4.4 m Unsigned Divide Operation 131

4.4 Unsigned Divide Operation

Example 4.3

The PIC18 MCU does not provide any divide instruction. Therefore, a divide operation
must be synthesized by other instructions. A simple but popular divide algorithm in use today
is the repeated subtraction method. This method performs unsigned divide operation. The
hardware required for implementing the repeated subtraction method is shown in Figure 4.1.

C R Q
n-bit n-bit
n-bit

— N

Figure 4.1 m Division hardware

Before performing the repeated subtraction operation, one needs to load 0, the dividend, and
the divisor into registers R, Q, and N, respectively. The carry flag is used to indicate whether
the subtraction result is negative. The ALU can perform n-bit unsigned addition and subtrac-
tion operations. The repeated subtraction method consists of n steps. Each division step con-
sists of three parts:

Step 1
Shift the register pair (R, Q) one place to the left.

Step 2
Subtract the contents of N from R and put the result back to R if the result is positive.

Step 3
If the result of Step 2 is negative, then set the least significant bit of Q to 0. Otherwise, set
the least significant bit of Q to 1.

Write a program to divide an 8-bit number into another 8-bit number.

Solution: The following program is a direct translation of the paper-and-pencil division algorithm:
#include <p18F8720.inc>

Ip_cnt set 0x00

rem set 0x01 ; register to hold remainder
quo set 0x02 ; register to hold quotient
dsr set 0x03 ; register to hold divisor
dvd set 0x04 ; register to hold dividend

dd equ 0xf5 ; value used as dividend



132

Chapter 4 ®m Advanced Assembly Programming

dr

start

loop

negative
next

equ
org
goto
org
retfie
org
retfie
moviw
mowwf
moviw
movwf
clrf
moviw
movwf
bef
ricf
ricf
movf
subwf
btfss
goto
bsf
mowvf
goto
bef
decfsz
goto
nop
end

Ox11
0x00
start
0x08

0x18

dd

quo,A

dr

dsr,A
rem,A
0x08
Ip_cnt
STATUS,C,A
quo,F.A
rem,F,A
dsr, W,A
rem,W,A
STATUS,C,A
negative
quo,0,A
rem,A

next
quo,0,A
Ip_cnt,F,A
loop

; value used as divisor

; initialize Q register in Figure 4.1.

; initialize N register in Figure 4.1
; initialize R register in Figure 4.1

; initialize loop count to 8
; clear the C flag
; rotate (R, Q) pair to the left one place

L6
’

; subtract and leave the difference in WREG
; skip if carry is 1

; set the least significant bit of Q1 to 1
; place the difference in rem

; set the quotient bit to O
; decrement the loop count and skip if zero

A

Example 4.4

Write a program to divide an unsigned 16-bit number into another unsigned 16-bit number.

Solution: The assembly program for the 16-bit unsigned division is as follows:
#include <p18F8720.inc>

Ip_cnt
temp
dst
quo
rem
dd_h
dd_|
dr_h
dr_|

set
set
set
set
set
equ
equ
equ
equ
org
goto
org
retfie

0x00
0x01
0x04
0x06
0x08
0x68
0x20
0x01
0x48
0x00
start

0x08

; loop count

; temporary storage

; divisor

; quotient

; remainder

; high byte of dividend test number
; low byte of

; high byte of divisor test number

; low byte of divisor test number



4.5 m Signed Divide Operation 133

org 0x18
retfie
start movlw dd_h ; initialize Q register in Figure 4.1
movwf quo+1,A .
moviw dd_|I e
movwf quo,A 0
moviw dr_h ; initialize N register in Figure 4.1
movwf dsr+1,A "
movlw dr_| H
movwf dsr,A e
clrf rem,A ; initialize R register in Figure 4.1t0 0
cirf rem+1,A e
moviw D16
movwf Ip_cnt,A ; initialize foop count to 16
loop bef STATUS,C,A ; clear the C flag
ricf quo,F,A ; rotate (R, Q) pair to the left one place
ricf quo+1,FA P
ricf rem,F,A ¢
rlcf rem+1,F,A N
movf dsr,W,A
subwf rem,W,A
movwf temp,A ; save the low byte of the difference
movf dsr+1,W,A
subwfb rem+1,W,A
btfss STATUS,C ; skip if carry is 1
goto less
bsf quo,0,A ; set the quotient bit to 1
movwf rem+1,A ; place the difference in R register
movff temp,rem .
goto next
less bcf quo,0,A ; set the quotient bitto O
next decfsz Ip_cnt,F,A ; decrement the loop count and skip is zero
goto loop
nop
end

