
PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

1 of 11 2009.11.23. 18:02

USART Functions

TABLE OF CONTENTS

1 Introduction

2 Function Descriptions

2.1 BusyUSART Busy1USART Busy2USART

2.2 CloseUSART Close1USART Close2USART

2.3 DataRdyUSART DataRdy1USART DataRdy2USART

2.4 getcUSART getc1USART getc2USART

2.5 getsUSART gets1USART gets2USART

2.6 OpenUSART Open1USART Open2USART

2.7 putcUSART putc1USART putc2USART

2.8 putsUSART puts1USART puts2USART putrsUSART putrs1USART putrs2USART

2.9 ReadUSART Read1USART Read2USART getcUSART getc1USART getc2USART

2.10 WriteUSART Write1USART Write2USART putcUSART putc1USART putc2USART

2.11 baudUSART baud1USART baud2USART

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

2 of 11 2009.11.23. 18:02

1 Introduction
The following routines are provided for devices with a single USART peripheral:

TABLE: SINGLE USART PERIPHERAL FUNCTIONS

Function Description

BusyUSART Is the USART transmitting?
CloseUSART Disable the USART.
DataRdyUSART Is data available in the USART read buffer?
getcUSART Read a byte from the USART.
getsUSART Read a string from the USART.
OpenUSART Configure the USART.
putcUSART Write a byte to the USART.
putsUSART Write a string from data memory to the USART.
putrsUSART Write a string from program memory to the USART.
ReadUSART Read a byte from the USART.
WriteUSART Write a byte to the USART.
baudUSART Set the baud rate configuration bits for enhanced USART.

The following routines are provided for devices with multiple USART peripherals:

TABLE: MULTIPLE USART PERIPHERAL FUNCTIONS

Function Description

BusyxUSART Is USART x transmitting?
ClosexUSART Disable USART x.
DataRdyxUSART Is data available in the read buffer of USART x?
getcxUSART Read a byte from USART x.
getsxUSART Read a string from USART x.
OpenxUSART Configure USART x.
putcxUSART Write a byte to USART x.
putsxUSART Write a string from data memory to USART x.
putrsxUSART Write a string from program memory to USART x.
ReadxUSART Read a byte from USART x.
WritexUSART Write a byte to USART x.
baudxUSART Set the baud rate configuration bits for enhanced USART x.

Based on the different control registers, configuration bits and their positions in the control register, all PIC18
devices are divided into following different versions. Wherever required, separate functions have been designed to
support these versions, so before calling the LIB functions care has to be taken to know the version of the
configured device and to call the appropriate function with correct number of arguments. For EAUSART_V11 user
has to configure the I/O registers.
Below is the table to find the USART version for the configured device:

TABLE: VERSION VS. DEVICES

Version name Device number

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

3 of 11 2009.11.23. 18:02

AUSART_V1
18C242, 18C252, 18C442, 18C452, 18F242, 18F252, 18F442, 18F452,
18F248, 18F258, 18F448, 18F458, 18F2439, 18F2539, 18F4439,
18F4539, 18C601, 18C801, 18C658, 18C858, 18F2220, 18F2320,
18F4220, 18F4320

AUSART_V2 18F6620, 18F6720, 18F8620, 18F8720, 18F6520, 18F8520

EAUSART_V3 18F1220, 18F1320, 18F6585, 18F6680, 18F8585, 18F8680, 18F2331,
18F2431, 18F4331, 18F4431

EAUSART_V4

18F1230, 18F1330, 18F1231, 18F1331, 18F2420, 18F2520, 18F4420,
18F4520, 18F2423, 18F2523, 18F4423, 18F4523, 18F2450, 18F4450,
18F2480, 18F2580, 18F4480, 18F4580, 18F2410, 18F2510, 18F2515,
18F2610, 18F4410, 18F4510, 18F4515, 18F4610, 18F2525, 18F2620,
18F4525, 18F4620, 18F2585, 18F2680, 18F4585, 18F4680, 18F2682,
18F2685, 18F4682, 18F4685, 18F24J10, 18F25J10, 18F44J10, 18F4510

EAUSART_V5
18F2455, 18F2550, 18F4455, 18F4550, 18F2221, 18F2321, 18F4221,
18F4321, 18F23K20, 18F24K20, 18F25K20, 18F43K20, 18F44K20,
18F45K20, 18F13K50, 18LF13K50, 18F14K50, 18LF14K50, 18F13K22,
18F14K22, 18LF13K22, 18LF14K22

