CLASS D AUDIO

Class D Audio Amplifier Design

Class D Amplifier Introduction

Theory of Class D operation, topology comparison

Gate Driver

How to drive the gate, key parameters in gate drive stage

• MOSFET

How to choose, tradeoff relationships, loss calculation

Package

Importance of layout and package, new packaging technology

Design Example

200W+200W stereo Class D amplifier

www.irf.com

Prepared Oct.8 2003 by Jun Honda and Jorge Cerezo

Trend in Class D Amplifiers

- Make it smaller!
 - higher efficiency
 - smaller package
 - Half Bridge
- Make it sound better!
 - THD improvement
 - fully digitally processed modulator

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Traditional Linear Amplifier

Class AB amplifier uses linear regulating transistors to modulate output voltage. $\eta = 30\%$ at temp rise test condition.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

How a Class D Amplifier Works

signals with ON or OFF states in output devices.www.irf.com

Basic PWM Operation

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Topology Comparison: Class AB vs Class D

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Analogy to Buck DC-DC Converter

Buck Converter Gate Driver M Q1 MOSFET L1 I OAD Vref Load Current Direction Duty ratio is fixed ➔Independent optimization for HS/LS

→Low $R_{DS(ON)}$ for longer duty, low Qg for shorter duty

System → Gate Drive → MOSFET → Design Example Half Bridge vs Full Bridge

Supply voltage	0.5 x 2ch	1
Current rating	<u>s 1</u>	2
MOSFET	2 MOSFETs/CH	4 MOSFETs/CH
Gate Driver	1 Gate Driver/CH	2 Gate Drivers/CH
Linearity		Superior (No even order HD)
DC Offset	Adjustment is needed	Can be cancelled out
PWM pattern	2 level	3 level PWM can be implemented
Notes	Pumping effect Need a help of feed back	Suitable for open loop design

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Major Cause of Imperfection

34

Vout(t)

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example THD and Dead Time

www.irf.com

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Shoot Through and Dead Time

-Shoot through charge increases rapidly as dead time gets shorter.

-Need to consider manufacturing tolerances and temperature characteristics.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Power Supply Pumping

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

EMI consideration: Qrr in Body Diode

- 1. Low side drains inductor current
- 2. During dead time body diode of low side conducts and keep inductor current flow
- 3. At the moment high side is turned ON after dead time, the body diode is still conducting to wipe away minority carrier charge stored in the duration of forward conduction.
- →This current generates large high frequency current waveform and causes EMI noises.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Gate Driver: Why is it Needed?

- Gate of MOSFET is a capacitor to be charged and discharged. Typical effective capacitance is 2nF.
- High side needs to have a gate voltage referenced to it's Source.
- Gate voltage must be 10-15V higher than the drain voltage.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Functional Block Diagram Inside Gate Driver

International Rectifier's family of MOS gate drivers integrate most of the functions required to drive one high side and one low side power MOSFET in a compact package.

With the addition of few components, they provide very fast switching speeds and low power dissipation.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Boot Strap High Side Power Supply

When Vs is pulled down to ground through the low side FET, the bootstrap capacitor (C_{BOOT}) charges through the bootstrap diode (Dbs) from the Vcc supply, thus providing a supply to Vbs.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Boot Strap High Side Power Supply (Cont'd)

Boot Strap Capacitor Selection

To minimize the risk of overcharging and further reduce ripple on the Vbs voltage the Cbs value obtained from the above equation should be should be multiplied by a factor of 15 (rule of thumb).

Boot Strap Diode Selection

The bootstrap diode (Dbs) needs to be able to block the full power rail voltage, which is seen when the high side device is switched on. It must be a fast recovery device to minimize the amount of charge fed back from the bootstrap capacitor into the Vcc supply.

```
VRRM = Power rail voltage, max trr = 100ns, IF > Qbs x f
```

For more details on boot strap refer to DT98-2

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Power Dissipation in Gate Driver

• Whenever a capacitor is charged or discharged through a resistor, half of energy that goes into the capacitance is dissipated in the resistor. Thus, the losses in the gate drive resistance, internal and external to the MGD, for one complete cycle is the following:

$$P_G = V \cdot f_{SW} \cdot Q_G$$

For two IRF540 HEXFET[®] MOSFETs operated at 400kHz with Vgs = 12V, we have:

$$PG = 2 \cdot 12 \cdot 37 \cdot 10^{-9} \cdot 400 \cdot 10^{3} = 0.36W$$

For more details on gate driver ICs, refer to AN978

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Power Dissipation in Gate Driver (Cont'd)

•The use of gate resistors reduces the amount of gate drive power that is dissipated inside the MGD by the ratio of the respective resistances.

