TOSHIBA Multi-chip Device Silicon P Channel MOS Type (U-MOSIV) /Silicon NPN Epitaxial Type

TPCP8J01

Notebook PC Applications Portable Equipment Applications

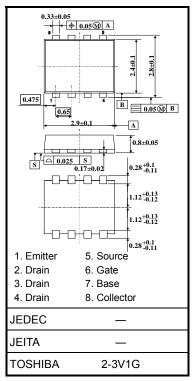
- Lead(Pb)-Free
- · Small mounting area due to small and thin package
- Low drain-source ON resistance: P Channel RDS (ON) = 27 m Ω (typ.)
- High forward transfer admittance: P Channel $|Y_{fs}| = 9.6 \text{ S (typ.)}$
- Low leakage current: $I_{DSS} = -10 \mu A (V_{DS} = -32 V)$
- Enhancement-mode: P Channel $V_{th} = -0.8 \text{ to } -2.0 \text{ V}$

 $(V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

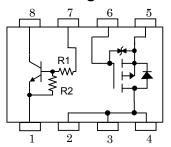
MOSFET

Characteristics		Symbol	Rating	Unit
Drain-source voltage		V_{DSS}	-32	V
Drain-gate voltage (F	$R_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	-32	V
Gate-source voltage		V _{GSS}	±20	V
Drain current	DC (Note 1)	ID	-5.5	Α
Diam current	Pulse (Note 1)	I _{DP}	-22	^
Drain power dissipati	on (t = 5 s) (Note 2a)	P _D	2.14	W
Drain power dissipati	on (t = 5 s) (Note 2b)	P _D	1.06	W
Single pulse avalance	ne energy (Note 3)	E _{AS}	5.8	mJ
Avalanche current		I _{AR}	-3	Α
Repetitive avalanche	energy (Note 4)	E _{AR}	0.21	mJ

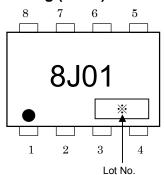

BRT

Characteris	Symbol	Rating	Unit		
Collector-base voltage			V_{CBO}	50	V
Collector-emitter voltage			V_{CEO}	50	V
Emitter-base voltage			V _{EBO}	6	V
Collector current	DC	(Note 1)	IC	100	mA
Collector power dissipation			PC	200	mW

Note: For Notes 1 to 5, refer to the next page.


This transistor is an electrostatic-sensitive device. Handle with caution.

Unit: mm



Weight: 0.011 g (typ.)

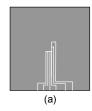
Circuit Configuration

Marking (Note5)

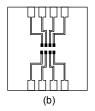
Common Absolute Maximum Ratings (Ta=25°C)

Characteristics	Symbol	Rating	Unit	
Junction temperature	T_J	150	°C	
Storage temperature range	T _{stg}	-55~150	°C	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


Thermal Characteristics

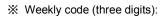
Characteristics	Symbol	Max	Unit
Thermal resistance, channel to ambient $(t=5\;s) \eqno(Note\;2a)$	R _{th (ch-a)}	58.4	°C/W
Thermal resistance, channel to ambient (t = 5 s) (Note 2b)	R _{th (ch-a)}	117.9	°C/W


Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)

 $FR-4 \\ 25.4 \times 25.4 \times 0.8 \\ \text{(Unit: mm)}$



 $FR-4 \\ 25.4 \times 25.4 \times 0.8 \\ \text{(Unit: mm)}$

Note 3: $V_{DD} = -24 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.2 mH, $R_G = 25 \Omega$, $I_{AR} = -3.0 \text{ A}$

Note 4: Repetitive rating: pulse width limited by maximum channel temperature

Note 5: "•" on the lower left of the marking indicates Pin 1.