EAUSART_V6

18F6310, 18F6410, 18F8310, 18F8410, 18F6390, 18F6490, 18F8390,
18F8490, 18F63J11, 18F64J11, 18F65J11, 18F8311, 18F84J11,
18F85J11, 18F63J90, 18F64J90, 18F65J90, 18F83J90, 18F84J90,
18F85J90, 18F66J90, 18F67J90, 18F86J90, 18F87J90

EAUSART_V7
18F6527, 18F6622, 18F6627, 18F6722, 18F8527, 18F8622, 18F8627,
18F8722, 18F65J10, 18F65J15, 18F66J10, 18F6615, 18F67J10,
18F85J10, 18F85J15, 18F86J10, 18F86J15, 18F87J10

EAUSART_V8 18F6525, 18F6621, 18F8525, 18F8621

EAUSART_V9

18F86J60, 18F86J65, 18F87J60, 18F96J60, 18F96J65, 18F7J60,
18F66J11, 18F66J16, 18F67J11, 18F86J11, 18F86J1, , 18F87J11,
18F65J50, 18F66J50, 18F66J55, 18F67J50, 18F, 5J50, 18F86J50,
18F86J55, 18F87J50

EAUSART_V10 18F66J60, 18F66J65, 18F67J60

EAUSART_V11
18F24J11, 18F25J11, 18F26J11, 18F44J11, 18F45J11, 18F46J11,
18F24J50, 18F25J50, 18F26J50, 18F44J50, 18F45J50, 18F46J50,
18LF24J11, 18LF25J11, 18LF26J11, 18LF44J11, 18LF45J11, 18LF46J11,
18LF24J50, 18LF25J50, 18LF26J50, 18LF44J50, 18LF45J50, 18LF46J50

2 Function Descriptions

2.1 BusyUSART
Busy1USART
Busy2USART

Function: Is the USART transmitting?
Include: usart.h

Prototype: char BusyUSART(void);
char Busy1USART(void);
char Busy2USART(void);

Remarks: Returns a value indicating if the USART transmitter is currently busy. This
function should be used prior to commencing a new transmission.
BusyUSART should be used on parts with a single USART peripheral.
Busy1USART and Busy2USART should be used on parts with multiple USART
peripherals.

Return Value: 0 if the USART transmitter is idle
1 if the USART transmitter is in use

File Name: ubusy.c
u1busy.c
u2busy.c

Code Example: while (BusyUSART());

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

4 of 11 2009.11.23. 18:02

2.2 CloseUSART
Close1USART
Close2USART

Function: Disable the specified USART.
Include: usart.h

Prototype: void CloseUSART(void);
void Close1USART(void);
void Close2USART(void);

Remarks: This function disables the interrupts, transmitter and receiver for the specified
USART.
CloseUSART should be used on parts with a single USART peripheral.
Close1USART and Close2USART should be used on parts with multiple
USART peripherals.

File Name: uclose.c
u1close.c
u2close.c

2.3 DataRdyUSART
DataRdy1USART
DataRdy2USART

Function: Is data available in the read buffer?
Include: usart.h

Prototype: char DataRdyUSART(void);
char DataRdy1USART(void);
char DataRdy2USART(void);

Remarks: This function returns the status of the RCIF flag bit in the PIR register.
DataRdyUSART should be used on parts with a single USART peripheral.
DataRdy1USART and DataRdy2USART should be used on parts with
multiple USART peripherals.

Return Value: 1 if data is available
0 if data is not available

File Name: udrdy.c
u1drdy.c
u2drdy.c

Code Example: while (!DataRdyUSART());

2.4 getcUSART
getc1USART
getc2USART

getcxUSART is defined as ReadxUSART. See ReadUSART

2.5 getsUSART
gets1USART
gets2USART

Function: Read a fixed-length string of characters from the specified USART.
Include: usart.h

Prototype: void getsUSART (char * buffer,
 unsigned char len);
void gets1USART (char * buffer,
 unsigned char len);
void gets2USART (char * buffer,

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

5 of 11 2009.11.23. 18:02

 unsigned char len);
Arguments: buffer

A pointer to the location where incoming characters are to be stored.
len
The number of characters to read from the USART.

Remarks: This function only works in 8-bit transmit/receive mode. This function waits for
and reads len number of characters out of the specified USART. There is no
time out when waiting for characters to arrive.
getsUSART should be used on parts with a single USART peripheral.
gets1USART and gets2USART should be used on parts with multiple USART
peripherals.