•These losses are not temperature dependent.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Layout Considerations

• Stray inductance LD1+LS1 contribute to undershoot of the Vs node beyond the ground

reverse breakdown may cause parasitic www.irf.com SCR latch up.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Gate Driver for Class D Applications IR2011(S)

Key Specs

Voffset	200V max.			
I _O +/-	1.0A /1.0A typ.			
Vout	10 - 20V			
t _{on/off}	80 & 60 ns typ.			
Delay Matching	20 ns max.			

- Fully operational up to +200V
- Low power dissipation at high switching frequency
- 3.3V and 5V input logic compatible
- Matched propagation delay for both channels
- Tolerant to negative transient voltage, dV/dt immune
- SO-8/DIP-8 Package

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

How MOSFETs Work

- A MOSFET is a voltage-controlled power switch.
 - A voltage must be applied between Gate and Source terminals to produce a flow of current in the Drain.

www.irf.com

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

MOSFET Technologies (1)

- IR is striving to continuously improve the power MOSFET to enhance the performance, quality and reliability.
- Hexagonal Cell Technology

Planar Stripe Technology

Trench Technology

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

MOSFET Technologies (2)

 Power MOSFET FOMs (R*Qg) have significantly improved between the released IR MOSFET technologies

System → Gate Drive → MOSFET → Design Example

Key Parameters of MOSFETs (1)

• Voltage Rating, BV_{DSS}

This is the drain-source breakdown voltage (with VGS = 0). BV_{DSS} should be greater than or equal to the rated voltage of the device, at the specified leakage current, normally measured at Id=250uA.

This parameter is temperature-dependent and frequently $\Delta BV_{DSS}/\Delta Tj$ (V/°C) is specified on datasheets.

BV_{DSS} MOSFET voltages are available from tens to thousand volts.

System → Gate Drive → MOSFET → Design Example

Key Parameters of MOSFETs (2)

• Gate Charge, Qg

This parameter is directly related to the MOSFET speed and is temperatureindependent. Lower Qg results in faster switching speeds and consequently lower switching losses.

The total gate charge has two main components: the gatesource charge, Qgs and, the gate-drain charge, Qgd (often called the Miller charge).

Basic Gate Charge Waveform

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Key Parameters of MOSFETs (3)

Static Drain-to-Source On-Resistance, R_{DS(ON)}

This is the drain-source resistance, typically specified on data sheet at 25°C with VGS = 10V.

 $R_{DS(ON)}$ parameter is temperature-dependent, and is directly related to the MOSFET conduction losses. lower $R_{DS(ON)}$ results in lower conduction losses.

Normalized On-Resistance vs. Temperature

www.irf.com

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example Key Parameters of MOSFETs (4)

 Body Diode Reverse Recovery Characteristics, Q_{rr}, t_{rr}, I_{rr} and S factor.

Power MOSFETs inherently have an integral reverse body-drain diode. This body diode exhibits reverse recovery characteristics. Reverse Recovery Charge Qrr, Reverse Recovery Time trr, Reverse Recovery Current Irr and Softness factor (S = tb/ta), are typically specified on data sheets at 25°C and di/dt = 100A/us.

Reverse recovery characteristics are temperature-dependent and lower trr, Irr and Qrr improves THD, EMI and Efficiency η .

Typical Voltage –Current Waveforms for a MOSFET Body Diode www.irf.com

System → Gate Drive → MOSFET → Design Example

Key Parameters of MOSFETs (5)

Package

MOSFET devices are available in several packages as SO-8,TO-220, D-Pak, I-Pak, TO-262, DirectFET[™], etc.

The selection of a MOSFET package for a specific application depends on the package characteristics such as dimensions, power dissipation capability, current capability, internal inductance, internal resistance, electrical isolation and mounting process.