Unsigned division program for numbers in other lengths {e.g., 32-bit by 32-bit} can be writ-
ten in the same way and hence is left for you as an exercise. A

4.5 Signed Divide Operation

The one complication for the signed division is that we must also set the sign of the
remainder. The following equation must always hold for division:
Dividend = Quotient x Divisor + Remainder

Our common sense requires that the magnitude of the quotient be the same as long as the
magnitudes of the dividends are the same and the magnitudes of the divisors are the same. We
can determine the sign of the remainder on the basis of this principle. To illustrate, let’s use
(£35) + (+6) as an example. The first situation is simple:

35 + 6: Quotient = +5, Remainder = +5



134 Chapter 4 m Advanced Assembly Programming

If we change the sign of the dividend, the quotient must be changed as well:
-35 + 6: Quotient = -5
Rewriting our basic formula to find the remainder,
Remainder = Dividend - Quotient x Divisor
=35-(-5_6)=-35+30=-5
If we change the sign of the divisor and keep the sign of dividend unchanged,
35 + (-6): Quotient = -5
Remainder=35-(-5%x-6)=35-30=5
If we change the signs of both the dividend and the divisor,
-35 + -6: Quotient =5
Remainder = -35 - (-b x-6)=-35+30=-5
From this discussion, we conclude that the correctly signed division algorithm negates the

quotient if the signs of the operands are opposite and makes the sign of the nonzero remainder
match the dividend.s

Example 4.5

Write a PICI8 program that performs the 8-bit signed divide operation. This program will
leave the quotient and remainder in the data registers represented by quo and rem, respectively.

Solution: The following program implements the 8-bit signed divide operation described in this

section:

#include <p18F8720.inc>

sign set 0x00

dvd set 0x01 ; dividend

dsr set 0x02 ; divisor

quo set 0x03 ; quotient

rem set 0x04 ; remainder

Ip_cnt set 0x05 ; loop count

dd equ 0x82 ; testing number for dividend

dr equ Oxf5 ; testing number for divisor
org 0x00
goto start
org 0x08
retfie
org 0x18
retfie

start bef sign,2,A ; initialize the sign of quotient to positive
bef sign,1,A ; initialize the sign of dividend to positive
bcf sign,0,A ; initialize the sign of divisor to positive
moviw dd
movwf dvd,A
moviw dr
movwf dsr,A
btfss dvd,7,A ; check the sign of dividend
goto second

btg sign,2 ; change the sign of quotient



4.5 m Signed Divide Operation

second

do_it

loop

negative
next

check_re

ok_skip

bsf
negf
bifss
goto
btg
bsf
negf
movf
movwf
cirf
moviw
movwf
bef
rlcf
rcf
movf
subwf
btfss
goto
bsf
movwf
goto
bef
decfsz
goto
btfss
goto
negf
btfss
goto
negf
nop
end

sign,1
dvd,A
dsr,7,A
do_it
sign,2,A
sign,0,A
dsr,A
dvd,W,A
quo,A
rem,A
0x08
Ip_cnt,A
STATUS,C,A
quo,F.A
rem,F,A
dsr,W,A
rem,W,A
STATUS,C,A
negative
quo,0,A
rem,A
next
quo,0,A
lp_cntF A
loop
sign,2,A
check_re
quo,A
sign,1,A
ok_skip
rem,A

; record the sign bit of the dividend
; compute the magnitude of dividend
; check the sign of the divisor

; change the sign of quotient
; set the sign of the divisor
; compute the magnitude of divisor

; initialize R register in Figure 4.1

; initialize loop count to 8
; clear the C flag
; rotate (R, Q) pair to the left one place

.
’

; suibtract and leave the difference in WREG
s skip if canry is 1

; set the least significant bit of Q1 to 1
; place the difference in R1

; set the quotient bit to 0
; decrement the loop count and skip if zero

; skip if sign of quotient is negative
; skip if dividend is negative

L«
’

135

Example 4.6

Write a program to divide a signed 16-bit number into another 16-bit signed integer.