File Name: ugets.c
u1gets.c
u2gets.c

Code Example: char inputstr[10];
getsUSART(inputstr, 5);

2.6 OpenUSART
Open1USART
Open2USART

Function: Configure the specified USART module.
Include: usart.h

Prototype: void OpenUSART(unsigned char config,
 unsigned int spbrg);
void Open1USART(unsigned char config,
 unsigned int spbrg);
void Open2USART(unsigned char config,
 unsigned int spbrg);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’) or a
bitwise OR (‘|’), configurable either way as shown on the example at the end
of this file, with a value from each of the categories listed below. These
values are defined in the file usart.h.
Interrupt on Transmission:
 USART_TX_INT_ON Transmit interrupt ON
 USART_TX_INT_OFF Transmit interrupt OFF
Interrupt on Receipt:
 USART_RX_INT_ON Receive interrupt ON
 USART_RX_INT_OFF Receive interrupt OFF
USART Mode:
 USART_ASYNCH_MODE Asynchronous Mode
 USART_SYNCH_MODE Synchronous Mode
Transmission Width:
 USART_EIGHT_BIT 8-bit transmit/receive
 USART_NINE_BIT 9-bit transmit/receive
Slave/Master Select*:
 USART_SYNC_SLAVE Synchronous Slave mode
 USART_SYNC_MASTER Synchronous Master mode
Reception mode:
 USART_SINGLE_RX Single reception
 USART_CONT_RX Continuous reception
Baud rate:

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

6 of 11 2009.11.23. 18:02

 USART_BRGH_HIGH High baud rate
 USART_BRGH_LOW Low baud rate
* Applies to Synchronous mode only

 spbrg
This is the value that is written to the baud rate generator register which
determines the baud rate at which the USART operates. The formulas for
baud rate are:
 Asynchronous mode, high speed:
 Fosc / (16 * (spbrg + 1))
 Asynchronous mode, low speed:
 Fosc / (64 * (spbrg + 1))
 Synchronous mode:
 Fosc / (4 * (spbrg + 1))
Where Fosc is the oscillator frequency.

Remarks: This function configures the USART module according to the specified
configuration options.
OpenUSART should be used on parts with a single USART peripheral.
Open1USART and Open2USART should be used on parts with multiple
USART peripherals.

File Name: uopen.c
u1open.c
u2open.c

Code Example: OpenUSART1(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 25);

2.7 putcUSART
putc1USART
putc2USART

putcxUSART is defined as WritexUSART. See WriteUSART

2.8 putsUSART
puts1USART
puts2USART
putrsUSART
putrs1USART
putrs2USART

Function: Writes a string of characters to the USART including the null character.
Include: usart.h

Prototype: void putsUSART(char *data);
void puts1USART(char *data);
void puts2USART(char *data);
void putrsUSART(const rom char *data);
void putrs1USART(const rom char *data);
void putrs2USART(const rom char *data);

Arguments: data
Pointer to a null-terminated string of data.

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

7 of 11 2009.11.23. 18:02

Remarks: This function only works in 8-bit transmit/receive mode. This function writes
a string of data to the USART including the null character.
Strings located in data memory should be used with the “puts” versions of
these functions.
Strings located in program memory, including string literals, should be used
with the “putrs” versions of these functions.
putsUSART and putrsUSART should be used on parts with a single USART
peripheral. The other functions should be used on parts with multiple USART
peripherals.

File Name: uputs.c
u1puts.c
u2puts.c
uputrs.c
u1putrs.c
u2putrs.c

Code Example: PutrsUSART (“Hello World!”);

2.9 ReadUSART
Read1USART
Read2USART
getcUSART
getc1USART
getc2USART

Function: Read a byte (one character) out of the USART receive buffer, including the
9th bit if enabled.

Include: usart.h

Prototype: char ReadUSART(void);
char Read1USART(void);
char Read2USART(void);
char getcUSART(void);
char getc1USART(void);
char getc2USART(void);

Remarks: This function reads a byte out of the USART receive buffer. The Status bits
and the 9th data bits are saved in a union with the following declaration:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

The 9th bit is read-only if 9-bit mode is enabled. The Status bits are always
read.
On a part with a single USART peripheral, the getcUSART and ReadUSART
functions should be used and the status information is read into a variable
named USART_Status which is of the type USART described above.
On a part with multiple USART peripherals, the getcxUSART and
ReadxUSART functions should be used and the status information is read

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

8 of 11 2009.11.23. 18:02

into a variable named USARTx_Status which is of the type USART
described above.

Return Value: This function returns the next character in the USART receive buffer.
File Name: uread.c

u1read.c
u2read.c
#define in usart.h
#define in usart.h
#define in usart.h

Code Example: int result;
result = ReadUSART();
result |= (unsigned int)
 USART_Status.RX_NINE << 8;

2.10 WriteUSART
Write1USART
Write2USART
putcUSART
putc1USART
putc2USART

Function: Write a byte (one character) to the USART transmit buffer, including the 9th
bit if enabled.