System → Gate Drive → MOSFET → Design Example

Choosing the MOSFET Voltage Rating for Class D applications (1)

- MOSFET voltage rating for a Class D amplifier is determined by:
 - Desired P_{OUT} and load impedance (i.e. 250W on 4 Ω)
 - Topology (Full Bridge or Half Bridge)
 - Modulation Factor M (80-90%)

MOSFET Turn-Off peak voltage

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Choosing the MOSFET Voltage Rating for Class D Applications (2)

• Full-Bridge Topology Class D amplifier

	BVDSS Minimum Load (Ohms)				Co	-	ing IR Mo .oad (Ohm	sFET BVDS	s		
Output Power (W)	1	2	4	6	8]	1	2	4	6	8
100	25.0	35.3	49.9	61.1	70.6]	30	40	55	75	75
150	30.6	43.2	61.1	74.9	86.5]	40	55	75	75	100
200	35.3	49.9	70.6	86.5	99.8]	40	55	75	100	100
500	55.8	78.9	111.6	136.7	157.8]	75	100	150	150	200
1000	78.9	111.6	157.8	193.3	223.2]	100	150	200	200	250

Half-Bridge Configuration Class D amplifier

	VBDSS Minimum					
	Load (Ohms)					
Output Power (W)	1	2	4	6	8	
100	49.9	70.6	99.8	122.3	141.2	
150	61.1	86.5	122.3	149.7	172.9	
200	70.6	99.8	141.2	172.9	199.7	
500	111.6	157.8	223.2	273.4	315.7	
1000	157.8	223.2	315.7	386.6	446.4	

Note 1. Modulation Factor M = 85%

Corresponding IR MosFET BVDSS								
Load (Ohms)								
1	2	4	6	8				
55	75	100	150	150				
75	100	150	150	200				
75	100	150	200	200				
150	200	250	300	400				
200	250	400	400	450				

www.irf.com

• Gate resistance Rg, and gate charge Qg, have a significant influence on turn-on and turn-off switching times

$$\uparrow \mathbf{Rg} \Rightarrow \downarrow \mathbf{Ig} \Rightarrow \uparrow \mathbf{t}_{\mathsf{SWITCHING}} \Rightarrow \uparrow \mathbf{P}_{\mathsf{SWITCHING}}$$

$$\uparrow \mathbf{Qg} \Rightarrow \uparrow \mathbf{t}_{\mathsf{SWITCHING}} \Rightarrow \uparrow \mathbf{P}_{\mathsf{SWITCHING}}$$

System → Gate Drive → MOSFET → Design Example

Estimation of Switching Losses (1)

 Switching losses can be obtained by calculating the switching energy dissipated in the MOSFET

$$E_{sw} = \int_{0}^{t} V_{DS}(t) * I_{D}(t) dt$$

Where t is the length of the switching pulse.

 Switching losses can be obtained by multiplying switching energy with switching frequency.

$$P_{SWITCHING} = E_{SW} * F_{SW}$$

System → Gate Drive → MOSFET → Design Example

Estimation of Conduction Loss (2)

 Conduction losses can be calculated using R_{DS(ON)} @ Tj max and I_{D RMS} current of MOSFET

 $\mathsf{P}_{\text{CONDUCTION}} = (\mathsf{I}_{\mathsf{D} \mathsf{RMS}})^2 * \mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$

I_{D RMS} is determined using amplifier specifications:

$$I_{D RMS} = \sqrt{\frac{P_{OUT}}{R_{LOAD}}}$$

R_{DS(ON)} data can be obtained from the MOSFET data sheet.
CLASS D AUDIO

System \rightarrow Gate Drive \rightarrow MOSFET \rightarrow Design Example

Thermal Design

 Maximum allowed power dissipation for a MOSFET mounted on a heat sink:

$$P_{max} = \Delta T j / R_{thja max}$$

 $P_{max} = (T_{amb} - Tj_{max}) / (R_{thjc max} + R_{thcs max} + R_{ths max} + R_{thsa max})$

Where: T_{amb} = Ambient Temperature Tj_{max} = Max. Junction Temperature R_{thjc max} = Max. Thermal Resistance Junction to Case R_{thcs max} = Max. Thermal Resistance Case to Heatsink R_{ths max} = Max. Thermal Resistance of Heatsink R_{thsa max} = Max. Thermal Resistance Heatsink to Ambient _{www.irf.com}

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

$R_{DS(ON)}$ vs Qg

 There is tradeoff between Static Drain-to-Source On-Resistance, R_{DS(ON)} and Gate charge, Qg
 Higher R_{DS(ON)} ⇒ Lower Qg ⇒ Higher P_{CONDUCTION} & Lower P_{SWITCHING}
 Lower R_{DS(ON)} ⇒ Higher Qg ⇒ Higher P_{SWITCHING} & Lower P_{CONDUCTION}

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Die Size vs Power Loss (1)

 Die size has a significant influence on MOSFET power losses

> Smaller Die \Rightarrow Higher P_{CONDUCTION} & Lower P_{SWITCHING} Bigger Die \Rightarrow Higher P_{SWITCHING} & Lower P_{CONDUCTION}

