the image of each character.
The serial communication is very simple, the main developing effort being focused to make the displaying stable and reliable.
The protocol is:


[image: image12]
In order to achieve the possibility to send the data to the laser display and to prepare the show, the PC must run the application called “Display Constructor” (also developed by me, special for this project). The main window of this application is:
[image: image13.png]< Display Constructor.
Show Options Help

W Pl .

message  |message | messages

Message
oo

Message2

o
Message 3

Message 4

Message s

Liber. Mesaie: 5. Caractere: 135, Locat

Faling test

Leftto ightfloving

No sffect =

(One by one char fowing |

[t oighiionng Ra|

145




Final words
The project has reached the goal: to demonstrate the possibility to build such a display. The octagonal head was made by hand, with very low precision, with hard work. With a good head (manufactured by a machine) and a stronger laser beam, al very large display can be obtained. Of course, the project can be improved:

· a wireless connection with the PC can be added

· the number of effects can be increased

· the maximum number of characters can be increased by adding an external memory

I think the obtained results are extremely spectacular compared to the very low price of the system.

PC sends the start of comm





byte





the device responds with an





acknowledge byte





PC sends one verification





byte





PC sends one data byte





the received





data is End Of





Transmission?





EXIT





YES





NO