Solution: The following program will perform the signed 16-bit divide operation:
#include <p18F8720.inc>

sign

dvd

dsr

quo

rem
lp_cnt
temp
dd_h

set
set
set
set
set
set
set
equ

0x00
0x02
0x04
0x06
0x08
0x0A
0x0B
0xD9

; keep track of the signs of dividend and divisor
; dividend

; divisor

; quotient

; remainder

; loop count

; temporary storage

; testing number for dividend



136 Chapter 4 m Advanced Assembly Programming

dd_|
dr_h
dr_|

start

second

do_it

foop

equ
equ
equ
org
goto
org
retfie
org
retfie
bef
bef
bef
moviw
movwi
moviw
movwf
moviw
movwf
moviw
movwf
btfss
goto
btg
bsf
comf
comf
incf
moviw
addwfc
btfss
goto
btg
bsf
comf
comf
incf
moviw
addwfc
movff
movff
clrf
clrf
moviw
movwf
bef
rlcf
tlef
ricf
ricf
movf

0xB8
OxFF
0x80
0x00
start

0x08

0x18

sign,2,A
sign,1,A
sign,0,A
dd_|
dvd,A
dd_h
dvd+1,A
dr_|

dsr,A

dr_h
dsr+1,A
dvd+1,7,A
second
sign,2
sign,1
dvd,F,A
dvd+1,F,A
dvd,F.A
0x00
dvd+1,F,A
dsr+1,7,A
do_it
sign,2,A
sign,0,A
dst,F.A
dsr+1,F,A
dsr,F,A
0x00
dsr+1,F,A
dvd,quo
dvd+1,quo+1
rem,A
rem-+1,A
D'16’
Ip_cnt,A
STATUS,C,A
quo,F.A
quo+1,FA
rem,F,A
rem+1,F,A
dsr,W,A

. u
)

; testing number for divisor

; initialize the sign of quotient to positive
; initialize the sign of dividend to positive
; initialize the sign of divisor to positive

; set up dividend

; check the sign of dividend

; change the sign of quotient
; record the sign bit of the dividend
; compute the magnitude of dividend

; check the sign of the divisor

; change the sign of quotient
; set the sign of the divisor
; compute the magnitude of divisor

; place dividend in Q register in Figure 4.1

; initialize R register in Figure 4.1

; initialize loop count to 8
; clear the C flag
; rotate (R, Q) pair to the left one place

; compute R-N and places the difference



4.6 m The Stack 137

subwf rem,W,A ; in WREG and temp
movwf temp,A i
movf dsr+1,W,A .
subwfb rem+1,W,A “
btfss STATUS,C,A ;skip if carry is 1
goto negative
bsf quo,0,A ; set the least significant bitof Q to 1
movwf rem+1,A ; place the difference in R in Figure 4.1
movff temp,rem e
goto next
negative bef quo,0,A ; set the quotient bit to O
next decfsz Ip_cnt,F,A ; dectement the loop count and skip if zero
goto loop
btfss sign,2,A ; skip if sign of quotient is negative
bra check_re e
comf quo,F,A ; complement the quotient
comf quo+1,FA e
incf quo,F.A ;
moviw 0x00 i
addwfc quo+1,F,A
check_re btfss sign,1,A ; skip if dividend is negative
bra ok_skip P
comf rem,F,A ; complement the remainder
comf rem+1,F,A H
incf rem,F,A 0
moviw 0x00 0
addwfc rem+1,F,A i
ok_skip nop
end

Signed division program for numbers in other lengths {e.g., 32-bit by 32-bit division) can be
written in the same manner and hence are left for you as an exercise.

4.6 The Stack

A stack is a first-in-last-out {or last-in-first-out) data structure. To implement a stack, two
things are needed:

1. A stack pointer that points to the top (or the byte immediately above the top) of the stack
2. A block of RAM of adequate size

The PIC18 MCU has no register designated as the stack pointer. However, the user can use
one of the FSR registers as the stack pointer and use one or more banks of the data memory to
implement the data stack. The stack implemented this way is called a software stack.

A stack can grow from a low address toward higher addresses or from a high address toward
lower addresses. This text follows the convention used by the Microchip C18 compiler:

1. Use the FSR1 register as the stack pointer and set it to point to the next available byte
on the stack as shown in Figure 4.2.

2. Grow the stack from a low address toward higher addresses.