Week of manufacture
(01 for the first week of the year, continues up to 52 or 53)

Year of manufacture
(The last digit of the calendar year)

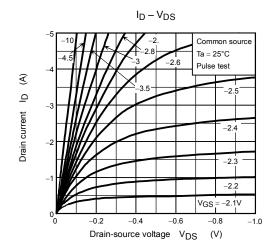
Electrical Characteristics (Ta = 25° C)

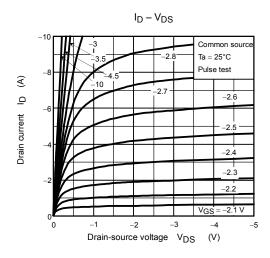
MOSFET

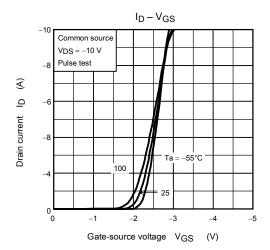
Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Drain cut-off curre	ent	I _{DSS}	$V_{DS} = -32 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-10	μА
Drain-source breakdown voltage		V _{(BR)DSS}	$I_D = -10$ mA, $V_{GS} = 0$ V	-32	_		V
Diain-source brea	akdown voltage	V _{(BR)DSX}	$I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$	-15			V
Gate threshold vo	oltage	V_{th}	$V_{DS} = -10 \text{ V}, I_D = -1 \text{mA}$	-0.8	_	-2.0	٧
Drain-source ON	rogiotanos	D	$V_{GS} = -4 \text{ V}, I_D = -3.0 \text{ A}$	_	38	49	mΩ
Diain-source ON	resistance	R _{DS} (ON)	$V_{GS} = -10 \text{ V}, I_D = -3.0 \text{ A}$	_	27	35	
Forward transfer admittance		Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -3.0 \text{ A}$	4.8	9.6	_	S
Input capacitance		C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	_	1760	_	pF
Reverse transfer capacitance		C _{rss}		_	200	_	
Output capacitance		C _{oss}		_	210		
Switching time	Rise time	t _r	V_{GS} 0 V $I_D = -3.0 \text{ A}$ 0 V 0 V 0 C $0 C$	_	2.8	_	
	Turn-on time	t _{on}		_	12	_	ne
	Fall time	t _f		_	22		- ns
	Turn-off time	t _{off}		_	90	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq -24 \text{ V}, V_{GS} = -10 \text{ V},$	_	34	_	nC
Gate-source charge 1		Q _{gs1}	$I_D = -5.5 \text{ A}$	_	4.7	_	
Gate-drain ("miller") charge		Q _{gd}		_	7.2	_	

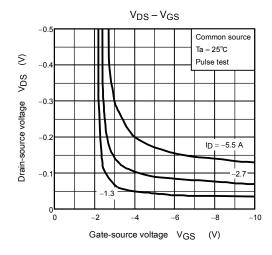
Source-Drain Ratings and Characteristics (Ta = 25°C)

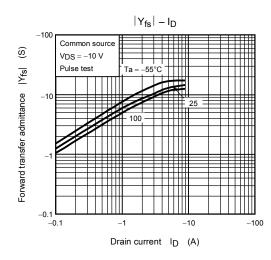
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current (Pulse) (Note 1)	I _{DRP}	_	_	_	-22	Α
Forward voltage (diode)	V_{DSF}	$I_{DR} = -5.5 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	1.2	V