Include: usart.h

Prototype: void WriteUSART(char data);
void Write1USART(char data);
void Write2USART(char data);
void putcUSART(char data);
void putc1USART(char data);
void putc2USART(char data);

Arguments: data
The value to be written to the USART.

Remarks: This function writes a byte to the USART transmit buffer. If 9-bit mode is
enabled, the 9th bit is written from the field TX_NINE, found in a variable of
type USART:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

On a part with a single USART peripheral, the putcUSART and
WriteUSART functions should be used and the Status register is named
USART_Status which is of the type USART described above.
On a part with multiple USART peripherals, the putcxUSART and
WritexUSART functions should be used and the status register is named
USARTx_Status which is of the type USART described above.

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

9 of 11 2009.11.23. 18:02

File Name: uwrite.c
u1write.c
u2write.c
#define in usart.h
#define in usart.h
#define in usart.h

Code Example: unsigned int outval;
USART1_Status.TX_NINE = (outval &
0x0100) >> 8;
Write1USART((char) outval);

2.11 baudUSART
baud1USART
baud2USART

Function: Set the baud rate configuration bits for enhanced USART operation.
Include: usart.h

Prototype: void baudUSART(unsigned char baudconfig);
void baud1USART(unsigned char baudconfig);
void baud2USART(unsigned char baudconfig);

Arguments: baudconfig
A bitmask that is created by performing a bitwise AND (‘&’) operation with a
value from each of the categories listed below. These values are defined in
the file usart.h:
RX Idle State:
In Asynchronous mode:
 BAUD_IDLE_RX_PIN_STATE_HIGH Receive data (RX) is inverted.Idle
 state for RX pin is high level
 BAUD_IDLE_RX_PIN_STATE_LOW No inversion of receive data(RX).
 Idle state for RX pin is low level
In Synchronous mode:
 BAUD_IDLE_RX_PIN_STATE_HIGH Data (DT) is inverted. Idle state for
 DT pin is high level
 BAUD_IDLE_RX_PIN_STATE_LOW No inversion of data (DT). Idle state
 for DT pin is low level
 TX Idle State (In Asynchronous
 mode):
 BAUD_IDLE_TX_PIN_STATE_HIGH Transmit data (TX) is inverted.
 Idle state for TX pin is high
 level
 BAUD_IDLE_TX_PIN_STATE_LOW No inversion of transmit data
 (TX). Idle state for TX pin is
 low level
Clock Idle State: (In Synchronous mode)
 BAUD_IDLE_CLK_HIGH Clock idle state is a high level
 BAUD_IDLE_CLK_LOW Clock idle state is a low level
Baud Rate Generation:
 BAUD_16_BIT_RATE 16-bit baud generation rate
 BAUD_8_BIT_RATE 8-bit baud generation rate
RX Pin Monitoring:
 BAUD_WAKEUP_ON RX pin monitored
 BAUD_WAKEUP_OFF RX pin not monitored
Baud Rate Measurement:
 BAUD_AUTO_ON Auto baud rate measurement
 enabled

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

10 of 11 2009.11.23. 18:02

 BAUD_AUTO_OFF Auto baud rate measurement
 disabled

Remarks: These functions are only available for processors with enhanced USART
capability.

File Name: ubaud.c
u1baud.c
u2baud.c

Code Example: baudUSART (BAUD_IDLE_CLK_HIGH &
 BAUD_16_BIT_RATE &
 BAUD_WAKEUP_ON &
 BAUD_AUTO_ON);

Example Use of the USART Routines with AND mask:

#include <p18C452.h>
#include <usart.h>

void main(void)
{
 // configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,25);

 while(1)
 {
 while(! PORTAbits.RA0); //wait for RA0 high

 WriteUSART(PORTD); //write value of PORTD

 if(PORTD == 0x80) // check for termination
 break; // value
 }

 CloseUSART();
}

Example Use of the USART Routines with OR mask:

#include <p18C452.h>
#define USE_OR_MASKS
#include <usart.h>

void main(void)
{
 // configure USART
 OpenUSART(USART_TX_INT_OFF |
 USART_RX_INT_OFF |
 USART_ASYNCH_MODE |
 USART_EIGHT_BIT |
 USART_CONT_RX |
 USART_BRGH_HIGH,25);

 while(1)
 {
 while(! PORTAbits.RA0); //wait for RA0 high

 WriteUSART(PORTD); //write value of PORTD

 if(PORTD == 0x80) // check for termination
 break; // value
 }

PIC18 Peripheral Libraries file:///C:/MCC18/doc/periph-lib/USART.htm

11 of 11 2009.11.23. 18:02

 CloseUSART();
}