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Die Size vs Power Loss (2)

 Die size is directly related with R_{DS(ON)} and R_{THjc} of the MOSFET

Smaller Die \Rightarrow Higher $R_{DS(ON)}$ and Higher R_{THjc}

Bigger Die \Rightarrow Lower $R_{DS(ON)}$ and Lower R_{THjc}

CLASS D AUDIO

System \rightarrow Gate Drive \rightarrow MOSFET \rightarrow Design Example

Choosing the Right MOSFET for Class D Applications (1)

- The criteria to select the right MOSFET for a Class D amplifier application are:
 - VB_{DSS} should be selected according to amplifier operating voltage, and it should be large enough to avoid avalanche condition during operation
 - Efficiency η is related to static drain-to-source on-resistance, $R_{DS(ON).}$ smaller $R_{DS(ON)}$ improves efficiency $\eta.~R_{DS(ON)}$ is recommended to be smaller than 200m Ω for mid and high-end power, full-bandwidth amplifiers
 - Low gate charge, Qg, improves THD and efficiency η. Qg is recommended to be smaller than 20nC for mid and high-end power, full-bandwidth amplifiers

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Choosing the Right MOSFET for Class D Application (2)

- Amplifier performance such as THD, EMI and efficiency η are also related to MOSFET reverse recovery characteristics. Lower trr, Irr and Qrr improves THD, EMI and efficiency η
- Rthjc should be small enough to dissipate MOSFET power losses and keep Tj < limit
- Better reliability and lower cost are achieved with higher MOSFET
 Tj max
- Finally, selection of device package determines the dimensions, electrical isolation and mounting process. These factors should be considered in package selection. Because cost, size and amplifier performance depend on it.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Development of Class D Dedicated Devices

- Performance of the Class D amplifying stage strongly depends on the characteristics of MOSFETs and ICs.
- Designers of driver IC and MOSFET silicon need to keep the special requirements of the Class D application in mind.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Influences of Stray Inductance

 PCB layout and the MOSFET internal package inductances contribute to the stray inductance (L_s) in the circuit.

• Stray inductances affect the MOSFET performance and EMI of the system.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Influences of Stray Inductance

- Drain and source stray inductances reduces the gate voltage during turn-on resulting in longer switching time.
- Also during turn-off, drain and source stray inductances generate a large voltage drop due to dl_D/dt, producing drain to source overvoltage transients.

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

DirectFET[™] Packaging

- Remove wirebonds from package and replace with large area solder contacts
- Reduced package inductance and resistance
- Copper can enables dual sided cooling

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

DirectFET[™] Packaging

DirectFET waveform

SO-8 waveform

- 30A VRM output current
- 500 kHz per phase
- Silicon of the near identical active area, voltage and generation used in both packages
- Inductance related ringing greater in case of SO-8

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Class D Amp Reference Design

• Specs

Topology: Half Bridge IR Devices: IR2011S, IRFB23N15D Switching frequency: 400kHz (Adjustable) Rated Output Power: 200W+200W / 4 ohm THD: 0.03% @1kHz, Half Power Frequency Response: 5Hz to 40kHz (-3dB) Power Supply: $\sim \pm 50V$ Size: 4.0" x 5.5"

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Class D Amp Reference Board: Block Diagram

www.irf.com

CLASS D AUDIO

System \rightarrow Gate Drive \rightarrow MOSFET \rightarrow Design Example

Circuit Diagram

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Class D Amp Reference Board: Layout

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Performance

50W / 4Ω, 1KHz, THD+N=0.0078%

342W / 4Ω, 1KHz, THD+N=10%

Peak Output Power (f=1KHz) 120W / 8Ω / ch, THD=1% 180W / 8Ω / ch, THD=10% 245W / 4Ω / ch, THD=1% 344W / 4Ω / ch, THD=10%

CLASS D AUDIO

System → Gate Drive → MOSFET → Design Example

Performance (Cont'd)

Switching waveform

Residual Noise: 62.5µVrms, A-Weighted, 30KHz-LPF

Conclusion

- Highly efficient Class D amplifiers now provide similar performance to conventional Class AB amplifiers If key components are carefully selected and the layout takes into account the subtle, yet significant impact due to parasitic components.
- Constant innovation in semiconductor technologies helps the growing Class D amplifiers usage due to improvements in higher efficiency, increased power density and better audio performance.

CLASS D AUDIO