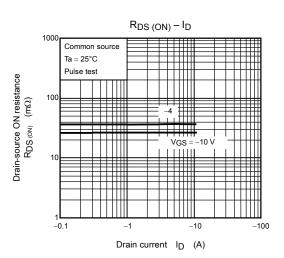

3 2006-11-17

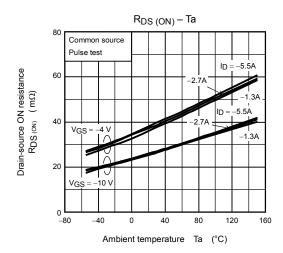

BRT

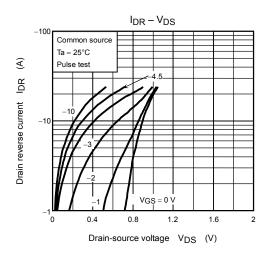

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	I _{CBO}	V _{CB} = 50 V, I _E = 0	_	_	100	nA
Collector cut-on current	I _{CEO}	V _{CB} = 50 V, I _E = 0	_	_	500	ш
Emitter cut-off current	I _{EBO}	V _{EB} = 6 V, I _C = 0	0.081	_	0.15	mA
DC current gain	h _{FE}	V _{CE} = 5 V, I _C = 10 mA	80	_	_	
Collector-emitter saturation voltage	V _{CE (sat)}	I _C = 5 mA, I _B = 0.25 mA	_	0.1	0.3	V
Input voltage (ON)	V _{I (ON)}	V _{CE} = 0.2 V, I _C = 5 mA	0.7	_	1.8	V
Input voltage (OFF)	V _I (OFF)	V _{CE} = 5 V, I _C = 0.1 mA	0.5	_	1.0	V
Transition frequency	f _T	V _{CE} = 10 V, I _C = 5 mA	_	250	_	MHz
Collector output capacitance	C _{ob}	V _{CB} = 10 V, I _E = 0, f = 1 MHz	_	3	6	pF
Input resistor	R1	_	7	10	13	kΩ
Resistor ratio	R1/R2	_	0.191	0.213	0.232	

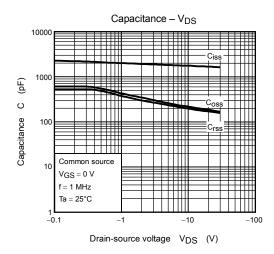

4 2006-11-17

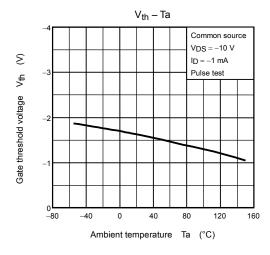

MOSFET

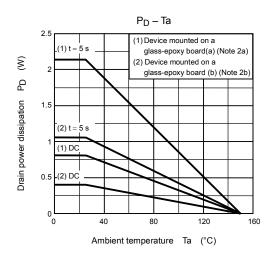


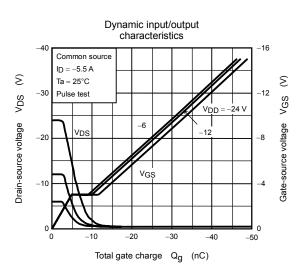


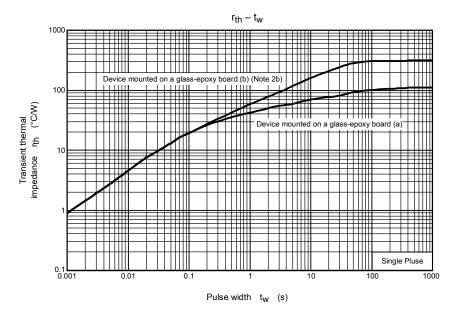


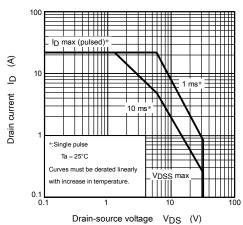


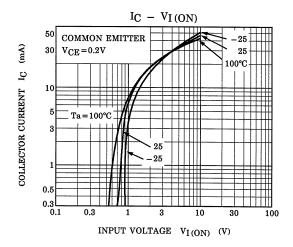


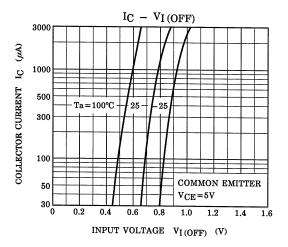


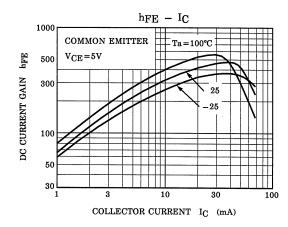












BRT

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.